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In toric geometry, a central role is played by moment (or Newton) polytopes of
projective toric varieties. In the past decades, various analogs of Newton polytopes
for other reductive group actions were constructed culminating in a recent con-
struction of string bodies (special Newton-Okounkov convex bodies). My talk was
mostly devoted to this construction [3]. A future objective is to use string bodies
to study geometry of varieties with a reductive group action (as in the toric case).
Below we discuss such an application in a non-toric example.

String bodies for the varieties of complete flags are just string polytopes (e.g.
Gelfand–Zetlin polytopes in the case of GLn(C)). Together with Evgeny Smirnov
and Vladlen Timorin we develop a new approach to the Schubert calculus on the
variety of complete flags in Cn using the volume polynomial on Gelfand–Zetlin
polytopes. This approach allows us to compute the intersection product of Schu-
bert cycles on the flag variety by intersecting faces of the Gelfand–Zetlin polytope.
The Gelfand–Zetlin polytope thus gives a combinatorial model for the intersection
theory on the flag variety.

First recall the definition of the volume polynomial. Consider the set of all
convex polytopes in Rn. This set can be endowed with the structure of an abelian
semigroup using Minkowski sum. We can embed the semigroup of convex polytopes
into its Grothendieck group V , which is a real (infinite-dimensional) vector space.
The elements of V are called virtual polytopes. On the vector space V , there is
a homogeneous polynomial vol of degree n, called the volume polynomial. It is
uniquely characterized by the property that its value vol(P ) on any convex polytope
P is equal to the volume of P . We will be interested in restrictions of vol(P ) to
finite-dimensional subspaces VP of V consisting of all virtual polytopes analogous
to a given polytope P . Recall that two convex polytopes are called analogous if
they have the same normal fan. It is easy to see that polytopes analogous to P also
form a semigroup. Then VP is defined as its Grothendieck group.

The volume polynomial on the spaces VP was previously used by Pukhlikov
and Khovanskii to describe the cohomology rings of smooth toric varieties. I briefly
recall their result. As follows from the theory of toric varieties, each lattice polytope
P defines a polarized toric variety XP . If P is integrally simple (that is, only n edges
meet at every vertex, and the primitive lattice vectors on these edges form a basis
in Zn ⊂ Rn), then XP is smooth. In this case, the Chow ring of X (or equivalently,
the cohomology ring H∗(XP ,Z), which lives only in even degrees) is isomorphic to
the quotient RP of the ring of differential operators on VP with constant integer
coefficients. To get RP we quotient by the operators that annihilate the volume
polynomial. This description turned out to be very useful. First, it is functorial.
Second, it is immediately clear from the definition that the ring RP lives only in
degrees up to n (since the volume polynomial has degree n) and that RP has a
non-degenerate pairing (Poincaré duality) defined by (D1, D2) := D1D2(vol) ∈ Z
for any two homogeneous operators D1 and D2 of complementary degrees. In
fact, the Poincaré duality on the ring RP is the key ingredient in the proof of the
isomorphism between RP and H2∗(XP ,Z) (see [2] for more details).

Note that if P is not simple, we can still define the ring RP , which will still
live in degrees up to n and satisfy Poincaré duality. However, its relation to the
Chow ring of (now singular) toric variety XP is unclear. On the other hand, the
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ring RP for non-simple polytopes is sometimes related to the Chow rings of smooth
non-toric varieties.

We now consider the ring RP for the Gelfand–Zetlin polytope P = Pλ (which is
not simple) associated with a strictly dominant weight λ = (λ1, . . . , λn) ∈ Zn of
the group GLn(C). Recall that the Gelfand-Zetlin polytope Pλ is a convex lattice
polytope in Rd, where d = n(n − 1)/2, with the property that the integer points
inside and at the boundary of Pλ parameterize a natural basis in the irreducible
representation of GLn(C) with the highest weight λ. It can be simply defined
by inequalities (see e.g. [4]). Note that Gelfand–Zetlin polytopes Pλ and Pµ are
analogous for any two strictly dominant weights λ and µ, and hence define the same
space VP and the same ring RP (so it does not matter which weight to choose). It
turns out that the ring RP is isomorphic to the Chow ring (or to the cohomology
ring) of the complete flag variety X for GLn(C) (note that dim X = d) so that
the differential operators ∂

∂λ1
, . . . , ∂

∂λn
get mapped to the first Chern classes of the

tautological line bundles on X. This follows immediately from the results of Kaveh
[2] and can also be deduced directly from the Borel presentation for the cohomology
ring H∗(X,Z) using that the volume of Pλ (regarded as a function of λ) is equal
to

∏
i<j(λi − λj) times a constant.

We now discuss the most important for us feature of the isomorphism RP '
CH∗(X): the isomorphism allows us to identify the algebraic cycles on X with
the linear combinations of the faces of P . We first recall the easier case of simple
polytopes [7, §2]. If P is simple then the dimension of the space VP is equal to
the number l of facets of P (since we can move independently by parallel transport
each of the hyperplanes containing the facets of P ). Note that for non-simple P the
dimension of VP is strictly less than l (e.g. if P is an octahedron, then VP is just
one-dimensional). For simple P , the space VP has natural coordinates (H1, . . . ,Hl)
called the support numbers. They are defined by fixing l covectors h1,. . . , hl on Rn
such that the facet Γi of P (for each i = 1,. . . , l) is contained in the hyperplane
hi(x) = Hi(P ) for some constant Hi(P ) and the polytope P satisfies the inequalities
hi(x) ≤ Hi(P ). Then any collection of real numbers (H1, . . . ,Hl) uniquely defines
a (possibly virtual) polytope in VP by the inequalities hi(x) ≤ Hi. The ring RP
then has multiplicative generators ∂1 := ∂

∂H1
, . . . , ∂l := ∂

∂Hl
. We now assign to

each product ∂i1 . . . ∂ik (for distinct i1,. . . , ik) the face Γi1 ∩ . . . ∩ Γik of P (if we
identify RP with the Chow ring of the smooth toric variety XP then this becomes
the well-known correspondence between the (cycles of) torus orbits in XP and the
faces of P ). Note that such a face will have codimension k since P is simple.

It easy to check that all linear relations between ∂1,. . . ,∂l have form h1(v)∂1 +
. . .+ hl(v)∂l = 0, where v ∈ Zn ⊂ Rn (because the volume of a polytope does not
change if the polytope is parallely transported by the vector v). Using these linear
relations we can always reduce any monomial in ∂1,. . . ,∂l to the linear combination
of monomials containing only pairwise distinct ∂i. Geometrically, this corresponds
to computing the intersection product of the closures of torus orbits by using linear
equivalence relation on the closures of codimension one orbits (there is a well-
known algorithm for this). Polytope P and ring RP allows one to make these
computations more explicit by using geometric invariants of P (such as volume of
P , integer distances to the facets etc.).

If P is not simple, then things become more complicated. I now state our
results in this case. It is still possible (though less straightforward) to identify each



3

element of RP with a linear combinations of faces of P , but not every face of P
would correspond to an element of RP . Namely, we embed the ring RP into a
certain RP -module MP whose elements can be regarded as linear combinations of
arbitrary faces of P modulo some relations. The module MP depends on the choice
of a simple resolution P̃ of P (that is, P̃ is obtained from P by generic parallel
transports of the hyperplanes containing the facets of P ), and is also defined using
the volume polynomial. The product of an element in MP by an element of RP can
again be computed by intersecting faces (and applying linear relations if necessary
to make the faces transverse). While all of these applies to any convex polytope
P it is especially interesting to study the case where P = Pλ is a Gelfand–Zetlin
polytope due to the isomorphism RP ' CH∗(X) for the flag variety X. Recall
that CH∗(X) (as a group) is a free abelian group with the basis of Schubert cycles.
We now give the answer to the following natural question: how to express Schubert
cycles as linear combinations of faces of the Gelfand–Zetlin polytope?

The relation between Schubert cycles and faces of the Gelfand–Zetlin polytope
was first investigated in [5], and then by different methods also in [6] and [4]. We
noticed that the ring RP and its realization by faces via the module MP provide the
uniform setting for all previously known results on the cycle-face correspondence as
well as for some new results. In particular, we proved the following formula, which
is formally similar to the Fomin–Kirillov theorem on Schubert polynomials and uses
the correspondence between rc-graphs (or reduced pipe-dreams) and certain faces of
the Gelfand–Zetlin polytope described in [5]. Denote by Xw the Schubert cycle
corresponding to the permutation w as in [6, §4]. Then the following identity holds
in MP :

Xw =
∑

w(Γ)=w

Γ, (1)

where the sum is taken over all rc-faces (see [6, §4] for the definition) of Pλ with
permutation w. Note that (1) can not be deduced from the Fomin–Kirillov theorem
because the faces Γ will not usually belong to RP (only to MP ) and hence can not
be identified with the monomials in the corresponding Schubert polynomial. Our
proof of (1) uses simple convex geometry arguments.

Once we have identity (1) it is easy to get many other presentations of Schubert
cycles via faces by applying to (1) the relations in RP . We have described all linear
relations between facets, which turned out to be quite simple and used them to
represent each Schubert cycle as a sum of faces that are transverse to all rc-faces.
Hence, the intersection of any two Schubert cycles can also be written as the sum
of faces (that is, with nonnegative coefficients). We hope that further investigation
will lead to a transparent Littlewood–Richardson rule (different from the one in [1])
for the varieties of complete flags. A simple example (for n = 3) illustrating our
approach to Schubert calculus via Gelfand–Zetlin polytopes can be found in [4, §4].
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