Convex chains for Schubert varieties VALENTINA KIRITCHENKO (joint work with Evgeny Smirnov and Vladlen Timorin)

In [4], we constructed generalized Newton polytopes for Schubert subvarieties in the variety of complete flags in \mathbb{C}^n . Every such "polytope" is a union of faces of a Gelfand–Zetlin polytope (the latter is a well-known Newton–Okounkov body for the flag variety). These unions of faces are responsible for Demazure characters of Schubert varieties and were originally used for Schubert calculus.

The methods of [4] lead to an extension of Demazure (or divided difference) operators from representation theory and topology to the setting of convex geometry. Below I define divided difference operators acting on convex polytopes and outline some applications such as a simple inductive construction of Gelfand-Zetlin polytopes and their generalizations.

The definition is based on the following observation. Let $\Pi(\mu, \nu)$ where μ , $\nu \in \mathbb{Z}^m$ denote the integer *coordinate parallelepiped* $\{(x_1, \ldots, x_m) | \mu_i \leq x_i \leq \nu_i\} \subset \mathbb{R}^m$, and let $\sigma(x)$ for $x \in \mathbb{R}^m$ denote the sum of coordinates $\sum_{i=1}^m x_i$. Given a parallelepiped $\Gamma = \Pi(\mu, \nu) \subset \mathbb{R}^m$ of dimension m - 1 (assume that $\mu_m = \nu_m$) and an integer C, there is a unique parallelepiped $\Pi = \Pi(\mu, \nu') \subset \mathbb{R}^m$ such that $\Gamma = \Pi \cap \{x_m = \mu_m\}$ (that is, $\nu'_i = \nu_i$ for i < m) and

$$\sum_{c \in \Pi \cap \mathbb{Z}^d} t^{\sigma(x)} = D_C(\sum_{x \in \Gamma \cap \mathbb{Z}^d} t^{\sigma(x)}), \qquad (*)$$

where D_C is a Demazure-type operator on the ring $\mathbb{Z}[t, t^{-1}]$ of Laurent polynomials in t:

3

$$D_C(f) := \frac{f - tf^*}{1 - t}, \quad f^* := t^C f(t^{-1}).$$

Indeed, an easy calculation (using the formula for the sum of a geometric progression) shows that $\sum_{i=1}^{m} (\mu_i + \nu'_i) = C$ which yields the value of ν'_m . Note that Γ is a facet of Π unless $\Pi = \Gamma$.

We now use this observation in a more general context. A root space of rank n is a coordinate space \mathbb{R}^d together with a direct sum decomposition

$$\mathbb{R}^d = \mathbb{R}^{d_1} \oplus \ldots \oplus \mathbb{R}^{d_n}$$

and a collection of linear functions $l_1, \ldots, l_n \in (\mathbb{R}^d)^*$ such that l_i vanishes on \mathbb{R}^{d_i} . We always assume that the summands are coordinate subspaces so that \mathbb{R}^{d_1} is spanned by the first d_1 basis vectors etc.

Let $P \subset \mathbb{R}^d$ be a convex polytope in the root space. It is called a *parapolytope* if for all i = 1, ..., n, the intersection of P with any parallel translate of \mathbb{R}^{d_i} is a coordinate parallelepiped. For instance, if d = n, that is, $d_1 = ... = d_n = 1$, then every polytope is a parapolytope. For each i = 1, ..., n, we now define a *divided difference operator* A_i on parapolytopes. In general, the operator A_i takes values in *convex chains* in \mathbb{R}^d (see [3] for a definition) but in many cases of interest (see examples below) these convex chains will just be single convex parapolytopes. First, consider the case where $P \subset (c + \mathbb{R}^{d_i})$ for some $c \in \mathbb{R}^d$, i.e. $P = P(\mu, \nu)$ is a coordinate parallelepiped. Here $\mu = (\mu_1, \ldots, \mu_d), \nu = (\nu_1, \ldots, \nu_d)$. Put $N_i := d_1 + \ldots + d_i$ and $N_0 = 0$. Assume that dim $(P) < d_i$. Choose the smallest $j \in [N_{i-1} + 1, N_i]$ such that $\mu_j = \nu_j$. Define $A_i(P)$ to be the coordinate parallelepiped $\Pi(\mu, \nu')$, where $\nu'_k = \nu_k$ for all $k \neq j$ and ν'_j is chosen so that

$$\sum_{k=N_{i-1}+1}^{N_i} (\mu_k + \nu'_k) = l_i(c), \qquad (**)$$

that is, an analog of formula (*) holds for $\Gamma = P$, $\Pi = A_i(P)$ and $C = l_i(c)$. The definition yields a non-virtual coordinate parallelepiped if $l_i(c)$ is sufficiently large and can be extended to other values of $l_i(c)$ by linearity.

For an arbitrary parapolytope $P \subset \mathbb{R}^d$ define $A_i(P)$ as the union of $A_i(P \cap (c + \mathbb{R}^{d_i}))$ over all $c \in \mathbb{R}^d$:

$$A_i(P) = \bigcup_{c \in \mathbb{R}^d} \{A_i(P \cap (c + \mathbb{R}^{d_i}))\}$$

(assuming that dim $(P \cap (c + \mathbb{R}^{d_i})) < d_i$ for all $c \in \mathbb{R}^d$). In other words, we first slice P by subspaces parallel to \mathbb{R}^{d_i} and then replace each slice with another parallelepiped according to (**). Note that P is a facet of $A_i(P)$ unless $A_i(P) = P$. It is easy to check that $A_i^2 = A_i$ (the same identity as for the classical Demazure operators).

Examples: (1) The simplest meaningful example is $\mathbb{R}^2 = \mathbb{R} \oplus \mathbb{R} = \{(x, y)\}$ with the functions $l_1 = y$ and $l_2 = x$. If P = (a, b) is a point, then $A_1(P)$ and $A_2(P)$ are segments:

$$A_1(P) = [(a,b), (b-a,b)], \quad A_2(P) = [(a,b), (a,a-b)],$$

assuming that $\frac{1}{2}b \ge a \ge 2b$. If b < 2a, then $A_1(P)$ is a virtual segment. If 2b > a, then $A_2(P)$ is virtual.

If P = [(a, b), (a', b)] is a horizontal segment, then $A_2(P)$ is the trapezoid (or a skew trapezoid) with the vertices (a, b), (a', b), (a, a - b), (a', a' - b).

(2) A more interesting example is $\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R} = \{(x, y, z)\}$ with the functions $l_1 = z$ and $l_2 = x+y$. If P = [(a, b, c), (a', b, c)] is a segment in \mathbb{R}^2 , then $A_1(P)$ is the rectangle with the vertices (a, b, c), (a', b, c), (a, c-a-a'-b, c), (a', c-a-a'-b, c). Using this calculation and those in (1), it is easy to show that if P = (b, c, c) is a point and -b - c > b > c, then $A_1A_2A_1(P)$ is the 3-dimensional Gelfand–Zetlin polytope given by the inequalities $a \ge x \ge b, b \ge y \ge c$ and $x \ge z \ge y$, where a + b + c = 0.

(3) Generalizing the last example we now construct Gelfand–Zetlin polytopes for arbitrary n via divided difference operators. For $n \in \mathbb{N}$, put $d = \frac{n(n-1)}{2}$. Consider the root space $\mathbb{R}^d = \mathbb{R}^{n-1} \oplus \mathbb{R}^{n-2} \oplus \ldots \oplus \mathbb{R}^1$ of rank (n-1) with the functions l_i given by the formula: $l_i(x) = \sigma_{i-1}(x) + \sigma_{i+1}(x)$. Here $\sigma_i(x)$ denotes the sum of those coordinates of $x \in \mathbb{R}^d$ that correspond to the subspace \mathbb{R}^{d_i} (put $\sigma_0 = \sigma_n = 0$). For every strictly dominant weight $\lambda = (\lambda_1, \ldots, \lambda_n)$ (that is, $\lambda_1 > \ldots > \lambda_n$) of GL_n such that $\lambda_1 + \ldots + \lambda_n = 0$, the Gelfand–Zetlin polytope Q_λ coincides with the polytope

$$[(A_1 \dots A_{n-1})(A_1 \dots A_{n-2}) \dots (A_1)](p),$$

where $p \in \mathbb{R}^d$ is the point $(\lambda_2, \ldots, \lambda_n; \lambda_3, \ldots, \lambda_n; \ldots; \lambda_n)$.

Similarly, divided difference operators for suitable root spaces allow one to construct the classical Gelfand–Zetlin polytopes for symplectic and orthogonal groups. They also yield an elementary description of more general *string polytopes* defined in [5] and might help to extend the results of [4] to arbitrary semisimple groups.

As outlined below, these convex geometric operators are well suited for inductive constructions of Newton–Okounkov polytopes for line bundles on Bott towers and on Bott-Samelson varieties (for natural choice of a geometric valuation). The former polytopes were described in [2] and the latter are currently being computed by Dave Anderson.

Bott towers. Consider a root space with d = n, that is, $d_1 = \ldots = d_n = 1$. We have the decomposition

$$\mathbb{R}^n = \underbrace{\mathbb{R} \oplus \ldots \oplus \mathbb{R}}_{r}; \quad y = (y_1, \ldots, y_n)$$

into coordinate lines. Assume that the linear function l_i for i < n does not depend on y_1, \ldots, y_i , and $l_n = y_1$. I can show that the polytope $P := A_1 \ldots A_n(p)$ (for a point $p \in \mathbb{R}^n$) coincides with the Newton–Okounkov body for a *Bott tower* (that depends on l_1, \ldots, l_n) together with a line bundle (that depends on p). For n = 2, a Bott tower is a Hirzebruch surface and P is a trapezoid (or a skew trapezoid) constructed similarly to the one in example (1). In general, a Bott tower is a toric variety obtained by successive projectivizations of rank two split vector bundles, and P is a multidimensional version of a trapezoid.

Bott–Samelson resolutions. Let $X = R(i_1, \ldots, i_l)$ be the *Bott-Samelson variety* corresponding to any sequence $(\alpha_{i_1}, \ldots, \alpha_{i_l})$ of roots of the group GL_n . It can be obtained by successive projectivizations of rank two (usually non-split) vector bundles. Consider the root space $\mathbb{R}^d = \mathbb{R}^{d_1} \oplus \mathbb{R}^{d_2} \oplus \ldots \oplus \mathbb{R}^{d_{n-1}}$ with the functions l_i given by the formula $l_i(x) = \sigma_{i-1}(x) + \sigma_{i+1}(x)$, where d_i is the number of times the root α_i occurs in the sequence $(\alpha_{i_1}, \ldots, \alpha_{i_l})$. Denote by T_v the parallel translation in the root space by a vector $v \in \mathbb{R}^d$. Consider the polytope

$$P = \left[A_{i_1} T_{v_1} A_{i_2} \dots T_{v_{l-1}} A_{i_l} \right] (p).$$

In his talk, Dave Anderson described an algorithm for computing the Newton– Okounkov body of a line bundle on X with respect to the valuation given by the flag of subvarieties $\{\ldots \supset R(i_{l-1}, i_l) \supset R(i_l)\}$. Based on his computations for l = 3[1], I conjecture that this Newton–Okounkov body coincides with P for suitable choice of a point $p \in \mathbb{R}^d$ and vectors $v_i \in \mathbb{R}^{d_{i_j}}$ for $j = 1, \ldots, l-1$.

References

 Dave Anderson, Okounkov bodies and toric degenerations, preprint arXiv:1001.4566v2 [math.AG]

- [2] Michael Grossberg and Yael Karshon, Bott towers, complete integrability, and the extended character of representations, Duke Math. J. 76 (1994), no. 1, 23–58.
- [3] A.G. Khovanskii, A.V. Pukhlikov, Finitely additive measures of virtual polytopes, St. Petersburg Mathematical Journal 4 (1993), no.2, 337–356
- [4] Valentina Kiritchenko, Evgeny Smirnov, Vladlen Timorin, Schubert calculus and Gelfand-Zetlin polytopes, preprint arXiv:1101.0278v2 [math.AG]
- [5] Peter Littelmann, Cones, crystals and patterns, Transformation Groups 3 (1998), pp. 145– 179