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In this paper, I give an explicit formula for the intersection indices of the Chern classes
(defined in [11]) of an arbitrary reductive group with hypersurfaces. This formula has
the following applications. First, it allows to compute explicitly the Euler characteris-
tic of complete intersections in reductive groups thus extending the beautiful result by
D.Bernstein and Khovanskii, which holds for a complex torus. Second, for any regular
compactification of a reductive group, it computes the intersection indices of the Chern
classes of the compactification with hypersurfaces. The formula is similar to the Brion–
Kazarnovskii formula for the intersection indices of hypersurfaces in reductive groups. The
proof uses an algorithm of De Concini and Procesi for computing such intersection indices.
In particular, it is shown that this algorithm produces the Brion–Kazarnovskii formula.

1. Introduction

Let G be a connected complex reductive group of dimension n, and let π : G →
GL(V ) be a faithful representation of G. A generic hyperplane section Hπ corre-
sponding to π is the preimage π−1(H) of the intersection of π(G) with a generic affine
hyperplane H ⊂ End(V ). There is a nice explicit formula for the self-intersection
index Hn

π of Hπ in G, and more generally, for the intersection index of n generic
hyperplane sections corresponding to different representations (see Theorem 1.1 be-
low) in terms of the weight polytopes of the representations [3, 9]. In this paper, I
give a similar formula for the intersection indices of the Chern classes of G (defined
in [11]) with generic hyperplane sections (see Theorem 1.2).

The Chern classes of G can be defined using the Chern classes of the logarithmic
tangent bundle over a regular compactification of G (see Section 3 for a precise
definition). They were introduced in [11] as main ingredients in a formula for the
Euler characteristic of a generic hyperplane section and of complete intersections
of several hyperplane sections. In the case where a reductive group is a complex
torus (C∗)n, there are beautiful explicit formulas for the Euler characteristic due to
D.Bernstein and A.Khovanskii [10]. The result of the present paper combined with
[11] provides analogous formulas in the case of an arbitrary reductive group.

1991 Mathematics Subject Classification. 14L30.
Key words and phrases. Reductive groups, Chern classes, Euler characteristic of hyperplane

sections.
1



2 VALENTINA KIRITCHENKO

Denote by k the rank of G, i.e. the dimension of a maximal torus in G. Only the
first (n−k) Chern classes are not trivial [11]. These Chern classes are elements of the
ring of conditions of G, which was introduced by C.De Concini and C.Procesi [7] (see
also Subsection 2.4 for a brief reminder). They can be represented by subvarieties
S1, . . . , Sn−k ⊂ G, where Si has codimension i. All enumerative problems for G,
such as the computation of the intersection index SiH

n−i
π , make sense in the ring of

conditions.
First, I recall the usual Brion–Kazarnovskii formula for the intersection indices

of hyperplane sections. Choose a maximal torus T ⊂ G, and denote by LT its
character lattice. Choose also a Weyl chamber D ⊂ LT ⊗ R. Denote by R+ the set
of all positive roots of G and denote by ρ the half of the sum of all positive roots
of G. The inner product (·, ·) on LT ⊗ R is given by a nondegenerate symmetric
bilinear form on the Lie algebra of G that is invariant under the adjoint action of G
(such a form exists since G is reductive).

Theorem 1.1. [3, 9] If Hπ is a hyperplane section corresponding to a representation
π with the weight polytope Pπ ⊂ LT ⊗R , then the self-intersection index Hn

π of Hπ

is equal to

n!

∫

Pπ∩D

∏

α∈R+

(x, α)2

(ρ, α)2
dx.

The measure dx on LT ⊗ R is normalized so that the covolume of LT is 1.

This theorem was first proved by B.Kazarnovskii [9]. Later, M.Brion proved an
analogous formula for arbitrary spherical varieties using a different method [3].

The integrand in this formula has the following interpretation. The direct sum
LT ⊕ LT can be identified with the Picard group of the product G/B × G/B of
two flag varieties. Here B is a Borel subgroup of G. Hence, to each lattice point
(λ1, λ2) ∈ LT ⊕ LT one can assign the self-intersection index of the corresponding
divisor in G/B × G/B. The resulting function extends to the polynomial function
(n− k)!F on (LT ⊕ LT )⊗ R, where

F (x, y) =
∏

α∈R+

(x, α)(y, α)

(ρ, α)2
.

Note that the integrand is the restriction of F onto the diagonal {(x, x) : x ∈ LT⊗R}.
This interpretation leads to another proof of the Brion–Kazarnovskii formula (dif-

ferent from those of Kazarnovskii and Brion). Namely, take any regular compact-
ification X of G that lies over the compactification Xπ corresponding to the rep-
resentation π (see Subsection 2.2 ). Then reduce the computation of Hn

π to the
computation of the intersection indices of divisors in the closed orbits of X (see
Section 4). All closed orbits are isomorphic to the product of two flag varieties. The
precise algorithm for doing this was given by De Concini and Procesi [6] in the case,
where X is a wonderful compactification of a symmetric space. Then E.Bifet ex-
tended this algorithm to all regular compactifications of symmetric spaces [2]. I will
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show that in the case, where a symmetric space is a reductive group, this algorithm
actually produces the Brion–Kazarnovskii formula if one uses the weight polytope
of π to keep track of all transformations.

Moreover, the De Concini–Procesi algorithm works not only for divisors. It can
also be carried over to the Chern classes of G (which are, in general, not linear
combinations of complete intersections). In particular, there is the following explicit
formula for the intersection indices of the Chern classes of G with hyperplane sec-
tions. Assign to each lattice point (λ1, λ2) ∈ LT ⊕ LT the intersection index of the
i-th Chern class of the tangent bundle over G/B ×G/B with the divisor D(λ1, λ2)
corresponding to (λ1, λ2), that is, the number ci(G/B × G/B)Dn−k−i(λ1, λ2). Ex-
tend this function to the polynomial function on (LT ⊕ LT ) ⊗ R. Since the Chern
classes of G/B are known the resulting function can be easily computed (see Section
4). The final formula is as follows.

Let D be the differential operator (on functions on (LT ⊕ LT ) ⊗ R) given by the
formula

D =
∏

α∈R+

(1 + ∂α)(1 + ∂̃α),

where ∂α and ∂̃α are directional derivatives along the vectors (α, 0) and (0, α), re-
spectively. Denote by [D]i the i-th degree term in D.

Theorem 1.2. If Hπ is a generic hyperplane section corresponding to a represen-
tation π with the weight polytope Pπ ⊂ LT ⊗ R, then the intersection index SiH

n−i
π

of the i-th Chern class of G with Hn−i
π is equal to

(n− i)!

∫

Pπ∩D

[D]iF (x, x)dx.

The measure dx on LT ⊗ R is normalized so that the covolume of LT is 1.

Of course, this formula also allows to compute the intersection index
SiHπ1 . . . Hπn−i

for any n − i generic hyperplane sections corresponding to differ-
ent representations π1,. . . , πn−i.

Since, in general, the Chern classes of G are not complete intersections, this
formula extends computation of the intersection indices to a bigger part of the ring
of conditions of G. Theorem 1.2 also completes some results of [11]. Namely, the
Chern classes S1, . . . , Sn−k were used there in the following adjunction formula for
the topological Euler characteristic of complete intersections of hyperplane sections
in G.

Theorem 1.3. [11] Let H1,. . . , Hm be generic hyperplane sections corresponding to
m (possibly different) representations of G. The Euler characteristic of the complete
intersection H1 ∩ . . . ∩Hm is equal to the term of degree n in the expansion of the
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following product:

(1 + S1 + . . . + Sn−k) ·
m∏

i=1

Hi(1 + Hi)
−1.

The product in this formula is the intersection product in the ring of conditions.

Theorem 1.2 in the present paper allows to make this formula explicit, since it
allows to compute all terms of the form SiH

k1
1 . . . Hkm

m , where k1 + . . . + km = n− i.
E.g. if a complete intersection is just one hyperplane section Hπ, then

χ(Hπ) = (−1)n−1

∫

Pπ∩D

(n!− (n− 1)![D]1 + (n− 2)![D]2 − . . . + k![D]n−k) F (x, x)dx.

There is also a formula for the Chern classes ci(X) of the tangent bundle over any
regular compactification X of G in terms of S1, . . . , Sn−k (see Corollary 4.4 in [11]).
Theorem 1.2 allows to compute explicitly the intersection index of ci(X) with a
complete intersection of complementary dimension in X.

I am grateful to M.Brion, K.Kaveh, B.Kazarnovskii and A.Khovanskii for useful
discussions. I would also like to thank the referees for valuable remarks.

2. Preliminaries

In this section, I recall some well-known facts which are used in the proof of The-
orem 1.2. In Subsection 2.2, I define the regular compactification X of G associated
with a representation π and describe the orbit structure of X in terms of the weight
polytope of the representation. In Subsection 2.3, the Picard group of X is related
to the space of virtual polytopes analogous to the weight polytope of π. The notion
of analogous polytopes is discussed in Subsection 2.1. In Subsection 2.4, I recall
the definition of the ring of conditions of G. Subsection 2.5 contains a formula for
the integral of a polynomial function over a simplex, which is used to interpret the
computation of intersection indices in terms of integrals over the weight polytope.

2.1. Polytopes. Let P ⊂ Rk be a convex polytope. Define the normal fan P ∗ of
P . This is a fan in the dual space (Rk)∗. To each face F i ⊂ P of dimension i there
corresponds a cone F ∗

i of dimension (n − i) in P ∗ defined as follows. The cone F ∗
i

consists of all linear functionals in (Rk)∗ whose maximum value on P is attained
on the interior of the face F i. In particular, to each facet of P there corresponds
a one-dimensional cone, i.e. a ray, in P ∗. If the dual space (Rk)∗ is identified with
Rk by means of the Euclidean inner product, the ray corresponding to a facet is
spanned by a normal vector to the facet.

Two convex polytopes are called analogous if they have the same normal fan.
All polytopes analogous to a given polytope P form a semigroup SP with respect to
Minkowski sum. This semigroup is also endowed with the action of the multiplicative
group R>0 (polytopes can be dilated). Hence, SP can be regarded as a cone in the
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vector space VP , where VP is the minimal group containing SP (i.e. the Grothendieck
group of SP ). The elements of VP are called virtual polytopes analogous to P .

We now introduce special coordinates in the vector space VP in the case where
P is simple. A polytope in Rk is called simple if it is generic with respect to
parallel translations of its facets. Namely, exactly k facets must meet at each vertex.
This implies that any other face is also the transverse intersection of those facets
that contain it. Let Γ1, . . . , Γl be the facets of P , and let Γ∗1, . . . , Γ∗l be the
corresponding rays in P ∗. Choose a non-zero functional hi ∈ Γ∗i in each ray. Call hi

a support function corresponding to the facet Γi. For any polytope Q analogous to
P , denote by hi(Q) the maximal value of hi on the polytope Q. For instance, if hi

is normalized so that its value on the external unit normal to the facet Γi is 1, then
hi(P ) is up to a sign the distance from the origin to the hyperplane that contains
the facet Γi (the sign is positive if the origin and the polytope P are to the same
side of this hyperplane, and negative otherwise). The numbers h1(Q), . . . , hl(Q) are
called the support numbers of Q. Clearly, the polytope Q is uniquely defined by its
support numbers. The coordinates h1(Q), . . . , hl(Q) can be extended to the space
VP , providing the isomorphism between VP and the coordinate space Rl.

In what follows, we will deal with integer polytopes, i.e. polytopes whose vertices
belong to a given lattice Zk ⊂ Rk. For such polytopes, the natural way to normalize
the support functions is to require that hi(P ) be equal to the integral distance from
the origin to the hyperplane that contains the facet Γi. Suppose that a hyperplane
H not passing through the origin is spanned by lattice vectors. Then the integral
distance from the origin to the hyperplane H is the index in Zk of the subgroup
spanned by H ∩ Zk. To compute the integral distance one can apply a unimodular
(with respect to the lattice Zk) linear transformation of Rk so that H becomes
parallel to a coordinate hyperplane. Then the integral distance is the usual Euclidean
distance from the origin to this coordinate hyperplane.

2.2. Regular compactifications of reductive groups. With any representation
π : G → GL(V ) one can associate the following compactification of π(G). Take the
projectivization P(π(G)) of π(G) (i.e. the set of all lines in End(V ) passing through
a point of π(G) and the origin), and then take its closure in P(End(V )). We obtain
a projective variety Xπ ⊂ P(End(V )) with a natural action of G × G coming from
the left and right action of π(G) × π(G) on End(V ). E.g. when G = (C∗)n is a
complex torus, all projective toric varieties can be constructed in this way.

Assume that P(π(G)) is isomorphic to G. Consider all weights of the representa-
tion π, i.e. all characters of the maximal torus T occurring in π. Take their convex
hull Pπ in LT ⊗ R. Then it is easy to see that Pπ is a polytope invariant under the
action of the Weyl group of G. It is called the weight polytope of the representation
π. The polytope Pπ contains information about the compactification Xπ.

Theorem 2.1. 1) ([14], Proposition 8) The subvariety Xπ consists of a finite number
of G×G-orbits. These orbits are in one-to-one correspondence with the orbits of the
Weyl group acting on the faces of the polytope Pπ. This correspondence preserves
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incidence relations. I.e. if F1, F2 are faces such that F1 ⊂ F2, then the orbit
corresponding to F1 is contained in the closure of the orbit corresponding to F2.

2) Let σ be another representation of G. The normalizations of subvarieties Xπ

and Xσ are isomorphic if and only if the normal fans corresponding to the polytopes
Xπ and Xσ coincide. If the first fan is a subdivision of the second, then there exists
a G×G–equivariant map from the normalization of Xπ to Xσ, and vice versa.

The second part of Theorem 2.1 follows from the general theory of spherical
varieties (see [13], Theorem 5.1) combined with the description of compactifications
Xπ via colored fans (see [14], Sections 7, 8).

In what follows, we will only consider regular compactifications of G. The simplest
example of a regular compactification is the wonderful compactification constructed
by De Concini and Procesi. Suppose that the group G is of adjoint type, i.e. the
center of G is trivial. Take any irreducible representation π with a strictly dominant
highest weight. It is proved in [6] that the corresponding compactification Xπ of the
group G is always smooth and, hence, does not depend on the choice of a highest
weight. Indeed, the normal fan of the weight polytope Pπ coincides with the fan of
the Weyl chambers and their faces, so the second part of Theorem 2.1 applies. This
compactification is called the wonderful compactification and is denoted by Xcan.

Other regular compactifications of G can be characterized as follows. The nor-
malization X of Xπ is regular if first, it is smooth, and second, there is a (G×G)–
equivariant map from X to Xcan. These two conditions can be reformulated in terms
of the weight polytope Pπ. Namely, the first condition implies that Pπ is integrally
simple (see [14] Theorem 9), i.e. it is simple and the primitive vectors on the edges
meeting at each vertex form a basis of LT . The second condition implies that none
of the vertices of Pπ lies on the walls of the Weyl chambers, i.e. the normal fan of
Pπ subdivides the fan of the Weyl chambers and their faces.

A regular compactification X has the following nice properties (see [4] for details),
which we will use in the sequel. The boundary divisor X \ G is a divisor with
normal crossings. The G × G–orbits of codimension s correspond to the faces of
Pπ of codimension s and have rank (k − s). Recall that each face F ⊂ Pπ is the
transverse intersection of several facets of Pπ (since Pπ is simple). Then the closure
of the orbit corresponding to F is the transverse intersection of the closures of the
codimension one orbits that correspond to these facets. Each closed orbit of X
(such orbits correspond to the vertices of Pπ) is isomorphic to the product of two
flag varieties G/B ×G/B.

2.3. Picard group of compactifications. Let X be the normalization of the
compactification Xπ of G. We assume that X is regular, and hence smooth. Then
the second cohomology group H2(X) is isomorphic to the Picard group of X (see
[2]). There is a description of the Picard group of a regular complete symmetric
space due to Bifet (see [2], Theorem 2.4, see also [3], Proposition 3.2). In our case,
this description can be reformulated as follows (such a reformulation is well-known
in the toric case, and in the reductive case it was suggested by K.Kiumars). Denote
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by V (π) the group of all integer virtual polytopes analogous to the weight polytope
Pπ and invariant under the action of the Weyl group.

Proposition 2.2. The Picard group Pic(X) of X is canonically isomorphic to the
quotient group of V (π) modulo parallel translations. The isomorphism takes the
hyperplane section corresponding to a representation σ to the weight polytope of σ
and extends to the other divisors by linearity.

In particular, if G is semisimple, then Pic(X) = V (π) (the only parallel translation
taking a W–invariant polytope to a W–invariant polytope is the trivial one). Let
us identify divisors in X with the corresponding polytopes using this isomorphism.

The variety X has l distinguished boundary divisors O1, . . . , Ol, which are the
closures of codimension one orbits. Let us describe the corresponding virtual poly-
topes. Choose l facets Γ1, . . . , Γl of Pπ so that each orbit of the Weyl group acting
on the facets of Pπ contains exactly one Γi. E.g. take all facets that intersect the
fundamental Weyl chamber. Choose the support functions h1, . . . , hl corresponding
to these facets so that hi(Pπ) is equal to the integral distance (with respect to the
weight lattice LT ) from the origin to the facet Γi.

Lemma 2.3. The closure Oi of codimension one orbit corresponds to the virtual
polytope whose i-th support number is 1 and the other support numbers are 0.

Proof. Let σ be any representation of G whose weight polytope P is analogous to
Pπ. Then X is isomorphic to the normalization of the compactification Xσ. Thus
a generic linear functional f on Xσ can also be regarded as a rational function on
X. Let us find the zero and the pole divisors of f . The zero divisor D is the divisor
corresponding to the weight polytope of σ. The pole divisor is a linear combination
of the divisors O1, . . . , Ol. It is not hard to show that the coefficients are the support
numbers h1(Pσ), . . . , hl(Pσ), i.e. the integral distances from the origin to the facets
of Pσ corresponding to Γ1, . . . , Γl. Indeed, for toric varieties, this statement is
well-known (see [8], Section 3.4). In particular, this holds for the closure T in X of
the maximal torus T ⊂ G. Note that the toric variety T corresponds to the same
polytope Pσ and the codimension one orbits of T are the irreducible components of
Oi ∩ T . Hence, in order to have the right coefficients in the decomposition of D ∩ T
along the hypersurfaces O1 ∩ T ,. . . , Ol ∩ T in T , we must have

D = h1(Pσ)O1 + . . . + hl(Pσ)Ol.

It follows that hi(Oj) = 0, unless i = j. ¤
Another useful collection of divisors consists of the closures in X of codimension

one Bruhat cells in G. Denote these divisors by D1, . . . , Dk. They can also be
described as follows. Denote by ω1, . . . , ωk the fundamental highest weights of G.
Let Xi be the compactification corresponding to the irreducible representation πi

of G with the highest weights ωi. Then by Theorem 2.1 there is an equivariant
map from the wonderful compactification Xcan to Xi, and hence, there is also an
equivariant map p : X → Xi. The divisor Di is the preimage under the map p of the
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hyperplane section (regarded as a divisor in Xi) corresponding to the representation
πi.

To each dominant weight λ = m1ω1 + . . . + mkωk there corresponds the weight
divisor D(λ) = m1D1 + . . . + mkDk. The polytope of this divisor is the weight
polytope Pλ of the irreducible representation with the highest weight λ. Note that λ
is the only vertex of Pλ inside the fundamental Weyl chamber. Hence, it belongs to
all facets of Pλ corresponding to Γ1,. . . , Γl (e.g. some of the facets might degenerate
to the vertex λ). This implies the following lemma.

Lemma 2.4. Let D(λ) be the weight divisor corresponding to a weight λ ∈ LT and
let Pλ be its polytope. Then hi(Pλ) = hi(λ) for any i = 1, . . . , l.

Combination of these two lemmas leads to the following result.

Corollary 2.5. Let D be the divisor on X corresponding to a polytope P . We
assume that P is analogous to Pπ and identify the respective facets. Then for any
face F ⊂ P of codimension s that intersects the fundamental Weyl chamber D
and for any point λ ∈ F ∩ D, the divisor D can be written uniquely as a linear
combination of D(λ) and of boundary divisors Oi such that the corresponding facets
Γi do not contain F . Namely, if F = Γi1 ∩ . . . ∩ Γis, then

D = D(λ) +
∑

j∈{1,...,l}\{i1,...,is}
[hj(P )− hj(λ)]Oj.

2.4. Ring of conditions. Let Z1 and Z2 be two algebraic subvarieties in G. One
can define their intersection index Z1Z2 as the number of points in the intersection
gZ1∩Z2 for a generic g ∈ G. Kleiman’s transversality theorem ensures that such an
intersection index is well-defined, i.e. for a generic g ∈ G the intersection gZ1 ∩ Z2

is transverse and its cardinality does not depend on the choice of g [12]. We now
consider the group C∗(G) of all formal linear combinations of algebraic subvari-
eties in G up to the following equivalence relation. Two subvarieties Z1, Z2 of the
same dimension are equivalent if and only if for any subvariety Y of complementary
dimension the intersection indices Z1Y and Z2Y coincide.

For any two equivalence classes in C∗(G) represented by subvarieties Z1 and Z2

define their product as the class of the subvariety gZ1 ∩ Z2 for a generic g ∈ G. De
Concini and Procesi showed that this product is well defined in C∗(G), i.e. it does
not depend on the choice of representatives [7]. The ring C∗(G) is called the ring of
conditions of G.

In what follows, we will also use the relation between the ring of conditions and
the (co)homology ring of a regular compactification. Namely, the subvarieties Z1

and Z2 represent the same class in the ring of conditions C∗(G) if there exists a
regular compactification X of the group G such that the closures of Z1 and Z2 in
X represent the same homology class in X and have proper intersections with all
G × G–orbits [6]. In particular, we will use regular compactifications to compute
the intersection indices of subvarieties in G.
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2.5. Integration of polynomials. Let f(x1, . . . , xk) be a homogeneous polynomial
function of degree d defined on a real affine space Rk with coordinates (x1, . . . , xk).
There is a useful formula expressing the integral of f over a simplex in Rk in terms
of the polarization of f . Recall that the polarization of f is the unique symmetric
d-linear form fpol on Rk such that the restriction of fpol to the diagonal coincides
with f . One can define fpol explicitly as follows:

fpol(v1, . . . , vd) =
1

d!

∂d

∂v1 . . . ∂vd

f,

where ∂vi
is the directional derivative along the vector vi.

Let ∆ ⊂ Rk be a k-dimensional simplex with vertices a0, . . . , ak and let dx =
dx1 ∧ dx2 ∧ . . . ∧ dxk be the standard measure on Rk.

Proposition 2.6. [3] Let fpol be the polarization of f . It can be regarded as a linear
function on the d-th symmetric power of V . Then the average value of f on the
simplex ∆ coincides with the average value of fpol on all symmetric products of d
vectors from the set {a0, . . . , ak}:

1

Vol(∆)

∫

∆

f(x)dx =
1(

d+k
k

)
∑

i0+...+ik=d

fpol(a0, . . . , a0︸ ︷︷ ︸
i0

, . . . , ak, . . . , ak︸ ︷︷ ︸
ik

).

3. Chern classes

In this section, I recall the definition of the Chern classes of spherical homogeneous
spaces (see [11] for more details). In the sequel, only Chern classes of G×G–orbits
in regular compactifications of G will be used. For these Chern classes, I prove a
vanishing result for their intersection indices with certain weight divisors in regular
compactifications. This result will be important in Section 4 when applying the De
Concini–Procesi algorithm to the Chern classes of G.

Let G/H be a spherical homogeneous space under G of dimension d. The i-
th Chern class Si(G/H) of G/H is the i-th degeneracy locus of n generic vector
fields v1,. . . , vn coming from the action of G, that is, Si(G/H) ={x ∈ G/H :
v1(x), . . . , vd−i+1(x) are linearly dependent}. In what follows we will use the follow-
ing reformulation of this definition. Denote by g and h the Lie algebras of G and H,
respectively, and denote by m the dimension of h. Define the Demazure map ϕ from
G/H to the Grassmannian G(m, g) of m-dimensional subspaces in g as follows:

ϕ : G/H → G(m, g); ϕ : gH → ghg−1.

Let Ci ⊂ G(m, g) be the Schubert cycle corresponding to a generic subspace Λi ⊂ g
of codimension m + i − 1, i.e. Ci = {Λ ∈ G(m, g) : dim(Λ ∩ Λi) ≥ 1}. Then it is
easy to see that the i-th Chern class Si(G/H) of G/H is the preimage of Ci under
the map ϕ:

Si(G/H) = ϕ−1(Ci).
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The class of Si(G/H) in the ring of conditions of G/H is the same for all generic Ci

[11]. It is related to the Chern classes of the tangent bundles over regular compact-
ifications of G [5, 11]. Namely, if X is a regular compactification of G/H, then the
closure of Si(G/H) in X is the i-th Chern class of the logarithmic tangent bundle
over X that corresponds to the divisor X \ (G/H). This vector bundle is generated
by all vector fields on X that are tangent to G–orbits in X. In what follows, this
bundle will be called the Demazure bundle of X.

Let X = G/H and Y = G/P be two spherical homogeneous spaces under G.
Suppose that H is a subgroup of P . Consider the G–equivariant map

f : X → Y ; f : gH 7→ gP.

In general, it is not true that Si(X) is the inverse image under the map f of a subset
in Y . However, under the assumption that H contains a regular element of G, the
intersection of Si(X) (when it is nonempty) with a fiber of f has dimension at least
rk(P )− rk(H).

Example. In what follows, we will mostly deal with the case, where X and Y are
spherical homogeneous spaces under the doubled group G × G. Namely, X is a
G×G–orbit O of a regular compactification of the group G and Y is a partial flag
variety constructed as follows. Let H ⊂ G×G be the stabilizer of a point in O. Take
the minimal parabolic subgroup P ⊂ G×G that contains H and set Y = (G×G)/P .
It easily follows from an explicit description of the stabilizer H (see [14], Theorem
8) that H does contain a regular element of G×G.

Lemma 3.1. For a generic Si(X), there exists an open dense subset of Si(X) such
that for any element x of this subset the intersection of the fiber xP with Si(X) has
dimension greater than or equal to the rk(P )− rk(H). In particular, the dimension
of f(Si(X)) satisfies the inequality

dim f(Si(X)) ≤ dim Si(X)− (rk(P )− rk(H)).

Proof. Choose a generic vector space Λ ⊂ g of codimension dim H + i− 1. Denote
by h and p the Lie algebras of H and P respectively. Then by definition Si(X)
consists of all cosets gH such that ghg−1 has a nontrivial intersection with Λ, or
equivalently h ∩ g−1Λg is nontrivial.

Let gH be any element of Si(X). Estimate the dimension of the intersection of
Si(X) with the fiber gP of the map f . Because of the assumption on H stated above,
for all g from a dense open subset of Si(X), the intersection h ∩ g−1Λg contains an
element v that is regular in g. Denote by C the centralizer in P of v ∈ h ⊂ p. Then
dim(C ∩H) = rk(H) while C has dimension at least rk(P ). Note that for any c ∈ C
the coset gcH still belongs to Si(X) since c−1g−1Λgc contains c−1vc = v. Hence,
Si(X) ∩ gP contains a set gCH of dimension at least rk(P )− rk(H). ¤

Lemma 3.1 is crucial for proving the following two vanishing results, which extend
Proposition 9.1 from [6] and rely on the same ideas. Let X be a regular compacti-
fication of G, and let p : X → Xcan be its equivariant projection to the wonderful
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compactification. Denote by c1, . . . , cn−k the Chern classes of the Demazure vector
bundle over X.

Lemma 3.2. Let O be a G × G–orbit in X of codimension s < k, and O ⊂ X its
closure. Suppose that the image p(O) under the map p : X → Xcan coincides with
the closed orbit of Xcan. In terms of polytopes, this means that the face corresponding
to O does not intersect the walls of the Weyl chambers.

Let λ be any weight of G, and D(λ) the corresponding weight divisor. Then the
homology class ciD

n−i−s(λ) vanishes on O, i.e. the following intersection index is
zero:

ciD(λ)n−i−sO = 0.

Proof. First of all, the intersection product ci · O is the i-th Chern class of the
Demazure bundle over O (see [1], Proposition 2.4.2). Hence, it can be realized as
the closure in O of the i-th Chern class Si(O) of the spherical homogeneous space
O. The computation of the intersection index ciOD(λ)n−i−s in X thus reduces to

the computation of the intersection index Si(O)D(λ)n−i−s in O. The latter is equal
to the intersection index Si(O)D(λ)n−i−s in the ring of conditions of O since D(λ)

and Si(O) have proper intersections with the boundary O \ O.
To compute Si(O)D(λ)n−i−s we use the restriction of the map p : X → Xcan to O.

By the hypothesis the image p(O) is the closed orbit F in Xcan, so it is isomorphic
to the product G/B × G/B of two flag varieties. Then the divisor D(λ) restricted
to O is the inverse image under the map p of the divisor D(λ, λ) in F . Indeed,

D(λ) = p−1(D̃(λ)), where D̃(λ) is the weight divisor in Xcan corresponding to λ. It

is easy to check that D̃(λ) ∩ F = D(λ, λ) (see Proposition 8.1 in [6]).
Hence, all the intersection points in Si(O)D(λ)n−i−s are contained in the preimage

of p(Si(O))D(λ, λ)n−i−s. But the latter is empty. Indeed, since O has positive rank
and F has zero rank, Lemma 3.1 implies that

dim p(Si(O)) < dim Si(O) = n− i− s.

¤
It remains to deal with the orbits in X whose image under the map p is not

the closed orbit in Xcan. In this case, the face corresponding to such an orbit
intersects the walls of the Weyl chambers, and hence, it is orthogonal to some of the
fundamental weights ω1,. . . , ωk. Note that the codimension one orbits O1,. . . , Ok

in Xcan are in one-to-one correspondence with the fundamental weights ω1, . . . , ωk.
Namely, the facet corresponding to Oi is orthogonal to ωi. Let O1,. . . , Ok be the
closures in Xcan of O1,. . . , Ok, respectively.

Lemma 3.3. Let O be a G×G–orbit in X of codimension s < k. Suppose that the
image p(O) under the map p : X → Xcan is not closed and lies in the intersection
Oi1 ∩ . . . ∩ Ois. In terms of polytopes, this means that the face corresponding to O
is orthogonal to the weights ωi1,. . . , ωis.
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Let λ be any linear combination of the weights ωi1,. . . , ωis. Then

ciD(λ)n−i−sO = 0.

Proof. We use the G × G–equivariant map r from Oi1 ∩ . . . ∩ Ois to a partial flag
variety G/P × G/P constructed in [6] (see [6] Lemma 5.1 for details). Consider
the compactification Xi1,...,is of G corresponding to the irreducible representation
πi1,...,is whose highest weight lies strictly inside the cone spanned by ωi1 ,. . . , ωis .
This compactification has a unique closed orbit G/P × G/P , where P ⊂ G is the
stabilizer of the highest weight vector in the representation πi1,...,is . Clearly, the fan of
the Weyl chambers and their faces subdivides the normal fan of the weight polytope
of πi1,...,is . Hence, by Theorem 2.1 there is an equivariant map r : Xcan → Xi1,...,is .
This map takes Oi1 ∩ . . . ∩ Ois to the closed orbit G/P ×G/P .

The composition rp maps the orbit O to the closed orbit G/P ×G/P of Xi1,...,is .
It is easy to show that the divisor D(λ) restricted to O is the preimage of the
divisor D(λ, λ) ⊂ G/P ×G/P under this map (see [6] Section 8.1). Now repeat the
arguments of the proof of Lemma 3.2.

¤
These two lemmas imply the following vanishing result.

Corollary 3.4. Let O be any G × G–orbit in X of codimension s < k, and let F
be the face of the polytope of X that corresponds to O. The intersection index

ciD(λ1) . . . D(λn−i−s)O
vanishes in the cohomology ring of X in the following two cases:

1) The face F does not intersect the walls of the Weyl chambers. Then weights
λ1,. . . , λn−i−s are any weights of G.

2) The face F intersects a wall of the Weyl chambers and weights λ1,. . . , λn−i−s

are orthogonal to F (with respect to the inner product (·, ·) on LT ⊗R defined in the
Introduction).

4. Proof of Theorem 1.2

We use notation of Subsections 2.2 and 2.3. Let X be any regular compactifi-
cation lying over the compactification Xπ. Then the closure Hπ of Hπ in X has
proper intersections with all G×G–orbits in X, and thus SiH

n−i
π coincides with the

intersection index SiH
n−i

π in the cohomology ring of X.
Assume that X corresponds to a representation of G with the weight polytope P0.

Let us compute SiD
n−i for a divisor D under the assumption that the polytope P

corresponding to D is analogous to P0. After we establish the formula of Theorem 1.2
for such divisors, it will automatically extend to the other divisors (in particular, for
Hπ) since any virtual polytope analogous to P0 is a linear combination of polytopes
analogous to P0. Since X is regular, P0 and hence P are simple.

All computations are carried in the cohomology ring of X. First, break Dn−i into
monomials of the form Oi1 . . .OikD(λ1) . . . D(λn−i−k), where i1,. . . , ik are distinct
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integers from 1 to l and λ1,. . . , λn−i−k are weights. Then every such monomial
can be computed explicitly, since the intersection Oi1 ∩ . . . ∩Oik is either empty or
isomorphic to the product of two flag varieties.

Since we are going to intersect Dn−i with Si we can ignore all monomials that are
annihilated by Si. Recall that Si is the i-th Chern class of the Demazure bundle
over X. In particular, Corollary 3.4 implies that Si annihilates the ideal I ⊂ H∗(X)
generated by the monomials of the form D(λ1) . . . D(λn−i−s)O such that either the
face of P corresponding to the codimension s < k orbit O does not intersect the
walls of the Weyl chambers or, if it does, the weights λ1, . . . , λn−i−s are orthogonal
to this face.

0

λ

λ

λ

2

1

Γ

∆

∆

1

2

Γ

1

2

D

P

To keep track of our calculations we use a
subdivision of the polytope P ∩ D into sim-
plices coming from the barycentric subdivi-
sion of P described below. For each face
F ⊂ P choose a point λF ∈ F as follows.
If F does not intersect the walls of the Weyl
chamber D, then λF is any point in the inte-
rior of the face. Otherwise, choose λF so that
the corresponding vector is orthogonal to the
face F (in particular, λF will belong to the
intersection of the face with a wall of D.) If
F = P take λF = 0.

An s–flag F is the collection {F1 ⊃ . . . ⊃
Fs} of s ≤ k nested faces of P such that each of them intersects D, and Fi has
codimension i in P . Denote by OF the closure in X of the orbit corresponding to
the last face Fs, and by ∆F the s–dimensional simplex with the vertices 0, λF1 , . . . ,
λFs . In particular, when s = k, the simplex ∆F has full dimension and the orbit OF
is closed. The polytope D ∩ P is the union of simplices ∆F over all possible k–flags
F .

Example. Take G = PSL3(C), and let X = Xcan be its wonderful compactifi-
cation. Let divisor D be a hyperplane section corresponding to the irreducible rep-
resentation with a strictly dominant highest weight λ. In this case, P is a hexagon
symmetric under the action of the Weyl group, with two edges Γ1 and Γ2 intersect-
ing D. Then λi = λΓi

∈ Γi is orthogonal to Γi for i = 1, 2 and Γ1 ∩ Γ2 = λ. The
subdivision of P ∩ D into simplices consists of two triangles ∆1 and ∆2 with the
vertices 0, λ1, λ and 0, λ2, λ, respectively (see the figure).

Lemma 4.1. Denote by fd(x1, . . . , xk) the sum of all monomials of degree d in
k variables x1,. . . , xk. The following identity holds in the cohomology ring of X
modulo the ideal I:

Dn−i ≡ k!
∑
F

Vol(∆F)fn−k−i(D, D(λF1), . . . , D(λFk−1
))OF (mod I),
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where the sum is taken over all possible k–flags F = {F1 ⊃ . . . ⊃ Fk}. The volume
form Vol is normalized so that the covolume of LT is equal to 1.

Proof. We will prove the following more general statement for s-flags. Denote by
fd,s(x1, . . . , xs) the sum of all monomials of degree d in s variables.

Recall that Γ1,. . . , Γl denote the facets of P that intersect the Weyl chamber D.
An s-flag can be alternatively described by an ordered collection of facets Γi1 ,. . . , Γis

such that their intersection Γi1∩. . .∩Γis has codimension s. Then Fj = Γi1∩. . .∩Γij .
This is a one-to-one correspondence, since the polytope P is simple. Assign to each
s-flag F the following number

cF = hi1(P )[hi2(P )− hi2(λF1)] . . . [his(P )− his(λFs−1)].

In particular, when s = k, i.e. Fs is just a vertex, the number cF coincides
with the volume of ∆F times k!. Indeed, by a unimodular linear transformation
of LT ⊗ R we can map the hyperplanes containing the facets Γi1 ,. . . , Γis to the
coordinate hyperplanes. Then [hij(P ) − hij(λFj−1

)] is just the Euclidean distance
from the vertex λFj−1

of ∆F to the hyperplane containing Γij . Note that to define
volumes we do not use the inner product (·, ·) on the lattice LT . We only use the
lattice itself.

Then for any integer s such that 1 ≤ s ≤ k the following is true:

Dn−i ≡
∑
F

cFfn−s−i,s(D, D(λF1), . . . , D(λFs−1))OF (mod I), (1)

where the sum is taken over all s–flags.
Example: If G is a complex torus, formula (1) is still meaningful but looks much

simpler and reduces to

Ds =
∑
F

cFOF .

Prove formula (1) by induction on s. We use the notations of Subsection 2.3. For
s = 1, the statement coincides with the decomposition D = h1(P )O1+ · · ·+hl(P )Ol

from Lemma 2.3.
Assume that the formula is proved for some s < k. Prove it for s + 1.

We now deal separately with each term on the right hand side of formula (1).
First subtract from every term fn−s−i,s(D,D(λF1), . . . , D(λFs−1))OF the element

fn−s−i,s(D(λFs), D(λF1), . . . , D(λFs−1))OF of the ideal I. This operation does not
change the identity (1). A simple calculation shows that

fn−s−i,s(x, x1, . . . , xs−1)−fn−s−i,s(xs, x1, . . . , xs−1) = (x−xs)fn−s−i−1,s+1(x, x1, . . . , xs−1, xs).

Hence, after subtraction we can rewrite the difference as

(D −D(λFs))fn−s−i−1,s+1(D, D(λF1), . . . , D(λFs))OF .

Since λs lies in the intersection of s facets Γi1 ,. . . , Γis , Corollary 2.5 implies that

(D −D(λFs))OF =
∑

j 6=i1,...,is

[hj(P )− hj(λFs)]OjOF .
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Note that OjOF is empty if and only if the intersection of Γj with Γi1 ∩ . . . ∩ Γis is
empty. Hence,

(D −D(λFs))OF =
∑

F ′
[hj(P )− hj(λFs)]OF ′ ,

where the sum is taken over all (s+1)-flags F ′ that extend F , i.e. F ′ = {F1 ⊃ . . . ⊃
Fs ⊃ Fs ∩ Γj}. ¤

It remains to compute the term

Si · fn−k−i(D,D(λF1), . . . , D(λFk−1
))OF (2)

for each k-flag F . Suppose that the closed orbit OF is the intersection of k hy-
persurfaces Oi1 ,. . . , Oik . Then for any other codimension 1 orbit Oj (such that
j 6= i1, . . . , ik), the intersection OF ∩ Oj is empty. Hence, D in (2) can be replaced
by D(λFk

) since

D = D(λFk
) +

∑

j 6=i1,...,ik

(hj(P )− hj(λFk
))Oj.

Note also that the evaluation of (2) reduces to the computation of intersection indices
in OF , which is the product of two flag varieties. We have that Si ·OF = ci(OF) and
D(λ) · OF = D(λ, λ). Here ci(OF) is the i-th Chern class of the tangent bundle of
OF , which coincides with the Demazure bundle over OF since OF is closed. Hence,

Sifn−k−i(D(λFk
), D(λF1), . . . , D(λFk−1

))OF =

= ci(G/B ×G/B)fn−k−i(D(λF1 , λF1), . . . , D(λFk
, λFk

)). (3)

The intersection product in the right hand side of this formula is taken in G/B ×
G/B.

The function Fi(λ) = ci(G/B ×G/B)D(λ, λ)n−k−i can be expressed explicitly in
terms of the function F defined in the Introduction, since the i-th Chern class of
G/B ×G/B is the term of degree i in the intersection product

∏

α∈R+

(1 + D(α, 0))(1 + D(0, α)).

One way to compute Fi is as follows. Let D and [D]i be the differential operators
defined in the Introduction. Then

Fi(x) = (n− k − i)![D]iF (x, x).

This easily follows from the formula for the polarization mentioned in Subsection
2.5 and the fact that Dn−k(λ, λ) = (n− k)!F (λ, λ).

We can now apply Proposition 2.6 to convert the sum (3) into the integral over
the simplex ∆F . Indeed, by definition of the function fn−k−i we have that (3) can
be rewritten as ∑

i1+...+ik=n−k−i

(Fi)pol(λF1 , . . . , λF1︸ ︷︷ ︸
i1

, . . . , λFk
, . . . , λFk︸ ︷︷ ︸

ik

).
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This is equal to the integral(
n− i

k

)∫

∆F

Fi(x)dx/Vol(∆F)

by Proposition 2.6 applied to the simplex ∆F (with the vertices 0, λF1 ,. . . , λFk
) and

to the function Fi(x). Combining this with Lemma 4.1 we get

SiD
n−i =

(n− i)!

(n− k − i)!

∑
F

∫

∆F

Fi(x)dx = (n− i)!

∫

P∩D

[D]iF (x, x)dx.

Note that when i = 0, we get the Brion–Kazarnovskii formula.

5. Example

In this section, I give an example of computation of the Euler characteristic using
Theorems 1.2 and 1.3. Namely, for the group G = SL3(C), I compute the Euler
characteristic of a hyperplane section corresponding to an irreducible representation.

Let π be the irreducible representation of SL3(C) with the highest weight λ =
mω1 + nω2, where ω1, ω2 are the fundamental weights of SL3(C), and m and n are
nonnegative integers. Take a generic hyperplane section Hπ corresponding to the
representation π. We first find SiH

n−i
π . The dimension of SL3(C) is 8, and the rank

is 2, so there are 6 nontrivial Chern classes S1,. . . , S6.
Let us compute all ingredients of the formula of Theorem 1.2. The weight polygon

Pπ of π is depicted on the figure above. The domain Pπ ∩ D is the union of two
triangles ∆1 and ∆2. The positive roots of SL3(C) are α1 = 2ω1−ω2, α2 = 2ω2−ω1

and α1 +α2. Write D and F in the coordinates (s, t; s̃, t̃) in (LT ⊕LT )⊗R associated
with the basis {α1, α2} in LT ⊗ R:

D = (1 + ∂s)(1 + ∂t)(1 + ∂s + ∂t)(1 + ∂es)(1 + ∂et)(1 + ∂es + ∂et).
Since ρ = α1 + α2 and (α1, ω1) = (α2, ω2) = 1, (α1, ω2) = (α2, ω1) = 0 we have

that

F =
1

4
(2s− t)(2t− s)(t + s)(2s̃− t̃)(2t̃− s̃)(t̃ + s̃).

If we plug D and F in the formula of Theorem 1.2 and integrate, we get that

H8
π = 3(m8 + 16m7n + 112m6n2 + 448m5n3 + 700m4n4 + 448m3n5+

112m2n6 + 16mn7 + n8);

S1H
7
π = 18(m + n)(m6 + 13m5n + 71m4n2 + 139m3n3 + 71m2n4 + 13mn5 + n6);

S2H
6
π = 54(m6 + 12m5n + 50m4n2 + 80m3n3 + 50m2n4 + 12mn5 + n6);

S3H
5
π = 90(m + n)(m4 + 9m3n + 19m2n2 + 9mn3 + n4);

S4H
4
π = 18(5m4 + 40m3n + 72m2n2 + 40mn3 + 5n4);

S5H
3
π = 54(m + n)(m2 + 5mn + n2);
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S6H
2
π = 18(m2 + 4mn + n2).

We now apply Theorem 1.3 to obtain

χ(Hπ) = −3(m8+16m7n+112m6n2+448m5n3+700m4n4+448m3n5+112m2n6+
16mn7 +n8+ 18(m6 +12m5n+50m4n2 +80m3n3 +50m2n4 +12mn5 +n6)+ 6(5m4 +
40m3n + 72m2n2 + 40mn3 + 5n4)+ 6(m2 + 4mn + n2) −6(m + n)(m6 + 13m5n +
71m4n2 +139m3n3 +71m2n4 +13mn5 +n6+ 5(m4 +9m3n+19m2n2 +9mn3 +n4)+
3(m2 + 5mn + n2))).
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