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1 Introduction

Goals. Let X be an algebraic variety over an algebraically closed field k, and M and N two
algebraic subvarieties in X of complementary dimensions (i.e. dimM + dimN = dimX). In
all our examples X will be an affine or projective variety over the field C of complex numbers.
Our first goal is to define the intersection index M · N of M and N . We will assign to each
pair (M,N) an integer number M · N satisfying the “conservation of number principle”, that
is, if we move subvarieties M and N inside X in a certain way then their intersection index
does not change. We will formulate this principle explicitly for some interesting examples and
see why it is useful.

Let us first consider a naive definition of the intersection index, namely, set M ·N to be the
number of points |M ∩ N | in the intersection of M and N . The following example illustrates
what is wrong with this definition and how it can be improved.

Example. Take an affine plane X = C2 with coordinates x and y, and let M = {f(x, y) = 0}
and N = {g(x, y) = 0} be two curves in X. Consider four cases. In the first three cases, M is
a fixed parabola and N is a line. Let us translate and rotate N continuously and see how the
number |M ∩N | changes.

1. f = x2 − y, g = y − 2; then |M ∩N | = 2

2. f = x2 − y, g = y; then |M ∩ N | = 1 so the conservation of number principle fails.
However, the intersection point (0, 0) is a point of tangency of curves M and N , so this
point should be counted with multiplicity two.

3. f = x2−y, g = x; then |M ∩N | = 1, because the other intersection point went to infinity.
So to preserve the intersection index we need to find a way to count intersection points
at infinity or consider only compact X.

4. f = x2− 1, g = x− 1; then |M ∩N | =∞ since M ∩N = {x− 1 = 0} is a line. However,
if we rotate N a little bit we again get exactly two intersection points.

The last case suggests to replace subvarieties M and N with the families {Mt} of {Nt} of
subvarieties parameterized by a parameter t so that |Mt∩Nt| is the same for generic t. We will
give a definition of the intersection index using this approach.
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Motivation. Intersection theory had been developed mainly in order to give a rigorous foun-
dation for methods of enumerative geometry. Here is a typical question considered in enumer-
ative geometry.

How many lines in 3-space intersect 4 given lines in general position?
Here is Schubert’s solution. Choose 4 lines l1, l2, l3, l4, so that l1 and l2 lie in the same

plane, and so do l3 and l4. It is easy to check that in this case there are exactly two lines
intersecting all 4 lines, namely, the line passing through the intersection points l1∩ l2 and l3∩ l4
and the intersection line of two planes containing l1, l2 and l3, l4. Then by ”conservation of
number principle” the number of solutions in general case is also two.

To solve problems in enumerative geometry, Schubert developed calculus of conditions (the
original German word for condition is “Bedingung”). It is now called Schubert calculus. An
example of condition is the condition that a line in 3-space intersects a given line. Two con-
ditions can be added and multiplied. E.g. denote by σi the condition that a line intersects a
given line li. Then σ1 +σ2 is the condition that a line intersects either l1 or l2 , and σ1 ·σ2 is the
condition that a line intersects both l1 and l2. Then the above question can be reformulated as
follows: find the product σ1 · σ2 · σ3 · σ4 of four conditions.

We will discuss interpretation of Schubert calculus via intersection theory on Grassmannians.
For instance, we will see that each condition σi defines a hypersurface in the variety of lines in
P3, and σ1 · σ2 · σ3 · σ4 is the intersection index of four hypersurfaces.

2 Conservation of number principle and its applications

We will now consider several examples in low dimension where the conservation of number
principle arises naturally. In each case, an appropriate version of this principle will be formu-
lated explicitly and then used to obtain some numeric results. In particular, we will find the
number of zeroes of a polynomial in one variable (Fundamental Theorem of Algebra), the genus
of a generic plane curve and the number of common zeroes of two polynomials in two variables
(Bezout Theorem).

Fundamental Theorem of Algebra. Let f be a complex polynomial of degree n. The
Fundamental Theorem of Algebra asserts that a generic f has n distinct complex roots. We
will call a polynomial generic if it does not have multiple roots (i.e. all roots are simple).
The space of all monic polynomials of degree n can be identified with Cn (the polynomial
xn + a1x

n−1 + . . . + an goes to the point (a1, . . . , an)). Then it is easy to show that generic
polynomials form a Zariski open dense subset in Cn.

Remark. We will repeatedly use the notion of generic object. In each case, there will be a
family of objects parameterized by the points of an algebraic variety, and generic objects will
correspond to the points in some Zariski open dense subset of this variety. In particular, almost
any object in the family is generic. In each case the subset of generic objects will be defined
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by an explicit condition (like the one above) and it will be left as an exercise to check that all
generic objects indeed form a Zariski open dense subset.

To extend the Fundamental Theorem of Algebra to non-generic polynomials we need the
notion of the multiplicity of a root. There are two equivalent definitions.

Algebraic definition of multiplicity. A root a of f has multiplicity k iff

f(a) = f ′(a) = . . . = f (k−1)(a) = 0, andf (k)(a) 6= 0.

Geometric definition of multiplicity. A root a of f has multiplicity k iff there is a
neighborhood of a (that does not contain other roots of f) such that all generic polynomials
close enough to f have exactly k roots in this neighborhood.

In the second definition one needs to check that all generic polynomials close enough to a
have the same number of roots in some neighborhood of a. This follows easily from the Implicit
Function Theorem.

Example. If f = xk, then 0 is a root of multiplicity k. To check this using the geometric
definition one can consider a generic polynomial xk− t, which has k distinct roots for all t 6= 0.

We will now prove the Fundamental Theorem of Algebra in the following form.

Theorem 2.1 Any complex polynomial f of degree n has exactly n complex roots counted with
multiplicities.

Note that this theorem holds over any algebraically closed field and can be proved in a
purely algebraic way (by factoring out one root of f). However, the fact that C is algebraically
closed is analytic and its proof must use some geometric arguments.

First, we will show that all generic polynomials have the same number of roots. Indeed,
each generic polynomial has a neighborhood such that all polynomials in this neighborhood are
generic and have the same number of roots (this again follows the Implicit Function Theorem).
Note that this is also true over real numbers. The crucial observation is that any two generic
polynomials (identified with the points in Cn) can be connected by a path avoiding all non-
generic polynomials (this is exactly what fails over real numbers). This follows from the simple
but very important fact stated below.

Lemma 2.2 Let X be an irreducible complex algebraic variety, and Y ⊂ X a subvariety of
codimension one. Then the complement X \ Y is connected.

Hence, we proved that all generic polynomials have the same number of roots. To actually find
this number we can consider a specific polynomial, say, x(x−1) · · · (x−n+1), which obviously
has n roots. The statement of the theorem for non-generic polynomials follows easily from the
geometric definition of multiplicity.

There is the following generalization of the Fundamental Theorem of Algebra, which we will
use in the sequel. Recall that a function f has pole of order k at a point a if the function 1/f
has zero of multiplicity k at the point a.
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Lemma 2.3 Let C be a compact smooth curve over C, and f : C → CP1 a non-constant
meromorphic function on C. Then the number of zeroes of f counted with multiplicities is
equal to the number of poles of f counted with orders.

This lemma can also be proved using a conservation of number principle. Namely, using the
Implicit Function Theorem and Lemma 2.2 one can show that all non-critical values of f have
the same number of preimages.

Genus of plane curve. Let C be a curve in CP2 given as the zero set of a homogeneous
polynomial of degree d. We say that C is a generic plane curve of degree d if C is smooth. Recall
that topologically each compact smooth complex curve is a 2-dimensional sphere with several
handles. The number of handles is called the genus of a curve. E.g. CP1 is homeomorphic to a
sphere, so its genus is zero. A curve of genus one is homeomorphic to a 2-dimensional tori (i.e.
the direct product of two circles).

Theorem 2.4 The genus of a generic plane curve of degree d is equal to

(d− 1)(d− 2)

2
.

In particular, generic conic has genus zero and generic cubic curve has genus one. Note also
that according to this theorem a generic plane curve can not have genus two.

To prove the theorem one can show that all generic curves of degree d are homeomorphic
and hence, have the same genus. Then it is enough to compute the genus of the easiest possible
generic curve. At first glance, there is no particularly easy curve but one can do the following
trick. Consider a non-generic curve which is just the union of d lines, i.e. it is given by the
equation l1 · . . . · ld = 0 for some linear functions l1,. . . , ln. Topologically it looks like d spheres
such that every two have one common point. Then we can perturb a little bit the coefficients
of the equation l1 · . . . · ld = 0 so that the curve becomes generic. Then it is easy to check that
each common point of two spheres gets replaced by a tube. So the whole curve becomes the
union of d spheres such that every two are connected by a tube. The genus of such curve is
exactly (d−1)(d−2)

2
.

Bezout Theorem. Let f and g be two homogeneous polynomials on CP2. We say that the
pair (f, g) is generic if the intersection of the curves {f = 0} and {g = 0} in CP2 is transverse.

Theorem 2.5 Two generic polynomials of degrees m and n on CP2 have exactly mn common
zeroes.

Again one shows that for all generic pairs of polynomials the number of common zeroes is
the same and then finds this number for, say, polynomials f(x, y) = x(x − 1) . . . (x −m + 1)
and g(x, y) = y(y − 1) . . . (y − n+ 1).

4



We now return to the definition of intersection indices in the case of two curves M = {f = 0}
and N = {g = 0} in CP2. Bezout Theorem tells us that if the pair (f, g) is generic then the
number of intersection points |M ∩ N | depends only on the degrees of f and of g. Hence, it
is natural to require that the intersection index be preserved when we move each curve in the
family of curves defined by the equation of the same degree. This gives the following definition
of the intersection index. If the pair (f, g) is generic then put M ·N = |M ∩N |. Otherwise, we
perturb the coefficients of f and g so that they become generic and define M ·N as the number
of intersection points of the perturbed curves. The Bezout Theorem is then equivalent to the
statement that the intersection index of M and N is always equal to the product of degrees of
f and g.

3 Divisors and their intersection indices

We will now define the intersection index of n hypersurfaces in an n-dimensional variety. It is
easier to do this not just for hypersurfaces but for all formal linear combinations of hypersur-
faces, i.e. for divisors. To be able to move divisors we will need the notion of linear equivalence
of divisors. We will discuss all these notions below. For more details see [2], Section Divisors
and line bundles.

Divisors. Let X be a smooth algebraic variety. A divisor D on X is a formal finite linear
combination ∑

i

kiHi,

where Hi is an irreducible algebraic hypersurface in X, and ki is an integer. The hypersurface
|D| = ∪iHi is called the support of D.

Let f be a rational function on X, and H ⊂ X a hypersurface locally defined by the
equation g = 0, where g is a regular function in the neighborhood of a point x ∈ H. Define the
order ordHf of f along the hypersurface H to be the maximal integer k such that there is a
decomposition f = gkh for some function h that is regular near x. It is easy to check that the
order does not depend on the choice of the point x ∈ H. Define the divisor (f) of the function
f by the formula

(f) =
∑
H

ordHf,

where the sum is taken over hypersurfaces for which ordHf 6= 0 (there are only finitely many
of them). Such divisors are called principal divisors.

All divisors form an Abelian group, and principal divisors form a subgroup in this group.
Define the Picard group Pic(X) of X as the quotient group of all divisors modulo principal
divisors. Two divisors are linearly (or rationally) equivalent if their difference is a principal
divisor, i.e. they represent the same class in the Picard group.
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Remark. Note that each divisor on X (when X is smooth) is locally principal, i.e. can be
represented locally as the divisor of a rational function. In other words, a Weil divisor (defined
above) is always a Cartier divisor. For non-smooth varieties these two notions may be different.
E.g. if X = {xy = z2} ⊂ C3 is a cone, then the Weil divisor D = {x = z = 0} ⊂ X is not the
divisor of any rational function in the neighborhood of the origin (though 2D is). In general,
Picard group is defined as the quotient group of Cartier divisors modulo principal divisors.

Examples.

1. Let X be a compact smooth curve. Then a divisor D is a linear combination of points in
X:

D =
∑
ai∈X

kiai.

Define the degree degD of D as the sum
∑

i ki. The divisor of a function f on X is the
sum of all zeroes of f counted with multiplicities minus the sum of all poles of f counted
with their orders:

(f) =
∑

ai∈f−1(0)

(multai
f)ai −

∑
bi∈f−1(∞)

(ordbi
f)bi.

Note that the degree of a principal divisor is always zero. This follows from Lemma 2.3.

• If X = P1 then every degree zero divisor is principal. Indeed, every point a ∈ P1

is equivalent to any other point, because a − b is the divisor of a fractional linear
function (x− a)/(x− b). Hence, Pic(P1) is isomorphic to Z. The isomorphism sends
a divisor to the degree of the divisor.

• If X = E is an elliptic curve, i.e. a curve of genus one (one can think of a generic
cubic plane curve). Then not all degree zero divisors are principal. E.g. for any
two distinct points a and b in E, the divisor a − b is not principal. Indeed, if it
were principal, i.e. a − b = (f) for some f : E → P1 then f would be a one-to-one
holomorphic map (this again follows from Lemma 2.3). But elliptic curve is not
homeomorphic to projective line since their genera are different.

What is true for elliptic curve is that for every three points a, b and O there exists a
unique point c such that the divisor a+ b− c−O is principal (it is easy to show this
using that each elliptic curve is isomorphic to some cubic plane curve in P2). This
allows to define the addition on E by fixing O (zero element) and putting a+ b = c.
This turns E into an Abelian group. In fact, as a complex manifold E is isomorphic
to C/Z2 for some integral lattice Z2 ⊂ C, and this isomorphism is also a group
isomorphism.

It follows that E is isomorphic to the subgroup Pic0(E) of degree zero divisors. The
isomorphism sends a ∈ E to the divisor a−O. Then Pic(E) is isomorphic to E⊕Z.
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2. If X = Cn is an affine space, then every divisor is principal and Pic(Cn) = 0. This shows
that the notion of Picard group is more suited for study of the intersection indices on
compact varieties. For instance, to study intersection indices of hypersurfaces in Cn one
can consider everything in the compactification CPn. There are also other ways to define
intersection theory on non-compact varieties, in particular in Cn. We will discuss them
later.

3. If X = Pn is a projective space then Pic(X) = Z. Indeed, if D is a hypersurface given
by the equation {f = 0}, then it is linearly equivalent to the degree of f times the class
of hyperplane H = {x0 = 0} in Pn (since (D − degf · H) is the divisor of the rational
function f/xdegf

0 ).

4. Let X be a projective variety, i.e. there is an embedding X ⊂ Pd for some d. Then a
generic hyperplane Pd−1 in Pd intersects X by a hypersurface. The divisor X ∩ Pd−1 is
called a divisor of hyperplane section. It is easy to see that for generic hyperplanes in Pd,
the corresponding divisors on X are linearly equivalent.

Intersection indices of divisors. We now define the self-intersection index Dn of a divisor
D on X using algebraic approach. For more details see [3], Chapter Intersection indices. Recall
that n denotes the dimension of X.

If n = 1, then D1 is the degree of D.
Consider now the case n > 1. Choose n divisors D1,. . . ,Dn linearly equivalent to D and

such that the intersection |D1|∩ . . .∩|Dn| of their supports consists of a finite number of points.
It is not hard to show that such divisors always exist (see [3]). However, it is not true that if D
is an honest hypersurface then one can find hypersurfaces D1,. . . , Dn such that D1∩ . . .∩Dn is
finite (see the example with the blow-up of a projective space below). This is the point where
we really need to consider divisors and not just hypersurfaces.

Define first the intersection indices H1 · . . . ·Hn where Hi is an irreducible hypersurface in the
support of Di. Let x be one of the intersection points in H1 ∩ . . .∩Hn. Define the intersection
multiplicity mult(x) of the point x as follows.

Definition of intersection multiplicity. Let f1,. . . ,fn be the local equations of
H1,. . . ,Hn, respectively (i.e. Hi = {fi = 0} near x). Define the intersection multiplicity by the
formula

mult(x) = dim (Ox/(f1, . . . , fn)) ,

where Ox is the local ring of x and (f1, . . . , fn) is the ideal in Ox generated by f1,. . . , fn.

Remark. Note that if H1,. . . ,Hn intersect transversally at the point x , then mult(x) = 1. In
the next paragraph we will show that if D is a divisor of hyperplane section then it is always
possible to choose hypersurfaces H1,. . . ,Hn linearly equivalent to D so that they have transverse
intersection.
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Examples Take X = C2 and compute the intersection multiplicity at the origin of two curves
given by equations f(x, y) = 0 and g(x, y) = 0. Take f = x2 − y.

1. g = x; O(0,0)/(f, g) = C[[x, y]]/(x, x2 − y) = 〈1〉 = C, so the multiplicity is one. This
agrees with the fact that the intersection is transverse.

2. g = y; C[[x, y]]/(y, x2− y) = 〈1, x〉 = C2, so the multiplicity is two. The multiplicity rises
because curves are tangent at the origin.

3. g = xy; C[[x, y]]/(xy, x2 − y) = 〈1, x, y〉 = C3, so the multiplicity is three.

Define the intersection index H1 · . . . ·Hn as follows:

H1 · . . . ·Hn =
∑

x∈H1∩...∩Hn

mult(x).

The intersection index Dn = D1 · . . . ·Dn is defined by linearity, i.e. using that

H1 · . . . · (aHi + bH ′i) · . . . ·Hn = aH1 · . . . ·Hi · . . . ·Hn + bH1 · . . . ·H ′i · . . . ·Hn.

The definition of the intersection index D1 · . . . ·Dn of n different divisors D1,. . . ,Dn is com-
pletely analogous. One needs to check, of course, that the intersection index and multiplicities
are well-defined (see [3] for the proof).

Remark. Note that the map

(Pic(X))n → Z, (D1, . . . , Dn)→ D1 · . . . ·Dn

is symmetric and n-linear. In particular, it is uniquely defined by the restriction to the diagonal
{(D, . . . , D), D ∈ Pic(X)}. So to compute intersection indices of any divisors on X it is enough
to know the self-intersection index of each divisor.

Examples.

1. Projective spaces. Let D be the divisor of a hyperplane in Pn. Then to define Dn one
can take n hyperplanes H1,. . . , Hn in Pn such that their intersection H1 ∩ . . . ∩ Hn is
finite. E.g. take n coordinate hyperplanes Hi = {xi = 0}. Then the intersection index
Dn = H1 · . . . ·Hn = 1.

2. Blow-up of the projective plane. Consider the blow up X of P2 at the point with
homogeneous coordinates (1 : 0 : 0). Let us compute D2 for the exceptional divisor D.
Recall that for the blow-up there is a map

p : X → P2
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such that p is one-to-one on P2 \ {(1 : 0 : 0)}, and D = p−1((1 : 0 : 0)). Consider the
function f = x1/x0 on P2. Then the composition fp is a function on X. It is easy to
see that the divisor of fp is equal to D + H1 −H0, where H0 and H1 are the pull-backs
to X of the hyperplanes {x0 = 0} and {x1 = 0}, respectively (i.e. Hi is an irreducible
hypersurface in X such that p(Hi) = {xi = 0}). Hence, D is linearly equivalent to
H0 −H1. Then

D2 = D(H0 −H1) = −1

since D and H0 do not intersect and D and H1 intersect transversally at one point. We
see that the self-intersection index of a hypersurface might be negative. In particular, it
is impossible to find an honest hypersurface H in X such that the intersection H ∩D is
finite. We will necessarily have a negative component as well.

Degree of a subvariety. We now discuss a more geometric way to define the self-intersection
index of a divisor. For this we will need the notion of the degree of a subvariety in projective
space.

Let Xn ⊂ Pd be a subvariety of dimension n in a projective space. We say that a subspace
Pd−n of codimension d is generic with respect to X if it intersects X transversally. By counting
dimensions it is easy to show that generic subspaces always exist and form a dense open set in
the space of all subspaces. The degree of X is the number of intersection points with a generic
subspace:

degX = |X ∩ Pd−n|.
Note that an analogous definition makes sense for subvarieties of an affine space Ad ⊂ Pd, since
for almost all generic subspaces all intersection points X ∩ Pd−n lie in Ad.

The notion of degree can be used to give more geometric definition for the self-intersection
index of a divisor of hyperplane section. Namely, if D is the divisor of hyperplane section
corresponding to some embedding F : Xn → Pd, then Dn = degF (X). It is clear that this
definition is equivalent to the one we had before. In fact, each projective variety X has a large
collection of divisors that can be represented as the divisors of hyperplane section for some
projective embeddings of X (such divisors are called very ample). Of course, different divisors
correspond to different embeddings. The classes of very ample divisors form a semigroup in
the Picard group of X (i.e. the sum of two very ample divisors is also very ample), and
this semigroup generates Pic(X) (see [2], Subsection 1.4, Corollary from Kodaira Embedding
Theorem). In particular, one can define the self-intersection index of any divisor on X using
only the notion of degree and n-linearity of the intersection index of n divisors.

Examples.

1. Let X = {f = 0} be a zero set of a homogeneous polynomial f in Pk. Then degX = degf .

2. Veronese embedding of P1. Embed P1 into Pn by sending a point (x0 : x1) to the
collection (xd

0 : xd−1
0 x1 : . . . : xd

1) of all monomials of degree d in x0 and x1. Let X ⊂ Pd
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be the image of P1 under this embedding. Then degX = d by the Fundamental Theorem
of Algebra.

Note that Veronese embedding realizes a divisor D of degree n on P1 as a divisor of
hyperplane section. The “functions” xn

0 , xn−1
0 x1,. . . , xn

1 form the basis in the space of
holomorphic sections of the line bundle associated with D (see [2] Subsection 1.1 for
details on the relation between divisors and line bundles). Holomorphic sections define
a projective embedding of X precisely when D is very ample. E.g. for P1 very ample
divisors are divisors with nonnegative degrees.

3. Veronese embedding of P2. Embed P2 to P5 by mapping a point (x0 : x1 : x2) to the
collection (x2

0 : x2
1 : x2

2 : x0x1 : x1x2 : x0x2) of all monomials of degree 2 in x0, x1 and x2.
Let X ⊂ P5 be the image of P2 under this embedding. Then the degree of X is equal
to the number of common zeroes of two generic quadratic polynomials in P2. Hence,
deg(X) = 4 by Bezout Theorem.

4 Computation of intersection indices: examples

An interesting problems in intersection theory is the actual computation of the intersection
indices of divisors on a given algebraic variety. More precisely, let X be an algebraic variety
of dimension n, and D1,. . . ,Dn are n divisors on X. How to compute the intersection index
D1 · . . . ·Dn for all possible collections of n divisors on X?

One way to approach this problem is to choose a basis E1,. . . , El in the Picard group of X
and compute intersection indices Ei1

1 . . . Eil
l for all collections of nonnegative integers i1, . . . , il

such that i1 + . . . , il = n. Then by n-linearity of the intersection index we get explicit formulas
for the intersection index D1 . . . Dn in terms of the coefficients in the decomposition of each
divisor Di in the basis E1,. . . , El. There are several interesting examples where this program
can be carried out successfully and leads to beautiful explicit answers. Below we consider some
of these examples.

Projective space Pn. The Picard group of Pn is spanned by the divisor H of hyperplane
section. Its self-intersection index is obviously one. Hence, for any divisors D1 = d1H,. . . ,
Dn = dnH we get that D1 · . . . ·Dn = d1 · . . . · dn. This implies the Bezout theorem:

Theorem 4.1 The number of common zeroes of n generic homogeneous polynomials of degrees
d1,. . . ,dn in n+ 1 variables is equal to the product d1 · . . . · dn of the degrees.

Here generic means that the zero divisors of the polynomials intersect transversally. When
all polynomials have the same degree, i.e. d1 = . . . = dn = d, the Bezout theorem gives that

the degree of Pn in the Veronese embedding Pn → P(n+k
n−1) (given by all monomials of degree d)

is equal to dn.
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Product of projective spaces Pn×Pm. It is easy to show that for two varieties X and Y the
Picard group Pic(X×Y ) is isomorphic to Pic(X)×Pic(Y ). Hence, Pic(Pn×Pm) = Z⊕Z, and the
basis is given by the divisors of hyperplane section H1 and H2 corresponding to the projections
of Pn × Pm onto the first and second factors, respectively. A straightforward calculation gives
that H i

1H
j
2 = 0 unless i = n and j = m, and Hn

1H
m
2 = 1. We get another Bezout theorem.

Theorem 4.2 Consider m + n generic bihomogeneous polynomials in m + n + 2 variables
(x0, . . . , xn; y0, . . . , ym) (i.e. they are homogeneous with respect to both xi’s and yi’s of bidegrees
(d1, e1),. . . ,(dm+n, em+n). Then the number of their common zeroes is equal to

hn(d1, . . . , dm+n)hm(e1, . . . , em+n).

Here hi denotes the polynomial in m+n variables z1, . . . , zm+n equal to the sum of all monomials
of degree i in z1,. . . , zm+n.

In particular, we get that the self-intersection index of the divisor D = dH1 + eH2 is equal to(
m+n

n

)
dnem. Note that bihomogeneous polynomials in m+ n+ 2 variables of bidegree (d, e) are

not generic in the space of all homogeneous polynomials in the same variables of degree d + e
so the Bezout theorem for projective spaces is not applicable to bihomogeneous polynomials.

Toric varieties. A more general version of Bezout theorem (which generalizes the previous
two examples) can be obtained using toric varieties. I will first formulate the theorem in
completely elementary terms. Namely, I state an explicit formula for the number of common
zeroes of n homogeneous polynomials in n variables assuming that these polynomials are generic
inside some subspace V of the space of all homogeneous polynomials in n variables. The
formula will, of course, depend on V . The formula is valid and will be formulated not just for
polynomials but also for Laurent polynomials.

First, recall few definitions. A Laurent polynomial in n variables x1,. . . , xn is a finite
linear combination of Laurent monomials xk1

1 x
k2
2 . . . xkn

n where k1,. . . , kn are (possibly negative)
integers. Assign to each Laurent monomial xk1

1 x
k2
2 . . . xkn

n its exponent (k1, . . . , kn) that can be
regarded as a point in the integral lattice Zn ⊂ Rn. For a Laurent polynomial f , define its
Newton polytope Pf ⊂ Rn as the convex hull of all the exponents of the Laurent monomials
occuring in f .

Example. Take n = 2. Consider the Laurent polynomial f = x1 + x2 + x−1
1 x−1

2 . Its Newton
polytope is the triangle with the vertices (1, 0), (0, 1) and (−1,−1).

Note that the values of Laurent polynomials are defined when x1,. . . ,xn do not vanish. So
each Laurent polynomial is a regular function on the complex torus (C∗)n = {(x1, . . . , xn)|xi 6=
0} ⊂ Cn.

Theorem 4.3 Fix a polytope P ⊂ Rn with integral vertices. Consider n generic Laurent
polynomials whose Newton polytope is P . Then the number of their common zeroes lying inside
(C∗)n is equal to n! times the volume of P .
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Example for n=2.

• Let P be the triangle with the vertices (0, 0), (n, 0) and (0, n). Its area is equal to n2/2. A
generic Laurent polynomial with the Newton polygon P is just a generic usual polynomial
in two variables (since there are no negative exponents) of degree n. By homogenizing
we get a generic polynomial on CP2. Note that the common zeroes in CP2 of two such
polynomials will all lie in (C∗)2 ⊂ CP2. Thus we get the Bezout theorem for the projective
plane CP2.

• Let P be the square with the vertices (0, 0), (n, 0), (0,m) and (n,m). Its area is equal to
nm. A generic Laurent with the Newton polygon P is a generic bihomogeneous polynomial
in two variables of bidegree (n,m). Thus we get the Bezout theorem for the product of
projective lines CP1 × CP1.

• Let P be the trapezium with the vertices (n, 0), (m, 0), (0, n) and (0,m) (assume that
m > n). Its area is equal to (m2 − n2)/2. Consider the surface X obtained by blowing
up the point (1 : 0 : 0) in CP2. It is easy to check that the Picard group of X is a free
Abelian group with two generators E and H, where E is the exceptional divisor and H
is the pull-back of the divisor of hyperplane section in CP2. We already computed that
E2 = −1, H2 = 1 and EH = 0. Then the self-intersection index of the divisor nE +mH
is equal to m2 − n2, i.e. to twice the area of the trapezium P . We have got the Bezout
theorem for the blow-up of the projective plane.

These examples show that for some varieties there is a natural correspondence between very
ample divisors on the variety and polytopes of fixed shape. Moreover, the self-intersection index
of a divisor can be computed in terms of the corresponding polytope. A big class of such varieties
consists of all smooth compact toric varieties. A toric variety of dimension n is an algebraic
variety with an action of a complex torus (C∗)n having an open dense orbit (isomorphic to
(C∗)n). In particular, a compact toric variety can be viewed as a compactification of a complex
torus. For each Newton polytope P one can construct a toric variety XP such that the very
ample divisors in the Picard group of XP can be identified with the polytopes analogous to P .
Then the self-intersection indices of the divisors can be computed according to Theorem 4.3.

5 Schubert calculus

We will now study geometry of Grassmannians: decomposition into Schubert cells and Plücker
embedding. In the end of this section a solution to the problem about 4 lines in a 3-space will
be given. For more details see [2], Section Grassmannians and [5], Chapter Schubert varieties.

Schubert cells. The Grassmannian G(k, n) is the set of all k-dimensional subspaces in an
n-dimensional vector space. The Grassmannian can be turned into an algebraic variety using
the following affine charts. For any complete flag of subspaces F = {C1 ⊂ C2 ⊂ . . . ⊂ Cn}
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consider the set CF of all k-dimensional subspaces generic with respect to this flag. We say
that a k-dimensional subspace V k is generic with respect to a given flag F if the intersection
V k ∩Ci is transverse for each subspace Ci in the flag F , i.e. dim(V k ∩Ci) = i+ k−n. Then it
is easy to show that CF can be identified with an affine space of dimension k(n − k). Indeed,
choose a basis e1,. . . ,en in Cn such that en−i+1,. . . ,en span Ci (i.e. Ci is given by the equations
x1 = . . . = xn−i = 0). Then each subspace V k generic with respect to F has a unique basis
v1,. . . ,vk such that vi = ei + ai,1ek+1 + . . . + ai,n−ken. This allows to identify all subspaces in
CF with the set of all k × (n − k)-matrices (send V k to the matrix (ai,j)). Note that for any
point V k of the Grassmannian there exists a flag F for which V k is generic. Hence, we get a
covering of the Grassmannian by affine spaces.

Example. The simplest example of Grassmannian is the projective space Pn = G(1, n + 1),
i.e. the space of all lines in the vector space Cn+1. Then the chart CF consists of all lines that
do not lie in a given hyperplane Cn−1. Each line from CF has a unique vector with coordinates
(1, a1, . . . , an). This gives a one-to-one correspondence between CF and the affine space Cn.

Remark. Note that the Grassmannians G(k, n) and G(n−k, n) are isomorphic since there is
a canonical one-to-one correspondence between subspaces of dimension k in Cn and subspaces
of codimension k in the dual space (Cn)∗. In particular, G(n, n+ 1) = Pn.

We just showed that the Grassmannian can be made into a smooth algebraic variety that
has a covering by affine charts. It turns out that Grassmannian is also projective. Namely,
there is an embedding

P : G(k, n)→ P(n
k)−1 = P(ΛkCn);

P : V k 7→ P(ΛkV k),

called Plücker embedding. If k = 1 then this is just the identity map P : Pn−1 → Pn−1.
To write the Plücker map in coordinates choose a basis e1,. . . ,en in Cn and a basis v1,. . . ,vk

in V k. Denote by A(V k) the k × n matrix, whose i-th row consists of coordinates of vi in the
basis e1,. . . ,en. Then the coordinates of P(ΛkV k) = P(v1 ∧ . . . ∧ vk) in the basis {ei1 ∧ . . . ∧
eik}1≤i1<...<ik≤n are exactly the k × k minors of A(V k).

Exercise. The simplest example of Grassmannian for which the Plücker embedding is not
tautological is G(2, 4), the Grassmannian of planes in a 4-dimensional space. Since the Plücker
embedding maps G(2, 4) to P5 the image is a hypersurface in P5. Show that this hypersurface
is given by the equation

x12x34 + x14x23 − x13x24 = 0,

where xij is the coordinate with the basis vector ei∧ ej. This hypersurface is called the Plücker
quadric and is isomorphic to a generic quadric in P5.

We now construct an algebraic cell decomposition of the Grassmannian G(k, n). Fix a
complete flag F = {C1 ⊂ C2 ⊂ . . . ⊂ Cn}. A cell will consist of all subspaces that have
prescribed intersection dimensions with the subspaces of the flag F .
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Definition of Schubert cells. Let d1, d2, . . . dk be integers such that 1 ≤ d1 <
. . . < dk ≤ n. The Schubert cell CF (d1, . . . , dk) constructed using the flag F is a subset of the
Grassmannian G(k, n) consisting of all subspaces V k such that

dim(V k ∩ Cj) = i iff di ≤ j < di+1.

I.e. the intersection dimensions dim(V k ∩ Cj) form the sequence

(0, . . . , 0︸ ︷︷ ︸
d1

, 1, . . . , 1︸ ︷︷ ︸
d2−d1

, . . . , k, . . . , k︸ ︷︷ ︸
dk−dk−1

).

Sometimes this sequence is used instead of the sequence d1,. . . , dk in order to label the Schubert
cell.

Example. We choose coordinates in Cn so that the flag F consists of coordinate subspaces
Ci = {x1 = . . . = xn−i+1 = 0}.

• The cell CF (n − k + 1, . . . , n) is exactly the affine chart CF considered above, so it is
isomorphic to the affine space of dimension k(n− k).

• The cell CF (1, . . . , k) consists of a single point, which is the space Ck.

• The projective space Pn = G(1, n+ 1) has n+ 1 Schubert cells CF (1),. . . ,CF (n). The cell
CF (i) consists of all lines that lie in Ci but do not lie in Ci−1 ⊂ Ci. Each such line has a
unique basis vector with coordinates (0, . . . , 0, 1, a1, . . . , ai). Hence, CF (i) is isomorphic
to the affine space of dimension i and we get the following cell decomposition for Pn:

Pn = An t An−1 t . . . t A0

• The Grassmannian G(2, 4) has 6 Schubert cells: CF (3, 4) = A4, CF (2, 4) = A3, CF (1, 4) =
A2, CF (2, 3) = A2, CF (1, 3) = A1, CF (1, 2) = A0. Each cell can be identified with an
affine space in the same way as for projective spaces (by choosing a special basis in
each plane in the cell). E.g. each plane in CF (2, 4) has a unique basis of the form
{(1, a1, 0, a2), (0, 0, 1, a3)} and hence is isomorphic to A3.

Exercise. Show that each Schubert cell CF (d1, . . . , dk) is isomorphic to an affine space of
dimension (d1 − 1) + (d2 − 2) + . . .+ (dk − k).

In what follows, we will mostly deal with Schubert cycles rather than with Schubert cells.
The Schubert cycle ZF (d1, . . . , dk) is the (Zariski) closure of the Schubert cell CF (d1, . . . , dk) in
the Grassmannian G(k, n). Each Schubert cycle is a closed subvariety of the Grassmannian.
E.g. the Schubert cycles in Pn are projective subspaces of dimensions 0, 1,. . . , n. In general,
Schubert cycles are not smooth.
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Solution to the problem about 4 lines in a 3-space. The Grassmannian G(2, 4) can
also be regarded as the set of all lines in P3. Choose a complete flag F = {a ⊂ l ⊂ p ⊂ P3}
(i.e. a is a point, l is a line and p is a plane). Then the cell CF (2, 4) consists of all lines not
passing through the point a, not lying in the plane p but intersecting the line l. In particular,
the Schubert cycle ZF (2, 4) consists of all lines in P3 intersecting the line l. Note that ZF (2, 4)
is a hypersurface in G(2, 4). It is easy to check that this hypersurface can be realized as a
hyperplane section corresponding to the Plücker embedding.

The problem about 4 lines in P3 reduces to the computation of the self-intersection index
of the hypersurface ZF (2, 4). Indeed, take 4 lines l1, l2, l3 and l4 in general position. Let σi

be the hypersurface in G(2, 4) consisting of all lines intersecting li. Then σ1, σ2, σ3 and σ4 are
hyperplane sections in general position corresponding to the Plücker embedding. Hence, their
intersection index is equal to the number of intersection points, which is exactly the number of
lines intersecting 4 given lines. It remains to notice that the self-intersection index ZF (2, 4)4 is
the same as the degree of G(2, 4) in the Plücker embedding. The latter is equal to 2, since the
image is a quadric.

This solution does not use Schubert’s idea of degenerating 4 lines to some special position.
A solution based on Schubert’s idea requires a little more of intersection theory and will be
given in the next section.

6 Intersection product and Chow ring

So far we only dealt with intersection indices of divisors. This is a partial case of intersection
product of subvarieties of arbitrary dimension (in particular, their intersection is not necessarily
a finite number of points). In this section, we briefly discuss how to define such a product in
general and then consider an important example: the intersection product of two Schubert cycles
in the Grassmannian G(k, n). In the end of this section, we will justify Schubert’s solution to
the problem about 4 lines in a 3-space. For more details see [7], [6] and [5].

Intersection product. Let X be an algebraic variety of dimension n, and M and N two
subvarieties of dimensions k1 and k2, respectively. We no longer require that k1 + k2 be equal
to n. We want to define the intersection product M · N as a subvariety in X of dimension
k1 + k2 − n. As in the definition of the intersection index of divisors we put M · N = M ∩ N
if M and N have transverse intersection. It remains to deal with the case when M and N do
not intersect transversally.

As with divisors we can replace the subvariety M with another subvariety M ′ of the same
dimension, which is equivalent to M . There are different notions of equivalence leading to
different definitions of intersection product. Some of them are listed below. For simplicity we
assume that X is smooth and M is irreducible.

• Rational equivalence: the subvarieties M and M ′ are rationally equivalent if there
exists a subvariety N of dimension (dimM + 1) containing both M and M ′ such that M
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and M ′ are rationally equivalent divisors in N .

• Homological equivalence: the subvarieties M and M ′ are homologically equivalent
if their homology classes [M ] and [M ′] in the homology group of X are the same. This
definition depends on a choice of homology theory for X. When X is a compact smooth
complex variety we take its De Rham (or singular, which is the same in this case) homol-
ogy.

• Numerical equivalence: the subvarieties M and M ′ are numerically equivalent if for
any subvariety N of complementary dimension the intersection indices M ·N and M ′ ·N
are the same. In this definition, it is assumed that we already have some way to define
intersection indices of subvarieties of complementary dimension. In particular different
definitions of the intersection indices lead to different notions of numerical equivalence.
We will discuss some examples below.

Note that the rational equivalence is finer than the homological equivalence, i.e. any two
rationally equivalent subvarieties are also homologous (which is easy to show using the definition
of rational equivalence).

Given an equivalence relation ∼ one can define the groups A∼i (X,Z) as the formal linear
combinations of subvarieties of dimension i in X quotient by the equivalence relation. In the
case of rational equivalence, the group Arat

i (X,Z) is called the i-th Chow group of X and is
sometimes denoted by CHi(X). In particular, the Chow group Arat

(dimX−1)(X,Z) coincides with
the Picard group of X.

Examples.

• Let X be the projective space CPn. Then Arat
i (X) = Ahom

i (X) = Z if 0 ≤ i ≤ n.

• Let X be an elliptic curve over C. Then Arat
0 (X) = Pic(X) = X ⊕ Z, while Ahom

0 = Z
since any two points on X are homologous.

In what follows we will use the notion of homological equivalence. Note that for the Grass-
mannians the notions of rational and homological equivalence coincide, i.e. the resulting groups
A∗(G(d, n)) of cycles are isomorphic. This is a corollary from a more general result about va-
rieties with an algebraic cell decomposition (see [1]).

We now define the intersection product of two Schubert cycles Z(d) and Z(d′) in the
homology H∗(G(d, n)). Here d and d′ denote the collections (d1, . . . , dk) and (d′1, . . . , d

′
k),

respectively. There is a natural family of deformations for each Schubert cycle ZF (d) given by
the action of GLn(C) on G(d, n). Namely, replace the flag F (used to construct Z(d)) with
any other complete flag E. This yields a Schubert cycle ZE(d) that is homologous to the initial
Schubert cycle ZF (d). Take now two complete flags F and E in Cn. Take the Schubert cycles
ZF (d) and ZE(d′). Then it is easy to show that for generic pairs of flags (F,E) the intersection
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ZF (d)∩ZE(d′) is transverse, and hence its homology class does not depend on the choice of F
and E.

We are now ready to formalize Schubert’s idea of degenerating 4 lines to some special
position. To compute the intersection index Z(2, 4)4 we first find the intersection product
Z(2, 4)2 as follows. Choose two complete flags F = {a1 ⊂ l1 ⊂ p} and E = {a2 ⊂ l2 ⊂ p2} in P3

with the property that the lines l1 and l2 intersect. Then set-theoretically ZF (2, 4) ∩ ZE(2, 4)
is the union of the Schubert cycle Z(2, 3) (all lines in the plane of l1 and l2 ) and Z(1, 4) (all
lines passing through the intersection point l1 ∩ l2). It turns out that that the intersection in
this case is multiplicity free (although the flags F and E are not generic with respect to each
other). This is a manifestation of a more general principle: Schubert calculus is multiplicity
free (see [4] for precise statements and proofs). We get that

Z(2, 4)2 = Z(1, 4) + Z(2, 3).

It is easy to compute that

Z(1, 4)2 = 1, Z(2, 3)2 = 1, Z(1, 4)Z(2, 3) = 0,

thus getting the desired intersection index Z(2, 4)4 = 2.
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