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It is well known that a generic invertible matrix can be factorized as the
product of an upper triangular and a lower triangular matrix. A more precise
satement is that any invertible n X n matrix g can be written in the form
bwb,, where b, and b, are upper triangular and w is a permutation matrix.
Here w is uniquely determined by g, though b, and b, are not. The matrices g
for which w is the order-reversing permutation i~ n —{ + | form a dense open
wtin GL, (C). k

This double-coset decofposition GL,, €)= ;’J BwB, where B denotes the

wpper triangular matrices and w runs through the permutation matrices, has an
salogue for any coﬁnectcg affine algebraic group G. The rolé of B is played by
#Bore! subgroup (i.e. a maximal solubl,e Subgroup), and the role of the
permutation matrices by the Weyl group W = N(H)/H, where H = (C*) is a
maximal algebraic torus in G and N(H) is its normalizer. The decomposition is
wowadays called the Bruhat decomposition; but Gelfand had earlier recognized
#simportance in his work on the representations of the classical groups.

Itis best to think of the decomposition as the decomposition of the homo-
Fneous space X = G/B into the orbits of the left action of B. The space X plays
acentral role in representation theory. It turns out that it is a complex
projective algebraic variety, and that the orbits of B are algebraic affine spaces
€" of various dimensions, the “Bruhat cells”. The closures of the cells are
sgebraic subvarieties which in general have singulgrities. It is important that
the maximal compact subgroup K of G acts transitively on X, so that X has an
stemative description as K/T, where ’'=K N B i$ a maximal torus of K.

IfG =GL, (C) then X is the flag manifold: a flag in C" is an increasing
wquence of subspaces
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F=(F,CF,C...CF,=¢")

with dim(F, ) = k. For GL, (C) acts transitively on the set of all flags, and B
#the isotropy group of the standard flagC C€? C...CC". In this case

the cells are indexed by permutations w of 11,2,..,,n}, and we can take as a
®presentative point in the cell X, the flag F¥ such that F v is spanned by
{es1): €u2)s - - - €uqry }, Wherele, , . . =€y} is the standard basis of C". X,
an be defined by “Schubert conditions™: it consists precisely of the flags F
wuch that dim(F, Ng™) = Vim» Where

Vkm =card {i i <k, wiiy<m}.
The dimension of X w 18 the length l(w) of w, defined by
n
w)y=% [wiy—il.
i=f
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Alternatively /(w) is the number of pairs (i, ) such that { </ but w(l) > w(). In
fact if N,, is the subgroup of B consisting of matrices (a;;) with diagonal ele-
ments g = 1 and such that g;; = 0 unless 1<} and w(i) > w(/) then the map
Ny, > X, givenby g +» g+F"% is an isomorphism of algebraic spaces.

An analogous discussion can be carried out for the other classical groups. If
C" has a non-degenerate bilinear form <, >, and G is the group of auto-
morphisms of C" which preserve the form, then G/B can be identified with the
set of flags F such that Ff = F,_y fork=1,...,n.

Returning to the gencral case, we have a topological cell decomposition of
X into cells {X,,} ,ew Which are all of even dimension. The homology groups
of X are therefore free abelian with the classes [ X, ] of the cells as a natural
basis.

On the other hand there is a completely different way of describing the
cohomology ring of X. For every algebraic homomorphism A: B —+ C*, or
equivalently for every character A of the compact torus T, there is a holo-
morphic line bundle E, on X, Associating to \ the first Chern class ¢, = ¢ (Ey)
of E, gives an isomorphism T+ H 2(X: Z). (T is the lattice of weights of G: in
the paper it is called ) 3.) The classes ¢, generate the cohomology ring of X
multiplicatively over the rationals, and H*(X; Q) = R/J, where R is the poly-
nomial algebra over Q generated by the ¢, and J is the ideal generated by the
homogeneous W-invariant polynomials of positive degree. (When G = GL,(C)
there are n obvious line bundles E, , . . ., E, on X: the fibre of Ejataflag Fis
F,/F;_,- The classes x; = c(E;) span H 2(X; 2). The elementary symmetric
functions in the x; vanish because they are the Chern classes of E;®...0E,,
which is a trivial bundle.)

It is natural to ask for the relation between these descriptions of the
homology and the cohomology. In other words if p is a homogeneous
polynomial of degree k in the ¢, , and w is an element of W length k, what is
the value (p, [X,, ] }of p on the cell X,,? One can also ask how to express the
cohomology class Poincare dual to acell X, asa polynomial in the Chern
classes.

To answer these questions it is enough in principle to determine the cap-
product ¢, N[X,1€H,;_,(X;2)foreachAET and each w € W of length k.
‘The paper uses a simple and very attractive geometrical argument to do this.
One begins by observing that by linearity it is enough to consider weights A
which are in the interior of the positive Weyl chamber. In that case X can be
embedded as a projective algebraic variety in P(V}), the projective space of the
irreducible representation ¥, of G with highest weight A, as the orbit under G
of the highest weight vector f, . (V,, is the dual of the space of holomorphic
sections of E, .) The cohomology class ¢, =¢;(E,)is then the class dual to the
intersection X N I, where I is a hyperplane in P(¥,, ); and the cap-product
with ¢, can be interpreted as the geometric operation of intersection with I1.
This is amenable to calculation because of the following properties of the
embedding X = P(V, ).
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(i) the centre of the cell X, maps to the point of P(¥,) re
( presented by the
weight vector f,, € ¥, of weight w, * Y

(i) X, is precisely the intersection of X with a linear subspace of P(V, ), and

(iii) the boundary X, ~ X, of X, is X, NI, where I1_ is the h
perpendicular of f,, . w Ay OLAy 184, 1L, w yperplane

Now let us recall that the Weyl group W - which we are regarding as a group
of automorphisms of the lattice T — is generated by the reflections @, in the
hyperplanes of T perpendicular to the roots v of G. If w € W has length k it
tumns out that the (k — 1)-dimensional cells in the boundary of X, are precisely
the Xw,y such that /(wo,) = k — I. Thus the cap-product ¢, €[X,,] is

necessarily of the form g n, X wo,, ], where n. is a positive integer. To deter-
mine n, one must calculate the order to which the linear form (f,,, ), when

regarded as a function on X, vanishes on the cell X, wo, - That is easy to do
because the formula i

t=>wo, exp(t E—-r) Lo
where E_T is the standard element of g in the (— ) root-space, defines a holo-

morphic curve in X, w Which passes through the centre f,,, =wo, f, of X,
when ¢ = 0, and is transversal to X, . We calculate ! !
Y

{fu» wo, exp(t E_) f, Y={0,f,, exp(t E_,) f. )= 0("7),
where n, = (- A H. ), H, being the co-root associated to v, i.e. the element of
the dual lattice to T characterized by the property
) o,(X)=x—{x H, Yy
foralix € T.
The formula

ex N (X, ) =2 (L H, ) Xy, )

gives us the pairing between homology and cohomology in the form

CNENFRTNI G A DED T WY SN WY - 25}

where the sum is over all strings v, . . ., 7; of positive roots such that

w=
071 07‘ e a7k'

Ishall not describe here the elegant algebraic formulations the authors derive
from this.

It ought, however, to be mentioned that the methods apply equally well not
only to the space G/B, but to G/P for every parabolic subgroup P of G. The
most obvif)us case of this is the Grassmannian Gry ,, of k-dimensional subspaces
of C", which is GL,, (C)/P, where P is the appropri'atc group of echelon matrices.
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= .) The analogue of Gry ,
In terms of compact groups Gry, , = Up /Ug X Up_x-) ! | :
i”or the orthogonal groups is the Grassmannian of isotropic k-du'ftensxona.l sub-
spaces of C" for some non-degenerate quadratic form on cr: thgs sgace can be
identified with 0, /U; X Oy_qx. Whenk = 1 it is a complex projective quadric

hypersurface.

SCHUBERT CELLS AND COHOMOLOGY OF
THE SPACES G/P

I. N. Bernstein, I. M. Gef'fand, S. 1. Gel'fand

We study the homological properties of the factor space G/P, where G is a complex semi-
simple Lie group and P a parabolic subgroup of G. To this end we compare two descriptions
of the cohomology of such spaces. One of these makes use of the partition of G/P into
cells (Schubert cells), while the other consists in identifying the cohomology of G/P with
certzin polynomials on the Lie algebra of the Cartan subgroup H of G. The results obtained
are used to describe the algebraic action of the Weyl group W of G on the cohomology
of G/P.
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Introduction

Let G be a linear semisimple algebraic group over the field C of complex
numbers and assume that G is connected and simply-connected. Let B be
1 Borel subgroup of G and X = G/B the fundamental projective space of G.
The study of the topology of X occurs, explicitly or otherwise, in a
large number of different situations. Among these are the representation
theory of semisimple complex and real groups, integral geometry and a
number of problems in algebraic topology and algebraic geometry, in which
analogous spaces figure as important and useful examples. The study of
the homological properties of G/P can be carried out by two well-known
methods. The first of these methods is due to A, Borel [1] and involves
the identification of the cohomology ring of X with the quotient ring of
the ring of polynomials on the Lie algebra b of the Cartan subgroup
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