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1. Poisson brackets and Poisson-commutative subalgebras

Let q be a non-Abelian Lie algebra over a field k ( char k = 0 ). The symmetric

algebra S(q) carries the standard Lie–Poisson structure:

� {ξ, η} = [ξ, η] for all ξ, η ∈ q, extends further by the Leibniz rule (algebra);

� {F1, F2}(γ) = γ([dγF1,dγF2]) for all F1, F2 ∈ S(q), γ ∈ q∗ (geometrie);

� {f + Ua(q),h + Ub(q)} = [f ,h] + Ua+b(q) for f ∈ Ua+1(q), h ∈ Ub+1(q).

The third definition uses the fact that S(q) ∼= grU(q) and one may sat that it

belongs to representation theory.

If q is finite-dimensional, then S(q) = k[q∗] (this belongs to geometrie).

Definition 1. A subalgebra A ⊂ S(q) is Poisson-commutative if {A,A} = 0.

IfC ⊂ U(q) is a commutative algebra, then gr(C) ⊂ S(q) is Poisson-commutative.

Quantisation problem: given a Poisson-commutative A ⊂ S(q), find a commuta-

tive subalgebra Ã ⊂ U(q) such that A = gr(Ã).



Some notation:

� For γ ∈ q∗, set γ̂(ξ, η) = γ([ξ, η]) if ξ, η ∈ q.

� For A ⊂ S(q), dγA := 〈dγF | F ∈ A〉k.

� Let qγ = ker γ̂ be the stabiliser of γ, then

ind q := min
γ∈q∗

dim qγ and b(q) := 1
2(dim q + ind q).

Suppose that A ⊂ S(q) and {A,A} = 0. Then γ̂(dγA,dγA) = 0 and therefore

dim dγA 6
1

2
dim(dim q− dim qγ) + dim qγ.

Hence tr.degA 6 b(q). More generally, if l ⊂ q is a Lie subalgebra and

S(q)l = {F ∈ S(q) | {ξ, F} = 0 ∀ξ ∈ l},

then

tr.degA 6 b(q)− b(l) + ind l =: bl(q), (1)

for any Poisson-commutative subalgebra A ⊂ S(q)l [MOLEV–Y. (2019)].

Remark. We have also tr.degA 6 b(q) for any commutative subalgebraA ⊂ U(q)

and tr.deg C 6 bl(q) for any commutative subalgebra C ⊂ U(q)l.



2. The Lenard–Magri scheme (compatible Poisson brackets)

Two Poisson brackets are compatible if their sum (and hence any linear combi-

nation of them) is again a Poisson bracket. Roughly speaking, a bi-Hamiltonian

system is a pair of compatible Poisson structures { , }′, { , }′′, or rather a pencil

{a{ , }′+ b{ , }′′ | a, b ∈ k}

spanned by them.

Let π′, π′′ be the Poisson tensors of { , }′, { , }′′. Then πa,b = aπ′+bπ′′ is the

Poisson tensors of a{ , }′+b{ , }′′. For almost all (a, b) ∈ k2, rk(aπ′+bπ′′) has one

and the same (maximal) value, let it be r, and we say that a{ , }′+b{ , }′′ is regular

(or that (a, b) is a regular point) if rk(aπ′+bπ′′) = r. The Poisson centres Za,b
of regular structures in the pencil generate a subalgebra Z({ , }′, { , }′′), which is

Poisson-commutative w.r.t. all Poisson brackets in the pencil.



The Poisson tensor (bivector) π of the Lie–Poisson bracket { , } of S(q) is defined

by the formula π(dH ∧dF ) = {H,F} forH,F ∈ S(q). We have γ̂ = π(γ) and in

this terms,

ind q = dim q− rkπ,

where rkπ = maxγ∈q∗ rkπ(γ).

The Poisson centre of (S(q), { , }) is Z(S(q), { , }) = Z(q) = S(q)q.

There is a well-developed geometric machinery for dealing with al-
gebras Z({ , }′, { , }′′) = alg

〈
Za,b | rk(aπ′+bπ′′) = r

〉
.



3. Gaudin models

Suppose q = g is semisimple. A Gaudin model related to h = g⊕n consists of n

quadratic Hamiltonians depending on ~z = (z1, . . . , zn) ∈ kn.

Let {xi | 1 6 i 6 dim g} be a basis of g that is orthonormal w.r.t. the Killing form κ.

Let x(k)
i ∈ h be a copy of xi belonging to the k-th copy of g. Assume that zj 6= zk

for j 6= k and set

Hk =
∑
j 6=k

∑dim g
i=1 x

(k)
i x

(j)
i

zk − zj
, 1 6 k 6 n. (2)

The Gaudin HamiltoniansHk can be regarded as elements of either

U(g)⊗n ∼= U(h) or S(h).

They commute in U(h) and hence Poisson-commutate in S(h).

Note that
∑n
k=1Hk = 0.

By the construction, eachHk is an invariant of the diagonal copy of g,

i.e., of ∆g ⊂ h.



4. Gaudin algebras

In 1994, B. Feigin, E .Frenkel, and N. Reshetikhin constructed a large commutative

algebra C(~z) ⊂ U(h)∆g that contains allHk.

The enveloping algebra U(g[t−1]) contains a large commutative subalgebra, the

Feigin–Frenkel centre z(ĝ, t−1). Let ∆U(g[t−1]) ∼= U(g[t−1]) be the diagonal of

U(g[t−1])⊗n. Suppose that ~z ∈ (k×)n. Then ~z defines a natural homomorphism

ρ~z : ∆U(g[t−1])→ U(g)⊗n, where

ρ~a(xtk) = zk1x
(1) + zk2x

(2) + . . .+ zknx
(n) ∈ g⊕ g⊕ . . .⊕ g for x ∈ g.

Let C(~z) be the image of z(ĝ, t−1) under ρ~z. If zj 6= zk for j 6= j, then C(~z)

contains the HamiltoniansHk associated with ~z.

According to [CHERVOV, FALQUI, and RYBNIKOV (2010)],

� tr.degC(~z) = n−1
2 (dim g + rk g) + rk g = b∆g(h),

� C(~z) is a polynomial algebra (with b∆g(h) generators).



In the literature, one finds often the following (wrong) statement:

• C(~z) is a maximal commutative subalgebra of U(h).

The correct one is

� C(~z) is a maximal commutative subalgebra of U(h)∆g.

The proof in [CFR] uses some limit-constructions and a connection with

Mishchenko–Fomenko subalgebars.

The associated graded algebra gr(C(~z)) ⊂ S(h) is Poisson-commutative.

Question. Is there a pair of compatible Poisson structures on h∗ that produces

gr(C(~z)) by the Lenard–Magri scheme?

Not claiming this to be a general remedy, but nevertheless:

If you do not see a solution, let the problem stand on its head.



5. Quotients of the current algebra

Let p ∈ k[t] be a normalised polynomial of degree n > 1. Then the quotient

q[t]/(p) ∼= q⊗ (k[t]/(p)) is a Lie algebra and as a vector space it is isomorphic to

W = W(q, n) = q·1⊕ qt̄⊕ . . .⊕ q̄tn−1,

where t̄ identifies with t + (p). Let [ , ]p be the Lie bracket on W given by p, i.e.,

q[t]/(p) ∼= (W, [ , ]p) as a Lie algebra. We identify q with q·1 ⊂W. In a particular

case p = tn, set q〈n〉 = q[t]/(tn). The Lie algebra q〈n〉 is known as a (generalised)

Takiff algebra modelled on q. Note that q〈1〉 ∼= q. If dim q < ∞, then by [RAÏS–

TAUVEL (1992)], we have

ind q〈n〉 = n·ind q. (3)

From now on, assume that k = k.

Proposition 2. Suppose p =
∏u
i=1(t − ai)mi, where ai 6= aj for i 6= j, we have

mi > 1 for each i 6 u, and
∑u
i=1mi = n. Then q[t]/(p) ∼=

⊕u
i=1 q〈mi〉.

In a finite-dimensional case, Proposition 2 implies: ind(W, [ , ]p) = n·ind q.



Example 3. Suppose mi = 1 for each i. Set ri =
p

(t− ai)
∏
j 6=i

(ai − aj)−1. Then

r2
i ≡ ri (mod p). This is an explicit application of the Chinese remainder theorem.

Each subspace qr̄i is a Lie subalgebra of q[t]/(p), isomorphic to q, and

q[t]/(p) = qr̄1 ⊕ qr̄2 ⊕ . . .⊕ qr̄n. (4)

In particular, g[t]/(p) ∼= g⊕n is semisimple if g is semisimple.

6. Compatible brackets { , }p1 and { , }p2 on S(W)

Proposition 4. Let p1, p2 ∈ k[t] be distinct normalised polynomials of degree n. If

we have deg(p1 − p2) 6 1, then the Lie–Poisson brackets { , }p1 and { , }p2 are

compatible. More explicitly, a{ , }p1 + (1− a){ , }p2 = { , }ap1+(1−a)p2
.

The pencil L(p1, p2) := 〈{ , }p1, { , }p2〉 contains the unique singular line k`with

` = { , }p1 − { , }p2 and always ind(W, `) = dim q + (n−1)ind q.

The bracket [q·1,W]p is independent of p, thus Zp = Z(S(W), { , }p) ⊂ S(W)q

and hence Z(p1, p2) = alg〈Zp | p = ap1 + (1− a)p2〉 ⊂ S(W)q.



Example 5. Set p = p1 = tn − 1, p̃ = p2 = tn. Then

L(p, p̃) =
{
k{ , }tn+α, k` | α ∈ k, ` = { , }tn−1 − { , }tn

}
.

Here (W, [ , ]tn+α) ∼= q⊕n if α 6= 0;

(W, [ , ]tn) is the Takiff algebra q〈n〉;

and `(xt̄a, ȳtb) =

0, if a+ b < n;

[x, y]t̄a+b−n, if a+ b > n,
for x, y ∈ q.

The Lie algebra (W, `) is an N-graded: W = qt̄n−1 ⊕ qt̄n−2 ⊕ . . .⊕ qt̄⊕ q·1,

it is isomorphic to (t̃q[t̃])/(t̃n+1) and to the nilpotent radical of q〈n+1〉.

The bracket { , }tn is a contraction of { , }tn−1 related to a cyclic permutation of

the summands. In case q = g is reductive, Z(tn − 1, tn) was already studied

[PANYUSHEV–Y. (2021)].

Example 6. Suppose n > 2. Set p = tn− t, p̃ = tn, ` = { , }tn−t−{ , }tn. Then

`(xt̄a, ȳtb) =

0, if a+ b < n;

[x, y]t̄a+b+1−n, if a+ b > n,
for x, y ∈ q

and (W, `) ∼= q〈n−1〉 ⊕ qab.



Theorem (The case q = g). (i) If p =
∏n
i=1(x − ai), where ai 6= aj for i 6= j and

p(0) 6= 0, then we have Z(p, p+ t) = gr(C(~z)) for ~z = (a−1
1 , . . . , a−1

n ).

(ii) Under the same assumptions on p, each H̃k =
∑
j 6=k

∑dim g
i=1 x

(k)
i x

(j)
i

ak−aj
∈ S(h) with

1 6 k 6 n is an element of Z(p, p+ 1).

7. Some explanations

If p(0) 6= 0, then the quotient map ψp : k[t]→ k[t]/(p) extends to q[t, t−1] and to

U(q[t−1]). If q = g and the roots of p are distinct, then we identify h = g⊕n with

q[t]/(p) and write also h = ψp(q[t−1]). As can be easily seen,

C(~a) = ψp(z(ĝ, t−1)) if p =
∏
i(x− ai).

Next gr(C(~a)) = ψp(Z(ĝ, t−1)), where Z(ĝ, t−1) = gr(z(ĝ, t−1)).

For any q, the algebra Z(q̂, t−1) is defined as

� Z(q̂, t−1) = S(t−1q[t−1])q[t], where S(t−1q[t−1]) is regarded as the quotient

of S(q[t, t−1]) by the ideal (q[t]), i.e., Z(q̂, t−1) consists of the elements

Y ∈ S(t−1q[t−1]) such that {xtk, Y } ∈ q[t]S(q[t, t−1]) for all x ∈ q and k > 0.



It is more convenient to switch the variable: t−1 7→ t in q[t, t−1],

i.e., Z(q̂, t−1) 7→ Z(q̂, t).

Then part (i) of the theorem reads: Z(p, p+ t) = ψp(Z(ĝ, t)).

Conjecture 7. For any finite-dimensional Lie algebra q and any normalised p ∈ k[t]

of degree n such that p(0) 6= 0, we have ψp(Z(q̂, t)) = Z(p, p+ t).

8. Non-reductive and reductive-like Lie algebras

� For any q, we have {Z(q̂, t),Z(q̂, t)} = 0.

� The existence of z(q̂, t−1) (i.e., of a quantisation for Z(q̂, t−1)) is not well-

documented. Probably one has to assume that q is quadratic. For the centralisers

gγ with γ ∈ g, the problem is settled, affirmatively, [ARAKAWA–PREMET (2017)].



Reductive-like properties of a Lie algebra:

Set q∗sing = {η ∈ q∗ | dim qη > ind q}.

(♦1) tr.degZ(q) = ind q ( enough symmetric invariants).

(♦k)k=2,3 dim q∗sing 6 dim q− k ( codim–k property ).

(♦4) S(q)q = k[F1, . . . , Fm] is a polynomial ring in m = ind q variables and

Ωq∗ = {ξ ∈ q∗ | (dξF1) ∧ . . . ∧ (dξFm) 6= 0} is a big open subset of q∗ (i.e., the

complement of Ωq∗ does not contain divisors).

Results:

� If q satisfies (♦1) and (♦2), then tr.degZ(p, p+l) = n−1
2 (dim q+ind q)+ind q

for any p and any l with 0 6 deg l 6 1.

� If q satisfies (♦2) and (♦4), then Z(p, p + l) is a polynomial ring (for any p and

l as above).

� If q satisfies (♦3) and (♦4), then Z(p, p + l) is a maximal (w.r.t. inclusion)

Poisson-commutative subalgebra of (S(W), { , }p)q.

� If q satisfies (♦4) and p(0) 6= 0, then Z(p, p+ t) = ψp(Z(q̂, t)) (Conj. 7 holds).



9. Reasons and ideas
Definition 8 (Polarisation). For ~k = (k1, . . . , kd) ∈ Z such that 0 6 kj < n for

each j, the ~k-polarisation of Y =
∏
i yi ∈ Sd(q) is

Y [~k] := (d!)−1|Sd·~k|
∑
θ∈Sd

y1̄t
θ(k1) . . . yd̄t

θ(kd) ∈ S(W) .

The notion extends to all F ∈ Sd(q) by linearity; Pol(F ) :=
〈
F [~k] | ~k as above

〉
.

Theorem 9 (Raı̈s–Tauvel, Arakawa–Premet, Panyushev–Y.). Suppose that q satis-

fies (♦4). Then, for any n > 1, the Takiff algebra q〈n〉 has the same proper-

ties as q. In particular, Z(q〈n〉) is a graded polynomial ring of Krull dimension

ind q〈n〉 = nm and algebraically independent generators of Z(q〈n〉) are polarisa-

tions of the polynomials Fj with 1 6 j 6 m.

The evaluation at t = 1 defines an isomorphism Ev1 : S(qt)→ S(q) of q-modules.

For F ∈ S(q), set F [t] := Ev−1
1 (F ) ∈ S(qt). If F ∈ S(q)q, then F [t] ∈ Z(q̂, t). Set

τ = t2∂t.

Corollary 10. If q satisfies (♦4), then Z(q̂, t) is a polynomial ring generated by

τk(Fj[t]) with k > 0 and 1 6 j 6 m.



Assume that q satisfies (♦4). On the one hand, each Zp, and hence also each

Z(p, p + l), is generated by polarisations of the invariants Fj; on the other hand,

each ψp(τk(Fj[t])) ∈ Pol(Fj) for any j and k.

Suppose that q is quadratic and let h ∈ S2(q)q be a non-degenerate scalar product.

(In case q = g is semisimple let h be the dual of κ.) Then h[t] ∈ Z(q̂, t) and also

h[t] ∈ z(q̂, t). By [RYBNIKOV (2008)], z(ĝ, t) is the centraliser of h[t] in U(tg[t])

and Z(ĝ, t) is the Poisson centraliser of h[t] in S(tg[t]).

Suppose n > 2. Clearly h[(1,1)] ∈ ψp(Z(q̂, t)) for any p. By a small calculation,

h[(1,1)] ∈ Z(p, p+ t) for any p.

Proposition 11. Suppose that g = sld and F ∈ Sd(g) is such that F (ξ) = det(ξ)

for ξ ∈ g∗ ∼= sld. Then for any p of degree n, we have

dim{f ∈ Pol(F ) | {f,h[(1,1)]}p = 0} 6 (n− 1)d+ 1.

From this inequality one can deduce: dim(Pol(F )∩Z(p, p+ l)) = (n−1)d+ 1

and Pol(F ) ∩ Z(p, p + l) = Pol(F ) ∩ ψp(Z(q̂, t)), whenever F ∈ Sd(q)q is

nonzero and p(0) 6= 0.



Having a non-degenerate invariant scalar product, we may choose an orthonormal

basis {xi} ⊂ q and defined the (generalised) Gaudin Hamiltonian by the same

formulas as in (2). Set p =
∏
i(t− zi).

Example 12. Return to Example 3 and polynomials r̄i defined there.

Let h[r̄i] ∈ S2(qr̄i)
q be the image of h under the canonical isomorphism extended

from the map x 7→ xr̄i (here x ∈ q). Then

h[(1,1)] =
dim q∑
i=1

(xit̄)
2 = −2

∑
k

zkHk

+
∑
k

z2
kh[r̄k].

Furthermore dim{f ∈ Pol(h) | {f,h[(1,1)]}p = 0} = 2n−1 and this subspace

has a basis {Hk, h[r̄j] | 1 6 k < n, 1 6 j 6 n}. If p has nonzero distinct roots,

then this another basis:

{h[(1,1)], ψp◦τ(h[t]), . . . , ψp◦τn−2(h[t]), h[r̄j] | 1 6 j 6 n}.

One may say that the generalised Gaudin model (q⊕n,H1, . . . ,Hn) is equiv-

alent to (W, [ , ]p,h[(1,1)], ψp◦τ(h[t]), . . . , ψp◦τn−2(h[t])). The elements

ψp◦τk(h[t]) with k 6 n− 2 do not depend on p, we have

ψp◦τk(h[t]) = k!
∑

16a,b; a+b=k+2

(∑dim q
i=1 xit̄

axīt
b
)

.


