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Abstract

My thesis is about geometry of reductive groups. The purpose is to extend some

well-known geometric results that hold for the complex torus (C∗)n to the case of an

arbitrary complex reductive group. The thesis consists of two parts.

The first part contains an analog of the Gauss-Bonnet theorem for constructible

sheaves equivariant under the adjoint action. This theorem relates the Euler char-

acteristic of a sheaf to the Gaussian degrees of the components of its characteristic

cycle. As a corollary I get that a perverse sheaf equivariant under the adjoint action

has nonnegative Euler characteristic.

In the second part, I modify one of the classical definitions of the Chern classes

to construct noncompact analogs of the Chern classes for equivariant vector bundles

over reductive groups. These Chern classes have the same properties as the usual

Chern classes. Using the Chern classes of the tangent bundle, I obtain an adjunction

formula for the Euler characteristic of hypersurfaces in arbitrary reductive groups.

The common feature of the results and constructions of my thesis is that I use
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a group action to extend to noncompact setting such classical results as the Gauss-

Bonnet theorem and the adjunction formula.
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Chapter 1

Introduction and main results

A Gauss-Bonnet theorem for reductive groups. The classical Gauss-Bonnet

theorem states that the Euler characteristic of a compact oriented hypersurface in Rn

coincides up to a sign with the degree of its Gauss map. For arbitrary algebraic group

and its possibly noncompact subvariety one can also define a Gauss map using the

parallel transport given by the group multiplication. It is natural to ask if the degree of

such Gauss map coincides with the Euler characteristic. J. Franecki and M. Kapranov

proved that it is true for complex subvarieties of the complex torus (C∗)n and, more

generally, for constructible sheaves on the torus. However, their result does not hold

for arbitrary constructible sheaves on a noncommutative algebraic group. Kapranov

conjectured that it is still true for constructible sheaves on reductive groups if we

consider only sheaves equivariant under the adjoint action. I proved this conjecture.

The precise statement is as follows. Let G be a complex reductive group, and let

F be a constructible complex of sheaves on G. For a subvariety X ⊂ G, denote by

gdeg(X) the Gaussian degree of X. It is is equal to the number of zeros of a generic

left-invariant differential 1-form on G restricted to X. It is easy to show that the

Gaussian degree is well-defined [7, 8]. E.g. the Gaussian degree of a hypersurface is

equal to the degree of its Gauss map.
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Theorem 1.1. [26] If F is equivariant under the adjoint action of G, then its Euler

characteristic can be computed in terms of its characteristic cycle
∑

cαT∗
Xα

G by the

following formula

χ(G,F) =
∑

cαgdeg(Xα),

where coefficients cα are the multiplicities of the characteristic cycle.

In other words, the Euler characteristic of a sheaf is equal to the intersection

index of the characteristic cycle with the graph of a generic left-invariant 1-form on

the group G. The Gauss map provides a definition of such intersection index in the

noncompact situation. In this form, Theorem 1.1 is very similar to the well-known

Kashiwara’s index theorem, which holds for compact manifolds.

Theorem 1.1 relates two geometric invariants of a sheaf: the Euler characteristic

and the characteristic cycle. In some cases this relation can be used to estimate one

of these invariants if the other is known (see Corollary 1.3). This works especially

well if the sheaf F is perverse (see Corollary 1.2). In this case the multiplicities cα of

the characteristic cycle are nonnegative.

Theorem 1.1 gives a tool to classify adjoint equivariant perverse sheaves with a

given Euler characteristic. E.g. if the Euler characteristic is small then the charac-

teristic cycle cannot have components with large Gaussian degrees. This gives some

essential restrictions on the characteristic cycle. One of my future plans is to explore

the geometry of subvarieties with a given Gaussian degree and to give a geometric

description of perverse sheaves with a given Euler characteristic. I am especially

interested in perverse sheaves with Euler characteristic 1. When G is a complex

torus such sheaves (if irreducible) are identified with complexes of solutions of the

generalized hypergeometric systems [11]. Irreducible hypersurfaces in (C∗)n of the

Gaussian degree 1 are identified with discriminantal hypersurfaces of the generalized

hypergeometric functions [19].
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Theorem 1.1 can also be used to obtain a lower estimate for the Euler characteristic

of a perverse sheaf. In particular, since the Gaussian degree is always nonnegative by

its definition, Theorem 1.1 immediately gives the following corollary.

Corollary 1.2. [26] If F is a perverse sheaf equivariant under the adjoint action,

then its Euler characteristic is nonnegative.

In the case when G is a complex torus this statement was proved by F. Loeser

and C. Sabbah using the theory of D-modules [29]. Another proof was given by O.

Gabber and F. Loeser for l-adic perverse sheaves [11]. In the case of an arbitrary

reductive group, a result of A. Braverman implies this statement for a special class

of perverse sheaves equivariant under the adjoint action [1].

The main example of a perverse sheaf is given by the shifted complex of inter-

section chains of a closed subvariety X ⊂ G. Suppose that X is invariant under

the adjoint action. Then Corollary 1.2 implies that the Euler characteristic of X

computed using the intersection cohomology has sign (−1)dimX (because of the shift).

Adjoint equivariant sheaves arising naturally in representation theory sometimes

have very special characteristic cycles. E.g. this is the case for character sheaves

introduced by Lusztig [32]. For character sheaves, Theorem 1.1 immediately implies

that their Euler characteristic vanishes. I also proved the following generalization of

this classical result.

Corollary 1.3. If the characteristic cycle of F is supported on the set of nonsemisim-

ple elements of the group G, then the Euler characteristic of F vanishes.

Theorem 1.1 stated for a stratified subvariety X ⊂ G relates the Euler character-

istic of X to the Euler characteristics of complex links of the strata as follows. Let

X =
⊔

Xα be a finite Whitney stratification of X. Denote by eα the Euler character-

istic of the complex link of a stratum Xα. This number measures the singularity of
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a subvariety X along the stratum Xα. E.g. if Xα lies in the smooth locus of X, then

eα is equal to 1. If Xα is open and dense in X, put eα = 0

Corollary 1.4. If X ⊂ G is a closed subvariety invariant under the adjoint action,

then the topological Euler characteristic of X can be computed as follows

χ(X) =
∑

(−1)dimXα(1− eα)gdeg(Xα).

In particular, if X is smooth, then χ(X) = (−1)dimXgdeg(X), which is a non-

compact analog of the Gauss-Bonnet theorem. It also reminds of the classical Hopf

theorem which states that the Euler characteristic of a compact oriented C∞-manifold

M is equal to (−1)dimM times the number of zeros of a generic 1-form on M , counted

with signs.

Chern classes and the Euler characteristic of a hyperplane section. In

the second part of my thesis I construct noncompact analogs of Chern classes of

reductive groups and use them in the following problem. Consider a finite-dimensional

representation π : G → End(V ) of a reductive group G in a vector space V . The

problem is to find the Euler characteristic χ(π) of a generic hyperplane section of the

image π(G) in the space End(V ). This problem is closely related with generalized

hypergeometric functions. Let me discuss this relation.

The generalized hypergeometric functions can be described as solutions of cer-

tain holonomic systems of linear PDE’s associated with representations of reductive

groups. For a complex torus, these systems were studied by I.Gelfand, M.Kapranov,

A.Zelevinsky. Later Kapranov defined them for arbitrary reductive groups [20]. A

finite-dimensional representation π : G → End(V ) of a reductive group G in a vector

space V gives rise to a family of such systems. Let D be a generic system from this

family. In the torus case, the number of linearly independent solutions of D is equal

to the degree deg(π) of the image of G in End(V ) [13]. For other reductive groups,
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the question is open.

One of essential features of generalized hypergeometric functions is that they can

be represented by Euler integrals. For example, for classical hypergeometric equations

this enables us to construct global solutions and to find the monodromy group. In

the torus case, the number of linearly independent solutions of the system D that are

represented by Euler integrals is equal up to a sign to the Euler characteristic χ(π)

of a generic hyperplane section of π(G) in the space End(V ). In the torus case, the

equality |χ(π)| = deg(π) implies that Euler integrals span the space of all solutions

[14, 12]. It seems that for other reductive groups, one can also construct exactly

|χ(π)| linearly independent Euler integrals satisfying the system D. Thus it is very

appealing to find this number and relate it to the number of all linearly independent

solutions.

Another motivation comes from the beautiful explicit formula for χ(π), when

G is a complex torus. In this case, the Euler characteristic χ(π) is equal to

(−1)dimG−1 · deg(π) [24]. The degree deg(π) has a nice combinatorial description

via the volume of the weight polytope of the representation. This result is one in

a series of theorems due to D.Bernstein, A.Koushnirenko, A.Khovanskii. They ex-

pressed a number of invariants of hypersurfaces in (C∗)n in terms of the corresponding

Newton polytopes. For arbitrary reductive groups the only result in this direction is

the similar combinatorial description for the intersection index of several hyperplane

sections due to B.Kazarnovskii [23] and M.Brion [2]. In particular, this allows one

to compute the degree deg(π) (which can be viewed as the self-intersection index of

a hyperplane section). An interesting interpretation of this result in terms of the

volume of the Gelfand-Zetlin polytope was given by A.Okounkov [34, 35].

For other reductive groups the Euler characteristic is no longer equal to the degree.

Even for SL2(C) the answer is already more complicated [22]. I have proved a formula

that expresses the Euler characteristic χ(π) via the degrees of certain interesting
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subvarieties of the group G (see Theorem 1.5).

While computing the Euler characteristic I discovered analogs of Chern classes of

a reductive group. To construct them I considered the spherical action of G × G on

a group G by left and right multiplication. This action provides a natural class of

linear vector fields on G which I employed to define the subvarieties Si dual to the

“Chern classes”. Denote by n and k the dimension and the rank of G, respectively.

My construction repeats the usual construction of Chern classes via degeneracy loci of

vector fields. E.g. the hypersurface S1 consists of all points where n vector fields are

linearly dependent, S2 consists of all points where first (n−1) vector fields are linearly

dependent and so on. I proved that a subvariety Si is nonempty only if i ≤ n − k.

E.g. if G is a torus then all subvarieties Si are empty. In the reductive case, the

subvarieties Si are responsible for the discrepancy between the Euler characteristic

and the degree. Namely, the following analog of an adjunction formula holds.

Theorem 1.5. The Euler characteristic χ(π) of a generic hyperplane section is equal

to the alternating sum of the degrees of π(Si):

χ(π) =
n−k∑
i=0

(−1)n−i−1deg π(Si).

Clearly, when G is a torus, only the first term of the sum is left and the formula

gives the right answer.

The formula from Theorem 1.5 is very similar to the adjunction formula that

expresses the Euler class of a divisor on a compact manifold via the Chern classes of

this manifold. In fact, there is a relation between the subvarieties Si and the Chern

classes of equivariant compactifications of G.

I also give a definition of Chern classes for all vector bundles over G that are

equivariant under the action of G × G (the tangent bundle is an example of such

bundles). Their construction is completely analogous to the one mentioned above. It

provides the well-defined elements of the ring of conditions of G introduced by De
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Concini and Procesi [5, 3]. This ring is an analog of cohomology ring for reductive

groups, and was initially devised to solve enumerative problems.

An interesting problem is to find an explicit combinatorial answer for the degrees

of Chern classes in the spirit of Brion-Kazarnovskii theorem. So far I have been able

to find the degrees of the first and of the last Chern classes.



Chapter 2

A Gauss-Bonnet theorem for

constructible sheaves on reductive

groups

2.1 Introduction

In this chapter, we prove an analog of the Gauss-Bonnet formula for constructible

sheaves on reductive groups. This formula holds for all constructible sheaves equiv-

ariant under the adjoint action and expresses the Euler characteristic of a sheaf in

terms of its characteristic cycle. As a corollary from this formula we get that if a

perverse sheaf on a reductive group is equivariant under the adjoint action, then its

Euler characteristic is nonnegative.

We now give the basic definitions and then formulate the main results.

In the sequel, by a constructible complex we will always mean a bounded complex

of sheaves of C-vector spaces whose cohomology sheaves are constructible with respect

to some finite algebraic stratification (see [21]). For any constructible complex F on

8
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a smooth complex variety X one can define the following geometric invariants: the

global Euler characteristic χ(X,F) and the characteristic cycle CC(F).

The global Euler characteristic χ(X,F) is defined as the the Euler characteristic

of the complex of cohomology groups H i(X,F). The latter are obtained by taking

the derived functor of global sections of F (see [21]).

There exists a morphism from the derived category of constructible complexes on a

smooth complex variety X to the group of Lagrangian cycles in the cotangent bundle

T∗X (see [21] Section 9.4). It has nice functorial properties. The characteristic cycle

CC(F) of a constructible complex F is the image of F under this morphism.

A constructible complex F on X is called a perverse sheaf if it satisfies the follow-

ing two conditions. First, the local cohomology H i(Fx) are supported on a subset of

dimension at most −i. Second, the local cohomology H i
c(Fx) with compact support

are supported on a subset of dimension at most i ([21, 18, 31]).

We now formulate the main results. Let G be a complex reductive group, and

let F be a constructible complex on G. The characteristic cycle of F is a linear

combination of Lagrangian subvarieties CC(F) =
∑

cαT∗
Xα

G. Here and in the sequel

T∗
XG denotes the closure of the conormal bundle to the smooth locus of a subvariety

X ⊂ G. With X one can associate a nonnegative number gdeg(X) called the Gaussian

degree of X. It is equal to the number of zeros of a generic left-invariant differential

1-form on G restricted to X. The precise definitions of the Gaussian degree and of

the Gauss map are given in section 2.2.

Theorem 2.1. If F is equivariant under the adjoint action of G, then its Euler

characteristic can be computed in terms of the characteristic cycle by the following

formula

χ(G,F) =
∑

cαgdeg(Xα).

For a perverse sheaf the multiplicities cα of its characteristic cycle are nonnegative
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[15]. The Gaussian degrees of Xα are also nonnegative by their definition, see below.

Thus Theorem 2.1 immediately implies the following important corollary.

Corollary 2.2. If F is a perverse sheaf equivariant under the adjoint action of G,

then its Euler characteristic is nonnegative.

In particular, let CX be a constant sheaf on a subvariety X ⊂ G extended by 0 to

G. Applying the above statements to this sheaf we get the following corollary.

Corollary 2.3. If X ⊂ G is a closed smooth subvariety invariant under the adjoint

action of G, then χ(X) = (−1)dimXgdeg(X). Thus the number (−1)dimXχ(X) is

nonnegative.

Indeed, the characteristic cycle of CX coincides with (−1)dimXT∗
XG. There is an

analogous formula for the Euler characteristic of any closed (not necessarily smooth)

subvariety invariant under the adjoint action (Corollary 2.18).

Another corollary proves the vanishing of the Euler characteristic of a sheaf F in

the case when the characteristic cycle of F is supported on the set of nonsemisimple

elements of the group G (Corollary 2.19). E.g. the characteristic cycles of Lusztig’s

character sheaves satisfy this condition.

For the case when G = (C∗)n is a torus, Corollary 2.2 was first proved by F. Loeser

and C. Sabbah [29] with another proof given by O. Gabber and F. Loeser [11]. In the

case of arbitrary reductive groups, A.Braverman proved nonnegativity of the Euler

characteristic for some class of Ad G-equivariant l-adic sheaves in finite characteristic

[1]. For complex ground field his result implies, in particular, Corollary 2.2 in the

case, when a perverse sheaf coincides with its Deligne-Goreski–MacPherson extension

from the set of all regular semisimple elements of G.

Theorem 2.1 was proved in the torus case by J. Franecki and M. Kapranov [8].

Theorem 2.1 holds for all constructible sheaves on a torus. However, it does not hold

for arbitrary constructible sheaves on a noncommutative algebraic group. There is a
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simple counterexample [8] (see also section 2.2). Kapranov conjectured that it may

be still true for constructible sheaves on reductive groups if we consider only sheaves

equivariant under the adjoint action. I proved this conjecture [26].

The main step in the proof of Theorem 2.1 is to reduce the problem to the case

of a maximal torus T ⊂ G. Since F is Ad G-equivariant, it is constructible with

respect to some Whitney stratification S with Ad G-invariant strata. In section 2.3

we prove that the Euler characteristic of a stratum X ∈ S coincides with that of the

intersection X ∩ T . This implies that the sheaf F restricted onto the maximal torus

T has the same Euler characteristic as F . In section 2.2 we recall some facts about

Euler characteristic needed for the proof. In section 2.4 we prove that the Gaussian

degrees of X and X ∩ T coincide.

To deal with the characteristic cycle we use the Dubson-Kashiwara index formula

that expresses the multiplicities cα in terms of the local Euler characteristic of F along

each stratum and some topological data depending on the stratification only (section

2.2). This data is given by the Euler characteristics with compact support of complex

links. In our case we can choose a complex link to be invariant under the action of

some compact torus and thus simplify computation of its Euler characteristic. This

approach is taken from [6]. In section 2.5 we prove that for any stratum Xβ ∈ S and

any semisimple stratum Xα ∈ S, such that Xα ⊂ Xβ, the Euler characteristic with

compact support of their complex link coincides with that of the complex link of the

strata Xα ∩ T and Xβ ∩ T . This allows us to view the formula from Theorem 2.1

as the same formula for the restriction of F onto T (section 2.6). Then we apply the

result of [8].
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2.2 Preliminaries

Gaussian degree. We now define the (left) Gauss map and the Gaussian degree.

The material of this subsection is taken from [8]. For more details see [8, 7].

Let G be a complex algebraic group with Lie algebra g, and let X be its subvariety

of the dimension k. Denote by G(k, g) the Grassmannian of k-dimensional subspaces

in g. For any point x ∈ G, there is a natural isomorphism between the tangent space

TxG and g given by the left multiplication by x−1:

Lx : y 7→ x−1y; dxLx : TxG → g.

The left Gauss map ΓX : X → G(k, g) is defined as follows:

ΓX(x) = dxLx(TxX).

The Gauss map is rational and regular on the smooth locus Xsm of X. If X is a

hypersurface, ΓX maps X to P(g∗), which has the same dimension as X. In this case

we define the Gaussian degree of X to be the degree of its Gauss map. By the degree

of a rational map X → Y we mean the number of preimages of a generic point in Y

(see [33], Proposition 3.17). In general case the Gaussian degree is the degree of a

rational map Γ̃X : X̃ → P(g∗), where X̃ and Γ̃X are defined as follows. The variety

X̃ is a fiber bundle over Xsm, whose fiber at a point x consists of all hyperplanes in

g that contain a subspace ΓX(x), i.e. X̃ = {(x, y) ∈ Xsm×P(g∗) : ΓX(x) ⊂ y}. Then

Γ̃X(x, y) = y. Note that X̃ and P(g∗) have the same dimension. It is clear from the

definition that the Gaussian degree is a birational invariant of a subvariety.

In the sequel we will use another description of the Gaussian degree. Let ω be a

generic left-invariant differential 1-form on G ( for reductive groups we define a generic

1-form explicitly in section 2.4). We call a point x ∈ X a zero of ω, if ω restricted to

the tangent space TxX is zero. Then it is easy to verify that the Gaussian degree of

X is equal to the number of zeros of ω on X.
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Counterexample We now show that the statement of Theorem 1 is no longer true

if one drops either the assumption of the equivariance under the adjoint action or

the assumption that the group G is reductive. The following counterexample is taken

from [8]. Any noncommutative complex linear algebraic group G contains a subgroup

X isomorphic to the affine space Ck for some k > 0. E.g. one can take the maximal

unipotent subgroup. It follows from the definition of the Gaussian degree that the

Gaussian degree of any subgroup with positive dimension is zero. Indeed, a generic

left-invariant 1-form on G restricted to a subgroup coincides with a non-zero left-

invariant 1-form on this subgroup. Hence, it vanishes nowhere on the subgroup. It

follows that gdeg(X) = 0, and the Euler characteristic of X is 1.

If G is not reductive, then a subgroup X with the above property can be chosen to

be invariant under the adjoint action. Namely, the radical of G is not diagonalizable

in this case, hence the maximal unipotent subgroup of the radical is non-trivial. It is

invariant under the adjoint action.

Euler characteristic. Let T be a torus (it may be a complex torus (C∗)n as well as

a compact one (S1)n). Consider its linear algebraic action on CN , and a locally closed

semialgebraic subset X ⊂ CN invariant under this action. Let XT ⊂ X be the set of

the fixed points. In what follows χ denotes the usual topological Euler characteristic

and χc the Euler characteristic computed using cohomology with compact support.

The following simple and well-known fact plays the crucial role in the sequel.

Proposition 2.4. The spaces X and XT have the same Euler characteristic with

compact support:

χc(X) = χc(XT ). ¤

The following statement is also well-known, but the author could not find an

appropriate reference.
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Proposition 2.5. If X is a complex algebraic variety, then χc(X) = χ(X).

Proof. Applying Proposition 2.6 to the constant sheaf CX and using additivity of

the Euler characteristic with compact support, one can deduce this equality from the

following fact. For any point x ∈ X the Euler characteristic with compact support of

a small open neighborhood of x is equal to 1. To prove this fact we use the induction

by the dimension of X.

We may assume that a neighborhood of x is embedded in CN . Take a generic

holomorphic function f on X such that f(x) = 0, and an open neighborhood C =

f−1(D)∩B, where D ⊂ C is a small open disk with the center at 0 and B ⊂ CN is a

small ball with the center at x. Then f : C \ f−1(0) → D \ {0} is a fiber bundle (see

[16], Section 2.4). Thus χc(C \ f−1(0)) = 0, and χc(C) = χc(f−1(0)). The dimension

of f−1(0) is already less than that of X.

The Euler characteristic of sheaves. We now recall a formula for the Euler char-

acteristic of constructible sheaves on varieties. Let X ⊂ CN be a smooth subvariety,

and let F be a constructible complex on X. With any point x ∈ X one can associate

the local Euler characteristic χ(Fx) of F at this point (see [21] Section 9.1). Thus F
gives rise to the constructible function χ(F) on X by the formula χ(F)(x) = χ(Fx).

There is the concept of the direct image of a constructible function (see [9] and

[21], Section 9.7). It is defined for any morphism of algebraic varieties X → Y and a

constructible function on X. We use the more suggestive notation
∫

X
f(x)dχ for the

direct image of f under the morphism X → pt, since this direct image may be also

defined as the integral of f over the Euler characteristic [37, 25].

Proposition 2.6. The global Euler characteristic χ(X,F) =
∑

(−1)iH i(X,F) is

equal to the following integral over the Euler characteristic

χ(X,F) =

∫

X

χ(F)dχ
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In other words, if we fix a finite algebraic stratification X =
⊔

Xα, α ∈ S, such that

the function χ(F) is constant along each stratum, we get

χ(X,F) =
∑
α∈S

χα(F)χc(Xα),

where χα(F) is the value of χ(F) at any point of a stratum Xα.

See [21], Section 9.7 for the proof.

Complex links and characteristic cycles. We use the notation of the previous

subsection. Suppose that S is a Whitney stratification of X. Let Xα, Xβ, α, β ∈ S, be

two strata such that Xα ⊂ Xβ. Choose a point a ∈ Xα and any normal slice N ⊂ X

to Xα at the point a. Consider a holomorphic function l on N such that l(a) = 0 and

its differential dal is a generic covector in the cotangent space T∗
aN (i.e. dal belongs

to some open dense subset of this space that depends on the stratification S). Let

h(·, ·) be a Hermitian metric in CN and B = {x ∈ CN : h(x − a, x − a) ≤ const} a

small ball with the center at a.

We now define the complex link L of the strata Xα, Xβ as L = B ∩ l−1(ε)∩Xβ. If

the radius of the ball B is small enough and the absolute value of ε is small enough

with respect to the radius, then the result up to a homeomorphism does not depend

on any of the choices involved (see [16], Section 2.3 for the proof). We will use the

notation e(α, β) as well as e(Xα, Xβ) for the Euler characteristic of L with compact

support. We also set e(α, α) = −1.

In section 2.7, we will also use the notion of the complete complex link of a stratum

Xα. It is defined as B ∩ l−1(ε)∩X in the previous notation. In other words, it is the

union of complex links of strata Xα and Xβ over all strata Xβ whose closure contains

Xα. Denote the Euler characteristic of the complete complex link of a stratum Xα

by eα.
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The numbers e(α, β) are useful when one need to find the multiplicities of the char-

acteristic cycle CC(F). Multiplicities are recovered from the constructible function

χ(F) by the following theorem of Dubson and Kashiwara.

Theorem 2.7. The characteristic cycle of F is the linear combination of Lagrangian

subvarieties T∗
Xα

X, α ∈ S, with coefficients

cα = (−1)dimXα+1
∑

Xα⊂Xβ

e(α, β)χβ(F).

See [15], Theorem 8.2 for the proof.

2.3 Euler characteristic of invariant subvarieties

Let G be a connected reductive group over C, and T a maximal complex torus in G.

Consider a subvariety X ⊂ G invariant under the adjoint action of G.

Proposition 2.8. The varieties X and X ∩ T have the same Euler characteristic

with compact support. Moreover, χ(X) = χ(X ∩ T ).

Proof. The subvariety X is invariant under the adjoint action of G. In particular, it

is invariant under the adjoint action of the maximal torus T . The set GT ⊂ G of the

fixed points under this action coincides with T , since the centralizer of the maximal

torus coincides with the maximal torus itself. Thus by Proposition 2.4 the varieties

X and X ∩ T have the same Euler characteristic with compact support. Combining

this result with Proposition 2.5, we get that χ(X) = χ(X ∩ T ).

Example 1. Let X = Oa be the orbit of an element a ∈ G under the adjoint action

of G. Then proposition 2.8 implies that if a is semisimple, then χ(Oa) is equal to

the number |Oa ∩ T | of the intersection points. We may choose the maximal torus T

such that a ∈ T . Since the orbit of a under the action of the Weyl group W on T
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coincides with Oa ∩ T , we obtain that χ(Oa) = |W |/|Stab a|, where Stab a ⊂ W is

the stabilizer of a in W . If a is not semisimple, then χ(Oa) = 0.

Let F be a constructible complex on G.

Proposition 2.9. Suppose that F is equivariant under the adjoint action of G. Let

FT be a restriction of F onto T ⊂ G. Then the sheaves F and FT have the same

Euler characteristic:

χ(G,F) = χ(T,FT ).

Proof. The sheaves F and FT have the same local Euler characteristic at a point

x ∈ T , since FT is the restriction of F onto T . Thus the Euler characteristic χ(T,FT )

is equal to
∫

T
χ(F)dχ by Proposition 2.6. The function χ(F) is invariant under the

adjoint action of G, and Proposition 2.8 implies

∫

T

χ(F)dχ =

∫

G

χ(F)dχ.

The last integral is equal to the Euler characteristic χ(G,F) by Proposition 2.6.

2.4 Gaussian degree of invariant subvarieties

We now compare the Gaussian degrees of X in G and of X ∩ T in T . Clearly, the

Gaussian degree of a k-dimensional subvariety is equal to the sum of the Gaussian

degrees of its k-dimensional irreducible components. Thus we can assume that X

is irreducible. There are two cases: the set of all nonsemisimple elements of X has

codimension either 0 or at least 1. In what follows we prove that in the first case

gdeg(X) = 0, and in the second case gdeg(X) = gdeg(X ∩ T ). In particular, the

Gaussian degree of any orbit Oa ⊂ G coincides with the Gaussian degree of its

intersection with the maximal torus T .
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Any reductive group G admits an embedding in GLN(C) for some N , such that

the inner product tr(Y1Y2) is nondegenerate on Lie algebra g. Let us fix such an

embedding. Then g may be identified with the space of all left-invariant differential

1-forms on G: an element S ∈ g gives rise to a 1-form ω by the formula

ω(Y ) = tr(x−1Y S), (1)

where x ∈ G and Y ∈ TxG. We will call such a form generic, if S is regular

semisimple.

Lemma 2.10. All generic left invariant 1-forms form an open dense subset in the

space of all left-invariant 1-forms.

Proof. All regular semisimple elements form an open dense subset in g. This implies

the statement of the lemma.

Proposition 2.11. The Gaussian degree of an orbit Oa is equal to the number of

the intersection points Oa ∩ T . In particular, if a is a nonsemisimple element, then

deg(Oa) = 0.

Proof. Consider the map

ϕ : G → Oa; ϕ : g 7→ gag−1.

Since ϕ is smooth and surjective, the tangent space TxOa is the image of the induced

map dϕ. A simple computation shows that TxOa = [g, x]. Let ω be a generic left-

invariant differential 1-form on G given by the formula (1). Then ω = 0 on TxOa

is equivalent to tr(x−1Y xS − Y S) = 0 for any Y ∈ g. Since the form tr(Y1Y2) is

Ad G-invariant, we have tr(x−1Y xS−Y S) = tr(Y (xSx−1−S)). The form tr(Y1Y2) is

nondegenerate on g. Thus x and S commute, and x belongs to some maximal torus

TS that depends on S.



19

Remark 2.12. Suppose that an element a lies in the maximal torus T . Then the

space TaOa = [g, a] is orthogonal to the tangent space TaT with respect to the form

(Y1, Y2) 7→ tr(a−1Y1 · a−1Y2). Since this form is nondegenerate on TaT , we get that at

any point x ∈ Oa ∩ T the intersection of tangent spaces TxOa and TxT is zero.

Corollary 2.13. Let Z ⊂ G be an irreducible subvariety invariant under the adjoint

action of G, such that the set Zn of all nonsemisimple elements of Z is a Zariski open

nonempty subset in Z. Then deg(Z) = 0.

Proof. The Gaussian degree of a subvariety Z ⊂ G is birationally invariant. There-

fore, it suffices to compute it for Zn. Let ω be a generic left-invariant differential

1-form on G given by the formula (1). For any smooth point a ∈ Zn the restriction of

this form to the subspace TaOa ⊂ TaZn of the tangent space TaZn is already nonzero

by Proposition 2.11. Thus the form ω does not vanish in any smooth point of Zn,

and gdeg(Z) = gdeg(Zn) = 0.

Proposition 2.14. Let X be an irreducible subvariety of G invariant under the ad-

joint action of G such that the subset of all nonsemisimple elements of X has codi-

mension at least 1 in X. Then the Gaussian degrees of X in G and of X ∩ T in T

coincide.

Proof. Let k be the maximal dimension of a semisimple orbit in X. Denote by Xs the

set of all semisimple elements in X, whose orbits have dimension k. Then Xs is a

Zariski open subset of X. Consider the map

ϕ : G× (X ∩ T ) → X, (g, t) 7→ gtg−1.

The image of ϕ contains Xs. Since Xs is a Zariski open nonempty subset of X,

deg(X) = deg(Xs). For any smooth point x ∈ Xs the tangent space TxX is again

the image of the induced map

dϕ : TgG× Tt(X ∩ T ) → TxX,
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where gtg−1 = x. By calculating dϕ we obtain that TxX = [g, x] ⊕ gTt(X ∩ T )g−1.

Let ω be a generic left-invariant differential 1-form on G given by the formula (1).

Then ω = 0 on TxX is equivalent to ω = 0 on [g, x] and ω = 0 on gTt(X ∩ T )g−1.

The first identity holds if and only if x belongs to the maximal torus TS (see the

proof of Proposition 2.11). Denote by ωT the restriction of ω to T ∗TS. If x ∈ TS, then

gTt(X ∩ T )g−1 = Tx(X ∩ TS). Thus the form ω vanishes on TxX if and only if the

form ωT vanishes on Tx(X∩TS). It follows that deg(X) = deg(X∩TS) = deg(X∩T ),

since all maximal tori are conjugate.

2.5 The Euler characteristic of the complex link

We now compute the Euler characteristic with compact support of a complex link for

a certain class of stratifications of G. For any a ∈ G we define the rank of a to be the

dimension of its centralizer in G. A Whitney stratification S of G is called admissible

if the following conditions hold. For every α ∈ S

• the stratum Xα is invariant under the adjoint action of G,

• elements of Xα are either all semisimple of the fixed rank or all nonsemisimple.

Denote by S0 ⊂ S the subset of all semisimple strata. Due to the second condition

and the Remark 2.12, for any semisimple stratum Xα ∈ S intersection Xα ∩ T is

smooth, and at any point x ∈ Xα∩T the intersection of the tangent spaces TxXα∩TxT

coincides with the tangent space Tx(Xα ∩ T ). Thus we can consider an induced

Whitney stratification ST of the maximal torus T , namely, T =
⊔

(Xα ∩ T ), α ∈ S0.

Proposition 2.15. Consider two strata Xα and Xβ such that Xα belongs to the

closure of Xβ. If Xα is semisimple and Xβ is not, then e(α, β) = 0. If both Xα, Xβ

are semisimple, then e(α, β) = e(Xα ∩ T,Xβ ∩ T ), where the complex link of Xα ∩ T

and Xβ ∩ T is taken in the torus T .
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Proof. Let Z ⊂ G be the centralizer of an element a ∈ Xα. Then Z is again a

reductive group. Since the tangent spaces TaZ and TaOa are orthogonal with respect

to the form (Y1, Y2) 7→ tr(a−1Y1 · a−1Y2), and this form is nondegenerate on TaZ, we

get that Z is the normal slice to the orbit Oa ⊂ Xα. Thus any normal slice to Xα∩Z

in Z will also be the normal slice to Xα in G. Let us construct a normal slice N ⊂ Z

invariant under the adjoint action of Z.

Let k be the dimension of Xα ∩ Z. Some neighborhood of a in Xα ∩ Z lies in

the center of Z, because all elements of Xα have the same rank. Thus we can find

k characters ϕ1, . . . , ϕk of the group Z such that their differentials daϕ1, . . . , daϕk

restricted to the tangent space Ta(Xα ∩ Z) are linearly independent. Let N ⊂ Z be

the set of common zeros of the system ϕ1(za
−1) = . . . = ϕk(za

−1) = 1.

Example 2. a) Let G be GLN(C) and let Xα = Z(GLN) = C∗ be the center of GLN .

Then Z = G, and the only characters of Z are the powers of determinant. We have

dedet = tr for the identity element e ∈ GLN , and tr is a nonzero linear function on

C∗e. Thus at the point e ∈ Xα we can take N = SLN(C).

b) Let G be any reductive group, and let Xα be a stratum consisting of regular

semisimple elements. Then Z is a maximal torus. Thus any normal slice to Xα ∩ Z

in Z is invariant under the adjoint action of Z.

We now continue the proof of Proposition 2.15. Consider a generic linear function

l on N given by the formula l(x) = tr((a−1x − e)S), where S ∈ Lie Z is regular

semisimple. There exists a maximal torus T ⊂ Z centralizing S. Since a is semisimple,

T is also a maximal torus in G. For any ε the set l−1(ε) is invariant under the

adjoint action of T . Denote by Tc the compact form of T . Choose a Hermitian

inner product h(·, ·) on glN invariant under the adjoint action of Tc and a small ball

B = {x ∈ glN : h(x− a, x− a) ≤ const}.
Thus with a generic vector S ∈ Lie Z we associate the complex link L = B ∩
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l−1(ε) ∩ Xβ of the strata Xα and Xβ. The complex link L is invariant under the

adjoint action of the torus Tc by the construction. Thus by Proposition 2.8 we get

χc(L) = χc(LTc) = χc(L ∩ ZTc). Note that ZTc = ZT = T . If Xβ is nonsemisimple,

Xβ ∩ T is empty, thus L ∩ T is empty. It follows that e(α, β) = 0 in this case. If Xβ

is semisimple, then L ∩ T is a complex link for Xα ∩ T, Xβ ∩ T in the torus T .

Corollary 2.16. If X is a smooth irreducible subvariety invariant under the adjoint

action of G, then either X consists of nonsemisimple elements only or the set of all

semisimple elements in X is dense. In particular, if in addition X is closed, then it

contains a dense subset of semisimple elements. The Gaussian degrees of X and of

X ∩ T coincide.

Proof. Let us prove the first statement by contradiction. Let S be an admissible

stratification of G subordinate to X, and let Xn ⊂ X be a maximal open stratum in

X, such that Xn is nonsemisimple. Then dimXn = dimX, and X −Xn contains at

least one semisimple stratum Xs. The number e(Xs, Xn) is zero by Proposition 2.15.

That contradicts to the smoothness of X. Combining the first statement with the

results of Section 2.4, we get the last statement.

2.6 Proof of Theorem 2.1 (a Gauss-Bonnet theo-

rem)

Since F is constructible and equivariant under the adjoint action, there exists some

finite algebraic Whitney stratification S subordinate to F such that each stratum

is invariant under the adjoint action. Stratifying each stratum if necessary we may

assume that S is admissible. Let us apply Theorem 2.7 and Proposition 2.15 to the

characteristic cycles of F and of FT . Notice that for a semisimple stratum Xα ∈ S
the difference dim Xα − dim(Xα ∩ S) is equal to dim Oa, a ∈ Xα, and the latter is
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even. As a straightforward corollary we get

Corollary 2.17. Let Xα ∈ S be a semisimple stratum. The multiplicities of charac-

teristic cycles of F and FT along the strata Xα and Xα ∩ T , respectively, coincide.

Example 3. Suppose that the support of the constructible function χ(F) lies in the

closure of an orbit Oa, a ∈ G. This kind of sheaves is studied in [6] for unipotent

orbits. In this case the strata of an admissible stratification that contribute to the

characteristic cycle are the orbits in Oa. Let as, an ∈ G be the semisimple and

unipotent elements respectively such that a = as · an. Then Xα = Oas is the only

semisimple stratum in Oa. Thus for the multiplicity cα(F) of CC(F) along this

stratum we get cα(F) = χα(F) = cα(FT ).

Now the formula of Theorem 2.1 reduces to the same formula for the sheaf FT and

the stratification ST . First, χ(F , G) = χ(FT , T ) by Proposition 2.9. Second, for all

nonsemisimple strata Xα, α ∈ S, we have gdeg(Xα) = 0 by Corollary 2.13. Thus the

right hand side of the formula may be considered as the sum over semisimple strata

only, i.e.

χ(X,F) =
∑
α∈S0

cα(F)gdeg(Xα).

By Corollary 2.17 this is equivalent to the formula

χ(T,FT ) =
∑
α∈ST

cα(FT )gdeg(Xα ∩ T ),

since gdeg(Xα) = gdeg(Xα ∩ T ) by Proposition 2.14. To prove the latter formula we

apply Theorem 1.3 from [8].

2.7 Applications

Let us deduce from Theorem 2.1 the formula for the Euler characteristic of a closed

(possibly singular) subvariety X ⊂ G invariant under the adjoint action. Denote by
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CX the constant sheaf on X extended by 0 to G. Let us compute the coefficients of the

characteristic cycle of CX . Fix some Whitney stratification S of X. Then Theorem

2.7 gives the following formula for the multiplicity of the characteristic cycle CC(CX)

along a stratum Xα ∈ S

cα(CX) = (−1)dimXα+1
∑

Xα⊂Xβ

e(α, β)χβ(CX).

It is easy to see that the local Euler characteristic of CX at a point x is equal to the

Euler characteristic with compact support of a small open neighborhood of x. As

follows from the proof of Proposition 2.5, it equals to 1 for all x ∈ X. Thus we get

that cα coincides with (−1)dimXα+1(−1 + eα), where eα is the Euler characteristic of

the total complex link of Xα.

Corollary 2.18. If X ⊂ G is a closed subvariety invariant under the adjoint action,

then the topological Euler characteristic of X can be computed as follows

χ(X) =
∑

(−1)dimXα(1− eα)gdeg(Xα).

We now compute the Euler characteristic of sheaves with special characteristic

cycles. Namely, assume that the multiplicity cα of the characteristic cycle CC(F)

along a stratum Xα is nonzero only if the stratum Xα is nonsemisimple. Then by

Corollary 2.13 the Gaussian degree of Xα is zero. Hence Theorem 2.1 immediately

implies the following corollary.

Corollary 2.19. If the characteristic cycle of F is supported on the set of non-

semisimple elements of the group G, then the Euler characteristic of F vanishes.



Chapter 3

Chern classes of reductive groups

and an adjunction formula

3.1 Introduction

Let G be a connected reductive group. Consider its finite-dimensional representation

π : G → End(V ) in a vector space V . Let H ⊂ End(V ) be a generic hyperplane. The

main problem that I will discuss in this chapter is how to find the Euler characteristic

of the hyperplane section π(G) ∩ H. This problem also motivates the construction

of Chern classes of equivariant bundles over reductive groups. The main result in-

volving these Chern classes is an adjunction formula for the Euler characteristic of a

hyperplane section.

Denote by χ(π) the Euler characteristic of a generic hyperplane section π(G)∩H.

When G = (C∗)n is a complex torus, χ(π) was computed explicitly by D.Bernstein,

A.Khovanskii and A.Koushnirenko [24]. This beautiful result relates χ(π) to combi-

natorial invariants of the representation π. The proof uses two facts:

• There is an explicit relation between the Euler characteristic χ(π) and the degree

25
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of the subvariety π(G) in End(V )

χ(π) = (−1)n−1deg π(G). (1)

• For the degree deg π(G) there is an explicit formula proved by Koushnirenko.

However, when G is arbitrary reductive group, only the second fact survives.

B.Kazarnovskii found an explicit formula for the degree deg π(G) that generalizes

Koushnirenko’s formula [23]. Later M.Brion established an analogous result for all

spherical homogeneous spaces [2].

As for the first fact, it is already wrong for SL2(C). K.Kaveh in his thesis com-

puted explicitly χ(π) and deg π(G) for all representations π of SL2(C) . His com-

putation shows that, in general, there is a discrepancy between these two numbers.

Kaveh also listed some special representations of reductive groups, for which these

numbers still coincide [22].

In this chapter, I will present a formula that generalizes formula (1) to the case

of arbitrary reductive groups. To do this I will construct subvarieties Si ⊂ G, whose

degrees fill the gap between the Euler characteristic and the degree. My construction

reminds the construction of the Chern classes of a vector bundle. The subvarieties

Si can be thought of as the Chern classes of the tangent bundle of G. I will also

construct the Chern classes of more general equivariant vector bundles over G (section

3.3). These Chern classes are in many aspects similar to the usual Chern classes of

compact manifolds. There is an analog of cohomology ring of G, where the Chern

classes of equivariant bundles live. This analog is the ring of conditions constructed

by De Concini and Procesi [5, 3](see section 3.2 for a brief reminder). It is useful in

solving enumerative problems. The intersection index in this ring is well-defined. In

particular, it makes sense to speak of the degree of π(Si) in End(V ).

Denote by n and k the dimension and the rank of G, respectively. In the case of the

tangent bundle, it turns out (see Lemma 3.11) that the subvarieties Si are nonempty
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only for i ≤ n−k. E.g. if G is a torus then all subvarieties Si are empty. For arbitrary

reductive group G subvarieties Si are nontrivial because of the noncommutative part

of G.

The main result of this chapter is the following adjunction formula. Set S0 = G.

Theorem 3.1. Let π be a faithful representation of a reductive group G. The Euler

characteristic χ(π) of a generic hyperplane section is equal to the alternating sum of

the degrees of π(Si):

χ(π) =
n−k∑
i=0

(−1)n−i−1deg π(Si). (2)

My proof (section 3.4) of this formula is very similar to D.Bernstein’s proof of

formula (1) in the torus case. Chern classes Si appear naturally, when one tries to

generalize his proof to the case of arbitrary reductive groups.

To explain this motivation let me briefly recall Bernstein’s proof of formula (1)

in the torus case. The Euler characteristic χ(π) is equal up to a sign to the number

of critical points of a generic linear functional f ∈ End∗(V ) restricted to π(G) (this

follows from noncompact Morse theory and holds for arbitrary reductive groups as

well). To find these critical points use the left action of π(G) on End(V ). This action

gives rise to n left-invariant linear vector fields v1, . . . , vn, which span the tangent

space to G at each point. Then the critical points of f are exactly the points of

intersection of π(G) with a subspace of complimentary dimension given by equations

f(v1(x)) = . . . = f(vn(x)) = 0. The difference between torus and reductive cases is

that in the first case, this subspace is generic, while in the second case it usually has

huge intersection with π(G) at infinity. The latter happens because the left action of

G at infinity gives the infinite number of orbits, and at each such orbit f has in some

sense critical points.

To avoid this difficulty it is natural to consider the action of G × G on End(V )

by left and right multiplications (in the torus case this is the same as the left action
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because of commutativity). The advantage of this action is that it has the finite

number of orbits at infinity. However, n generic vector fields coming from this action

do not necessarily span the tangent space to G at each point. Thus we arrive to the

classical notion of the Chern classes as the degeneracy loci of generic sections of the

tangent bundle.

The remaining problem is to compute the degrees deg π(Si) of Chern classes. In

section 3.5, I will compute the degrees of the first and the of last Chern classes. Some

examples will be listed in section 3.6.

The following remarks concern notations. In this chapter, the term equivariant

(e.g. equivariant compactification, bundle, etc.) will always mean equivariant under

the action of the doubled group G×G, unless otherwise stated. By g denote the Lie

algebra of G. I also fix an embedding G ⊂ GL(W ) for some vector space W . Then

for g ∈ G and A ∈ g notations Ag and gA mean the product of linear operators in

End(W ).

3.2 Equivariant compactifications and the ring of

conditions

This section contains some classical notions and theorems, which will be used in the

sequel. First, I will define the notion of spherical action and describe equivariant

compactifications of reductive groups following [5], [20]. For more details see also

[38]. Then I define and classify equivariant vector bundles over reductive groups.

Finally, I state Kleiman’s transversality theorem [28] and recall the definition of the

ring of conditions [5, 3].

Spherical action. Reductive groups are partial cases of more general spherical

homogeneous spaces. They are defined as follows. Let G be a connected reductive
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group, and let M be its homogeneous space. The action of G on M is called spherical,

if a Borel subgroup of G has an open dense orbit in M . In this case, the homogeneous

space M is also called spherical. An important and very useful property, which char-

acterizes a spherical homogeneous space, is that any its compactification equivariant

under the action of G contains only finite number of orbits [36, 30].

There is a natural action of the group G×G on G by left and right multiplications.

Namely, an element (g1, g2) ∈ G×G maps an element g ∈ G to g1gg−1
2 . This action

is spherical as follows from the Bruhat decomposition of G with respect to some

Borel subgroup. Thus the group G can be considered as a spherical homogeneous

space of the doubled group G×G with respect to this action. For any representation

π : G → End(V ) this action can be obviously extended to the action of π(G)×π(G) on

the whole End(V ) by left and right multiplications. I will call such actions standard.

Equivariant compactifications. With any representation π one can associate the

following compactification of π(G). Take a cone over π(G) (consisting of all points

x ∈ End(V ) such that λ ·x belongs to π(G) for some λ ∈ C∗), take its projectivization

and then take its closure in P(End(V )). We obtain a compact projective variety

Xπ ⊂ P(End(V )) with a natural action of G×G coming from the standard action of

π(G)× π(G) on End(V ). Below I will list some important properties of this variety.

Without loss of generality one can assume that π(G) is isomorphic to G. Fix a

maximal torus T ⊂ G. Consider all weights of representation π, i.e. all characters

of the maximal torus T occurring in π. Take their convex hull Pπ in the lattice of

all characters of T . Then it is easy to see that Pπ is a polytope invariant under the

action of the Weyl group of G. It is called the weight polytope of the representation

π. The polytope Pπ contains a lot of information about the compactification Xπ.

Theorem 3.2. 1) [20] The subvariety Xπ consists of the finite number of G × G-

orbits. These orbits are in one-to-one correspondence with the orbits of the Weyl
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group acting on the faces of the polytope Pπ. The codimension of an orbit in Xπ

equals to the codimension of the corresponding face in Pπ.

2)[5] Let ρ be another representation of G. The subvarieties Xπ and Xρ are

isomorphic if and only if the normal fans corresponding to the polytopes Xπ and Xρ

coincide. If the first fan is a subdivision of the second, then there exists the equivariant

map Xπ → Xρ.

In particular, suppose that the group G is of adjoint type, i.e. it has a trivial

center. Then G has one distinguished faithful representation, namely, the adjoint

representation

Ad : G → End(g); Ad(g)X = gXg−1, X ∈ g.

The corresponding compactification XAd of the group G is called the wonderful

compactification. It was introduced by De Concini and Procesi [5]. The wonder-

ful compactification is smooth, and XAd \ G is a divisor with normal crossings.

There are k orbits O1, . . . ,Ok of codimension 1 in XAd. The other orbits are ob-

tained as the intersections of the closures O1, . . . ,Ok. More precisely, to any subset

{i1, i2, . . . , im} ⊂ {1, . . . , n} corresponds an orbit Oi1 ∩Oi2 ∩ . . .∩Oim of codimension

m. So the number of orbits equals to 2k. There is a unique closed orbit O1∩ . . .∩Ok,

which is isomorphic to the product of two flag varieties G/B × G/B. Here B is a

Borel subgroup of G.

In fact, if one takes any irreducible representation π with the strictly dominant

highest weight, then the corresponding compactification Xπ is isomorphic to the won-

derful compactification. It is an immediate corollary from the second part of Theorem

3.2, since in this case, the normal fan of the weight polytope Pπ is the fan of Weyl

chambers. Hence, it is the same as for the weight polytope PAd.

Equivariant vector bundles. Let L be a vector bundle over G of rank d. Denote

by Vg ⊂ L a fiber of L lying over an element g ∈ G. Assume that the standard
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action of G × G on G can be linearly extended to L. More precisely, there exists a

homomorphism A : G×G → Aut(L) such that A(g1, g2) restricted to a fiber Vg is a

linear operator from Vg to Vg1gg−1
2

. If these conditions are satisfied, then the vector

bundle L is said to be equivariant under the action of G×G.

Two equivariant vector bundles L1, L2 are equivalent if there exists an isomorphism

between L1 and L2 that is compatible with the structure of a fiber bundle and with

the action of G × G. The following simple proposition describes equivariant vector

bundles on G up to this equivalence relation.

Proposition 3.3. The classes of equivalent equivariant vector bundles of rank d are

in one-to-one correspondence with the linear representations of G of dimension d.

Proof. Assign to a vector bundle L a representation π : G → End(Ve) as follows: π(g)

is the restriction of A(g, g) on Ve. Vice versa, with each representation π : G → V on

can associate a bundle L isomorphic to G× V with the following action of G×G:

A(g1, g2) : (g, v) → (g1gg−1
2 , π(g1)v).

E.g. a constant section v(g) = v for v ∈ V is right-invariant. It is easy to check that

this correspondence is indeed one-to-one.

E.g. the tangent bundle TG on G is clearly equivariant and corresponds to the

adjoint representation of G on the Lie algebra g = TGe. This example will be

important in section 3.4.

The ring of conditions. The following theorem gives a tool to define the intersec-

tion index on a noncompact group, or more generally, on a homogeneous space.

Theorem 3.4. (Kleiman’s transversality theorem)[28] Let H be a connected algebraic

group, and let M be its homogeneous space. Take two algebraic subvarieties X,Y ⊂
M . Denote by gX a left translate of X by an element g ∈ G. There exists an open
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dense subset of H such that for all elements g from this subset the intersection gX∩Y

either has dimension dim X + dim Y − dim H or is empty. If X and Y are smooth,

then gX ∩ Y is transverse.

In particular, if X and Y have complimentary dimensions (but are not necessarily

smooth), then gX ∩ Y consists of the finite number of points, and this number is

constant.

If X and Y have complimentary dimensions, define the intersection index (X, Y )

as the number of intersection points #(gX ∩ Y ) for a generic g ∈ H. If one is

interested in solving enumerative problems, then it is natural to consider algebraic

subvarieties of M up to the following equivalence. Two subvarieties X1, X2 of the

same dimension are equivalent if and only if for any subvariety Y of complimentary

dimension the intersection indices (X1, Y ) and (X2, Y ) coincide. This relation is

similar to the numerical equivalence in algebraic geometry (see [10], Chapter 19).

Consider all formal linear combinations of algebraic subvarieties of M modulo this

equivalence relation. Then the resulting group C∗(M) is called the group of conditions

of M .

One can define an intersection product of two subvarieties X,Y ⊂ M by setting

X · Y = gX ∩ Y , where g ∈ G is generic. However, the intersection product some-

times is not well-defined on the group of conditions. There is the following simple

counterexample [5]. Suppose that G = Cn is an affine space. Then two affine sub-

spaces represent the same class in CN if and only if they are parallel. Indeed, if they

are not parallel, then there exists a line parallel to one subspace and intersecting the

other. Then generic parallel shifts of this line do not intersect the first subspace but

do intersect the other at one point. In an affine space C3 with coordinates (x, y, z),

consider a quadric Y given by the equation x = yz. Take any two different planes

parallel to a coordinate plane X = {y = 0} ⊂ C3. Their intersections with Y give

two lines, which are not parallel. Hence, they do not belong to the same class in the
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group of conditions, and the class of X ∩ Y is not defined.

The remarkable fact is that for spherical homogeneous spaces the intersection

product is well-defined, i.e. if one takes different representatives of the same classes,

then the class of their product will be the same [5, 3]. The corresponding ring C∗(M)

is called the ring of conditions.

In particular, the group of conditions C∗(G) of a reductive group is a ring. De

Concini and Procesi related the ring of conditions to the cohomology rings of equiv-

ariant compactifications as follows. Consider the set S of all equivariant compacti-

fications Xπ of the group G corresponding to its representations π. This set has a

natural partial order. Namely, a compactification Xρ is greater than Xπ if there exists

an equivariant map Xρ → Xπ commuting with the action of G × G. Clearly, such

map is unique, and it induces a map of cohomology rings H∗(Xπ) → H∗(Xρ).

Theorem 3.5. [5, 3] The ring of conditions C∗(G) is isomorphic to the direct limit

over the set S of the cohomology rings H∗(Xπ).

De Concini and Procesi proved this theorem in [5] for symmetric spaces. In [3] De

Concini noted that their arguments go verbatim for arbitrary spherical homogeneous

spaces, in particular, for arbitrary reductive groups.

3.3 Chern classes with the values in the ring of

conditions

In this section, I deal with vector bundles over G equivariant under the action of

the doubled group G × G. For such bundles I define their Chern classes with the

values in the ring of conditions C∗(G). Unlike the usual Chern classes in compact

situation, these Chern classes measure the complexity of the action of G×G and not

the topological complexity (topologically any G×G-equivariant vector bundle over G



34

is trivial). However, they preserve many properties of the usual Chern classes. There

is also a relation between these classes and the usual Chern classes of certain bundles

over equivariant compactifications of the group G.

In the subsequent sections, I will mostly use the Chern classes of the tangent bun-

dle. Their main application is the formula for the Euler characteristic of a hyperplane

section. One of possible applications of the Chern classes of other equivariant bundles

is to obtain an explicit description of the ring of conditions C∗(G) in terms of these

Chern classes.

Throughout this section, L denotes an equivariant vector bundle over G of rank

d corresponding to a representation π : G → End(V ).

Definition of Chern classes. Among all global sections of an equivariant bundle

L there are two distinguished subspaces, namely, the subspaces of left- and right-

invariant sections. They consists of sections that are invariant under the action of the

subgroups G×e ⊂ G×G and e×G ⊂ G×G, respectively. Both of this spaces can be

canonically identified with the vector space V = Ve. Denote by Γ(L) the space of all

global sections of L that are obtained as a sum of left- and right-invariant sections.

If the representation π does not contain any trivial sub-representations, then Γ(L)

is canonically isomorphic to the direct sum of two copies of V . Otherwise, Γ(L) is

the quotient space (V ⊕ V )/E, where E ⊂ V ⊕ V is the diagonal embedding of the

maximal trivial sub-representation of π.

When L = TG is the tangent bundle, Γ(L) is a very natural class of global sections.

Namely, it consists of all vector fields coming from the standard action of G×G on

G. By this I mean that with any element (X, Y ) ∈ g ⊕ g one can associate a vector

field v ∈ Γ(L) as follows:

v(x) =
d

dt

∣∣∣∣
t=0

[etXxe−tY ] = Xx− xY.
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This example suggests that one represent elements of Γ(L) not as sums but as differ-

ences of left- and right-invariant sections.

The space Γ(L) can be employed to define Chern classes of L as usual. Take d

generic sections v1, . . . , vd ∈ Γ(L). Then the i−th Chern class is the i−th degeneracy

locus of these sections. More precisely, the first Chern class S1(L) ⊂ G consists of

all points g ∈ G where all d sections v1(g), . . . , vd(g) are linearly dependent, S2(L)

— of all points where first d− 1 sections v1(g), . . . , vd−1(g) are dependent, and Si(L)

— of all points where first d− i + 1 sections v1(g), . . . , vd−i+1(g) are dependent. This

definition almost repeats one of the classical definitions of the Chern classes in the

compact setting (see [17]). The only difference is that global sections used in definition

are not generic in the space of all sections. They are generic sections of the special

subspace Γ(L). If one drops this restriction and applies the same definition, then the

result will be trivial, since the bundle L is topologically trivial. In some sense, the

Chern classes will sit at infinity in this case (the precise meaning becomes clear from

the second part of this section). The purpose of my definition is to pull them back to

the finite part.

Thus for each i = 1, . . . , n we get a family Si(L) of subvarieties Si(L) parameter-

ized by collections of i elements from Γ(L). In compact situation, all generic members

of similar family would represent the same class in the cohomology ring. The same

is true here, if one uses the ring of conditions as an analog of the cohomology ring in

the noncompact setting. This is the content of the next lemma. Note that sections

v1, . . . , vd ∈ Γ(L) are uniquely defined by d vectors A1, . . . , Ad ∈ V ⊕ V .

Lemma 3.6. For all collections A1, . . . , Ad belonging to some open dense subset of

(V ⊕ V )d the class of the corresponding subvariety Si(L) in the ring of conditions

C∗(G) is the same. The class is the image of the class in H∗(Xπ) under the isomor-

phism between C∗(G) and the direct limit over S of the cohomology rings H∗(Xρ) (see

Theorem 3.5). Recall that π is the representation of G corresponding to the vector



36

bundle L.

Proof. The idea of the proof is to consider the closures of π(Si(L)) in Xπ. They

represent the same class in cohomology ring of Xπ by continuity. It is enough to prove

that they have proper intersection with G × G-orbits in Xπ, i.e. the codimension of

the intersection with each orbit in this orbit is less than or equal to the codimension

of Si(L) in G. Then Kleiman’s transversality theorem will imply that Si(L) represent

the same class in C∗(G) as well. To prove that the intersections are proper I reduce

everything to the case of the equivariant bundle over GL(V ) corresponding to the

tautological representation.

First, describe all left- and right-invariant global sections of L. Consider the

representation π : G → End(V ) corresponding to a vector bundle L. Any vector

X ∈ V defines a right-invariant section vr(g) = X as in the proof of Proposition

3.3. Then it is easy to see that any left-invariant section vl is given by the formula

vl(g) = π(g)Y for Y ∈ V . Hence, any section v = vl− vr that belongs to Γ(L) can be

written as v(g) = π(g)X − Y for some X, Y ∈ V . Let us write the sections v1, . . . , vd

in this form: v1(g) = π(g)X1 − Y1, . . . , vd(g) = π(g)Xd − Yd.

Now describe Si(L). First of all, it is clear that the subvarieties Si(L) depend

only on the choice of a flag F = {Λ1 ⊂ . . . ⊂ Λd ⊂ V ⊕ V } where Λj is spanned by

A1, . . . , Aj. E.g. S1 depends only on the choice of a subspace Λn ⊂ V ⊕ V . Consider

the graph Λg of π(g) in V ⊕ V . This is a subspace of dimension d consisting of

vectors (X, π(g)X) for X ∈ V . Then g belongs to Si(L) (i.e. the vectors v1(g) =

π(g)X1 − Y1, . . . , vd(g) = π(g)Xn−i+1 − Yn−i+1 are linearly dependent) if and only

if the subspaces Λg and Λd−i+1 have nonzero intersection. This also implies the

following simple relation. Consider a vector bundle Ud over GL(V ) corresponding to

the tautological representation of GL(V ) on the space V . Then Si(L) is the preimage
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of Si(Ud) under the map π : G → GL(V ):

Si(L) = π−1(Si(Ud)).

Note that this is the same relation that holds for the usual Chern classes in compact

situation since the vector bundle L is the pull-back of Ud.

Let us prove Lemma 3.6 for the group GL(V ) and the vector bundle L = Ud. In

this case, Si(Ud) consists of all elements g ∈ GL(V ) such that the graph of g in V ⊕V

has nonzero intersection with Λd−i+1. Take another flag F ′ = {Λ′1 ⊂ . . . ⊂ Λ′d} and

consider the corresponding subvarieties S ′i(Ud). Clearly, if subspaces Λi and Λ′i are

generic, e.g. each of them intersects V1 and V2 only at the origin, then there exists an

operator h = (h1, h2) ∈ GL(V1) × GL(V2) such that h(Λi) = Λ′i for all i = 1, . . . , d.

Hence, the subvariety S ′i constructed via the flag F coincides with the shift h1Si(Ud)h2

of the subvariety Si(Ud) constructed via the flag F ′. In particular, it follows that they

represent the same class in the ring of conditions of GL(V ).

Remark 3.7. There is another description of Si(Ud) and of Si(L). Define an operator

A ∈ GL(V ) by setting A(Xi) = Yi. Denote by V i a subspace of V spanned by

the elements X1, . . . , Xi (i.e. V i is the projection of Λi onto the first summand of

V ⊕ V ). For each g ∈ G consider a linear operator (π(g)− A). It is clear that Si(L)

consists of all elements g ∈ G such that the operator (π(g) − A) restricted to the

subspace V i has a nontrivial kernel. In particular, a subvariety S1(L) is given by the

equation det(π(g) − A) = 0. Similarly, Si(Ud) consists of all elements x ∈ GL(V )

such that the operator (x− A) restricted to the subspace V i has a nontrivial kernel.

This description easily implies that the closure of a generic Si(Ud) in P(End(V )) is

smooth and intersects GL(V ) × GL(V )-orbits transversally. It is also clear that the

codimension of Si(Ud) in GL(V ) is equal to i.

We now conclude the proof of Lemma 3.6. It follows from Kleiman’s transversality

theorem applied to GL(V )×GL(V )-orbits in P(End(V )) that if h1 and h2 are generic,
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then the subvariety h1Si(Ud)h2 intersects the G×G-orbits of Xπ transversally. This

fact combined with the relation Si(L) = π−1(Si(Ud)) implies the statement of Lemma

3.6 for G and L.

Hence, we proved that the family Si(L) of subvarieties Si(L) ⊂ G parameterized

by elements of (V ⊕V )d provides a well-defined class [Si(L)] in the ring of conditions

C(G).

Remark 3.8. It follows from the proof of Lemma 3.6 that the closure of a generic

Si(L) ∈ Si(L) in the compactification Xπ is smooth and intersects all G × G-orbits

transversally. There is also the following criterion for choosing a generic Si(L). The

class of a given subvariety Si(L) in the ring of conditions coincides with [Si(L)] if

and only if the closure of Si(L) in Xπ intersects all G × G-orbits by subvarieties of

codimension i.

In particular, if L is the tangent bundle, then we get that for a generic Si(TG) the

closure of Ad(Si(TG)) in the wonderful compactification intersects all orbits transver-

sally.

Definition 1. The class [Si(L)] ∈ C∗(G) defined by the family Si(L) is called the i-th

Chern class of a fiber bundle L with the value in the ring of conditions.

From now by Si(L) I will always mean any subvariety of the family Si(L), whose

class in the ring of conditions coincides with the Chern class [Si(L)].

Embeddings to Grassmannians. For an equivariant vector bundle I will now

construct an equivariant map of the group G to a Grassmannian. This construction

shows that the Chern classes of L are very related to the usual Chern classes of a

certain vector bundle over an equivariant compactification of G.

Assume for simplicity that π : G → End(V ) is an embedding. With each g ∈ G

one can associate the graph Λg ⊂ V ⊕ V of π(g). This is a subspace of dimension
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d consisting of vectors (X, π(g)X) for X ∈ V . Hence, there is a map ϕL from the

group G to the Grassmannian G(d, 2d) of d-dimensional subspaces in a 2d-dimensional

vector space

ϕL : G → G(d, 2d); ϕL : g 7→ Λg.

Note that the restriction to ϕL(G) ' G of the tautological quotient vector bundle

over G(d, 2d) is isomorphic to L.

Remark 3.9. This construction repeats the following well-known construction (see

[17]). Let M be a smooth variety, S be a vector bundle of rank d over M , and Γ(S)

be a subspace of dimension N in the space of all global sections of S. Suppose that

at each point x ∈ M the sections of Γ(S) span the fiber of S at the point x. Then

one can map M to the Grassmannian G(N − d,N) by assigning to each point x ∈ M

the subspace of all sections from Γ(L) that vanish at x. Clearly, the vector bundle

S coincides with the pull-back of the tautological quotient vector bundle over the

Grassmannian G(N − d,N).

Denote by XL the closure of ϕL(G) in G(d, 2d). This is a compact projective

variety. It is equivariant under an action of G × G coming from its representation

π ⊕ π in the space V ⊕ V . Namely, an element (g1, g2) ∈ G × G takes a subspace

Λ ⊂ V ⊕ V to a subspace (π(g1), π(g2))(Λ). The open dense G × G-orbit in XL is

clearly isomorphic to π(G) ' G.

Example 1. Demazure embedding. Let G be a group of adjoint type, and let

π be its adjoint representation on the Lie algebra g. Then as I already noted the

corresponding vector bundle L coincides with the tangent bundle of G. The corre-

sponding embedding ϕL : G → G(n, g ⊕ g) coincides with the one constructed by

Demazure [4]. Demazure’s construction is as follows. An element x ∈ G goes to the

Lie algebra of the stabilizer of x under the standard action of G×G. E.g. the identity

element gets mapped to the Lie algebra g ⊂ g ⊕ g embedded diagonally. Then the
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conjugation by an element (g1, g2) ∈ G×G maps the Lie algebra g ⊂ g⊕ g to the Lie

algebra of the stabilizer of an element g1g
−1
2 . It is now easy to see that the embedding

ϕL and Demazure embedding are the same. The compactification XL in this case is

isomorphic to the wonderful compactification of G [4].

Example 2. a) Let G be GL(V ) and let π be its tautological representation on a

space V of dimension d. Then ϕL is an embedding of GL(V ) into the Grassmannian

G(d, 2d). Notice that the dimensions of both varieties are the same. Hence, the

compactification XL coincides with G(d, 2d).

b) Take SL(V ) instead of GL(V ) in the previous example. Its compactification

XL is a hypersurface in the Grassmannian G(d, 2d) which can be described as follows.

Consider the Plücker embedding p : G(d, 2d) → P(Λd(V1 ⊕ V2)) (V1 and V2 are two

copies of V ). Then p(XL) is a special hyperplane section of p(G(d, 2d)). Namely,

the decomposition V1 ⊕ V2 yields a decomposition of Λd(V1 ⊕ V2) into the direct

sum. This sum contains two one-dimensional components p(V1) and p(V2) (which

are considered as lines in Λd(V1 ⊕ V2)). In particular, for any vector in Λd(V1 ⊕ V2)

it makes sense to speak of its projections to p(V1) and p(V2). On V1 and V2 there

are two special n−forms, preserved by SL(V ). These forms give rise to two 1-forms

l1 and l2 on p(V1) and p(V2), respectively. Consider a hyperplane H in Λd(V1 ⊕ V2)

consisting of all vectors v such that the functionals l1, l2 take the same values on

the projections of v to p(V1) and p(V2), respectively. Then it is easy to check that

p(XL) = p(G(d, 2d)) ∩ P(H).

Denote by LX a restriction to XL of the tautological quotient vector bundle Ud

over the Grassmannian G(d, 2d). Assume that XL is smooth. Let c1, . . . , cd ∈ H∗(XL)

be the subvarieties dual to the Chern classes of LX . I will also call them Chern classes.

Proposition 3.10. The homology class of the closure of ϕL(Si(L)) in XL coincides
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with the i-th Chern class of LX

[ϕL(Si(L))] = ci(XL).

Proof. The Chern classes of LX can be obtained as the intersections of XL with the

Chern classes of Ud. The latter have nice representatives C1, . . . , Cd which are the

closures of certain Schubert cycles corresponding to any partial flag F = {Λ1 ⊂
. . . Λd ⊂ V ⊕ V } (see [17]). Namely, Ci consists of all subspaces Λ ∈ G(d, 2d) such

that the intersection Λ∩Λn−i+1 is non-trivial, i.e. has the dimension at least 1. For a

generic flag F the intersection Ci∩XL is transverse, and hence, it represents the i−th

Chern class of XL. On the other hand, Ci ∩ ϕL(G) coincides with ϕL(Si(L)).

Properties of the Chern classes of reductive groups The next lemma com-

putes the dimensions of the Chern classes. It also shows that if the action of π(G)

on V is not transitive, then the higher Chern classes automatically vanish. Denote

by d(π) the dimension of a generic orbit of π(G) in V . In particular, if π(G) acts

transitively on V , then d(π) = d.

Lemma 3.11. If i > d(π), then Si(L) is empty, and if i ≤ d(π) then the dimension

of Si(L) is equal to n− i.

Proof. Consider the union D ⊂ V ⊕V of all graphs Λg for g ∈ G. Clearly, D consists

of all pairs (X,Y ) ∈ V ⊕ V such that X and Y belong to the same orbit under

the action of π(G). I.e. if G acts transitively on V , then D = V ⊕ V . Thus the

codimension of D is equal to the codimension d − d(π) of a generic orbit in V . In

my main example, when π is the adjoint representation, the codimension of D is

equal to the rank of G. Note also that D is conic (i.e. together with each point it

contains a line passing through this point and the origin). Since Λd−i+1 is a generic

vector subspace, the dimension of D ∩ Λd−i+1 equals to d(π) − i + 1, if i ≤ d(π). In

particular, if i = d(π), then D∩Λd−i+1 consists of several lines whose number is equal
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to the degree of D. If i > d(π), then D ∩ Λd−i+1 contains only the origin. It follows

that if i > d(π), then Sn−i+1(L) is empty. Consider the case when i ≤ d(π). If g

belongs to Si(L) but does not belong to Si+1(L) then there exists exactly one (up to

proportionality) element A = (X,Y ) ∈ D ∩ Λd−i+1 such that A ∈ Λg. Denote by lA

the line spanned by A. Thus there is a map

p : Si(L) \ Si+1(L) → P(D ∩ Λd−i+1); p : g 7→ lA.

The preimage p−1(lA) consists of all g ∈ G such that π(g)X = Y . Hence, it is

isomorphic to the stabilizer of X under the action of π(G). We get that the dimension

of Si(L) is equal to dim P(D ∩ Λd−i+1) + dim p−1(lA) = n− i.

In fact, the second part of Lemma 3.11 immediately follows from Remark 3.7 com-

bined with Kleiman’s transversality theorem as soon as on shows that Si is nonempty.

However, I gave the above proof because it also implies the following corollary. Denote

by H ⊂ G the stabilizer of a generic element in V .

Corollary 3.12. There exists an open dense subset Ui ⊂ Si(L) such that Ui admits

a fibration with fibers that coincide with the shifts of H. In particular, the last Chern

class Sd(π)(L) coincides with the disjoint union of several shifts of H. Their number

equals to the degree of a generic orbit of G in V .

The last statement follows from the fact that the degree of D in V ⊕ V (see the

proof of Lemma 3.11) is equal to the degree of a generic orbit of G in V .

In particular, let L be the tangent bundle. Then stabilizer of a generic element

in g is a maximal torus in G. Hence, the last Chern class Sn−k(TG) is the union of

several shifted maximal tori.

Chern classes of equivariant bundles over G retain many properties of the usual

Chern classes. These properties are listed below.
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• Vanishing. If i > d then the Chern class [Si(L)] vanishes. As follows from

Lemma 3.11 even more precise statement is true. If i > d(π), then the Chern

class [Si(L)] vanishes.

• Dimensions. If i ≤ d(π), then the i-th Chern class [Si(L)] has the codimen-

sion i (see Lemma 3.11). In compact situation Definition 1 would rather be a

definition of homology cycles dual to the usual Chern classes. The class [Si(L)]

can also be viewed as a linear functional on Ci(G): on each cycle Y ∈ C∗(G)

of dimension i the Chern class Si(L) takes the value (Si(L), Y ).

The remaining properties follow directly from the description of the Chern

classes given in the proof of Lemma 3.6.

• Pull-back. Let ϕ : G1 → G2 be a homomorphism of two reductive groups

G1 and G2, and let L be an equivariant vector bundle on G2 corresponding to

a representation π. The pull-back ϕ∗L is an equivariant fiber bundle on G1

corresponding to the representation π ◦ ϕ. The Chern classes of L and of ϕ∗L

are related as follows:

[Si(ϕ
∗L)] = ϕ−1[Si(L)].

In particular, let us apply this formula to the homomorphism π : G → π(G).

We immediately get that if the representation π : G → End(V ) corresponding

to a vector bundle L has a nontrivial kernel, then Si(L) are invariant under left

and right multiplications by elements of the kernel.

• Line bundles. Suppose that L has rank 1. Then L corresponds to a character

π : G → C∗. The first Chern class of L coincides with the class of a hypersurface

{π(g) = 1}.
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3.4 Proof of Theorem 3.1 (an adjunction formula)

In this section, I will use only the Chern classes Si = Si(TG) of the tangent bundle.

The proof is a modification of Bernstein’s proof of formula (1) in the torus case.

I will use the same ideas.

Denote by f a linear functional which defines the hyperplane H, i.e. H = {x ∈
End(V ) : f(x) = C} for some constant C. It follows from noncompact Morse theory

[18] that (−1)n−1χ(π) is equal to the number of critical points of f restricted to π(G)

(see [22] for the proof of exactly this statement by various methods). Let us express

the number of the critical points in terms of the degrees of π(Si).

Recall that vector fields v1, . . . , vn on G were given by the formula vi(g) = Xig −
gYi. Note that for any representation π of the group G the direct images π∗vi are

well-defined (they are given by the formula dπ(Xi)π(g)−π(g)dπ(Yi), where dπ : g →
End(V ) is the derived map) and can be straightforwardly extended to the linear vector

fields on the whole End(V ). Namely, for x ∈ End(V ) set π∗vi(x) = dπ(Xi)x−xdπ(Yi).

Abusing notation I will denote vector fields π∗vi again by vi and will write Si

instead of π(Si) during the proof.

Since S1 has a codimension 1 in G one can always choose a hyperplane H in such

a way that all critical points of f restricted to G lie outside S1. Clearly, each critical

point x satisfy n linear equations of the form f(vi(x)) = 0. The converse is also true

for points outside S1, since at these points vector fields v1, . . . , vn span the tangent

space to G. Denote by Vn(f) a vector subspace given by the equations f(vi(x)) = 0

for i = 1, . . . , n. It has codimension n. Denote by S(f) the set of the critical points

of the function f restricted to G. We get that S(f) = G∩Vn(f) \S1∩Vn(f). It turns

out that if f is generic, then all the intersection points of G ∩ Vn(f) are transverse,

and their number equals to the degree of G. Moreover, the following statement is

true.
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Lemma 3.13. For i = 1, . . . , n consider a subspace Vi(f) ⊂ End(V ) of codimension

i given by i equations f(v1(x)) = . . . = f(vi(x)) = 0. If f is generic, then

1)all the intersection points of Sn−i∩Vi(f) are transverse, and their number equals

to the degree of Sn−i;

2)the intersection Sn−i+2 ∩ Vi(f) is empty (or in other words, all points of the

intersection Sn−i+1 ∩ Vi(f) lie outside Sn−i+2).

Postpone the proof of this lemma until the next paragraph. It follows that

#S(f) = degG − #(S1 ∩ Vn(f)). It remains to compute #(S1 ∩ Vn(f)). Here

we can use the induction argument. Indeed, the second part of Lemma 3.13 im-

mediately implies that the intersection Sn−i+1 ∩ Vi(f) coincides with the difference

Sn−i+1 ∩ Vi−1(f) \ Sn−i+2 ∩ Vi−1. Thus #(S1 ∩ Vn(f)) = deg(S1) − #(S2 ∩ Vn−1(f))

and we can proceed by induction.

Hence, we proved the following formula

#S(f) =
n−k∑
i=0

(−1)n−i+1#(Si ∩ Vn−i(f)).

By Lemma 3.13 the number #(Si ∩ Vn−i(f)) is equal to deg(Si). This completes the

proof of Theorem 3.1.

Proof of Lemma 3.13. First, I consider more general situation. Let X ⊂ W be

an irreducible closed affine variety in an affine space W = CN , and let l1(x), . . . , lm(x)

be m linear vector fields on W . The next proposition is analogous to Lemma

3.13 and holds under condition that vector fields l1, . . . , lm restricted to X are

not too degenerate at infinity. This can be formalized as follows. Denote by

CX ⊂ W an asymptotic cone of X, i.e. a conic variety whose projectivization

P(CX) ⊂ CPN−1 coincides with the Zarisky boundary of X in CPN . Denote by

Xi ⊂ W the i-th degeneracy locus of the vector fields l1, . . . , lm, i.e. Xi = {x ∈ W :

l1(x), . . . , lm−i+1(x) are linearly dependent}.
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Proposition 3.14. Suppose that the following conditions are satisfied:

1)at any point x ∈ Xi ∩X the intersection of the tangent spaces TxXi and TxX

has codimension at least i,

2)the intersection Xi ∩ CX has codimension at least i in CX .

For a generic linear function f on W consider a vector subspace Vf ⊂ CPN of

codimension m given by the equations f(l1(x)) = . . . = f(lm(x)) = 0. Then

1. If dim X = m, then all intersection points X ∩ Vf are transverse and their

number is equal to the degree of X: #(X ∩ Vf ) = degX.

2. If dim X < m, then X ∩ Vf is empty.

Proof. First, prove that for a generic f the subspace Vf does not intersect X at

infinity, i.e. Vf intersects the asymptotic cone of X only at the origin. To do this

consider the subvariety D ⊂ W ∗ of all linear functions f on W such that P(Vf )

does intersect P(CX). It is enough to show that the dimension of D is less than N .

Indeed, in this case the complement to D in W ∗ is an open dense subset and for

any f from the complement, the subspace Vf intersects CX only at the origin. Let

us estimate the dimension of D. Consider a subvariety D̃ ⊂ P(CX)×W ∗ consisting

of all pairs (z, f) such that P(Vf ) contains z. Then D is the image of D̃ under its

projection onto W ∗. Hence the dimension of D is less than or equal to the dimension

of D̃. A filtration Xm ∩ CX ⊂ Xm−1 ∩ CX ⊂ . . . ⊂ X1 ∩ CX ⊂ CX induces a

filtration on P(CX). Consider the projection of D̃ onto P(CX). The preimage of

z ∈ P((Xi \ Xi+1) ∩ CX) has dimension N − m + i. Indeed, it coincides with the

subspace of W ∗ given by the linear system of rank m− i (which consists of m linear

equations f(l1(x)) = . . . = f(lm(x)) = 0). Thus the dimension of the preimage of

P((Xi \Xi+1) ∩ CX) has dimension at most (N −m + i) + (m − i − 1) = N − 1. It

follows that the dimension of D̃ is at most N − 1.

Note that exactly the same argument proves the second part of Proposition 3.14.
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It remains to prove that all points of the intersection X ∩ Vf are transverse for a

generic f . The first condition of Proposition 3.14 implies that for any point x ∈ X

the tangent space TxX and Xi intersect each other transversally. Hence, we can apply

to TxX the first part of Proposition 3.14 and get that for a generic f the subspaces

TxX and Vf intersect each other at one point.

To complete the proof of Lemma 3.13 apply Proposition 3.14 to W = End(V ), X =

Si and vector fields l1 = v1, . . . , ln−i+1 = vn−i+1. All we need to show is that the

vector fields v1, . . . , vn and the subvariety Si corresponding to them satisfy the non-

degeneracy conditions of Proposition 3.14. The first condition follows from the proof

of Lemma 3.6 (see the Remark in the proof). The second condition can also be de-

duced from what we already proved. However, I will give a more direct self-contained

proof. It explains why Bernstein’s idea works for sums of left- and right-invariant vec-

tor fields although it does not work if one takes only left-(or right-)invariant vector

fields.

Recall that there is a natural family of deformations of vector fields v1, . . . , vn

parameterized by elements of g⊕g. I will show that a generic perturbation of v1, . . . , vn

inside this family satisfies the second non-degeneracy condition.

Let Cπ(Si) be an asymptotic cone of Si ⊂ End(V ). The asymptotic cone Cπ(G)

of the group itself consists of the finite union of orbits under the standard action of

G × G on End(V ). Note that vector fields v1, . . . , vn can be any fields coming from

this action. Take any point x ∈ Cπ(Si). Consider its orbit under the standard action.

Clearly, any collection of n vectors in the tangent space to the orbit at the point x

can be realized as the values of vector fields v1, . . . , vn at x. In particular, if x belongs

to the intersection of Cπ(Si) with an orbit of codimension less than or equal to i, then

one can perturb v1, . . . , vn−i+1 in such a way that they still be linearly dependent

but v1, . . . , vn−i will not. Hence, the point x belongs to Cπ(Si), but does not belong

to Cπ(Si+1). Since the number of orbits is finite, it follows that the codimension of
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Cπ(Si+1) in Cπ(Si) is at least 1.

To get the second part of Lemma 3.13 apply Proposition 3.14 to Si and n− i + 1

vector fields v2, . . . , vn−i+2. Perturbing the last vector field vn−i+2 we can make these

vector fields linearly independent at a generic point of Si without changing Si.

3.5 Degree of the first and of the last Chern classes

Computing the Euler characteristic χ(π) of a generic hyperplane section we have

expressed it via the degrees of the Chern classes Si. The next question is how to com-

pute these degrees. That means to compute the intersection index of π(Si) with n− i

generic hyperplane sections corresponding to the representation π. If Si is a complete

intersection of generic hyperplane sections corresponding to some representations of

G, then the answer to this question is given by the Brion-Kazarnovskii formula. In

this section, I will prove that this is the case for S1. I can also compute the degree

of the last Chern class Sn−k , because Sn−k is the union of several maximal tori (see

Corollary 3.12). There is a hope that an explicit answer can be obtained for the other

Si as well.

It follows from the proof of Lemma 3.6 (see Remark 3.7) that S1 ⊂ G is given by

the equation det(Ad(g)−A) = 0 for a generic A ∈ End(g). The function det(Ad(g)−
A) is a linear combination of matrix elements corresponding to all exterior powers of

the adjoint representation. Hence, the equation of S1 is the equation of a hyperplane

section corresponding to the sum of all exterior powers of the adjoint representation.

Denote this representation by σ. It is easy to check that the weight polytope Pσ

coincides with the weight polytope of the irreducible representation θ with the highest

weight 2ρ (here ρ is the sum of all fundamental weights). Hence, the degree of S1

can be computed by Brion-Kazarnovskii formula [2, 23] for the representations θ and

π. It remains to prove that S1 is generic, which means that the closure of S1 in Xσ
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intersects all G × G-orbits by subvarieties of codimension at least 1. The Remark

after Lemma 3.6 implies that this is true for the wonderful compactification, and Xσ

is isomorphic to the wonderful compactification by Theorem 3.2 (since Pσ = Pθ).

The last Chern class Sn−k is the disjoint union of maximal tori. Their number is

equal to the degree of a generic adjoint orbit in g. The latter is equal to the order

of the Weyl group W . Denote by [T ] the class of a maximal torus in the ring of

conditions C∗(G). Then the following identity holds in C∗(G):

[Sn−k] = |W |[T ].

The degree of π(T ) can be computed using the formula of D.Bernstein, Khovanskii

and Koushnirenko [24].

3.6 Examples

G = SL2(C). Consider a tautological embedding of G, namely, G = {(a, b, c, d) ∈
C4 : ad − bc = 1}. Since the dimension of G is 3 and the rank is 1, then by Lemma

3.11 we get that there are only two nontrivial Chern classes: S1 and S2. Let us

apply the results of the preceding section to find them. The first S1 is a generic

hyperplane section corresponding to the second symmetric power of the tautological

representation, i.e. to the representation SL2(C) → SO3(C). In other words, it is

the intersection of SL2(C) with a quadric in C4. The second Chern class S2 (which

is also the last one in this case) is the union of two shifted maximal tori.

Let π be a faithful representation of SL2(C). It is the sum of irreducible repre-

sentations of SL2. Any irreducible representation of SL2 is isomorphic to the i−th

symmetric power of the tautological representation for some i. Its weight polytope

is a line segment [−i, i]. Hence the weight polytope of π is the line segment [−n, n]

where n is the greatest exponent of symmetric powers occurring in π. Then matrix
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elements of π are polynomials in a, b, c, d of degree n. In this case, it is easy to

compute the degrees of the subvarieties G,S1 and S2 by Bezout theorem. One gets

deg π(G) = 2n3, deg π(S1) = 4n2, deg π(S2) = 4n. Thus the Euler characteristic

χ(π) is equal to 2n3−4n2 +4n. This answer was first obtained by K.Kaveh who used

different methods [22].

If π is not faithful, i.e. π(SL2(C)) = SO3(C), then clearly, χ(π) is two times

smaller and equal to n3 − 2n2 + 2n.

G = (C∗)n is a complex torus. In this case, all left-invariant vector fields are also

right-invariant since the group is commutative. Hence, they are linearly independent

at any point of G = (C∗)n as long as their values at the identity are linearly indepen-

dent. It follows that all subvarieties Si are empty, and the only one term in the right

hand side of formula (2) is left

χ(π) = (−1)n−1deg π(G).

This is exactly the formula proved by D.Bernstein, A.Khovanskii and A.Koushnirenko

[24].
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