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LECTURER: VADIM GORIN TA: EVGENI DIMITROV

July 16, 2018

The following session elaborates Lecture 3. The focus is on deriving the conditional uniform dis-
tribution of corners in unitarily invariant measures and the Harish-Chandra-Itzykson-Zuber formula
discussed in lecture. The �rst section below lists several basic facts from linear algebra that are
isolated as exercises and will be used in the problems later. Our exposition draws upon [1] and [2]
and we refer to these articles for further reading.

1. Preliminaries

For any N ∈ N we let Mat(C;N) denote the set of N × N matrices with complex entries. An
element M ∈ Mat(C;N) is called Hermitian if Mij = M ij for 1 ≤ i, j ≤ N , i.e. M = M∗ (its
conjugate transpose). The Spectral theorem (see https : //en.wikipedia.org/wiki/Spectral_theorem)
states that if M is an N ×N Hermitian matrix then

(1) M has an orthonormal basis of eigenvectors in CN ;
(2) all eigenvalues of M are real, and we denote them λ1 ≥ λ2 ≥ · · · ≥ λN ;
(3) there is a unitary matrix U such that UMU∗ = diag(λ1, . . . , λN ) (the diagonal matrix,

whose (i, i)-th entry is λi.

If A ∈ Mat(C;N) is Hermitian then so is its principal submatrix � the element B ∈ Mat(C;N−1)
such that Bij = Aij for 1 ≤ i, j ≤ N − 1. Let a1 ≥ a2 ≥ · · · ≥ aN denote the eigenvalues of A and
b1 ≥ b2 ≥ · · · ≥ bN−1 those of B. From the Spectral theorem there exists a unitary (N−1)×(N−1)
matrix U such that UBU∗ = diag(b1, . . . , bN−1). We thus have

(1)

[
U 0
0 1

]
·A ·

[
U∗ 0
0 1

]
=

[
diag(b1, . . . , bN−1) Uy

y∗U∗ ANN

]
,

where y is the (N − 1)× 1 column vector [A1N , . . . , A(N−1)N ]t.

Exercise 1. Using (1) prove the following formula for the characteristic polynomial of A

(2) PA(z) =
N∏
i=1

(z − ai) =
N−1∏
i=1

(z − bi) ·

z −ANN − N−1∑
j=1

ξj
z − bj

 ,
where ξj = |[Uy]j |2 (the square of the absolute value of the j-th entry of Uy) for j = 1, . . . , N − 1.
Use (2) to show that the eigenvalues of A and B satisfy a1 ≥ b1 ≥ a2 ≥ b2 · · · ≥ aN−1 ≥ bN−1 ≥ aN
(written as a � b for short).

Exercise 2. Suppose that V is an N ×N unitary matrix such that V AV ∗ = diag(a1, . . . , aN ), and
let x be the N × 1 column vector [VN1, . . . , VNN ]∗. Show that the characteristic polynomial of B
satis�es the following formula

(3)
N−1∏
i=1

(z − bi) =
N∏
i=1

(z − ai) ·
N∑
i=1

|xi|2

z − ai
.
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Hint: Conjugate

[
z · IN −A x

x∗ 0

]
with

[
V 0
0 1

]
and compare the resulting determinant with det[z ·

IN−1 −B].

Exercise 3. Prove the Cauchy determinant formula

(4) det

[
1

xi − yj

]N
i,j=1

=

∏
1≤i<j≤N (xj − xi)(yi − yj)∏

1≤i,j≤N (xi − yj)
.

By multiplying both sides of (4) by (−yN ) and letting yN →∞ show that

(5) det

[
1

xi − yj

∣∣∣1N] =

∏
1≤i<j≤N (xj − xi) ·

∏
1≤i<j≤N−1(yi − yj)∏N

i=1

∏N−1
j=1 (xi − yj)

,

where the matrix on the left side of (5) is the same as that on the left side of (4) with all entries in
the last column replaced by 1's.
Hint: Multiply both sides of (4) by

∏
1≤i,j≤N (xi−yj) and show that both sides are degree N(N−1)

polynomials in (x, y) that are skew-symmetric in x's and y's. Finally, compare the coe�cient of
(x1y1)

N−1(x2y2)
N−2 · · · (xN−1yN−1)1 on both sides.

Exercise 4. For y = (y1 > y2 > · · · > yN ) ∈ RN de�ne the Gelfand Tsetlin polytope GTN (y) by

(6) GTN (y) := {(x1, . . . , xN ) : xN = y, xk = Rk, xk � xk−1, 2 ≤ k ≤ N}.

The set GTN (y) can naturally be understood as a bounded convex subset of RN(N−1)/2. Prove that
its volume is given by

(7) |GTN (y)| =
∏

1≤i<j≤N

yi − yj
j − i

.

Hint: Let NL be the number of integer lattice points in Z × Z2 × · · · × ZN−1 ∩ GTN (λL), where

λLi = bL · yic. Argue that |GTN (y)| = limL→∞ L
−N(N−1)/2NL. Finally, use that NL = sλL(1N ) and

apply Problem 1 from Session I.

Exercise 5. Let z = (z1, . . . , zN ), y = (y1, . . . , yN ) ∈ RN be given. Show that

(8) ezN ·
∑N

i=1 yi · det
[
e(zi−zN )yj − e(zi−zN )yj+1

]N−1
i,j=1

= det [eziyj ]Ni,j=1 .

Hint: Divide the j-th column of the matrix on the RHS by ezNyj for j = 1, . . . , N and then subtract
the j + 1-th column from the j-th one for j = 1, . . . , N − 1.

2. Problems

Problem 1. Let y = (y1 > y2 > · · · > yN ) ∈ RN be given. Consider the random matrix
H = Udiag(y1, . . . , yN )U∗, where U is a random Haar distributed N ×N unitary matrix. Denote

byXj
i for 1 ≤ j ≤ N−1 and 1 ≤ i ≤ j the ordered (random) eigenvalues of the principal submatrices

of the matrix H. In particular, we assume that Xj
1 ≥ X

j
2 ≥ · · · ≥ X

j
j are the ordered eigenvalues of

the j × j-th submatrix.
From Exercise 1 we know that X1 � X2 � X3 � · · · � XN−1 � y. The random N(N − 1)/2

dimentional vector (X1, . . . , XN−1) can be understood as a random element in Gelfand Tsetlin
polytope GTN (y). Show that (X1, . . . , XN−1) is uniformly distributed on GTN (y) by completing
the following outline.
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1. Use Exercise 2 to show that the distribution of XN−1 is the same as the distribution of the
ordered roots of the polynomial

∏N
i=1(z−yi)·

∑N
i=1

|vi|2
z−yi , where v = (v1, . . . , vN ) is uniformly

distributed on the unit sphere S in CN (i.e. S = {x ∈ CN : x∗x = 1}).
2. Let D1 = {x ∈ CN : x∗x ≤ 1} and ∆1 = {w = (w1, . . . , wN ) ∈ RN : wi ≥ 0, w1 + · · ·+wN ≤

1}. Consider the map f : D1 → ∆1, given by f(x1, . . . , xN ) = (|x1|2, . . . , |xN |2) and show
that if A is uniformly distributed in D1, f(A) is uniformly distributed in ∆1. Conclude
that the distribution of XN−1 is the same as the distribution of the ordered roots of the
polynomial

∏N
i=1(z − yi) ·

∑N
i=1

Wi
z−yi , where W = (W1, . . . ,WN ) is uniformly distributed on

Σ = f(S) = {w = (w1, . . . , wN ) ∈ RN : wi ≥ 0, w1 + · · ·+ wN = 1}.
3. We obtain the following system of equations relating the variables Wi and X

N−1
i (written

Xi for short)

W1

y1 −Xi
+ · · ·+ WN

yN −Xi
=0 for i = 1, . . . , N − 1

W1 +W2 + · · ·+WN =1.
(9)

Using Cramer's rule and Exercise 3 show that

(10) Wk = hyk(X1, . . . , XN−1) :=

∏N−1
i=1 (yk −Xi)∏N
i=1,i 6=k(yk − yi)

for k = 1, . . . , N.

4. Use the previous part to show that the map hy = (hy1, . . . , h
y
N−1) de�nes a bijective di�eo-

morphism between I = (y2, y1)× (y3, y2)× · · ·× (yN , yN−1) and the unit simplex ∆ = {w =
(w1, . . . , wN−1) ∈ RN−1 : wi > 0, w1 + · · · + wN−1 < 1}. Conclude that for some constant
c > 0 (you do not need to compute it yet) you have

P(X ∈ A) =

∫
A∩I

c · | det J(x)|dx1 · · · dxN−1,

where J is the Jacobian of the map hy.
5. Show that

J(x) =

[∏N−1
i=1,i 6=j(yk − xi)∏N
i=1,i 6=k(yk − yi)

]N−1
k,j=1

and using Exercise 3 prove that

| det J(x)| =
∏

1≤i<j≤N−1(xi − xj)∏
1≤i<j≤N (yi − yj)

.

6. Use Exercise 4 to show that the constant c from part 4 is equal to (N − 1)!.
7. Prove the statement of the problem by induction on N .
Hint: When going from N to N + 1 use the fact that conditional on XN the distribution
of (X1, . . . , XN−1) is uniform on GTN (XN ).

Problem 2. Let y = (y1, y2, . . . , yN ), z = (z1, z2, . . . , zN ) ∈ RN be given. Consider two determin-
istic Hermitian matrices Z, Y such that spec(Z) = z and spec(Y ) = y (i.e. the eigenvalues of Z
and Y are z1, . . . , zN and y1, . . . , yN respectively) and the random matrix H = UY U∗, where U
is a random Haar distributed N × N unitary matrix. Prove the Harish-Chandra-Itzykson-Zuber
formula

(11) Ez,y [exp(tr Z ·H)] =
N−1∏
i=1

i! ·
det[exp(yizj)]

N
i,j=1∏

1≤i<j≤N (yi − yj)(zi − zj)
=: By(z1, . . . , zN ).
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First approach: Reduce the statement to when Z and Y are diagonal and z's and y's are ordered.
Proceed by induction on N . When going from N − 1 to N use the tower property to write

Ez,y [exp(trace Z ·H)] = Ez,y
[
exp(zN · [trY − trH̃]) · Ez,y

[
exp(tr Z̃ · H̃)|spec(H̃) = (µ1, . . . , µN−1)

]]
,

where H̃ is the (N − 1)× (N − 1) principal submatrix of H and Z̃ = diag(z1, . . . , zN−1).
Apply the induction hypothesis to deduce that

Ez,y [exp(trace Z ·H)] = Ez,y
[

exp(zN · [trY − trH̃]) ·
N−2∏
i=1

i! ·
det[exp(µizj)]

N−1
i,j=1∏

1≤i<j≤N−1(µi − µj)(zi − zj)

]
.

Finally, apply Step 4 in Problem 1 to get

Ez,y [exp(trace Z ·H)] =

∫ y1

y2

· · ·
∫ yN−1

yN

dµ1 · · · dµN−1 exp

(
zN ·

[
N∑
i=1

yi −
N−1∑
i=1

µi

])
·
N−1∏
i=1

i!·

det[exp(µizj)]
N−1
i,j=1∏

1≤i<j≤N−1(zi − zj) ·
∏

1≤i<j≤N (yi − yj)
,

change the order of the determinant and integral, perform the integral and use Exercise 5 to �nish.

Second approach: As discussed in Lecture 3 we have essentially by de�nition of sλ that

N−1∏
i=1

i! ·
det[exp(yizj)]

N
i,j=1∏

1≤i<j≤N (yi − yj)(zi − zj)
= lim

ε→0

sλ(ε)(e
εz1 , . . . , eεzN )

sλ(ε)(1N )
,

where λ(ε) = (by1ε−1c, by2ε−1, · · · , byN ε−1c). On the other hand, by the branching relations for
Schur polynomials we have

sλ(ε)(e
εz1 , . . . , eεzN )

sλ(ε)(1N )
=

∏N−1
i=1 i!ε−N(N−1)/2∏

1≤i<j≤N (λi(ε)− λj(ε) + j − i)
∑

∅�µ1�µ2···�µN−1�λ

εN(N−1)/2
N∏
i=1

eεzi(|µ
i|−|µi−1|),

where µ0 = ∅ is the unique signature of length 0. From Exercise 4 conclude that the factor in front
of the sum behaves like 1

|GTN (y)| as ε→ 0, and so the whole expression can be viewed as a Riemann

sum that asymptotically approximates

1

|GTN (y)|
·
∫
GTN (y)

dx1 · · · dxN−1 exp

(
N∑
i=1

zi ·
[
|xi| − |xi−1|

])
,

where xN = y and |x| = x1 + · · ·+ xm for an m-dimensional vector. Use Problem 1 to deduce that
the above expression is precisely Ez,y [exp(trace Z ·H)].

3. Optional problems

The following section contains a couple of problems that are related to the material covered in
lectures and are meant for interested readers.

Problem A. Let X be an N × N matrix of i.i.d. standard complex Gaussians (i.e. Xmn =

Zmn + iZ̃mn where Zmn, Z̃mn are normal random variables with mean 0 and variance 1). De�ne

M = X+X∗
2 � this is a random matrix from the Gaussial Unitary Ensemble (GUE). Denote by Xj

i
for 1 ≤ j ≤ N − 1 and 1 ≤ i ≤ j the ordered (random) eigenvalues of the principal submatrices of
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the matrix M . In particular, we assume that Xj
1 ≥ Xj

2 ≥ · · · ≥ Xj
j are the ordered eigenvalues of

the j × j-th submatrix. Prove that the density of (X1, . . . , XN ) is given by

(12) f(x1, . . . , xN ) =
1(x1 � x2 � · · · � xN )

(
√

2π)N
·

∏
1≤i<j≤N

(xNi − xNj ) ·
N∏
i=1

e−(x
N
i )2/2,

where 1(·) is 1 if the condition in the brackets is satis�ed and 0 otherwise. Using Exercise 4 deduce
that the density of XN is given by

(13) f(xN ) =
1(x1 � x2 � · · · � xN )

(
√

2π)N
∏N−1
i=1 i!

∏
1≤i<j≤N

(xNi − xNj )2 ·
N∏
i=1

e−(x
N
i )2/2.

Hint: Proceed by induction on N and for the induction step use the following result

P(XN+1 ∈ yN+1 + dy|X1, . . . , XN ) =
1√
2π

∏
1≤i<j≤N+1(y

N+1
i − yN+1

j )∏
1≤i<j≤N (XN

i −XN
j )

· 1(XN ≺ yN+1)×

exp

(
−
N+1∑
i=1

(yN+1
i )2/2 +

N∑
i=1

(XN
i )2/2

)
dy.

(14)

The main di�culty is in establishing (14). Use Exercise 1 to deduce that the conditional distribution
of XN+1 given X1, . . . , XN is the same as the distribution of the roots of

N∏
i=1

(z −XN
i ) ·

z − η − N∑
j=1

ξj

z −XN
i

 ,
where ξj = |XjN |2 and η = X(N+1)(N+1). Note ξj are exponentially distributed with parameter 1
and η is normal with mean 0 and variance 1 � all variables are independent.

Conclude that we have the following system of equations

ξk =−
∏N+1
i=1 (XN

k −X
N+1
i )∏N

i=1,i 6=k(X
N
k −XN

i )
for k = 1, . . . , N

η =
N+1∑
i=1

XN+1
i −

N∑
i=1

XN
i

(15)

and note that the map h : (ξ1, . . . , ξN , η) → (XN+1
1 , . . . , XN+1

N+1 ) de�nes a bijective di�eomorphism

between RN>0×R and I = (−∞, XN
N )× (XN

N , X
N
N−1)×· · · (XN

2 , X
N
1 )× (XN

1 ,∞). The latter implies

P(XN+1 ∈ A|XN , . . . , X1) =

∫
A∩I
|det J(x)|

exp
[
−h−11 (x)− · · · − h−1N (x)− h−1N+1(x)2/2

]
√

2π
dx1 · · · dxN+1,

where J is the Jacobian of the map h. Similarly to Step 5 in Problem 1 one computes

| det J(x)| =

∣∣∣∣∣
N∏
k=1

∏N+1
i=1 (XN

k − xi)∏N
i=1,i 6=k(X

N
k −XN

i )
·
∏

1≤i<j≤N (XN
i −XN

j ) ·
∏

1≤i<j≤N+1(xi − xj)∏N
i=1

∏N+1
j=1 (XN

i − xj)

∣∣∣∣∣
=

∏
1≤i<j≤N+1(xi − xj)∏
1≤i<j≤N (XN

i −XN
j )

.

A �nal observation using (1) shows that

h−11 (x) + · · ·+ h−1N (x) + h−1N+1(x)2/2 =
N+1∑
i=1

x2i /2−
N∑
i=1

(XN
i )2/2,
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which proves (14).

Problem B. Consider the law of (`1, . . . , `N ) as in Problem 5 of Session I. Let L be a large parameter
and set A = aL, B = bL, C = cL while N is kept �xed. Show directly that for an appropriate
choice of constants d1 and d2 (depending on a, b and c) the distribution of the N -dimensional vector

(16)

{
`i − d1L
d2
√
L

}N
i=1

converges to the density in (12).

Hint: The rescaling constants are d1 = ac
b+c and d2 =

√
abc(a+b+c)

(b+c)3
.

Remark: In Lectures 2 and 3 the convergence in Problem B was shown using the method of Schur
generating functions (SGF). While the approach in Problem B is more direct it fails to generalize
to situations where the SGF is applicable. Both methods show that the distribution of random
uniform tilings on the hexagon, restricted to a single line near a turning point converges to the
eigenvalue distribution of the GUE ensemble. The full convergence to the GUE corners is obtained
by combining this result with the fact that conditional on a single line one has uniformity in both
the tiling model (essentially by de�nition) and in the GUE corners (using Problem 1 and the unitary
invariance of the ensemble). A good place to see ideas of how this is done is [3].
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