PROBLEM SESSION II

LECTURER: VADIM GORIN TA: EVGENI DIMITROV

July 16, 2018

The following session elaborates Lecture 3. The focus is on deriving the conditional uniform dis-
tribution of corners in unitarily invariant measures and the Harish-Chandra-Itzykson-Zuber formula
discussed in lecture. The first section below lists several basic facts from linear algebra that are
isolated as exercises and will be used in the problems later. Our exposition draws upon [1] and [2]
and we refer to these articles for further reading.

1. PRELIMINARIES

For any N € N we let Mat(C; V) denote the set of N x N matrices with complex entries. An
element M € Mat(C; N) is called Hermitian if M;; = M;; for 1 < 4,5 < N, i.e. M = M* (its
conjugate transpose). The Spectral theorem (see https : //en.wikipedia.org/wiki/Spectral _theorem)
states that if M is an N x N Hermitian matrix then

(1) M has an orthonormal basis of eigenvectors in C%;

(2) all eigenvalues of M are real, and we denote them Ay > Ao > -+ > An;

(3) there is a wunitary matrix U such that UMU* = diag(\1,...,A\n) (the diagonal matrix,
whose (7,7)-th entry is A;.

If A € Mat(C; N) is Hermitian then so is its principal submatrix — the element B € Mat(C; N —1)
such that B;; = A;; for 1 <4,5 < N —1. Let a1 > ag > --- > an denote the eigenvalues of A and
by > by > -+ > by_1 those of B. From the Spectral theorem there exists a unitary (N —1)x (N —1)
matrix U such that UBU* = diag(b1,...,bny—1). We thus have

(1) U 0 A Uu* 0| |diag(bi,...,bn—1) Uy
0 1 0 1| yuU* Ann|’
where y is the (N — 1) x 1 column vector [An, ..., An_1)n]"

Exercise 1. Using (1) prove the following formula for the characteristic polynomial of A

N N-1 N-1

(2) Pa(z)=]J(z—a)=[[(z=0)- |z — Ann = > _

i=1 i=1 j=1

§j

Z—bj

)

where &; = |[Uy];|* (the square of the absolute value of the j-th entry of Uy) for j =1,...,N — 1.
Use (2) to show that the eigenvalues of A and B satisfy a1 > by > a3 >bo--- > an_1 > by_1 > an
(written as a = b for short).

Exercise 2. Suppose that V is an N x N unitary matrix such that VAV* = diag(ay,...,an), and
let « be the N x 1 column vector [Vn1,...,Vyn]|*. Show that the characteristic polynomial of B
satisfies the following formula

N—

il
(3) [TG-t)=T]CG-a) >~

=2
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Hint: Conjugate [Z'Ig*_ A g

In_1 - BJ.

} with [‘g (IJ] and compare the resulting determinant with det|z -

Exercise 3. Prove the Cauchy determinant formula

1 ]N  Th<icjen(@; — zi) (i — y5)

Ti = Yjlij=1 B [hi<ijen(@i—y;)

(4) det [

By multiplying both sides of (4) by (—yx) and letting yny — oo show that

)

1 )1N] B [h<icjen(@i — =) - Theicjen—1 Wi — yj)
— = N [{N-1
Ty — Yj Hi:l Hj:l (z; — yj)

where the matrix on the left side of (5) is the same as that on the left side of (4) with all entries in
the last column replaced by 1’s.

Hint: Multiply both sides of (4) by [];<; ;< y(zi—y;) and show that both sides are degree N (N —1)
polynomials in (z,y) that are skew-symmetric in 2’s and y’s. Finally, compare the coefficient of
(w1y1) N (woy2) V2 (xn_1yn_1)' on both sides.

(5) det [

Exercise 4. For y = (y1 > y2 > --- > yn) € RY define the Gelfand Tsetlin polytope GTn(y) by
(6) GTn(y) := {(z*,... ,azN) sV =y, =RF P =Pl 2 <k < N}.

The set GTx(y) can naturally be understood as a bounded convex subset of RN(N=1/2_ Prove that
its volume is given by

(7) erve)l= [ =2

S s i
1<i<j<N

Hint: Let N7 be the number of integer lattice points in Z x Z? x --- x ZN=1 N GTx(A\F), where
M= |L-y;). Argue that |GTn(y)| = limp oo L~VNWV=D/2N7 . Finally, use that N, = 5,2 (1) and
apply Problem 1 from Session I.

Exercise 5. Let 2z = (21,...,2n),y = (y1,...,yn) € RY be given. Show that

(8) e N Tl ¥i . det |2 e(Zz'*ZN)ya'H}N_l = det [e*%]N

ij=1 hi=1"
Hint: Divide the j-th column of the matrix on the RHS by e*¥% for j = 1,..., N and then subtract

the j7 + 1-th column from the j-th one for j=1,..., N — 1.

2. PROBLEMS

Problem 1. Let y = (y1 > yo > --- > yn) € RY be given. Consider the random matrix
H = Udiag(y1,...,yn)U*, where U is a random Haar distributed N x N unitary matrix. Denote
by X7 for1 < j < N—1land1 <i < j the ordered (random) eigenvalues of the principal submatrices
of the matrix H. In particular, we assume that X{ > X% >0 > XJJ are the ordered eigenvalues of
the j x j-th submatrix.

From Exercise 1 we know that X! < X2 < X3 < ... < X¥=1 <y The random N(N — 1)/2
dimentional vector (X',..., X"1) can be understood as a random element in Gelfand Tsetlin
polytope GTn(y). Show that (X!,..., XV~1) is uniformly distributed on GTx(y) by completing
the following outline.
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. Use Exercise 2 to show that the distribution of X! is the same as the distribution of the

|2
ordered roots of the polynomial Hi]L(Z_?/i)‘Zi]L rﬁ!y , where v = (v1,...,vy) is uniformly

distributed on the unit sphere S in CV (i.e. S = {x € CN : 2%z = 1}).

Let Dy ={zecCN :2*z <1} and Ay = {w = (wy,...,wy) € RY 1 w; > 0,w; +---+wy <

1}. Consider the map f : Dy — Ay, given by f(z1,...,zn) = (|z1]% ..., |zy§|?) and show
that if A is uniformly distributed in D, f(A) is uniformly distributed in A;. Conclude
that the distribution of X~¥~1 is the same as the distribution of the ordered roots of the
polynomial [T, (z —v) - N, ZV_VQZ, where W = (W, ..., Wy) is uniformly distributed on

Y= f(9) ={w=(w,...,wy) ERY :w; >0,wy +--- +wy = 1}.

. We obtain the following system of equations relating the variables W; and XiN -1 (written

X; for short)

W, %%
L I
yn — X; yn — X;
Wi+ Wy+---+ Wy =L

=0fori=1,...,N—1

Using Cramer’s rule and Exercise 3 show that

N-1
/ ~X;
Wi = hY(X1,..., Xn_1) = H](,:l (i ) for k=1,...,N.
Hi:l,i;ék(yk — ¥i)

. Use the previous part to show that the map hY = (hY,..., h%,_;) defines a bijective diffeo-

morphism between I = (y2,41) X (y3,92) X - -+ X (yn,yn—1) and the unit simplex A = {w =
(wi,...,wy_1) € R¥Y"1 s w; > 0,wy + - +wy_1 < 1}. Conclude that for some constant
¢ > 0 (you do not need to compute it yet) you have

IP’(XGA):/ c-|det J(z)|dxy - - -den_1,
AnT

where J is the Jacobian of the map hY.

. Show that

N-1

J(z) = [Hi\;_llz;éj (e — 331)]

N
ITiz ik (e — wi) kit
and using Exercise 3 prove that
o s —
|det J(z)| = [li<icjen—i1(@i— ;)
[li<icjen(i —yj)

. Use Exercise 4 to show that the constant ¢ from part 4 is equal to (N — 1)
. Prove the statement of the problem by induction on N.

Hint: When going from N to N + 1 use the fact that conditional on XV the distribution
of (X1,..., XN=1) is uniform on GTn(X™).

Problem 2. Let y = (y1,¥2,...,Yn), 2 = (21, 22,...,2n) € RY be given. Consider two determin-
istic Hermitian matrices Z,Y such that spec(Z) = z and spec(Y) = y (i.e. the eigenvalues of Z
and Y are z1,...,2zy and yi,...,yn respectively) and the random matrix H = UYU*, where U

is a random Haar distributed N x N unitary matrix. Prove the Harish-Chandra-Itzykson-Zuber

formula

(11)

N-1 N
detfexp(yizi)IN_y
E*Y [exp(tr Z - H)|] = | | il - )= =: By(z1,...,2N).
i1 H1§i<j§N(yi —yj)(zi — 25) Y
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First approach: Reduce the statement to when Z and Y are diagonal and z’s and y’s are ordered.
Proceed by induction on N. When going from N — 1 to N use the tower property to write

E*Y [exp(trace Z - H)] = E*Y {exp(zN [trY — trH]) - E*Y [exp(tr Z - H)|spec(H) = (1, . .. ,,uN_l)” ,

where H is the (N — 1) x (N — 1) principal submatrix of H and Z = diag(z1,. .., 2n_1)-
Apply the induction hypothesis to deduce that

E*Y [exp(trace Z - H)] = E*Y

N-2 N1
- detlexp(p;z:)]:_
exp(zy - [trY —trH]) - | | il [exp(p J)]Z,J_1 )]
z
i=1 j

H1§i<j§N—1(Mz‘ — ) (zi —

Finally, apply Step 4 in Problem 1 to get

" yN 1 N N-1 N-1
E*Y [exp(trace Z - H)] = / / duy -+ -dun_1exp (zN . [Z Yi — Z m]) : H il
Y2 YN i=1 i=1 i=1

detlexp(pizj)]}5—)

H1§i<j§N—1(Zi - zj) - H1§i<j§N(yi —y;)

change the order of the determinant and integral, perform the integral and use FExercise 5 to finish.

Second approach: As discussed in Lecture 3 we have essentially by definition of sy that

N-1

| det[exp(yizj)]j—1 . Sx(e (P, e
H il = lim ~ ,
1 Theicien Wi —y)(zi — 2j) - =0 sx(e) (1Y)
where A(e) = (|yie ], [y2¢ L, -+, lyne1]). On the other hand, by the branching relations for
Schur polynomials we have
€z €z N—-1 4 — — N
S (e eY) [[5  ite NV-0/2 S N ] e
N (e — 0\ T ’
sx(e) (1Y) [Ticicj<n(Aile) = Aj(e) +5 — ) sl <N —1<) pabet

where p° = @ is the unique signature of length 0. From Exercise 4 conclude that the factor in front
of the sum behaves like m as € — 0, and so the whole expression can be viewed as a Riemann
sum that asymptotically approximates

N
1 / 1 N-1 i i—1
_— dx”---dx exp zi - ||t — |z ,
TN Jorv 2z [l - 1]

where oV = y and |z| = 21 + - - - + 7, for an m-dimensional vector. Use Problem 1 to deduce that
the above expression is precisely E*Y [exp(trace Z - H)].

3. OPTIONAL PROBLEMS

The following section contains a couple of problems that are related to the material covered in
lectures and are meant for interested readers.

Problem A. Let X be an N x N matrix of i.i.d. standard complex Gaussians (i.e. X, =
Znm + iZmn where Zn, Zmn are normal random variables with mean 0 and variance 1). Define
M = #£X* _ this is a random matrix from the Gaussial Unitary Ensemble (GUE). Denote by Xg
for 1 <j < N—1and 1 <i < j the ordered (random) eigenvalues of the principal submatrices of
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the matrix M. In particular, we assume that X{ > Xg > > Xg are the ordered eigenvalues of
the j x j-th submatrix. Prove that the density of (X!,..., X"V) is given by

1(z! <22 <. <2V N N T N2/
(12) fat, a2y ===t = 2T [T @ -l [ @
( ZF)N 1<i<j<N ’ i=1

where 1(+) is 1 if the condition in the brackets is satisfied and 0 otherwise. Using Exercise 4 deduce
that the density of XV is given by

1(z! <22 <. <2N) N N T aNy2/
(13) faVy == o (@ — )y [[e @D
( 27T)N H L il 1<i1<_]I'<N ' ’ ];[
Hint: Proceed by induction on N and for the induction step use the following result

N+1 . N+1
1 H1§i<j§N+1(y7, —Y;

V2r Tlicicjen(X)N - XN)

N+1
exp(—Z( Nl /2—|—ZXN /2>dy

i=1

P(XNH ey pay| X, XN = ).1(XN<yN+1)><

(14)

The main difficulty is in establishing (14). Use Exercise 1 to deduce that the conditional distribution

of XN*1 given X1, ..., X" is the same as the distribution of the roots of
N
H(z - XxN). ,
i=1

where & = |X;n|* and n = X(N+1)(v+1)- Note &; are exponentially distributed with parameter 1
and 7 is normal with mean 0 and variance 1 — all variables are independent.

Conclude that we have the following system of equations
I (g —xM

1

N
|| i;ék(XN - XY)
N+1

n_ZXN—H ZXN

and note that the map h: (&1,...,&N,n) — (Xf\”r1 X%Ll) defines a bijective diffeomorphism
between RY) x R and I = (—o0, XN) X (X, XN_1) x -+ (X3, X{) x (X{¥, 00). The latter implies
exp [—hfl(x) — = b () - hz}l_irl(a:)2/2}
V2
where J is the Jacobian of the map h. Similarly to Step 5 in Problem 1 one computes
H HNH(X;?] — x;) ' H1§i<j§N(XN - XN) : H1<z<j§N+1(xi — ;)
N
-1 1li= lz;ék(XN_X‘N) Hz 1H H(XN_%')

]._[1<1<j<N+1( — zj)

 Thcicjen(XY = X7
A final observation using (1) shows that

§pk=—

fork=1,...,N
(15)

P(XNH GA\XN,...,Xl)—/ | det J(z)]
ANl

| det J(z

N+1 N

hit(@)+ -+ hyt (@) + Bt ()22 = 2?2 =) (XN)?/2,

i=1 i=1

dry---drNny1,



PROBLEM SESSION I1 6
which proves (14).

Problem B. Consider the law of (¢1,...,¢x) as in Problem 5 of Session I. Let L be a large parameter
and set A = alL, B = bL, C' = cL while N is kept fixed. Show directly that for an appropriate
choice of constants dy and do (depending on a,b and ¢) the distribution of the N-dimensional vector

converges to the density in (12).
Hint: The rescaling constants are di = 35 and dy = %.

Remark: In Lectures 2 and 3 the convergence in Problem B was shown using the method of Schur
generating functions (SGF). While the approach in Problem B is more direct it fails to generalize
to situations where the SGF is applicable. Both methods show that the distribution of random
uniform tilings on the hexagon, restricted to a single line near a turning point converges to the
eigenvalue distribution of the GUE ensemble. The full convergence to the GUE corners is obtained
by combining this result with the fact that conditional on a single line one has uniformity in both
the tiling model (essentially by definition) and in the GUE corners (using Problem 1 and the unitary
invariance of the ensemble). A good place to see ideas of how this is done is [3].
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