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Convex polytopes in algebraic geometry and in

representation theory

0. Toric geometry

Newton (or moment) polytopes

1. Representation theory

Gelfand�Zetlin polytopes and string polytopes

(Berenstein�Zelevinsky, Littelmann, 1998)

2. Algebraic geometry

Newton�Okounkov convex bodies

(Kaveh�Khovanskii, Lazarsfeld�Mustata, 2009)

1 & 2. Toric geometry on non-toric varieties
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Toric varieties

Theory of Newton polytopes

To every smooth projective toric variety X n there corresponds a
simple convex lattice polytope ∆(X ) ⊂ Rn.

Geometry of X ↔ combinatorics of ∆(X )

Faces F of ∆(X ) are in bijection with closures of torus orbits OF in
X .

Intersection theory

OF · OE = OF∩E

if F and E are transverse.
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Non-toric varieties

Theory of Newton�Okounkov convex bodies

To every projective variety X n there corresponds a convex body
∆v (X ) ⊂ Rn (it depends not only on X but also on a valuation v
on C(X )). In many cases of interest (e.g. for spherical varieties) it
is a convex lattice polytope.

Main property of ∆v (X )

degX = n!volume(∆v (X ))

Question
Is there a useful relation between intersection theory on X and
intersection of faces of ∆v (X ) (when ∆v (X ) is a polytope)?
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Motivating example: �ag varieties

De�nition
The �ag variety X is the variety of complete �ags in Cn:

X = {{0} = V 0 ⊂ V 1 ⊂ . . . ⊂ V n−1 ⊂ V n = Cn | dimV i = i}

Remark
Alternatively, X = GLn(C)/B , where B denotes the group of
upper-triangular matrices (Borel subgroup). In this form, the
de�nition can be extended to arbitrary connected reductive groups.

Schubert varieties

Xw = BwB/B, w ∈ Sn

give basis in H∗(X ,Z).
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Schubert varieties for GL3/B .

id s1 s2

s1s2 s2s1 s1s2s1



Gelfand�Zetlin polytopes

The Gelfand�Zetlin polytope ∆λ is de�ned by inequalities:

λ1 λ2 λ3 . . . λn
x11 x12 . . . x1n−1

x21 . . . x2n−2
. . . . . .

xn−21 xn−22

xn−11

where (x11 , . . . , x
1
n−1; . . . ; xn−11 ) are coordinates in Rd , and the

notation
a b

c

means a ≤ c ≤ b.



Gelfand�Zetlin polytopes

A Gelfand�Zetlin
polytope for GL3:

−1 0 1
x y

z



Schubert calculus and Gelfand�Zetlin polytopes

[Xs1 ] = ; [Xs2 ] =

[Xs1s2 ] · [Xs2s1 ] = · = + = [Xs1 ] + [Xs2 ]



Flag varieties and Gelfand�Zetlin polytopes

Results

• Relation between Schubert varieties and preimages of rc-faces
of ∆λ under the Guillemin�Sternberg moment map X → ∆λ

(Kogan, 2000)

• Degenerations of Schubert varieties to (reducible) toric
varieties given by (unions of) faces of ∆λ (Kogan�E.Miller,
Knutson�E.Miller, 2003)

• Description of H∗(X ,Z) using volume polynomial of ∆λ

(Kaveh, 2011)

• Schubert calculus: intersection product of Schubert cycles in
H∗(X ,Z) = intersection of faces in ∆λ (K.�Smirnov�Timorin,
2012)
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Generalized �ag varieties

Let G be an arbitrary connected reductive group, and X = G/B
the complete �ag variety.

Question
Which polytopes are best suited for Schubert calculus on G/B?

Polytopes

Generalizatons of Gelfand�Zetlin polytopes from GLn to G include
string polytopes, Newton�Okounkov polytopes of �ag varieties, and
polytopes constructed via convex-geometric divided di�erence
operators (K., 2013).
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Newton�Okounkov polytopes

Valuation
Let X n ⊂ PN be a projective subvariety with coordinates
(x1, . . . , xn) in a neighborhood of a smooth point p ∈ X . De�ne the
valuation v : C(X )→ Zn by sending every polynomial f (x1, . . . , xn)
to (k1, . . . , kn) where xk11 · · · xknn is the lowest degree term in f
(assuming that x1 � x2 � . . . � xn).

Vector space

Let V ⊂ C(X ) be the vector space spanned by restrictions to
X ⊂ PN of linear functions on

Example

If X = νN(P1) = {(yN0 : y1y
N−1
0 : . . . : yN1 )} ⊂ PN and x1 = y1

y0
,

then v(f ) = the order of zero (or pole) of f at p and
V = 〈1, x1, . . . , xN1 〉.
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Newton�Okounkov polytopes

Naive de�nition
The Newton�Okounkov polytope ∆v (X ) ⊂ Rn of X n is the convex
hull of v(f ) for all f ∈ V .

Example

∆v (νN(P1)) = [0,N] ⊂ R1

Example

A toric variety X n has a natural system of coordinates (x1, . . . , xn)
coming from (C∗)n ⊂ X n. For a projective embedding X n ⊂ PN ,
the space V is spanned by monomials in x1,. . . , xn. Hence, the
valuation v does not matter, and ∆v (X n) is always the Newton
polytope of X .

Observation
If n!volume(∆v (X )) = deg(X ), then the naive de�nition coincides
with the correct de�nition.
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A Newton�Okounkov polytope of GL3/B

Coordinates on the open Schubert cell

If the �ag (a ∈ l ⊂ P2) is in general position with a �xed �ag
(a0 ∈ l0 ⊂ P2), then l ∩ l0 = a′ 6= a0 and a /∈ l0. Hence,

a′ = (x : 1 : 0); l = 〈a′, (y : 0 : 1)〉; a = (xz + y : z : 1)

are coordinates (assuming that a0 = (1 : 0 : 0), l0 = {(? : ? : 0)}).

a′ l a
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A Newton�Okounkov polytope of GL3/B

(Anderson, 2011)

Consider the embedding p : GL3/B ↪→ P2 × (P2)∗ ↪→ P8;
p : (a, l) 7→ a× l . Then p takes the �ag with coordinates (x , y , z) to

(
xz + y z 1

)
×

 1
−x
−y

 =

xz + y −x2z − xy −xyz − y2

z −xz −yz
1 −x −y



∆v (p(GL3/B)) =
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Valuations on C(G/B)

Decomposition of w0

Fix a reduced decomposition w0 = si1 . . . sid of the longest element
w0 in the Weyl group of G .

Flag of Schubert varieties

Choose coordinates compatible with the �ag
Xid ⊂ Xsid

⊂ Xsid−1
sid
⊂ . . . ⊂ Xsi2 ···sid ⊂ X (coordinates �at

in�nity�).

Flag of translated Schubert varieties

Choose coordinates compatible with the �ag w0Xid ⊂
si1 . . . sid−1

Xsid
⊂ si1 . . . sid−2

Xsid−1
sid
⊂ . . . ⊂ si1Xsi2 ···sid ⊂ X

(coordinates at the open Schubert cell).
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Generalized Gelfand�Zetlin polytopes

(Okounkov, 1998)

The symplectic Gelfand�Zetlin polytope coincides with the
Newton�Okounkov polytopes of Sp2n/B for the lowest order term
valuation v associated with the �ag of Schubert varieties for
w0 = (s1)(s2s1s2) . . . (snsn−1 . . . s2s1s2 . . . sn−1sn).

(Kaveh, 2013)

The string polytopes associated with w0 coincide with the
Newton�Okounkov polytopes of X for the highest order term
valuation v associated with the �ag of Schubert varieties for w0.

Example

If G = GLn and w0 = s1(s2s1) · · · (sn−1 · · · s1) then the
corresponding string polytopes are exactly Gelfand�Zetlin polytopes.
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String polytopes

(J.Miller, 2014)

Newton�Okounkov polytopes of Schubert varieties can be
represented by unions of faces of a given string polytope.

Remark
This is an existence result. Explicit descriptions of such faces are so
far known in the case of GLn, w0 = s1(s2s1) · · · (sn−1 · · · s1)
(K.�Smirnov�Timorin, 2012) and Sp4, w0 = s1s2s1s2 (Ilyukhina,
2012).

Problem
Find an e�cient algorithm for representing Schubert cycles
explicitly by unions of faces.
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Mitosis

Combinatorial mitosis on pipe-dreams for GLn
Pipe-dreams corresponding to permutation w can be obtained from
pipe-dreams corresponding to permutation siw (if l(siw) < l(w))
by an explicit combinatorial algorithm (Knutson�E.Miller, 2003).

Mitosis on parallelepipeds

Basic steps of mitosis on pipe-dreams admit a geometric realization
(mitosis on parallelepipeds) compatible with the action of
Demazure operators (K.�Smirnov-Timorin, 2012).

Geometric mitosis
If Gelfand�Zetlin polytope is replaced by a DDO polytope for
another reductive group (e.g. for Sp(2n)) then mitosis on
parallelepipeds still works and produces a new combinatorial
algorithm (K., 2014).
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Geometric mitosis: type A

Gelfand�Zetlin polytope

λ1 λ2 λ3 . . . λn
x11 x12 . . . x1n−1

x21 . . . x2n−2
. . . . . .

xn−21 xn−22

xn−11

has (n− 1) di�erent �brations by coordinate parallelepipeds. Hence,
there are (n − 1) di�erent mitosis operations on its faces.



Geometric mitosis: type C

(K., 2013)

Take w0 = s2s1s2s1. The corresponding DDO polytope Qλ is given
by inequalities

0 ≤ x ≤ λ1, z ≤ x + λ2, y ≤ 2z ,

y ≤ z + λ2, 0 ≤ t ≤ λ2, t ≤ y

2
.

(K., 2014)

The polytopes Qλ coincide with the Newton�Okounkov polytopes
of Sp4/B for the lowest order term valuation v associated with the
�ag of subvarieties w0Xid ⊂ s1s2s1Xs2 ⊂ s1s2Xs1s2 ⊂ s1Xs2s1s2 ⊂ X .

Remark
The polytopes Qλ have 11 vertices so they are not combinatorially
equivalent to string polytopes (=symplectic Gelfand�Zetlin
polytopes) associated with s2s1s2s1 or s1s2s1s2.
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Geometric mitosis: type C

Skew pipe-dreams

Faces that contain the lowest vertex aλ = (0, 0, 0, 0) can be
encoded by the diagrams:

+⇐⇒ 0 = x

+⇐⇒ 0 = t

+⇐⇒ t = y
2

+⇐⇒ y = 2z

Parallelepipeds

The polytope Qλ admits two di�erent �brations (by translates of
xy - and zt-planes), hence, there are two mitosis operations M1 and
M2 on faces of Qλ.

Isotropic �ags

Sp4/B = {(V 1 ⊂ V 2 ⊂ V 3 ⊂ C4) | ω|V 2 = 0,V 1 = V 3⊥} =
= {(a ∈ l ⊂ P3) | l − isotropic line }
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Schubert cycles for Sp4
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Geometric mitosis: type C

aλ = +

+

+

+

M1−→
+

+

+

M2−→
+

+
M1−→

+
M2−→ = Qλ

+

+

+
M1−→

+

+

& +

+
M2−→ + &

+
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