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In this paper, I construct noncompact analogs of the Chern classes for equivariant vector bundles
over complex reductive groups. For the tangent bundle, these Chern classes yield an adjunction
formula for the Euler characteristic of complete intersections in reductive groups. In the case where a
complete intersection is a curve, this formula gives an explicit answer for the Euler characteristic and
the genus of the curve.

1 Introduction and main results

Let G be a connected complex reductive group. Consider a faithful finite-dimensional repre-
sentation π : G → GL(V ) on a complex vector space V . Let H ⊂ End(V ) be a generic affine
hyperplane. The hypersurface π−1(π(G)∩H) ⊂ G is called a hyperplane section corresponding
to the representation π. The problem underlying this paper is how to find the Euler characteris-
tic of a hyperplane section or, more generally, of the complete intersection of several hyperplane
sections corresponding to different representations.

The motivation to study such question comes from the case when the group G = (C∗)n is a
complex torus. In this case, D.Bernstein, A.Khovanskii and A.Kouchnirenko found an explicit
and very beautiful answer in terms of the weight polytopes of representations (see [18]). E.g.
the Euler characteristic χ(π) of a hyperplane section corresponding to the representation π is
equal to (−1)n times the normalized volume of the weight polytope of π. The proof uses an
explicit relation between the Euler characteristic χ(π) and the degree of the affine subvariety
π(G) in End(V ):

χ(π) = (−1)n−1deg π(G). (1)

The degree is defined as usual. Namely, the degree of an affine subvariety X ⊂ CN equals to the
number of the intersection points of X with a generic affine subspace in CN of complementary
dimension. For the degree deg π(G) (that can also be interpreted as the self-intersection index
of a hyperplane section corresponding to the representation π) there is an explicit formula
proved by Kouchnirenko. Later D.Bernstein, and Khovanskii found an analogous formula for
the intersection index of hyperplane sections corresponding to different representations.

How to extend these results to the case of arbitrary reductive groups? It turned out that
the formulas for the intersection indices of several hyperplane sections can be generalized to
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reductive groups and, more generally, to spherical homogeneous spaces. For reductive groups,
this was done by B.Kazarnovskii [17]. Later, M.Brion established an analogous result for all
spherical homogeneous spaces [4]. For reductive groups, the Brion–Kazarnovskii theorem allows
to compute explicitly the intersection index of n generic hyperplane sections corresponding to
different representations. The precise definition of the intersection index is given in Section 2.

However, when G is an arbitrary reductive group, it is no longer true that χ(π) =
(−1)n−1deg π(G). K.Kaveh computed explicitly χ(π) and deg π(G) for all representations π of
SL2(C) . His computation shows that, in general, there is a discrepancy between these two
numbers. Kaveh also listed some special representations of reductive groups, for which these
numbers still coincide [16].

In this paper, I will present a formula that, in particular, generalizes formula (1) to the
case of arbitrary reductive groups. To do this I will construct algebraic subvarieties Si ⊂ G,
whose degrees fill the gap between the Euler characteristic and the degree. My construction
is similar to one of the classical constructions of the Chern classes of a vector bundle in the
compact setting (Subsection 3.1). The subvarieties Si can be thought of as Chern classes of
the tangent bundle of G. I will also construct Chern classes of more general equivariant vector
bundles over G (Subsection 3.2). These Chern classes are in many aspects similar to the usual
Chern classes of compact manifolds. There is an analog of the cohomology ring for G, where
the Chern classes of equivariant bundles live. This analog is the ring of conditions constructed
by C.De Concini and C.Procesi [10, 8](see Section 2 for a reminder). It is useful in solving
enumerative problems. In particular, the intersection product in this ring is well-defined.

I now formulate the main results. Denote by n and k the dimension and the rank of
G, respectively. Recall that the rank is the dimension of a maximal torus in G. Denote by
[S1], . . . , [Sn] the Chern classes of the tangent bundle of G as elements of the ring of conditions,
and denote by S1,. . . , Sn subvarieties representing these classes. In the case of the tangent
bundle, it turns out (see Lemma 3.6) that the the higher Chern classes [Sn−k+1],. . . , [Sn] vanish.
E.g. if G is a torus, then all Chern classes [Si] vanish.

Let H1,. . . , Hm be a generic collection of m hyperplane sections corresponding to faithful
representations π1,. . . , πm of the group G (for the precise meaning of “generic” see Subsection
4.3). Then the following theorem holds.

Theorem 1.1. The Euler characteristic of the complete intersection H1 ∩ . . .∩Hm is equal to
the term of degree n in the expansion of the following product:

(1 + S1 + . . . + Sn−k) ·
m∏

i=1

Hi(1 + Hi)
−1.

The product in this formula is the intersection product in the ring of conditions.

This is very similar to the classical adjunction formula in compact setting.
In particular, the Euler characteristic of just one hyperplane section corresponding to a
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representation π is equal to the following alternating sum. Put S0 = G. Then

χ(π) =
n−k∑
i=0

(−1)n−i−1deg π(Si).

The latter formula may have applications in the theory of generalized hypergeometric equations.
In the torus case, I.Gelfand, M.Kapranov and A.Zelevinsky showed that the Euler characteristic
χ(π) gives the number of integral solutions of the generalized hypergeometric system associated
with the representation π [13]. A similar system can be associated with the representation π
of any reductive group [15]. In the reductive case, the number of integral solutions of such a
system is also likely to coincide with χ(π).

The proof of Theorem 1.1 is similar to the proof by Khovanskii [18] in the torus case.
Namely, Theorem 1.1 follows from the adjunction formula applied to the closure of a complete
intersection in a suitable regular compactification of G (see Subsection 4.3). The key ingredient
is a description of the tangent bundles of regular compactifications due to Ehlers [11] and Brion
[5]. This description is outlined in Subsection 4.2.

The remaining problem is to describe the Chern classes [S1], . . . , [Sn−k] so that their in-
tersection indices with hyperplane sections may be computed explicitly. So far there is such a
description for the first and the last Chern classes (see Subsection 3.3). Namely, [S1] is the class
of a generic hyperplane section corresponding to the irreducible representation with the highest
weight 2ρ. Here ρ is the sum of all fundamental weights of G. This description follows from a
result of A.Rittatore [25] concerning the first Chern class of reductive group compactifications.
The last Chern class [Sn−k] is up to a scalar multiple the class of a maximal torus in G. There
is a hope that the intersection indices of other Chern classes Si with hyperplane sections can
also be computed using a formula similar to the Brion–Kazarnovskii formula.

If a complete intersection is a curve, i.e. m = n − 1, then the formula of Theorem 1.1
involves only the first Chern class [S1]. In this case, the computation of [S1] together with the
Brion–Kazarnovskii formula allows us to compute explicitly the Euler characteristic and the
genus of a curve in G in terms of the weight polytopes of π1,..., πm (see Corollaries 4.8 and
4.9, Subsection 4.3). Note that these two numbers completely describe the topological type of
a curve.

Most of the constructions and results of this paper can be extended without any change to
the case of arbitrary spherical homogeneous spaces. This is discussed in Section 5.

I am very grateful to Mikhail Kapranov and Askold Khovanskii for numerous stimulating
discussions and suggestions. I would like to thank Kiumars Kaveh for useful discussions and
Michel Brion for valuable remarks on the first version of this paper. I am also grateful to the
referee for many useful remarks and comments.

Part of the results of this paper were included into my PhD thesis at the University of
Toronto [19].

Throughout this paper, whenever a group action is mentioned, it is always assumed that a
complex algebraic group acts on a complex algebraic variety by algebraic automorphisms. In
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particular, by a homogeneous space for a group I will always mean the quotient of the group
by some closed algebraic subgroup.

The following remarks concern notations. In this paper, the term equivariant (e.g. equivari-
ant compactification, bundle, etc.) will always mean equivariant under the action of the doubled
group G×G, unless otherwise stated. The Lie algebra of G is denoted by g. I also fix an em-
bedding G ⊂ GL(W ) for some vector space W . Then for g ∈ G and A ∈ g, notation Ag and
gA mean the product of linear operators in End(W ).

2 Equivariant compactifications and the ring of condi-

tions

This section contains some well-known notions and theorems, which will be used in the sequel.
First, I define the notion of spherical action and describe equivariant compactifications of
reductive groups following [9], [15] and [26]. Then I state Kleiman’s transversality theorem [20]
and recall the definition of the ring of conditions [10, 8].

Spherical action. Reductive groups are partial cases of more general spherical homogeneous
spaces. They are defined as follows. Let G be a connected complex reductive group, and let
M be a homogeneous space under G. The action of G on M is called spherical, if a Borel
subgroup of G has an open dense orbit in M . In this case, the homogeneous space M is
also called spherical. An important and very useful property, which characterizes a spherical
homogeneous space M , is that any compactification of M equivariant under the action of G
contains only a finite number of orbits [21].

There is a natural action of the group G×G on G by left and right multiplications. Namely,
an element (g1, g2) ∈ G × G maps an element g ∈ G to g1gg−1

2 . This action is spherical
as follows from the Bruhat decomposition of G with respect to some Borel subgroup. Thus
the group G can be considered as a spherical homogeneous space of the doubled group G ×
G with respect to this action. For any representation π : G → GL(V ) this action can be
extended straightforwardly to the action of π(G)×π(G) on the whole End(V ) by left and right
multiplications. I will call such actions standard.

Equivariant compactifications. With any representation π one can associate the following
compactification of π(G). Take the projectivization P(π(G)) of π(G) (i.e. the set of all lines in
End(V ) passing through a point of π(G) and the origin), and then take its closure in P(End(V )).
We obtain a projective variety Xπ ⊂ P(End(V )) with a natural action of G × G coming from
the standard action of π(G)× π(G) on End(V ). Below I will list some important properties of
this variety.

Assume that P(π(G)) is isomorphic to G. Fix a maximal torus T ⊂ G. Let LT be its
character lattice. Consider all weights of the representation π, i.e. all characters of the maximal
torus T occurring in π. Take their convex hull Pπ in LT ⊗ R. Then it is easy to see that Pπ is
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a polytope invariant under the action of the Weyl group of G. It is called the weight polytope
of the representation π. The polytope Pπ contains information about the compactification Xπ.

Theorem 2.1. 1) ([26], Proposition 8) The subvariety Xπ consists of a finite number of G×G-
orbits. These orbits are in one-to-one correspondence with the orbits of the Weyl group acting
on the faces of the polytope Pπ.

2) Let σ be another representation of G. The normalizations of subvarieties Xπ and Xσ are
isomorphic if and only if the normal fans corresponding to the polytopes Xπ and Xσ coincide.
If the first fan is a subdivision of the second, then there exists an equivariant map from the
normalization of Xπ to Xσ, and vice versa.

The second part of Theorem 2.1 follows from the general theory of spherical varieties (see
[21], Theorem 5.1) combined with the description of compactifications Xπ via colored fans (see
[26], Sections 7, 8).

In particular, suppose that the group G is of adjoint type, i.e. the center of G is trivial. Let π
be an irreducible representation of G with a strictly dominant highest weight. It is proved in [9]
that the corresponding compactification Xπ of the group G is always smooth and, hence, does
not depend on the choice of a highest weight. Indeed, the normal fan of the weight polytope Pπ

coincides with the fan of the Weyl chambers and their faces, so the second part of Theorem 2.1
applies. This compactification is called the wonderful compactification and is denoted by Xcan.
It was introduced by De Concini and Procesi [9]. The boundary divisor Xcan \ G is a divisor
with normal crossings. There are k orbits O1, . . . ,Ok of codimension one in Xcan. The other
orbits are obtained as the intersections of the closures O1, . . . ,Ok. More precisely, to any subset
{i1, i2, . . . , im} ⊂ {1, . . . , k} there corresponds an orbit Oi1 ∩Oi2 ∩ . . .∩Oim of codimension m.
So the number of orbits equals to 2k. There is a unique closed orbit O1 ∩ . . . ∩ Ok, which is
isomorphic to the product of two flag varieties G/B ×G/B. Here B is a Borel subgroup of G.

Compactifications of a reductive group arising from its representations are examples of more
general equivariant compactifications of the group. A compact complex algebraic variety with
an action of G × G is called an equivariant compactification of G if it satisfies the following
conditions. First, it contains an open dense orbit isomorphic to G. Second, the action of G×G
on this open orbit coincides with the standard action by left and right multiplications.

The ring of conditions. The following theorem gives a tool to define the intersection index
on a noncompact group, or more generally, on a homogeneous space. Recall that two irreducible
algebraic subvarieties Y1 and Y2 of an algebraic variety X are said to have proper intersection if
either their intersection Y1∩Y2 is empty or all irreducible components of Y1∩Y2 have dimension
dim Y1 + dim Y2 − dim X.

Theorem 2.2. (Kleiman’s transversality theorem) [20] Let H be a connected algebraic group,
and let M be a homogeneous space under H. Take two algebraic subvarieties X,Y ⊂ M . Denote
by gX the left translate of X by an element g ∈ H. There exists an open dense subset of H
such that for all elements g from this subset the intersection gX ∩Y is proper. If X and Y are
smooth, then gX ∩ Y is transverse for general g ∈ H.
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In particular, if X and Y have complementary dimensions (but are not necessarily smooth),
then for almost all g the translate gX intersects Y transversally at a finite number of points,
and this number does not depend on g.

If X and Y have complementary dimensions, define the intersection index (X,Y ) as the
number #(gX ∩ Y ) of the intersection points for a generic g ∈ H. If one is interested in
solving enumerative problems, then it is natural to consider algebraic subvarieties of M up to
the following equivalence. Two subvarieties X1, X2 of the same dimension are equivalent if and
only if for any subvariety Y of complementary dimension the intersection indices (X1, Y ) and
(X2, Y ) coincide. This relation is similar to the numerical equivalence in algebraic geometry
(see [12], Chapter 19). Consider all formal linear combinations of algebraic subvarieties of
M modulo this equivalence relation. Then the resulting group C∗(M) is called the group of
conditions of M .

One can define an intersection product of two subvarieties X, Y ⊂ M by setting X · Y =
gX ∩ Y , where g ∈ G is generic. However, the intersection product sometimes is not well-
defined on the group of conditions (see [10] for a counterexample). A remarkable fact is that
for spherical homogeneous spaces the intersection product is well-defined, i.e. if one takes
different representatives of the same classes, then the class of their product will be the same
[10, 8]. The corresponding ring C∗(M) is called the ring of conditions.

In particular, the group of conditions C∗(G) of a reductive group is a ring. De Concini and
Procesi related the ring of conditions to the cohomology rings of equivariant compactifications
as follows. Consider the set S of all smooth equivariant compactifications of the group G. This
set has a natural partial order. Namely, a compactification Xσ is greater than Xπ if Xσ lies
over Xπ, i.e. if there exists a map Xσ → Xπ commuting with the action of G × G. Clearly,
such a map is unique, and it induces a map of cohomology rings H∗(Xπ) → H∗(Xσ).

Theorem 2.3. [10, 8] The ring of conditions C∗(G) is isomorphic to the direct limit over the
set S of the cohomology rings H∗(Xπ).

De Concini and Procesi proved this theorem in [10] for symmetric spaces. In [8] De Concini
noted that their arguments go verbatim for arbitrary spherical homogeneous spaces.

3 Chern classes of reductive groups

3.1 Preliminaries

Reminder about the classical Chern classes. In this paragraph, I will recall one of the
classical definitions of the Chern classes, which I will use in the sequel. For more details see
[14].

Let M be a compact complex manifold, and let E be a vector bundle of rank d over M .
Consider d global sections s1, . . . , sd of E that are C∞-smooth. Define their i-th degeneracy
locus as the set of all points x ∈ M such that the vectors s1(x), . . . , sd−i+1(x) are linearly
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dependent. The homology class of the i-th degeneracy locus is the same for all generic choices
of the sections s1(x), . . . , sd(x) [14]. It is called the i-th Chern class of E.

In what follows, I will only consider complex vector bundles that have plenty of algebraic
global sections (so that in the definition of the Chern classes, it will be possible to take only
algebraic global sections instead of C∞–smooth ones).

In particular, there is the following way to choose generic global sections. Let Γ(E) be
a finite-dimensional subspace in the space of all global C∞-smooth sections of the bundle E.
Suppose that at each point x ∈ M the sections of Γ(E) span the fiber of E at the point x.
Then there is an open dense subset U in Γ(E)d such that for any collection of global sections
(s1, . . . , sd) ⊂ U their i-th degeneracy locus is a representative of the i-th Chern class of E.

I will also use the following classical construction that associates with the subspace Γ(E)
a map from the variety M to a Grassmannian. Denote by N the dimension of Γ(E). Let
G(N − d,N) be the Grassmannian of subspaces of dimension (N − d) in Γ(E). One can map
M to G(N − d,N) by assigning to each point x ∈ M the subspace of all sections from Γ(E)
that vanish at x. By construction of the map the vector bundle E coincides with the pull-back
of the tautological quotient vector bundle over the Grassmannian G(N − d,N). Recall that
the tautological quotient vector bundle over G(N − d,N) is the quotient of two bundles. The
first one is the trivial vector bundle whose fibers are isomorphic to Γ(E), and the second is
the tautological vector bundle whose fiber at a point Λ ∈ G(N − d,N) is isomorphic to the
corresponding subspace Λ of dimension N − d in Γ(E).

Using the definition of the Chern classes given above, it is easy to check that the i-th Chern
class of the tautological quotient vector bundle is the homology class of the following Schubert
cycle. Let Λ1 ⊂ . . . ⊂ Λd ⊂ Γ(E) be a partial flag such that dim Λj = j. In the sequel,
by a partial flag I will always mean a partial flag of this type. The i-th Schubert cycle Ci

corresponding to such a flag consists of all points Λ ∈ G(N − d,N) such that the subspaces Λ
and Λd−i+1 have nonzero intersection.

The following proposition relates the Schubert cycles Ci to the Chern classes of E.

Proposition 3.1. [14] Let p : M → G(N − d,N) be the map constructed above, and let Ci be
the i-th Schubert cycle corresponding to a generic partial flag in Γ(E). Then the i-th Chern
class of E coincides with the homology class of the inverse image of Ci under the map p:

ci(E) = [p−1(Ci)].

In particular, this proposition allows to relate the definition of the Chern classes via degen-
eracy loci to other classical definitions.

In the sequel, the following statement will be used. For any algebraic subvariety X ⊂
G(N − d,N), a partial flag can be chosen in such a way that the corresponding Schubert cycle
Ci has proper intersection with X. This follows from Kleiman’s transversality theorem, since
the Grassmannian G(N − d,N) can be regarded as a homogeneous space under the natural
action of the group GLN . Then any left translate of a Schubert cycle Ci is again a Schubert
cycle of the same type.
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Equivariant vector bundles. In this paragraph, I will recall the definition and some well-
known properties of equivariant vector bundles.

Let E be a vector bundle of rank d over G. Denote by Vg ⊂ E the fiber of E lying over
an element g ∈ G. Assume that the standard action of G × G on G can be extended linearly
to E. More precisely, there exists a homomorphism A : G × G → Aut(E) such that A(g1, g2)
restricted to the fiber Vg is a linear operator from Vg to Vg1gg−1

2
. If these conditions are satisfied,

then the vector bundle E is said to be equivariant under the action of G×G.
Two equivariant vector bundles E1 and E2 are equivalent if there exists an isomorphism

between E1 and E2 that is compatible with the structure of fiber bundle and with the action of
G×G. The following simple and well-known proposition describes equivariant vector bundles
on G up to this equivalence relation.

Proposition 3.2. The classes of equivalent equivariant vector bundles of rank d are in one-to-
one correspondence with the linear representations of G of dimension d.

Indeed, with each representation π : G → V one can associate a bundle E isomorphic to
G× V with the following action of G×G:

A(g1, g2) : (g, v) → (g1gg−1
2 , π(g1)v).

Then A(g, g−1) stabilizes the identity element e ∈ G and acts on the fiber Ve = V by means of
the operator π(g).

E.g. the adjoint representation of G on the Lie algebra g = TGe corresponds to the tangent
bundle TG on G. This example will be important in the sequel.

Among all algebraic global sections of an equivariant bundle E there are two distinguished
subspaces, namely, the subspaces of left- and right-invariant sections. They consists of sections
that are invariant under the action of the subgroups G× e and e×G, respectively. Both spaces
can be canonically identified with the vector space V . Indeed, any vector X ∈ V defines a
right-invariant section vr(g) = (g, X). Then it is easy to see that any left-invariant section vl

is given by the formula vl(g) = (g, π(g)Y ) for Y ∈ V .
Denote by Γ(E) the space of all global sections of E that are obtained as sums of left-

and right-invariant sections. Let us find the dimension of the vector space Γ(E). Clearly, if
the representation π does not contain any trivial sub-representations, then Γ(E) is canonically
isomorphic to the direct sum of two copies of V . Otherwise, let C ⊂ V be the maximal trivial
sub-representation. Embed C to V ⊕ V diagonally, i.e. v ∈ C goes to (v, v). It is easy to see
that Γ(E) as a G-module is isomorphic to the quotient space (V ⊕ V )/C. Denote by c the
dimension of C. Then the dimension of Γ(E) is equal to 2d− c.

3.2 Chern classes with values in the ring of conditions

In this subsection, I define Chern classes of equivariant vector bundles over G. These Chern
classes are elements of the ring of conditions C∗(G). Unlike the usual Chern classes in the

8



compact situation, they measure the complexity of the action of G×G but not the topological
complexity (topologically any G × G–equivariant vector bundle over G is trivial). While the
definition of these classes does not use any compactification it turns out that they are related
to the usual Chern classes of certain vector bundles over equivariant compactifications of G.

Throughout this subsection, E denotes the equivariant vector bundle over G of rank d
corresponding to a representation π : G → GL(V ). In the subsequent sections, I will only use
the Chern classes of the tangent bundle.

Definition of the Chern classes. An equivariant vector bundle E has a special class Γ(E)
of algebraic global sections. It consists of all global sections that can be represented as sums
of left- and right-invariant sections.

Example 1. If E = TG is the tangent bundle, then Γ(E) is a very natural class of global
sections. It consists of all vector fields coming from the standard action of G × G on G.
Namely, with any element (X,Y ) ∈ g⊕ g one can associate a vector field v ∈ Γ(E) as follows:

v(x) =
d

dt

∣∣∣∣
t=0

[etXxe−tY ] = Xx− xY.

This example suggests that one represent elements of Γ(E) not as sums but as differences
of left- and right-invariant sections.

The space Γ(E) can be employed to define Chern classes of E as usual. Take d generic
sections v1, . . . , vd ∈ Γ(E). Then the i-th Chern class is the i-th degeneracy locus of these
sections. More precisely, the i-th Chern class Si(E) ⊂ G consists of all points g ∈ G such that
the first d− i+1 sections v1(g), . . . , vd−i+1(g) taken at g are linearly dependent. This definition
almost repeats one of the classical definitions of the Chern classes in the compact setting (see
Subsection 3.1). The only difference is that global sections used in this definition are not generic
in the space of all sections. They are generic sections of the special subspace Γ(E). If one drops
this restriction and applies the same definition, then the result will be trivial, since the bundle
E is topologically trivial. In some sense, the Chern classes will sit at infinity in this case (the
precise meaning will become clear from the second part of this subsection). The purpose of my
definition is to pull them back to the finite part.

Thus for each i = 1, . . . , d we get a family Si(E) of algebraic subvarieties Si(E) parame-
terized by collections of d − i + 1 elements from Γ(E). In the compact situation, all generic
members of an analogous family represent the same class in the cohomology ring. The same
is true here, if one uses the ring of conditions as an analog of the cohomology ring in the
noncompact setting.

Lemma 3.3. For all collections v1, . . . , vd−i+1 belonging to some open dense subset of
(Γ(E))d−i+1 the class of the corresponding subvariety Si(E) in the ring of conditions C∗(G)
is the same.

The lemma implies that the family Si(E) parameterized by elements of (Γ(E))d−i+1 provides
a well-defined class [Si(E)] in the ring of conditions C(G).
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Definition 1. The class [Si(E)] ∈ C∗(G) defined by the family Si(E) is called the i-th Chern
class of a vector bundle E with value in the ring of conditions.

Before proving the lemma let me give another description of the Chern classes [Si(E)].

Maps to Grassmannians. In this paragraph, I apply the classical construction discussed
in Subsection 3.1 to define a map from the group G to the Grassmannian G(d − c, Γ(E)) of
subspaces of dimension (d−c) in the space Γ(E). Recall that c is the dimension of the maximal
trivial sub-representation of V , and the dimension of Γ(E) is 2d− c (see the end of Subsection
3.1).

Note that the global sections from the subspace Γ(E) span the fiber of E at each point of
G. Hence, one can define a map ϕE from G to the Grassmannian G(d− c, Γ(E)) as follows. A
point g ∈ G gets mapped to the subspace Λg ⊂ Γ(E) spanned by all global sections that vanish
at g. Clearly, the dimension of Λg equals to (dim Γ(E)− d) = (d− c) for all g ∈ G. We get the
map

ϕE : G → G(d− c, Γ(E)); ϕE : g 7→ Λg.

The subspace Λg can be alternatively described using the graph of the operator π(g) in
V ⊕ V . Namely, it is easy to check that Λg = {(X, π(g)X), X ∈ V }/C. Then ϕE comes from
the natural map assigning to the operator π(g) on V its graph in V ⊕ V .

Clearly, the pull-back of the tautological quotient vector bundle over G(d, Γ(E)) is isomor-
phic to E. Hence, the Chern class Si(E) constructed via elements v1, . . . , vd is the inverse image
of the Schubert cycle Ci corresponding to the partial flag 〈v1〉 ⊂ 〈v1, v2〉 ⊂ . . . ⊂ 〈v1, . . . , vd〉 ⊂
Γ(E) (see Subsection 3.1). Here 〈v1, . . . , vi〉 denotes the subspace of Γ(E) spanned by the
vectors v1, . . . , vi.

Remark 3.4. This gives the following equivalent definition of Si(E). The Chern class Si(E)
consists of all elements g ∈ G such that the graph of the operator π(g) in V ⊕V has a nontrivial
intersection with a generic subspace of dimension d− i + 1 in V ⊕ V .

In particular, if the representation π : G → GL(V ) corresponding to a vector bundle E
has a nontrivial kernel, then the Si(E) are invariant under left and right multiplications by
the elements of the kernel (since this is already true for the preimage ϕ−1

E (Λ) of any point
Λ ∈ ϕE(G)). E.g. the Chern classes Si(TG) are invariant under multiplication by the elements
of the center of G.

We can now relate the Chern classes Si(E) to the usual Chern classes of a vector bundle
over a compact variety.

Denote by XE the closure of ϕE(G) in the Grassmannian G(d − c, Γ(E)), and denote by
EX the restriction of the tautological quotient vector bundle to XE. We get a vector bundle
on a compact variety. The i-th Chern class of EX is the homology class of Ci ∩ XE for a
generic Schubert cycle Ci (see Proposition 3.1). By Kleiman’s transversality theorem applied
to the Grassmannian G(d − c, Γ(E)) (see Subsection 3.1), a generic Schubert cycle Ci has a
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proper intersection with the boundary divisor XE\ϕE(G). Hence, there is the following relation
between the Chern classes of EX and generic members of the family Si(E).

Proposition 3.5. For a generic Si(E) the homology class of the closure of ϕE(Si(E)) in XE

coincides with the i-th Chern class of EX .

Thus the Chern classes [Si(E)] can be described via the usual Chern classes of the bundle
EX over the compactification XE.

Let us study the variety XE in more detail. It is a G × G–equivariant compactification of
the group ϕE(G). Indeed, the action of G×G on ϕE(G) can be extended to the Grassmannian
G(d, Γ(E)) as follows. Identify Γ(E) with (V ⊕ V )/C (see the end of Subsection 3.1). The
doubled group G×G acts on V ⊕V by means of the representation π⊕π, i.e. (g1, g2)(v1, v2) =
(g1v1, g2v2) for g1, g2 ∈ G, v1, v2 ∈ V . The subspace C ⊂ V ⊕ V is invariant under this action.
Hence, the group G × G acts on Γ(E). This action provides an action of G × G on the
Grassmannian G(d− c, Γ(E)). Clearly, the subvariety XE is invariant under this action.

Example 1 (Demazure embedding). Let G be a group of adjoint type, and let π be
its adjoint representation on the Lie algebra g. The corresponding vector bundle E coincides
with the tangent bundle of G. The corresponding map ϕE : G → G(n, g ⊕ g) coincides with
the embedding constructed by Demazure [9]. The Demazure map takes an element g ∈ G to
the Lie subalgebra gg = {(gXg−1, X), X ∈ g} ⊂ g⊕ g. Clearly, the Demazure map provides an
embedding of G into G(n, g⊕ g).

It is easy to check that the Lie subalgebra gg is the Lie algebra of the stabilizer of an element
g ∈ G under the standard action of G×G. Thus for any A ∈ gg the corresponding vector field
vanishes at g, and the Demazure embedding coincides with ϕE. The compactification XE in
this case is isomorphic to the wonderful compactification Xcan of the group G [9]. In particular,
it is smooth.

Definition 2. Let G and E be as in Example 1. The restriction of the tautological quotient
vector bundle to XE ' Xcan is called the Demazure bundle and is denoted by Vcan.

If E is the tangent bundle, then Proposition 3.5 implies that the Chern class Si(E) is the
inverse image of the usual i-th Chern class of the Demazure bundle. The Demazure bundle is
considered in [5], where it is related to the tangent bundles of regular compactifications of the
group G.

Example 2. a) Let G be GL(V ) and let π be its tautological representation on the space V
of dimension d. Then ϕE is an embedding of GL(V ) into the Grassmannian G(d, 2d). Notice
that the dimensions of both varieties are the same. Hence, the compactification XE coincides
with G(d, 2d).

b) Take SL(V ) instead of GL(V ) in the previous example. Its compactification XE is a
hypersurface in the Grassmannian G(d, 2d) which can be described as a hyperplane section of
the Grassmannian in the Plücker embedding. Consider the Plücker embedding p : G(d, 2d) →
P(Λd(V1⊕V2)), where V1 and V2 are two copies of V . Then p(XE) is a special hyperplane section
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of p(G(d, 2d)). Namely, the decomposition V1 ⊕ V2 yields a decomposition of Λd(V1 ⊕ V2) into
a direct sum. This sum contains two one-dimensional components p(V1) and p(V2) (which
are considered as lines in Λd(V1 ⊕ V2)). In particular, for any vector in Λd(V1 ⊕ V2) it makes
sense to speak of its projections to p(V1) and p(V2). On V1 and V2 there are two special n-
forms, preserved by SL(V ). These forms give rise to two 1-forms l1 and l2 on p(V1) and p(V2),
respectively. Consider the hyperplane H in Λd(V1⊕V2) consisting of all vectors v such that the
functionals l1 and l2 take the same values on the projections of v to p(V1) and p(V2), respectively.
Then it is easy to check that p(XE) = p(G(d, 2d)) ∩ P(H).

In the next section, I will be concerned with the case when E = TG is the tangent bun-
dle. In this case, the vector bundle EX is closely related to the tangent bundles of regular
compactifications of the group G. Let us discuss this case in more detail.

Example 3. This example is a slightly more general version of Example 1. Let g = g′ ⊕ c be
the decomposition of the Lie algebra g into the direct sum of the semisimple and the central
subalgebras, respectively. Denote by c the dimension of the center c. Let E = TG be the
tangent bundle on G. Then ϕE maps G to the Grassmannian G(n − c, (g ⊕ g)/c). It is easy
to show that the image of the map ϕE coincides with the adjoint group of G and the image
contains only subspaces that belong to (g′ ⊕ g′) ⊂ (g⊕ g)/c. Comparing this with Example 1,
one can easily see that XE is isomorphic to the wonderful compactification Xcan of the adjoint
group of G.

In this case, the bundle EX is the direct sum of the Demazure bundle and the trivial vector
bundle of rank c. Indeed, for any subspace Λx ∈ XE ' Xcan ⊂ G(n− c, Γ(E)) its intersection
with the subspace c− = {(c,−c), c ∈ c} ⊂ Γ(E) is trivial. Hence, the quotient space Γ(E)/Λx

coincides with the direct sum ((g′ ⊕ g′)/Λx)⊕ c−.

Proof of Lemma 3.3 The proof of Lemma 3.3 relies on the following fact. Let Y1 and Y2

be two subvarieties of codimension i in the group G. Using Kleiman’s transversality theorem
and continuity arguments, it is easy to show that Y1 and Y2 represent the same class in the
ring of conditions C∗(G) if there exists an equivariant compactification X of the group G such
that the closures of Y1, Y2 in X have proper intersections with all G×G–orbits (see [10] for the
proof).

In particular, to prove Lemma 3.3 it is enough to produce an equivariant compactification
X such that the closure of a generic Si(E) has proper intersections with all G × G–orbits in
X. I claim that the compactification XE discussed in the previous paragraph (see Proposition
3.5) satisfies this condition.

Indeed, the closure of any Si(E) in XE coincides with the intersection of XE with the
Schubert cycle Ci corresponding to a partial flag in Γ(E). By Kleiman’s transversality theorem
applied to the Grassmannian G(d−c, Γ(E)) (see Subsection 3.1), a partial flag can be chosen in
such a way that the corresponding Schubert cycle has proper intersections with all G×G–orbits
in XE. All partial flags with such property form an open dense subset in the space of all partial
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flags. Hence, for generic flags the corresponding subvarieties Si represent the same class in the
ring of conditions.

In the sequel, Si(E) will denote any subvariety of the family Si(E) whose class in the ring
of conditions coincides with the Chern class [Si(E)].

Remark. Recall that the ring of conditions C∗(G) can be identified with the direct limit
of cohomology rings of equivariant compactifications of G (see Theorem 2.3). It follows that
under this identification the Chern class [Si(E)] ∈ C∗(G) corresponds to an element in the
cohomology ring of the compactification XE. In particular for an adjoint group G, the Chern
class [Si(TX)] of the tangent bundle corresponds to some cohomology class of the wonderful
compactification of G.

Properties of the Chern classes of reductive groups. The next lemma computes the
dimensions of the Chern classes. It also shows that if G acts on V without an open dense orbit,
then the higher Chern classes automatically vanish.

For any representation π : G → GL(V ), there exists an open dense G–invariant subset in V
such that the stabilizers of any two elements from this subset are conjugate subgroups of G (see
[24]). In particular, all elements from this subset have isomorphic G–orbits. Such orbits are
called principal. Denote by d(π) the dimension of a principal orbit of G in V . If G has an open
dense orbit in V , then d(π) = d. In my main example, when π is the adjoint representation,
d(π) = n− k.

Lemma 3.6. If i > d(π), then Si(E) is empty, and if i ≤ d(π) then the dimension of Si(E) is
equal to n− i.

Proof. Recall that Si(E) is the inverse image of Ci under the map ϕE : G → G(d−c, Γ(E)). Here
Ci is the i-th Schubert cycle corresponding to a generic partial flag in Γ(E). The codimension
of Ci in the Grassmannian G(d − c, Γ(E)) is equal to i. Hence, by Kleiman’s transversality
theorem applied to G(d − c, Γ(E)) (see Subsection 3.1), the intersection Ci ∩ ϕE(G) is either
empty or proper and has codimension i in ϕE(G). Then Si(E) = ϕ−1

E (Ci ∩ ϕE(G)) is either
empty or has codimension i in G, because all fibers of the map ϕE are isomorphic to each other
(each of them is isomorphic to the kernel of π). It remains to find out all i for which Si(E) is
empty.

By Remark 3.4, the Chern class Si(E) consists of all elements g ∈ G such that the graph
Γg = {(v, π(g)v), v ∈ V } ⊂ V ⊕ V of π(g) has a nontrivial intersection with a generic subspace
Λd−i+1 of dimension d− i+1 in V ⊕V . For all g ∈ Si(E) \Si+1(E) the intersection Γg ∩Λd−i+1

has dimension 1. Indeed, if dim(Γg ∩Λd−i+1) ≥ 2, then dim(Γg ∩Λd−i) ≥ 1 (since the subspace
Λd−i ⊂ Λd−i+1 has codimension one in Λd−i+1), and g belongs to Si+1(E). Hence, there is a
well-defined map

p : Si(E) \ Si+1(E) → P(D ∩ Λd−i+1); p : g 7→ P(Γg ∩ Λd−i+1).

Here D ⊂ V ⊕ V is the union of all graphs Γg for g ∈ G. In particular, the Chern class Si(E)
is nonempty if and only if P(D ∩ Λd−i+1) is nonempty.
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We now estimate the dimension of D∩Λd−i+1. Since D is not a variety, it is more convenient
to take its Zariski closure D. The subvariety D is the closure of the image of the following
morphism:

F : G× V → V × V ; F : (g, v) 7→ (v, π(g)v).

The source space G× V is an irreducible variety of dimension n + d, and the general fibers of
F are isomorphic to the principal stabilizers, of dimension n− d(π). Hence dim D = d + d(π),
that is, D has codimension d− d(π).

Next, observe that D is a constructible set, invariant under scalar multiplication. Hence
it contains a dense open subset (also invariant under scalar multiplication) of the irreducible
variety D. Thus a general vector space Λd−i+1 satisfies dim(D∩Λd−i+1) = d(π)−i+1, if i ≤ d(π),
and D∩Λd−i+1 is dense in this intersection. In particular, if i = d(π), then D∩Λd−i+1 consists
of several lines whose number is equal to the degree of D. If i > d(π), then D∩Λd−i+1 contains
only the origin. It follows that if i > d(π), then Si(E) is empty.

This proof also implies the following corollary. Denote by H ⊂ G the stabilizer of an element
in a principal orbit of G in V . The subgroup H is defined up to conjugation so its class in the
ring of conditions is well-defined.

Corollary 3.7. An open dense subset of the subvariety Si(E) admits almost a fibration whose
fibers are translates of H. Here almost means that the intersection of different fibers always lies
in Si+1(E) ⊂ Si(E). In particular, the last Chern class Sd(π)(E) admits a true fibration and
coincides with the disjoint union of several translates of H. Their number equals to the degree
of a generic principal orbit of G in V .

The last statement follows from the fact that the degree of D in V ⊕ V (see the proof of
Lemma 3.6) is equal to the degree of a generic principal orbit of G in V .

In particular, let E be the tangent bundle. Then the stabilizer of a generic element in g is
a maximal torus in G. Hence, the last Chern class Sn−k(TG) is the union of several translates
of a maximal torus. The number of translates is the cardinality of the Weyl group (the degree
of a general orbit in the adjoint representation).

3.3 The first and the last Chern classes

Throughout the rest of the paper, I will only consider the Chern classes Si = Si(TG) of the
tangent bundle unless otherwise stated. Theorem 1.1 expresses the Euler characteristic of a
complete intersection via the intersection indices of the Chern classes Si with generic hyper-
plane sections. The question is how to compute these indices. If [Si] is a linear combination
of complete intersections of generic hyperplane sections corresponding to some representations
of G, then the answer to this question is given by the Brion–Kazarnovskii formula. A hy-
perplane section corresponding to the representation π is called generic if its closure in the
compactification Xπ has proper intersections with all G×G–orbits in Xπ.
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In this subsection, I describe S1 as a generic hyperplane section. The description follows
from a result of Rittatore [25]. One can also compute the intersection indices with the last
Chern class Sn−k, because Sn−k is the union of translates of a maximal torus (see Corollary
3.7). However, it seems that in general the Chern class Si, for i 6= 1, is not a sum of complete
intersections. E.g. I can show that for G = SL3(C) the Chern class [S3] does not lie in the
subring of C∗(G) generated by the classes of hypersurfaces.

Description of S1. The result of Rittatore for the first Chern class of regular compactifi-
cations (see [25], Proposition 4) implies that the class [S1] in the ring of conditions can be
represented by the doubled sum of the closures of all codimension one Bruhat cells in G. Below
I will deduce this description directly from the definition of S1.

It is easy to show that S1 ⊂ G is given by the equation det(Ad(g) − A) = 0 for a generic
A ∈ End(g). Indeed, the first Chern class S1(E) of any equivariant vector bundle E over G
consists of elements g ∈ G such that the graph of the operator π(g) in V ⊕ V has a nontrivial
intersection with a generic subspace of dimension n in V ⊕ V (see Remark 3.4). As a generic
subspace, one can take the graph of a generic operator A on V . Then the graphs of operators
π(g) and A have a nonzero intersection if and only if the kernel of the operator π(g) − A is
nonzero.

The function det(Ad(g)−A) is a linear combination of matrix coefficients corresponding to
all exterior powers of the adjoint representation. Hence, the equation of S1 is the equation of a
hyperplane section corresponding to the sum of all exterior powers of the adjoint representation.
Denote this representation by σ. It is easy to check that the weight polytope Pσ coincides with
the weight polytope of the irreducible representation θ with the highest weight 2ρ (here ρ is the
half sum of all positive roots, or equivalently the sum of all fundamental weights). It remains
to prove that S1 is generic, which means that the closure of S1 in Xσ intersects all G×G–orbits
along subvarieties of codimension one. The proof of Lemma 3.3 implies that this is true for the
wonderful compactification, and the normalization of Xσ is the wonderful compactification by
Theorem 2.1 (since Pθ = Pσ).

It is now easy to show that the doubled sum of the closures of all codimension one Bruhat
cells in G is equivalent to S1. This is because the closures of codimension one Bruhat cells are
generic hyperplane sections corresponding to the irreducible representations with fundamental
highest weights.

Description of Sn−k. By Corollary 3.7 the last Chern class Sn−k is the disjoint union of
translates of a maximal torus. Their number is equal to the degree of a generic adjoint orbit in
g. The latter is equal to the order of the Weyl group W . Denote by [T ] the class of a maximal
torus in the ring of conditions C∗(G). Then the following identity holds in C∗(G):

[Sn−k] = |W |[T ].

The degree of π(T ) can be computed using the formula of D.Bernstein, Khovanskii and Koush-
nirenko [18].
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3.4 Examples

G = SL2(C). Consider the tautological embedding of G, namely, G = {(a, b, c, d) ∈ C4 :
ad− bc = 1}. Since the dimension of G is 3 and the rank is 1, by Lemma 3.6 we get that there
are only two nontrivial Chern classes: S1 and S2. Let us apply the results of the preceding
subsection to find them. The first Chern class S1 is a generic hyperplane section corresponding
to the second symmetric power of the tautological representation, i.e. to the representation
θ : SL2(C) → SO3(C). In other words, it is the intersection of SL2(C) with a generic quadric
in C4. The second Chern class S2 (which is also the last one in this case) is the union of two
translates of a maximal torus (or the intersection of S1 with a hyperplane in C4).

Let π be a faithful representation of SL2(C). It is a direct sum of irreducible representations.
Any irreducible representation of SL2(C) is isomorphic to the i-th symmetric power of the
tautological representation for some i. Its weight polytope is the line segment [−i, i]. Hence the
weight polytope of π is the line segment [−n, n] where n is the greatest exponent of symmetric
powers occurring in π. Then the matrix coefficients of π are polynomials in a, b, c, d of degree
n. In this case, it is easy to compute the degrees of subvarieties π(G), π(S1) and π(S2) by the
Bezout theorem. Then deg π(G) = 2n3, deg π(S1) = 4n2, deg π(S2) = 4n. Also, if one takes
another faithful representation σ with the weight polytope [−m, m], then the intersection index
of S1 with two generic hyperplane sections corresponding to π and σ, equals to 4mn.

Since by Theorem 1.1 the Euler characteristic χ(π) of a generic hyperplane section is equal
to deg π(G)− deg π(S1) + deg π(S2), we get

χ(π) = 2n3 − 4n2 + 4n.

This answer was first obtained by Kaveh who used different methods [16].
If π is not faithful, i.e. π(SL2(C)) = SO3(C), consider π as a representation of SO3(C).

Then χ(π) is two times smaller and equals to n3 − 2n2 + 2n.
Apply Theorem 1.1 to a curve C that is the complete intersection of two generic hyperplane

sections corresponding to the representations π and σ. Then

χ(C) = Hπ ·Hσ ·Hθ −Hπ ·Hσ · (Hπ + Hσ) = −2mn(m + n− 2).

G = (C∗)n is a complex torus. In this case, all left-invariant vector fields are also right-
invariant since the group is commutative. Hence, they are linearly independent at any point of
G = (C∗)n as long as their values at the identity are linearly independent. It follows that all
subvarieties Si are empty, and all the Chern classes vanish. Then Theorem 1 coincides with a
theorem of D.Bernstein and Khovanskii [18].
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4 Chern classes of regular compactifications and proof

of Theorem 1.1

4.1 Preliminaries

Chern classes of the tangent bundle. In this paragraph, I explain a method from [11],
which in some cases allows to find the Chern classes of smooth varieties.

Let X be a smooth complex variety of dimension n, and let D ⊂ X be a divisor. Suppose
that D is the union of l smooth irreducible hypersurfaces D1, . . . , Dl with normal crossings.
One can relate the tangent bundle TX of X to the logarithmic tangent bundle, consisting of
those vector fields that preserve the divisor D.

Let LX(D1), . . . , LX(Dl) be the line bundles over X associated with the hypersurfaces
D1, . . . , Dl, respectively. I.e. the first Chern class of the bundle LX(Di) is the homology
class of Di. One can also associate with D the logarithmic tangent bundle VX(D). It is a
holomorphic vector bundle over X of rank n that is uniquely defined by the following property.
The holomorphic sections of VX(D) over an open subset U ⊂ X consist of all holomorphic
vector fields v(x) on U such that v(x) restricted to U ∩ Di is tangent to the hypersurface Di

for any i. The precise definition is as follows. Cover X by local charts. If a chart intersects the
divisors Di1 , . . . , Dik choose local coordinates x1, . . . , xn such that the equation of Dij in these
coordinates is xj = 0. Then VX is given by the collection of trivial vector bundles spanned
by the vector fields x1

∂
∂x1

, . . . , xk
∂

∂xk
, ∂

∂xk+1
, . . . , ∂

∂xn
over each chart with the natural transition

operators.
For a vector bundle E, denote by O(E) the sheaf of its holomorphic sections.

Proposition 4.1. [11] There is an exact sequence of coherent sheaves

0 → O(VX(D)) → O(TX) →
l⊕

i=1

O(LX(Di))⊗OX
ODi

→ 0.

In particular, the tangent bundle TX has the same Chern classes as the direct sum of the
bundle VX(D) with LX(D1),. . . , LX(Dl).

Proposition 4.1 gives the answer for the Chern classes of X, when the Chern classes of VX(D)
are known. In particular, this is the case when X is a smooth toric variety, and D = X \ (C∗)n

is the divisor at infinity. In this case, the vector bundle VX(D) is trivial, and the Chern
classes of TX can be found explicitly. This was done by Ehlers [11]. A more general class of
examples is given by regular compactifications of reductive groups (see the next paragraph for
the definition) and, more generally, of arbitrary spherical homogeneous spaces (see Section 5).
In this case, the vector bundle VX(D) is no longer trivial but still has a nice description, which
is due to Brion [5]. I recall his result in Subsection 4.2 and use it to prove Theorem 1.1.
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Regular compactifications. In this paragraph, I will define the notion of regular compactifi-
cations of reductive groups following [6]. Let X be a smooth G×G–equivariant compactification
of a connected reductive group G of dimension n. Denote by O1, . . . ,Ol the orbits of codimen-
sion one in X. Then the complement X \ G to the open orbit is the union of the closures
O1, . . . ,Ol of codimension one orbits.

Definition 3. A smooth G×G–equivariant compactification X is called regular if the following
three conditions are satisfied.

(1)The hypersurfaces O1, . . . ,Ol are smooth and intersect each other transversally.
(2)The closure of any G×G–orbit in X \G coincides with the intersection of those hyper-

surfaces O1, . . . ,Ol that contain it.
(3) For any point x ∈ X and its G × G–orbit Ox ⊂ X, the stabilizer (G × G)x ⊂ G × G

acts with a dense orbit on the normal space TxX/TxOx to the orbit.

This definition was introduced by E.Bifet, De Concini and Procesi in a more general setting
([2], see also Section 5).

If G is a complex torus, then the regularity of X is just equivalent to the smoothness.
However, for other reductive groups, there exist compactifications that are smooth but not
regular. In particular, it follows from Proposition 4.2 below that the compactification Xπ

associated with a representation π : G → GL(V ) (see Section 2) is regular if and only it is
smooth and none of the vertices of the weight polytope of π lies on the walls of the Weyl
chambers.

Regular compactifications of reductive groups generalize smooth toric varieties and retain
many nice properties of the latter. E.g. any regular compactification X can be covered by
affine charts Xα ' Cn in such a way that only k hypersurfaces Oi1 ,. . . , Oik intersect Xα, and
intersections Oi1 ∩Xα, . . . ,Oik ∩Xα are k coordinate hyperplanes in Xα [9, 6]. Here k denotes
the rank of G. In particular, all G×G-orbits in X have codimension at most k, and all closed
orbits have codimension k.

If G is of adjoint type, then it has the wonderful compactification Xcan, which is regular.
This example is crucial for the study of the other regular compactifications.

For arbitrary reductive group G, denote by Xcan the wonderful compactification of the
adjoint group of G. There is the following criterion of regularity.

Proposition 4.2. [6] Let X be a smooth G × G–equivariant compactification of G. Then the
condition that X is regular is equivalent to the existence of a G × G–equivariant map from X
to Xcan.

E.g. if G is a complex torus, then the latter condition is always satisfied because Xcan is a
point in this case.

Thus the set of regular compactifications of G consists of all smooth G×G–equivariant com-
pactifications lying over Xcan. In particular, for reductive groups of adjoint type the wonderful
compactification is the minimal regular compactification.
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4.2 Demazure bundle and the Chern classes of regular compactifi-
cations

In this subsection, I state a formula for the Chern classes of regular compactifications of re-
ductive groups. It follows from a more general result proved for arbitrary toroidal spherical
varieties by Brion [5]. This formula gives a description of the Chern classes in terms of two
different collections of subvarieties. The first collection is given by the Chern classes of G, which
are independent of a compactification, and the second is given by the closures of codimension
one orbits, which are easy to deal with (in particular, all their intersection indices with other
divisors can be computed via the Brion–Kazarnovskii theorem).

Let X be a regular compactification of G, and let O1, . . . ,Ol be the closures of the G×G–
orbits of codimension one in X. Then the tangent bundle TX of X can be described using the
Demazure vector bundle Vcan over the wonderful compactification Xcan (see Example 1 from
Subsection 3.2) and the line bundles corresponding to the hypersurfaces Oi.

Let L(O1), . . . , L(Ol) be the line bundles over X associated with the hypersurfaces
O1, . . . ,Ol, respectively. Let p : X → Xcan be the canonical map from Proposition 4.2, and
let p∗(Vcan) be the pull-back of the Demazure vector bundle to X. It turns out that p∗(Vcan)
coincides up to a trivial summand with the logarithmic tangent bundle corresponding to the
boundary divisor X \G.

Theorem 4.3. [5] The tangent bundle TX has the same Chern classes as the direct sum of the
pull-back p∗(Vcan) with the line bundles L(O1), . . . , L(Ol).

In the case when G is a complex torus, Theorem 4.3 was proved by Ehlers [11]. For arbitrary
reductive groups, Theorem 4.3 follows from a more general result by Brion ([5], 1.6 Corollary 1).

This theorem implies the following formula for the Chern classes c1(X), . . . , cn(X) of the
tangent bundle of X. Let Si = Si(TG) ⊂ G for i = 1, . . . , n − k be the Chern classes of the
tangent bundle of G defined in the previous section (see Definition 1). Denote by Si the closure
of Si in X. Note that Si has proper intersections with all G × G-orbits in X (since this is
already true for the wonderful compactification Xcan, and X lies over Xcan).

Corollary 4.4. The total Chern class c(X) = 1 + c1(X) + . . . + cn(X) coincides with the
following product:

c(X) = (1 + S1 + . . . + Sn−k) ·
l∏

i=1

(1 +Oi).

The product in this formula is the intersection product in the (co)homology ring of X.

Below I sketch the proof of Theorem 4.3 following mostly the proofs by Ehlers and Brion.
The goal is to explain the main idea of their proofs, which is very transparent, and motivate the
definition of the Chern classes Si. In the torus case, this idea can be extended to a complete
elementary proof. For more details see [11] and [5].
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Take n generic vector fields v1, . . . , vn coming from the action of G × G. It is not hard to
show that v1, . . . , vn are generic in the space of all C∞–smooth vector fields on X (it is enough
to prove it for each affine chart on X). Hence, their degeneracy loci give Chern classes of X.
Note that these fields are not only C∞–smooth but also algebraic so their degeneracy loci are
algebraic subvarieties in X.

The picture is especially simple in the torus case, because in this case v1, . . . , vn−i+1 are
linearly dependent precisely on all orbits of codimension greater than or equal to i (since they
all belong to the tangent bundle of the orbit) and independent on the other orbits. Hence, the
i-th Chern class of X consists of all orbits of codimension at least i.

In the reductive case, the situation is more complicated because the degeneracy loci of
v1, . . . , vn have nontrivial intersections with the open orbit G ⊂ X. These intersections are
exactly the Chern classes S1,..., Sn−k of G. So it seems more convenient to use the method
described in Subsection 4.1 (see Proposition 4.1). Namely, consider the logarithmic tangent
bundle VX = VX(X \G) corresponding to the boundary divisor X \G = O1 ∪ . . . ∪Ol. Recall
that c denotes the dimension of the center of G.

Proposition 4.5. The vector bundle VX is isomorphic to the direct sum of the pull-back p∗(Vcan)
with the trivial vector bundle Ec of rank c.

Proof. The vector fields coming from the action of G×G on X are global sections of the bundle
VX , since they are tangent to all G×G–orbits in X. It follows easily from condition (3) in the
definition of regular compactifications that these global sections span the fiber of VX at any
point of X. Hence, the map ϕE : G → G(n− c, (g⊕ g)/c) considered in Example 3 extends to
a map p : X → G(n− c, (g⊕ g)/c). The rest follows from Example 3.

Remark 4.6. There is also another construction of the map p : X → Xcan by Brion (see [4]).

4.3 Applications

In this subsection, I prove Theorem 1.1 using the formula for the Chern classes of regular
compactifications (Corollary 4.4). Then I apply it to compute the Euler characteristic and the
genus of a curve in G.

Proof of Theorem 1.1. First, define the notion of generic collection of hyperplane sections
used in the formulation of Theorem 1.1. A collection of m hyperplane sections H1, . . . , Hm

corresponding to representations π1,. . . , πm, respectively, is called generic, if there exists a
regular compactification X of G such that the closure H i of any hyperplane section Hi is
smooth, and all possible intersections of H1, . . . , Hm with the closures of G×G–orbits in X are
transverse. E.g. one can take the compactification Xπ corresponding to the tensor product π
of the representations π0, π1, . . . , πm, where π0 is any irreducible representation with a strictly
dominant highest weight. Then it is not hard to show that the set of all generic collections
(with respect to the compactification Xπ) is an open dense subset in the space of all collections.
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So the closure Y = C of C = H1 ∩ . . . ∩Hm in X is the transverse intersection of smooth
hypersurfaces. In particular, Y is smooth, and its normal bundle NY in X is the direct sum
of m line bundles corresponding to the hypersurfaces H i. The analogous statement is true
for any subvariety of the form Y ∩ OI , where I = {i1, . . . , ip} is a subset of {1, . . . , l} and
OI = Oi1 ∩ . . . ∩ Oip . Let us find the Euler characteristic of Y ∩ OI using the classical
adjunction formula. Denote by J = {1, . . . , l} \ I the complement to the subset I. We get that
χ(Y ∩ OI) is the term of degree n in the decomposition of the following intersection product
in X:

(1 + S1 + . . . + Sn−k) ·
m∏

s=1

Hs(1 + Hs)
−1 ·

∏
i∈I

Oi ·
∏
j∈J

(1 +Oj). (∗)

On the other hand, since the Euler characteristic is additive, and C = Y \ (O1 ∪ . . . ∪ Ol),
one can express the Euler characteristic χ(C) in terms of the Euler characteristics χ(Y ∩ OI)
over all subsets I ⊂ {1, . . . , l}:

χ(C) =
∑

I⊂{1,...,l}
(−1)|I|χ(Y ∩ OI). (∗∗)

Combining formulas (∗) and (∗∗), we get the formula of Theorem 1.1. Indeed, we have that
χ(C) is the term of degree n in the decomposition of the following intersection product in X:

(1 + S1 + . . . + Sn−k) ·
m∏

s=1

Hs(1 + Hs)
−1 ·


 ∑

ItJ={1,...,l}
(−1)|I|

∏
i∈I

Oi

∏
j∈J

(1 +Oj)


 .

The sum in the parentheses is equal to 1, since for any commuting variables x1, x2, . . . , xl

we have the identity:

1 =
l∏

i=1

((1 + xi)− xi) =
∑

ItJ={1,...,l}
(−1)|I|

∏
i∈I

xi

∏
j∈J

(1 + xj).

Computation for a curve. Apply Theorem 1.1 and the formula for the first Chern class S1

to a curve in G. We get that if C = H1 ∩ . . .∩Hn−1 is a complete intersection of n− 1 generic
hyperplane sections, then

χ(C) = (S1 −H1 − . . .−Hn−1) ·
n−1∏
i=1

Hi.

Since S1 is also a generic hyperplane section, the computation of χ(C) reduces to the compu-
tation of the intersection indices of hyperplane sections.
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Recall the Brion-Kazarnovskii formula for such intersection indices. Denote by R+ the set
of all positive roots of G. Recall that ρ denotes the half of the sum of all positive roots of G and
LT denotes the character lattice of a maximal torus T ⊂ G. Since G is reductive, we can assume
that g is embedded into gl(W ) so that the trace form tr(A,B) = tr(AB) for A, B ∈ gl(W ) is
nondegenerate on g. Then the inner product (·, ·) on LT ⊗ R used in Theorem 4.7 is given by
the trace form on g. Choose a Weyl chamber D ⊂ L⊗ R.

Theorem 4.7. [4, 17] If Hπ is a hyperplane section corresponding to a representation π with
the weight polytope Pπ ⊂ LT⊗R , then the self-intersection index of Hπ in the ring of conditions
is equal to

n!

∫

Pπ∩D

∏

α∈R+

(x, α)2

(ρ, α)2
dx.

The measure dx on LT ⊗ R is normalized so that the covolume of LT is 1.

This theorem in particular implies that the self-intersection index Hn
π depends not on a

representation but only on its weight polytope. Note also that the integrand is invariant under
the action of the Weyl group.

Let H1, . . . , Hn be n generic hyperplane sections corresponding to different representations
π1, . . . , πn. To compute their intersection index one needs to take the polarization of Hn

π .
Namely, the formula of Theorem 4.7 gives a polynomial function D(P ) of degree n on the
space of all virtual polytopes P ⊂ LT ⊗ R (the addition in this space is the Minkowski
sum). The polarization Dpol is the unique symmetric n-linear form on this space such that
Dpol(Pπ, . . . , Pπ) = D(Pπ). Then Dpol(Pπ1 , . . . , Pπn) is the intersection index H1 · . . . · Hn.
For instance, it can be found by applying the differential operator 1

n!
∂n

∂t1...∂tn
to the function

F (t1, . . . , tn) = D(t1Pπ1 + . . . + tnPπn). E.g. if Pπ2 = . . . = Pπn , then the computation of
Dpol(Pπ1 , . . . , Pπn) = 1

n
∂
∂t

∣∣
t=0

D(tPπ1 + Pπ2) reduces to the integration over the facets of Pπ2 .
Thus we get the following answer for χ(C). For simplicity, the answer is given in the case

when π1 = . . . = πn−1 = π. Then its polarization provides the answer in the general case.
Denote by P2ρ the weight polytope of the irreducible representation of G with the highest
weight 2ρ.

Corollary 4.8. Let C be a curve obtained as the transverse intersection of a generic collection
of n− 1 hyperplane sections corresponding to the representation π. Then

χ(C) = Dpol(P2ρ, Pπ, . . . , Pπ)− (n− 1)D(Pπ)

A similar answer can be obtained for the genus of C since it is equal to the genus of the
compactified curve C ⊂ Xπ. Hence, g(C) = g(C) = 1 − χ(C)/2. To compute the Euler
characteristic of C we need to sum up χ(C) and the number of points in C \ C. The latter
is the intersection index of Hn−1

π with the codimension one orbits in Xπ and can be again
computed by the Brion-Kazarnovskii formula. Choose l facets F1, . . . , Fl of Pπ so that they
parameterize the codimension one orbits in Xπ. This means that each orbit of the Weyl group
acting on the facets of Pπ contains exactly one Fi (see Theorem 2.1).
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Corollary 4.9. The genus g(C) of C is given by the following formula:

g(C) = 1− 1

2


χ(C) + (n− 1)!

l∑
i=1

∫

Fi∩D

∏

α∈R+

(x, α)2

(ρ, α)2
dx




The measure dx on a facet Fi is normalized as follows. Let H ⊂ L ⊗ R be the hyperplane
containing Fi. Then the covolume of the sublattice L ∩H in H is equal to 1.

In the above answer, one can rewrite the polarization Dpol(P2ρ, Pπ, . . . , Pπ) in terms of the
integrals over the facets of Pπ. E.g. in the case when π is the irreducible representation with
a strictly dominant highest weight λ, the answer takes the following form. Let 2ρ =

∑k
i=1 aiαi

be the decomposition of 2ρ in the basis of simple roots α1, . . . , αk.

χ(C) = n!


 1

n

k∑
i=1

[ai

∫

Fi∩D

∏

α∈R+

(x, α)2

(ρ, α)2
dx]− (n− 1)

∫

Pπ∩D

∏

α∈R+

(x, α)2

(ρ, α)2
dx


 .

g(C) = 1− n!

2


 1

n

k∑
i=1

[(ai + 1)

∫

Fi∩D

∏

α∈R+

(x, α)2

(ρ, α)2
dx]− (n− 1)

∫

Pπ∩D

∏

α∈R+

(x, α)2

(ρ, α)2
dx




5 The case of regular spherical varieties

The results of this paper concerning the Chern classes of the tangent bundle can be generalized
straightforwardly to the case of arbitrary spherical homogeneous space. In this section, I briefly
outline how this can be done.

Let G be a connected complex reductive group of dimension r, and let H be a closed algebraic
subgroup of G . Suppose that the homogeneous space G/H is spherical, i.e. the action of G on
the homogeneous space G/H by left multiplication is spherical. In the preceding sections, we
considered a particular case of such homogeneous spaces, namely, the space (G×G)/G ' G.

The definition of the Chern classes Si of the tangent bundle T(G/H) can be repeated
verbatim for G/H. Denote the dimension of G/H by n. There is a space of vector fields
on G/H coming from the action of G. Take n arbitrary vector fields v1, . . . , vn of this type.
Define the subvariety Si ⊂ G/H as the set of all points x ∈ G/H such that the vectors
v1(x), . . . , vn−i+1(x) are linearly dependent.

Denote by h ⊂ g the Lie algebra of the subgroup H. Again, there is the Demazure map
p : G/H → G(r − n, g), which takes g ∈ G/H to the Lie subalgebra ghg−1. Denote by Xcan

the closure of p(X) in the Grassmannian G(r − n, g). This is a compactification of a spherical
homogeneous space G/N(h), where N(h) ⊂ G is the normalizer of h. Brion conjectured that if
H coincides with N(H), then the compactification Xcan is smooth, and hence, regular [5]. F.
Knop proved that under the same assumption the normalization of Xcan is smooth [22]. The
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conjecture has been proved for semisimple Lie algebras of type A by D. Luna [23], and in type
D by P. Bravi and G. Pezzini [3]. In the general case, one can still define the Demazure bundle
over Xcan as the restriction of the tautological quotient vector bundle over G(r − n, g).

Since we have not used the regularity of Xcan in the proof of Lemma 3.3 the same arguments
imply two facts. First, for a generic choice of vector fields v1, . . . , vn, the resulting subvariety
Si belongs to a fixed class [Si] in the ring of conditions. Second, for any compactification X
of G/H lying over Xcan the closure of a generic Si in X intersects properly any orbit of X.
Repeating the proof of Lemma 3.6 one can also show that Si is empty unless i ≤ n− k. Here k
is the difference between the ranks of G and of H. Therefore, we have n−k well-defined classes
[S1], . . . , [Sn−k] in the ring of conditions C∗(G/H). Recently, M. Brion and I. Kausz proved
that the G–equivariant Chern classes of the Demazure bundle also vanish for i > n− k [7].

To extend Theorem 1.1 to an arbitrary spherical homogeneous space one can use the same
description of the Chern classes of its regular compactifications. The definition of regular
compactifications repeats Definition 3.

Theorem 5.1. Let X be a regular compactification of G/H. Then the total Chern class of X
equals to

(1 + S1 + . . . + Sn−k) ·
l∏

i=1

(1 +Oi).

This description also follows from Subsection 4.1. The proof uses the methods mentioned
in Subsection 4.2. In fact, regular compactifications of spherical homogenous spaces arise
naturally when one try to apply these methods to a wider class of varieties with a group action.
Namely, suppose that a connected complex affine group G of dimension r acts on a compact
smooth irreducible complex variety X with a finite number of orbits. Then there is a unique
open orbit in X isomorphic to G/H for some subgroup H ⊂ G, so X can be regarded as a
compactification of G/H. Denote by O1, . . . ,Ol the orbits of codimension one in X. Then one
can describe the tangent bundle of X exactly by the methods mentioned in Subsection 4.2 if the
following conditions hold. First, the hypersurfaces O1, . . . ,Ol are smooth and intersect each
other transversally (this allows to apply Ehlers’ method to the divisor X\(G/H) = O1∪. . .∪Ol).
Second, the vector bundle VX (defined as in Subsection 4.2) is generated by its global sections
v1, . . . , vr, where v1, . . . , vr are infinitesimal generators of the action of G on X (this allows to
give a uniform description of VX for all compactifications of G/H satisfying these conditions).
It is not hard to check that these two conditions are equivalent to the definition of regular
compactifications.

It turns out that a homogeneous space G/H admits a regular compactification if and only
if G/H is spherical [1]. Regular compactifications of arbitrary spherical homogeneous spaces
are exactly their smooth toroidal compactifications [1]. A compactification X of the spherical
homogeneous space G/H is called toroidal if for any codimension one orbit of a Borel subgroup
of G acting on G/H, its closure in X does not contain any G-orbit in X.

The proof of Theorem 1.1 goes without any change for complete intersections in arbitrary
spherical homogeneous space G/H. Let H̃1, . . . , H̃m be smooth hypersurfaces in some regular
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compactification of G/H. Suppose that all possible intersections of H̃i with the closures of
G–orbits are transverse.

Theorem 5.2. Let H1, . . . , Hm ⊂ G/H be the hypersurfaces H̃i ∩ (G/H), and let C = H1 ∩
. . . ∩Hm be their intersection. Then the Euler characteristic of C equals to the term of degree
n in the decomposition of

(1 + S1 + . . . + Sn−k) ·
m∏

i=1

Hi(1 + Hi)
−1.

The products are taken in the ring of conditions C(G/H).

For instance, if G/H is compact, then the Si become the usual Chern classes and the above
formula coincides with the classical adjunction formula. However, if G/H is noncompact then
the Chern classes in the usual sense (as degeneracy loci of generic vector fields on G/H) do
not usually yield the adjunction formula (although they do for G = (C∗)n). Indeed, when the
homogeneous space is a noncommutative reductive group, all usual Chern classes are trivial
but as we have seen χ(H) 6= (−1)nHn even for one smooth hypersurface H. Theorem 5.2
shows that the adjunction formula still holds for noncompact spherical homogeneous spaces, if
one replaces the usual Chern classes with the refined Chern classes Si that are defined as the
degeneracy loci of the vector fields coming from the action of G.
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