Convex chains for Schubert varieties
 Valentina Kiritchenko
 (joint work with Evgeny Smirnov and Vladlen Timorin)

In [4], we constructed generalized Newton polytopes for Schubert subvarieties in the variety of complete flags in \mathbb{C}^{n}. Every such "polytope" is a union of faces of a Gelfand-Zetlin polytope (the latter is a well-known Newton-Okounkov body for the flag variety). These unions of faces are responsible for Demazure characters of Schubert varieties and were originally used for Schubert calculus.

The methods of [4] lead to an extension of Demazure (or divided difference) operators from representation theory and topology to the setting of convex geometry. Below I define divided difference operators acting on convex polytopes and outline some applications such as a simple inductive construction of Gelfand-Zetlin polytopes and their generalizations.

The definition is based on the following observation. Let $\Pi(\mu, \nu)$ where μ, $\nu \in \mathbb{Z}^{m}$ denote the integer coordinate parallelepiped $\left\{\left(x_{1}, \ldots, x_{m}\right) \mid \mu_{i} \leq x_{i} \leq \nu_{i}\right\} \subset$ \mathbb{R}^{m}, and let $\sigma(x)$ for $x \in \mathbb{R}^{m}$ denote the sum of coordinates $\sum_{i=1}^{m} x_{i}$. Given a parallelepiped $\Gamma=\Pi(\mu, \nu) \subset \mathbb{R}^{m}$ of dimension $m-1$ (assume that $\mu_{m}=\nu_{m}$) and an integer C, there is a unique parallelepiped $\Pi=\Pi\left(\mu, \nu^{\prime}\right) \subset \mathbb{R}^{m}$ such that $\Gamma=\Pi \cap\left\{x_{m}=\mu_{m}\right\}$ (that is, $\nu_{i}^{\prime}=\nu_{i}$ for $i<m$) and

$$
\begin{equation*}
\sum_{x \in \Pi \cap \mathbb{Z}^{d}} t^{\sigma(x)}=D_{C}\left(\sum_{x \in \Gamma \cap \mathbb{Z}^{d}} t^{\sigma(x)}\right), \tag{*}
\end{equation*}
$$

where D_{C} is a Demazure-type operator on the ring $\mathbb{Z}\left[t, t^{-1}\right]$ of Laurent polynomials in t :

$$
D_{C}(f):=\frac{f-t f^{*}}{1-t}, \quad f^{*}:=t^{C} f\left(t^{-1}\right)
$$

Indeed, an easy calculation (using the formula for the sum of a geometric progression) shows that $\sum_{i=1}^{m}\left(\mu_{i}+\nu_{i}^{\prime}\right)=C$ which yields the value of ν_{m}^{\prime}. Note that Γ is a facet of Π unless $\Pi=\Gamma$.

We now use this observation in a more general context. A root space of rank n is a coordinate space \mathbb{R}^{d} together with a direct sum decomposition

$$
\mathbb{R}^{d}=\mathbb{R}^{d_{1}} \oplus \ldots \oplus \mathbb{R}^{d_{n}}
$$

and a collection of linear functions $l_{1}, \ldots, l_{n} \in\left(\mathbb{R}^{d}\right)^{*}$ such that l_{i} vanishes on $\mathbb{R}^{d_{i}}$. We always assume that the summands are coordinate subspaces so that $\mathbb{R}^{d_{1}}$ is spanned by the first d_{1} basis vectors etc.

Let $P \subset \mathbb{R}^{d}$ be a convex polytope in the root space. It is called a parapolytope if for all $i=1, \ldots, n$, the intersection of P with any parallel translate of $\mathbb{R}^{d_{i}}$ is a coordinate parallelepiped. For instance, if $d=n$, that is, $d_{1}=\ldots=d_{n}=1$, then every polytope is a parapolytope. For each $i=1, \ldots, n$, we now define a divided difference operator A_{i} on parapolytopes. In general, the operator A_{i} takes values in convex chains in \mathbb{R}^{d} (see [3] for a definition) but in many cases of interest (see examples below) these convex chains will just be single convex parapolytopes.

First, consider the case where $P \subset\left(c+\mathbb{R}^{d_{i}}\right)$ for some $c \in \mathbb{R}^{d}$, i.e. $P=$ $P(\mu, \nu)$ is a coordinate parallelepiped. Here $\mu=\left(\mu_{1}, \ldots, \mu_{d}\right), \nu=\left(\nu_{1}, \ldots, \nu_{d}\right)$. Put $N_{i}:=d_{1}+\ldots+d_{i}$ and $N_{0}=0$. Assume that $\operatorname{dim}(P)<d_{i}$. Choose the smallest $j \in\left[N_{i-1}+1, N_{i}\right]$ such that $\mu_{j}=\nu_{j}$. Define $A_{i}(P)$ to be the coordinate parallelepiped $\Pi\left(\mu, \nu^{\prime}\right)$, where $\nu_{k}^{\prime}=\nu_{k}$ for all $k \neq j$ and ν_{j}^{\prime} is chosen so that

$$
\begin{equation*}
\sum_{k=N_{i-1}+1}^{N_{i}}\left(\mu_{k}+\nu_{k}^{\prime}\right)=l_{i}(c), \tag{**}
\end{equation*}
$$

that is, an analog of formula $(*)$ holds for $\Gamma=P, \Pi=A_{i}(P)$ and $C=l_{i}(c)$. The definition yields a non-virtual coordinate parallelepiped if $l_{i}(c)$ is sufficiently large and can be extended to other values of $l_{i}(c)$ by linearity.

For an arbitrary parapolytope $P \subset \mathbb{R}^{d}$ define $A_{i}(P)$ as the union of $A_{i}(P \cap(c+$ $\left.\mathbb{R}^{d_{i}}\right)$) over all $c \in \mathbb{R}^{d}$:

$$
A_{i}(P)=\bigcup_{c \in \mathbb{R}^{d}}\left\{A_{i}\left(P \cap\left(c+\mathbb{R}^{d_{i}}\right)\right)\right\}
$$

(assuming that $\operatorname{dim}\left(P \cap\left(c+\mathbb{R}^{d_{i}}\right)\right)<d_{i}$ for all $\left.c \in \mathbb{R}^{d}\right)$. In other words, we first slice P by subspaces parallel to $\mathbb{R}^{d_{i}}$ and then replace each slice with another parallelepiped according to $(* *)$. Note that P is a facet of $A_{i}(P)$ unless $A_{i}(P)=P$. It is easy to check that $A_{i}^{2}=A_{i}$ (the same identity as for the classical Demazure operators).

Examples: (1) The simplest meaningful example is $\mathbb{R}^{2}=\mathbb{R} \oplus \mathbb{R}=\{(x, y)\}$ with the functions $l_{1}=y$ and $l_{2}=x$. If $P=(a, b)$ is a point, then $A_{1}(P)$ and $A_{2}(P)$ are segments:

$$
A_{1}(P)=[(a, b),(b-a, b)], \quad A_{2}(P)=[(a, b),(a, a-b)],
$$

assuming that $\frac{1}{2} b \geq a \geq 2 b$. If $b<2 a$, then $A_{1}(P)$ is a virtual segment. If $2 b>a$, then $A_{2}(P)$ is virtual.

If $P=\left[(a, b),\left(a^{\prime}, b\right)\right]$ is a horizontal segment, then $A_{2}(P)$ is the trapezoid (or a skew trapezoid) with the vertices $(a, b),\left(a^{\prime}, b\right),(a, a-b),\left(a^{\prime}, a^{\prime}-b\right)$.
(2) A more interesting example is $\mathbb{R}^{3}=\mathbb{R}^{2} \oplus \mathbb{R}=\{(x, y, z)\}$ with the functions $l_{1}=z$ and $l_{2}=x+y$. If $P=\left[(a, b, c),\left(a^{\prime}, b, c\right)\right]$ is a segment in \mathbb{R}^{2}, then $A_{1}(P)$ is the rectangle with the vertices $(a, b, c),\left(a^{\prime}, b, c\right),\left(a, c-a-a^{\prime}-b, c\right),\left(a^{\prime}, c-a-a^{\prime}-b, c\right)$. Using this calculation and those in (1), it is easy to show that if $P=(b, c, c)$ is a point and $-b-c>b>c$, then $A_{1} A_{2} A_{1}(P)$ is the 3 -dimensional Gelfand-Zetlin polytope given by the inequalities $a \geq x \geq b, b \geq y \geq c$ and $x \geq z \geq y$, where $a+b+c=0$.
(3) Generalizing the last example we now construct Gelfand-Zetlin polytopes for arbitrary n via divided difference operators. For $n \in \mathbb{N}$, put $d=\frac{n(n-1)}{2}$. Consider the root space $\mathbb{R}^{d}=\mathbb{R}^{n-1} \oplus \mathbb{R}^{n-2} \oplus \ldots \oplus \mathbb{R}^{1}$ of $\operatorname{rank}(n-1)$ with the functions l_{i} given by the formula: $l_{i}(x)=\sigma_{i-1}(x)+\sigma_{i+1}(x)$. Here $\sigma_{i}(x)$ denotes the sum of those coordinates of $x \in \mathbb{R}^{d}$ that correspond to the subspace $\mathbb{R}^{d_{i}}$ (put $\sigma_{0}=\sigma_{n}=0$).

For every strictly dominant weight $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ (that is, $\left.\lambda_{1}>\ldots>\lambda_{n}\right)$ of $G L_{n}$ such that $\lambda_{1}+\ldots+\lambda_{n}=0$, the Gelfand-Zetlin polytope Q_{λ} coincides with the polytope

$$
\left[\left(A_{1} \ldots A_{n-1}\right)\left(A_{1} \ldots A_{n-2}\right) \ldots\left(A_{1}\right)\right](p)
$$

where $p \in \mathbb{R}^{d}$ is the point $\left(\lambda_{2}, \ldots, \lambda_{n} ; \lambda_{3}, \ldots, \lambda_{n} ; \ldots ; \lambda_{n}\right)$.
Similarly, divided difference operators for suitable root spaces allow one to construct the classical Gelfand-Zetlin polytopes for symplectic and orthogonal groups. They also yield an elementary description of more general string polytopes defined in [5] and might help to extend the results of [4] to arbitrary semisimple groups.

As outlined below, these convex geometric operators are well suited for inductive constructions of Newton-Okounkov polytopes for line bundles on Bott towers and on Bott-Samelson varieties (for natural choice of a geometric valuation). The former polytopes were described in [2] and the latter are currently being computed by Dave Anderson.

Bott towers. Consider a root space with $d=n$, that is, $d_{1}=\ldots=d_{n}=1$. We have the decomposition

$$
\mathbb{R}^{n}=\underbrace{\mathbb{R} \oplus \ldots \oplus \mathbb{R}}_{n} ; \quad y=\left(y_{1}, \ldots, y_{n}\right)
$$

into coordinate lines. Assume that the linear function l_{i} for $i<n$ does not depend on y_{1}, \ldots, y_{i}, and $l_{n}=y_{1}$. I can show that the polytope $P:=A_{1} \ldots A_{n}(p)$ (for a point $p \in \mathbb{R}^{n}$) coincides with the Newton-Okounkov body for a Bott tower (that depends on l_{1}, \ldots, l_{n}) together with a line bundle (that depends on p). For $n=2$, a Bott tower is a Hirzebruch surface and P is a trapezoid (or a skew trapezoid) constructed similarly to the one in example (1). In general, a Bott tower is a toric variety obtained by successive projectivizations of rank two split vector bundles, and P is a multidimensional version of a trapezoid.

Bott-Samelson resolutions. Let $X=R\left(i_{1}, \ldots, i_{l}\right)$ be the Bott-Samelson variety corresponding to any sequence $\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{l}}\right)$ of roots of the group $G L_{n}$. It can be obtained by successive projectivizations of rank two (usually non-split) vector bundles. Consider the root space $\mathbb{R}^{d}=\mathbb{R}^{d_{1}} \oplus \mathbb{R}^{d_{2}} \oplus \ldots \oplus \mathbb{R}^{d_{n-1}}$ with the functions l_{i} given by the formula $l_{i}(x)=\sigma_{i-1}(x)+\sigma_{i+1}(x)$, where d_{i} is the number of times the root α_{i} occurs in the sequence $\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{l}}\right)$. Denote by T_{v} the parallel translation in the root space by a vector $v \in \mathbb{R}^{d}$. Consider the polytope

$$
P=\left[A_{i_{1}} T_{v_{1}} A_{i_{2}} \ldots T_{v_{l-1}} A_{i_{l}}\right](p)
$$

In his talk, Dave Anderson described an algorithm for computing the NewtonOkounkov body of a line bundle on X with respect to the valuation given by the flag of subvarieties $\left\{\ldots \supset R\left(i_{l-1}, i_{l}\right) \supset R\left(i_{l}\right)\right\}$. Based on his computations for $l=3$ [1], I conjecture that this Newton-Okounkov body coincides with P for suitable choice of a point $p \in \mathbb{R}^{d}$ and vectors $v_{j} \in \mathbb{R}^{d_{i_{j}}}$ for $j=1, \ldots, l-1$.

References

[1] Dave Anderson, Okounkov bodies and toric degenerations, preprint arXiv:1001.4566v2 [math.AG]
[2] Michael Grossberg and Yael Karshon, Bott towers, complete integrability, and the extended character of representations, Duke Math. J. 76 (1994), no. 1, 23-58.
[3] A.G. Khovanskii, A.V. Pukhlikov, Finitely additive measures of virtual polytopes, St. Petersburg Mathematical Journal 4 (1993), no.2, 337-356
[4] Valentina Kiritchenko, Evgeny Smirnov, Vladlen Timorin, Schubert calculus and GelfandZetlin polytopes, preprint arXiv:1101.0278v2 [math.AG]
[5] Peter Littelmann, Cones, crystals and patterns, Transformation Groups 3 (1998), pp. 145179

