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1. Poisson brackets and Poisson-commutative subalgebras

Let q be a non-Abelian Lie algebra over a field k (chark = 0). The symmetric

algebra 8(q) carries the standard Lie-Poisson structure:

o {&,n} = [€,n] for all £, n € q, extends further by the Leibniz rule (algebra);
o {F1,F2}(v) = v([dyF1,dyF>]) forall Iy, Fb € 8(q),y € 4" (geometrie);
o {f+Ua(q),h+Up(q)} = [f,h] +Uy44(q) for f € U,11(q), b € Up11(q).

The third definition uses the fact that 8(q) = gri/(q) and one may sat that it

belongs to representation theory.

If q is finite-dimensional, then 8(q) = k[q*] (this belongs to geometrie).

Definition 1. A subalgebra A C 8(q) is Poisson-commutative if {A, A} = 0.

If C C U(q) is a commutative algebra, then gr(C') C 8(q) is Poisson-commutative.

Quantisation problem: given a Poisson-commutative A C 8(q), find a commuta-

tive subalgebra A C U/(q) such that A = gr(A).



Some notation:

o For~y € q% sety(§,n) = ~v(&,n])if&,n € q.
o For A C 8(q), dyA := (d+F | F € A)y.

¢ Let gy = ker 7 be the stabiliser of v, then

indg := mindimgy and b(q) —Q(dlmq—l—lndq)
YEq*

Suppose that A C 8(q) and {A, A} = 0. Then 4(dA, dyA) = 0 and therefore
1
dimdyA < 5 —dim(dimgq —dimg,) 4+ dimg,.

Hence tr.deg A < b(q). More generally, if [ C q is a Lie subalgebra and
S(a)! ={F €8(a) [ {& F} =0V e},
then

tr.deg A < b(q) — b(I) +ind [ =: b'(q), (1)

for any Poisson-commutative subalgebra A C 8(q)' [MOLEV-Y. (2019)].
Remark. We have also tr.deg A < b(q) for any commutative subalgebra . A C U/(q)
and tr.deg C < b'(q) for any commutative subalgebra C C U(q)".



2. The Lenard—Magri scheme (compatible Poisson brackets)

Two Poisson brackets are compatible if their sum (and hence any linear combi-
nation of them) is again a Poisson bracket. Roughly speaking, a bi-Hamiltonian

system is a pair of compatible Poisson structures { , }', { , }”, or rather a pencil

{a{ , Y +0{,} |a,bek}
spanned by them.

Let n/, 7’ be the Poisson tensors of { , }',{ , }". Then 7, = an’+bx" is the
Poisson tensors of a{ , Y4+b{ , }. Foralmostall (a,b) € k2, rk(ax’+bx"") has one
and the same (maximal) value, letitbe r, and we say thata{ , }'+b{ , }" is regular
(or that (a,b) is a regular point) if rk(an’+bn") = 7. The Poisson centres Z,, ;
of regular structures in the pencil generate a subalgebra Z({ , }/,{, }), which is

Poisson-commutative w.r.t. all Poisson brackets in the pencil.



The Poisson tensor (bivector) 7 of the Lie—Poisson bracket { , } of 8(q) is defined
by the formula 7(dH AdF') = {H, F'} for H, F € 8(q). We have 4 = 7 () and in

this terms,
indg =dimgq — rk,

where rk m = maX, g+ rkm(7y).

The Poisson centre of (8(q),{ , })is Z(8(q),{, }) = Z(q) = 8(q)".

There is a well-developed geometric machinery for dealing with al-
gebras Z({ , },{ , }) = alg(Z, | rk(an’'+ba") = r).



3. Gaudin models

Suppose q = g is semisimple. A Gaudin model related to h = g®" consists of n

quadratic Hamiltonians depending on 2z = (21, ..., 2n) € k™.

Let {x; | 1 < < dim g} be a basis of g that is orthonormal w.r.t. the Killing form .
Let azgk) € b be a copy of z; belonging to the k-th copy of g. Assume that z; # 2z,
for 7 = k and set

dimg (k) _.(5)
szzzi=1 % 1<k<n (2)
j#Ek kTR

The Gaudin Hamiltonians H;. can be regarded as elements of either

U@ ZU(b) or S(h).
They commute in ¢/ (h) and hence Poisson-commutate in S(h).
Note that >3, Hi = O.
By the construction, each H}, is an invariant of the diagonal copy of g,

i.e., of Ag Cb.



4. Gaudin algebras

In 1994, B. Feigin, E .Frenkel, and N. Reshetikhin constructed a large commutative
algebra C(2) C U(h)49 that contains all Hy,.

The enveloping algebra U/ (g[t~1]) contains a large commutative subalgebra, the
Feigin—Frenkel centre 3(g,t™1). Let AU(g[t~1]) = U(g[t~1]) be the diagonal of
U(g[t—1])®". Suppose that Z € (k*)™. Then Z defines a natural homomorphism
pz: AU(g[t™1]) — U(g)®", where

pa(aztk) = zlfzc(l) + zéx(Q) + ...+ zﬁaz(n) cCgPgPd...0g for x € g.

Let C(2) be the image of 3(g,t~ 1) under ps. If zj 7= z, for j # j, then C(2)
contains the Hamiltonians H;. associated with Z.

According to [CHERVOV, FALQUI, and RYBNIKOV (2010)],

o tr.deg €(2) = "51(dimg+rkg) + rkg = b29(h),
o C(Z) is a polynomial algebra (with b8 (1) generators).



In the literature, one finds often the following (wrong) statement:
e C(2) is a maximal commutative subalgebra of U (b).
The correct one is

o €(Z) is a maximal commutative subalgebra of I/ (h) 2.

The proof in [CFR] uses some limit-constructions and a connection with

Mishchenko-Fomenko subalgebars.

The associated graded algebra gr(C(2)) C 8(h) is Poisson-commutative.
Question. Is there a pair of compatible Poisson structures on h* that produces
ar(C(2)) by the Lenard—-Magri scheme?

Not claiming this to be a general remedy, but nevertheless:

If you do not see a solution, let the problem stand on its head.



5. Quotients of the current algebra

Let p € k[t] be a normalised polynomial of degree n > 1. Then the quotient
q[t]/(p) = q ® (k[t]/(p)) is a Lie algebra and as a vector space it is isomorphic to

W=W(,n) =qgledgd.. o&q" L
where ¢ identifies with ¢ + (p). Let [ , ] be the Lie bracket on W given by p, i.e.,
qlt]/(p) = (W, [, ]p) as a Lie algebra. We identify q with q-1 C W. In a particular
case p = t", set q(n) = q[t] /(t"). The Lie algebra q(n) is known as a (generalised)
Takiff algebra modelled on gq. Note that q(1) = q. If dimgq < oo, then by [RATS-
TAUVEL (1992)], we have

ind q{n) = n-indq. 3)

From now on, assume that k = k.
Proposition 2. Suppose p = [[}_(t — a;)™i, where a; 7 a; fori 7 j, we have
m; > 1 foreachi < u, and }_}'_1 m; = n. Then q[t]/(p) = @F_1 q(my).

In a finite-dimensional case, Proposition 2 implies: ind(W, [ , ]») = n-indg.



@ az) jl;[ﬁz(az aj)_l. Then

r? = r; (mod p). Thisis an explicit application of the Chinese remainder theorem.

Each subspace q7; is a Lie subalgebra of ¢[t]/(p), isomorphic to g, and

Example 3. Suppose m; = 1 for each ¢. Set r; =

qlt]/(p) = qr1 ® qro @ ... & qrn. (4)

In particular, g[t]/(p) £ g®" is semisimple if g is semisimple.

6. Compatible brackets { , }p; and { , }», on (W)

Proposition 4. Let p1, po € k[t] be distinct normalised polynomials of degree n. If
we have deg(p1 — p>) < 1, then the Lie-Poisson brackets { , }p, and { , }p, are

compatible. More explicitly, a{ , }p; + (L —a){ ; }po ={ }ap;+(1—a)po-

The pencil L(p1,p2) := {{, }p1,{ , }p,) contains the unique singular line k¢ with
=1, }p; —{, }p, and always ind(W,¢) = dimq + (n—1)indq.

The bracket [q-1, W], is independent of p, thus Z, = Z(8(W),{ , }p) C S(W)4
and hence Z(p1,p2) = alg(Zp | p = ap1 + (1 — a)p2) C S(W)1.



Example 5.Setp = p; =t" —1, p =py =1t". Then

L(paﬁ) — {k{ ) }tn—I—aa k¢ | Q€ kag — { ) }tn—l _{ ) }tn}
Here (W, [, lnpo) & a®" if a # 0
(W, [, ]sn) is the Takiff algebra q(n);

and £(zt®, yit) = 0, _— Tf a+b<n
[z, y]T0T0—"  if a+b>n,

The Lie algebra (W, £) is an N-graded: W = qt* ! @ ¢t 2@ ... ®qt D q-1,
it is isomorphic to (£q[f])/(#*T1) and to the nilpotent radical of q(n-+1).

for x,y € q.

The bracket { , }s» is a contraction of { , };n_1 related to a cyclic permutation of
the summands. In case q = g is reductive, Z(t" — 1,t") was already studied
[PANYUSHEV-Y. (2021)].

Example 6. Supposen > 2. Setp =t"—t, p=1t", £ ={, }ym_+—{, }+n. Then

_ 0 if a+b<n;
b —_ ) '
0(xt?, yt°) = {[w JETHL i gt b s forx,y € q

and (W, ¢) = q(n—1) & ¢?P.



Theorem (The case q = g). (i) If p = [’ (z — a;), where a; # a; fori # j and

p(0) # O, then we have Z(p,p + t) = gr(C(2)) for Z = (a,_1 a1,
i, (k)xm |
(ii) Under the same assumptions on p, each H;, = ;k =y i ¢ 8(h) with
J

1 <k <nisanelementof Z(p,p+ 1).

7. Some explanations

If p(0) # 0, then the quotient map 1, : k[t] — k[t]/(p) extends to q[t,t~1] and to
U(q[t~1]). If ¢ = g and the roots of p are distinct, then we identify h = g®™ with
q[t]/(p) and write also h = v, (q[t~1]). As can be easily seen,

e(@) = ¢p(3(@,t™ 1)) if p=TILi(z— ay).
Next gr(€(@)) = ¢p(2(g,t™ 1)), where 2(5,t71) = gr(3(g, ¢ 1)).
For any g, the algebra 2.(g, ¢~ 1) is defined as
o 2(4,t71) = 8t Lq[¢t—1])9lt], where S(+—1q[t~1]) is regarded as the quotient
of 8(q[t,t~1]) by the ideal (q[t]), i.e., 2(q,t~1) consists of the elements
Y € 8(t71q[t™1]) suchthat {xtF Y} € q[t]S(q[t,t1]) forallz € gand k > O



It is more convenient to switch the variable: t =1 — ¢ in q[¢, t 1],
ie., 2(g,t™ 1) — 2(q,t).
Then part (i) of the theorem reads: Z(p,p +t) = ¥p(2(g,t)).

Conjecture 7. For any finite-dimensional Lie algebra q and any normalised p € k|t]
of degree n such that p(0) # 0, we have 1,(2(q,t)) = Z(p,p + ).

8. Non-reductive and reductive-like Lie algebras

¢ For any g, we have {2(q,t),2(q,t)} = O.
o The existence of 3(q,t~1) (ie., of a quantisation for Z(g§,t~1)) is not well-

documented. Probably one has to assume that q is quadratic. For the centralisers

gy with v € g, the problem is settled, affirmatively, [ARAKAWA-PREMET (2017)].



Reductive-like properties of a Lie algebra:

Set q;king = {n € q* | dimg, > indq}.

(01) tr.deg Z(q) = indq (enough symmetric invariants).

(Ok)k=23 dim q;‘ing <dimq— k (codim-k property ).

(Ca) 8(q)1 = k[F4q,..., Fn] is a polynomial ring in m = ind q variables and
Qe = {§ € q* | (deF1) A ... A (dgFm) # 0} is a big open subset of g* (i.e., the

complement of £2,+ does not contain divisors).

Results:

o If g satisfies (1) and ({»), then tr.deg Z(p, p+1) = %(dim g+indg)+indq
for any p and any [ with O < deg! < 1.

o If q satisfies (0o) and (04), then Z(p, p 4+ 1) is a polynomial ring (for any p and
[ as above).

o If q satisfies (¢3) and (04), then Z(p,p + 1) is a maximal (w.r.t. inclusion)
Poisson-commutative subalgebra of (S(W),{ , }»)1.

o If q satisfies (04) and p(0) # O, then Z(p,p 4+ t) = ¥p(Z(4,t)) (Conj. 7 holds).



9. Reasons and ideas
Definition 8 (Polarisation). For k= (k1,...,kq) € Zsuchthat 0 < k; < n for
each j, the E—polarisation of Y = [L y; € 8%(q) is

YK = (d)7Ysgk| Yy L yqifFa) e s(w) .
QESd

The notion extends to all F' € 8%(q) by linearity; Pol(F) := <F[E] | k as above >
Theorem 9 (Rais-Tauvel, Arakawa—-Premet, Panyushev-Y.). Suppose that q satis-
fies (04). Then, for any n > 1, the Takiff algebra q(n) has the same proper-
ties as q. In particular, Z(q(n)) is a graded polynomial ring of Krull dimension
ind q{(n) = nm and algebraically independent generators of Z(q(n)) are polarisa-

tions of the polynomials F; with1 < j < m.

The evaluation at ¢ = 1 defines an isomorphism Evy : 8(qt) — 8(q) of g¢-modules.
For F' € 8(q), set F'[t] := EvIl(F) € 8(qt). If FF € 8(q)Y, then F'[t] € Z(q,t). Set
T = 120},

Corollary 10. If q satisfies (Q4), then 2(q,t) is a polynomial ring generated by
Tk(Fj[t]) withk > 0and1 < j < m.



Assume that q satisfies (04). On the one hand, each Zj,, and hence also each
Z(p,p + 1), is generated by polarisations of the invariants F;; on the other hand,
each wp(Tk(Fj [t])) € Pol(F)}) for any j and k.

Suppose that q is quadratic and let b € 82(q)9 be a non-degenerate scalar product.
(In case q¢ = g is semisimple let h be the dual of x.) Then h[t] € Z(q,t) and also
hlt] € 3(q,t). By [RYBNIKOV (2008)], 3(g,t) is the centraliser of h[t] in U (tg[t])
and Z(g, t) is the Poisson centraliser of h[t] in S(tg[t]).

Suppose n > 2. Clearly h[(1,1)] € ¥»(Z(q,t)) for any p. By a small calculation,

h[(1,1)] € Z(p,p + t) for any p.
Proposition 11. Suppose that g = sly and F' € 8%(g) is such that F(¢) = det(¢)
for ¢ € g* = sly. Then for any p of degree n, we have

dim{f € Pol(F) | {f,h[(1,1)]}, = 0} < (n — 1)d + 1.

From this inequality one can deduce: dim(Pol(F)NZ(p,p+1)) = (n—-1)d+1
and Pol(F) N Z(p,p + 1) = Pol(F) N ,(Z(4,t)), whenever F € 8%(q)9 is
nonzero and p(0) #= O.



Having a non-degenerate invariant scalar product, we may choose an orthonormal
basis {z;} C q and defined the (generalised) Gaudin Hamiltonian by the same
formulas as in (2). Set p = [[;(t — z;).

Example 12. Return to Example 3 and polynomials 7; defined there.

Let h[7;] € 82(q7;)9 be the image of h under the canonical isomorphism extended

from the map = — z7; (here z € q). Then

dimg

RILDI= Y (@B = —2 (Z wk) + 3 22h[7
1=1 k k

Furthermore dim{f € Pol(h) | {f,h[(1,1)]}, = 0} = 2n — 1 and this subspace
has a basis {H}, h[Fj] | 1 <k<n,1<j<n}. Ifphasnonzero distinct roots,

then this another basis:

{RI(1, 1)), ¢por(hlt]),. .., ¢por™ 2(h[t]), h[7] | 1 <j<n}.
One may say that the generalised Gaudin model (%", H1,...,Hn) is equiv-
alent to (W, [, ]p, h[(1, 1)], Ypor(h[t]),...,Ypor™ 2(h[t])). The elements
Ypor¥(h[t]) with k < n — 2 do not depend on p, we have
Yporh(h[t]) = ! S (Z?':rqq :I:Z-faa:ﬁb).

1<a,b; a+b=k+2



