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Abstract. Regluing is a surgery that helps to build topological mod-
els for rational functions. It also has a holomorphic interpretation,
with the flavor of infinite dimensional Thurston–Teichmüller theory.
We will discuss a topological theory of regluing, and just trace a
direction, in which a holomorphic theory can develop.

1. Introduction

1.1. Overview and main results

Consider a continuous map f : S2 → S2. We are mostly interested
in the case, where f is a rational function of one complex variable
considered as a self-map of the Riemann sphere. The objective is to
study the topological dynamics of f . In particular, how to modify
the topological dynamics in a controllable way? There is an opera-
tion that does not change the dynamics at all: a conjugation by a
homeomorphism. Let Φ : S2 → S2 be a homeomorphism, and con-
sider the map g = Φ ◦ f ◦Φ−1. Then one can think of g as being “the
map f but in a different coordinate system”. In particular, all dy-
namical properties of the two maps are the same. Another example
is a semi-conjugacy. Let Φ : S2 → S2 now be a continuous surjec-
tive map, but not a homeomorphism. Sometimes, the “conjugation”
g = Φ ◦ f ◦ Φ−1 still makes sense, although Φ−1 does not make sense
as a map. Namely, this happens when f maps fibers of Φ to fibers of
Φ. In this case, g is well-defined as a continuous map. Such map is
said to be semi-conjugate to f .

If we want to perform a surgery on f , then we need to consider
discontinuous maps Φ (if you don’t cut, that is not a surgery). Of
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course, if we allow badly discontinuous maps Φ, then the “conjuga-
tion” g = Φ ◦ f ◦ Φ−1, even if it makes sense as a map, would have
almost nothing in common with f , in particular, it would be hard to
say anything about the dynamics of g. Thus we must confine ourselves
with only nice types of discontinuities. An example is the following:
given a simple curve, one can cut along this curve, and then reglue
in a different way.

E.g. consider the following map:

j(z) =
√

z2 − 1.

Note that there are two branches of this map that are well-defined
and holomorphic on the complement to the interval [−1, 1]. We choose
the branch that is asymptotic to the identity near infinity and call
it j. The map j has a continuous extension to each “side” of the
interval [−1, 1] but the limit values at different sides do not match.
By considering the limit values of j at both sides of [−1, 1], we can say
that j reglues this interval into the interval [−i, i] (i.e. the straight line
segment connecting i and −i). A precise definition of a regluing will
be given in Section 2.1. For now, a regluing of a set of disjoint simple
curves is a one-to-one map defined and continuous on the complement
to these curves and behaving near each curve as the map j considered
above.

We are forced to consider regluings of countably many curves. In
fact, if we want to reglue some curve in the dynamical picture of a
function f , then, in order to have a global continuous extension of
Φ◦f ◦Φ−1, our regluing Φ must also reglue all pullbacks of this curve
under f .

Below, we briefly explain the main result. Since the precise defi-
nitions are rather lengthy, we will only give a sketch, postponing the
detailed statements until the main body of the paper. Let Φ be a
regluing of countably many disjoint simple curves in the sphere (note
that the complement to countably many simple curves is not neces-
sarily open but is always dense). Also, consider a branched covering
f : S2 → S2. Under certain simple topological conditions on f and
the curves, we can guarantee that the map Φ ◦ f ◦Φ−1 extends to the
whole sphere as a branched covering. We say that this covering is ob-
tained from f by topological regluing of disjoint simple curves. With
the help of topological regluing, new topological models of rational
functions can be obtained from the existent models.

The simplest example is provided by quadratic polynomials. E.g.
consider the quadratic polynomial f(z) = z2−6 (the particular choice
of number 6 does not have any importance; we could as well take any
real number bigger than 2). Most points escape to infinity under the
iterations of f . The set of points that do not escape is a Cantor set Jf

called the Julia set of f . This set lies on the real line. The right-most
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point of Jf is 3. Note that 3 is fixed under f . The left-most point
of Jf is −3, which is mapped to 3. The biggest component of the
complement to Jf in [−3, 3] is (−√3,

√
3), and all other components

are pullbacks of (−√3,
√

3) under the iterates of f . The points ±√3
are mapped to −3. Suppose that we reglue the interval [−√3,

√
3]

and all its pullbacks under f . Then the Julia set of f collapses into a
connected set homeomorphic to the interval. Moreover, we can choose
the corresponding regluing map Φ in such a way that Φ ◦ f ◦ Φ−1

extends to the quadratic polynomial g(z) = z2 − 2, the so called
Tchebyshev polynomial. The Julia set of g is the interval [−2, 2] =
Φ(Jf ). We will work out this example in detail in Section 5.1.

More generally, let f be a quadratic polynomial z 7→ z2 + c, where
c is the landing point of an external parameter ray R. Suppose that
the Julia set of f is locally connected, and all periodic points of f in C
are repelling. Also, consider a quadratic polynomial g, for which the
corresponding parameter value belongs to R. Thus the Julia set of g
is disconnected. Then f and g can be obtained one from the other
by a regluing (of a set of disjoint simple curves). This is explained in
Section 2.3.

However, the main motivation for the notion of regluing was the
problem of finding topological models for quadratic rational func-
tions. According to a well-known general observation, the dynamical
behavior of a rational function is determined by the behavior of its
critical orbits. A quadratic rational function has two critical points.
Thus, to simplify the problem, one puts restrictions on the dynamics
of one critical point, and leaves the other critical point “free”. For
example, it makes sense to consider quadratic rational functions with
one critical point periodic of period k. For k = 1, we obtain quadratic
polynomials. Indeed, the fixed critical point can be mapped to infin-
ity, and a quadratic rational function having infinity as a fixed critical
point is necessarily a quadratic polynomial.

Suppose now that k > 1, and f is a quadratic rational func-
tion with a k-periodic critical point and the other critical point non-
periodic. Recall that f is called a hyperbolic rational function of type
B if the non-periodic critical point of f lies in the immediate basin
of the periodic critical cycle (but necessarily not in the same compo-
nent, see e.g. [Mi93,R90]). The function f is said to be a hyperbolic
rational function of type C if the non-periodic critical point of f lies in
the full basin of the periodic critical cycle, but not in the immediate
basin. The classification of hyperbolic rational functions into types
was introduced by M. Rees [R90]. However, a different terminology
was used (types II and III instead of types B and C). We use the ter-
minology of Milnor [Mi93], which is more popular and perhaps more
suggestive (B stands for “Bi-transitive”, and C for “Capture”).
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Fix k > 1. The set of hyperbolic rational functions with a k-
periodic critical point splits into hyperbolic components. We say that
a hyperbolic component is of type B or C if it consists of hyperbolic
rational functions of this type. There are also type D components,
which we do not discuss in this paper. There are no type A compo-
nents for k > 1.

Theorem 1. Let f be a quadratic rational function with a k-periodic
critical point. If f is on the boundary of a type C hyperbolic component
but not on the boundary of a type B hyperbolic component, then f is
the continuous extension of Φ ◦ h ◦ Φ−1 to the sphere, where h is a
critically finite hyperbolic rational function, and Φ is a regluing of a
countable set of disjoint simple curves. Moreover, h can be chosen to
be the center of any type C hyperbolic component, whose boundary
contains f .

This result, combined with the topological models for hyperbolic
critically finite functions given in [R92], provides topological models
for most functions on the boundaries of type C components. We will
prove Theorem 1 in Section 3. The requirement that f be not on the
boundary of a type B component is probably inessential. However, to
study functions on the boundary of a type B component, one needs
to use different techniques. For k = 2, there is only one type B com-
ponent, and a complete description of its boundary is available [T08]:
all functions on the boundary are simultaneously matings and anti-
matings. See also [Luo,AY] for other interesting results concerning
the case k = 2. On the other hand, I do not know any example of a
type C hyperbolic component and a type B hyperbolic component,
whose boundaries intersect at more than one point. In the proof of
Theorem 1, many important ideas of [R92] are used. At some point,
we employ an analytic continuation argument similar to that in [AY].

In Section 6, we prove that under some natural assumptions on
a set of simple disjoint curves on the sphere, there exists a topo-
logical regluing of this set. This statement is a major ingredient in
the proof of Theorem 1. The existence result is based on a theory of
Moore [Mo16], which gives a topological characterization of spaces
homeomorphic to the 2-sphere.

In Section 5, we define an explicit sequence of approximations
to a regluing. These approximations are defined and holomorphic
on the complements to finitely many simple curves (not necessarily
disjoint). The holomorphy of approximations may prove to be impor-
tant. However, we just introduce the basic notions and postpone a
deeper theory for future publications.
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2. Topological regluing

We define topological regluing and give simplest examples, in particular, we discuss

topological regluing of quadratic polynomials.

2.1. Definition and examples

Let S1 denote the unit circle in the plane. In Cartesian coordinates
(t1, t2), it is given by the equation t21+t22 = 1. We will also consider the
sphere S2 obtained as the one-point compactification of the (t1, t2)-
plane. In this sphere, consider the region ∆∞ bounded by S1 and
containing ∞ (i.e. the outside of the unit circle). The closure of this
region in the sphere is denoted by ∆∞. We will write ∆ for the unit
disk {t21 + t22 < 1}. The Klein 4-group V4 acts on the unit circle.
Namely, the two generators of V4 are s1 : (t1, t2) 7→ (t1,−t2) and
s2 : (t1, t2) 7→ (−t1, t2).

A continuous map α : S1 → S2 is called an α-path if α(t1, t2) =
α(t′1, t

′
2) is equivalent to t′1 = t1. Note that α(t1, t2) is then an injective

continuous function of t1, and that t′1 = t1 implies t′2 = ±t2. Similarly,
a continuous map β : S1 → S2 is called a β-path if β(t1, t2) = β(t′1, t

′
2)

is equivalent to t′2 = t2. Thus β can be represented as an injective
continuous function of t2. Note that every simple path γ : [−1, 1] →
S2 can be interpreted either as an α-path defined as α(t1, t2) = γ(t1)
or as a β-path defined as β(t1, t2) = γ(t2). Note also that any α-
path can be considered as a quotient map of S1 by the action of s1.
Similarly, any β-path can be considered as a quotient map of S1 by
the action of s2.

With every α-path α, we can associate a gluing map πα : ∆∞ →
S2, a continuous map that restricts to an orientation-preserving
homeomorphism between ∆∞ and S2 − α(S1) and coincides with
α on S1. The gluing map πα thus defined is unique up to a homo-
topy relative to the unit circle. Similarly, we associate a gluing map
πβ : ∆∞ → S2 with every β-path β. Note that gluing maps are
quotient maps of ∆∞ by the action of s1 or s2 on S1.

Let A be a set of disjoint α-paths in the sphere. Being disjoint
means that α(S1) ∩ α′(S1) = ∅ for every pair of different α-paths
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α, α′ ∈ A. Define the set ImA ⊂ S2 as the union of α(S1) for all
α ∈ A. We define ImB for a set B of disjoint β-paths in the same
way. For every α ∈ A, fix a gluing map πα : ∆∞ → S2. Define the
ungluing space ΥA of A as the subset of ∆

A
∞ given by the following

condition. A point χ : A → ∆∞ of ∆
A
∞ belongs to ΥA if the points

πα ◦ χ(α) ∈ S2 are the same for all α ∈ A. In other terms, ΥA is the
equalizer of the gluing maps πα, α ∈ A. Define the map πA : ΥA → S2

as the map χ 7→ πα ◦ χ(α) (note that, by definition, πα ◦ χ(α) does
not depend on α). Clearly, this map is continuous. Intuitively, ΥA is
obtained from the sphere by ungluing all curves α(S1), α ∈ A, i.e.
making topological circles out of them. Note that a point x ∈ S2

has only one preimage under the map πA unless x ∈ α(S1) for some
α ∈ A. Similarly, we can define the ungluing space ΥB and the map
πB : ΥB → S2 for a set B of disjoint β-paths.

Denote by Υ ◦A the subset π−1
A (S2 − ImA) of the ungluing space

ΥA. Also, for every α ∈ A, we can define S1
α ⊂ ΥA as the set of points

χ ∈ ΥA such that πA(χ) ∈ α(S1). There is a natural homeomorphism
hα : S1 → S1

α that takes a point u ∈ S1 to the point χ ∈ S1
α defined

as follows:

χ(α′) =
{

u, α = α′

π−1
α′ ◦ α(u), α 6= α′

Thus the ungluing space splits into the union of the set Υ ◦A, which
identifies canonically with S2 − ImA, and disjoint topological circles
S1

α, which identify canonically with S1.
The Klein group V4 acts on ΥA. Namely, the action on Υ ◦A is trivial,

and the action on every circle S1
α identifies (through the homeomor-

phism hα) with the standard action of V4 on S1. It is not hard to prove
that πA : ΥA → S2 is a quotient map by the action of s1 (warning:
the action is not continuous; it still makes sense to talk about the
quotient space by the orbit equivalence relation). Similarly, for a set
B of disjoint β-paths, the map πB : ΥB → S2 is a quotient map by
the action of s2.

We can now give a definition of a regluing. Here, we will only
define a topological regluing of a set of disjoint simple curves, thus
the word “regluing” will only be used in this sense until Section 5.
Consider a set A of disjoint α-paths and a set B of disjoint β-paths
in the sphere. A bijective continuous orientation-preserving map Φ :
S2− ImA → S2− ImB is called a regluing of A into B according to a
given one-to-one correspondence between A and B if, for every α ∈ A
and the corresponding β ∈ B, the map

π−1
β ◦ Φ ◦ πα : π−1

α (S2 − ImA) → π−1
β (S2 − ImB)

extends to S1 ∪ π−1
α (S2 − ImA) so that the extension is continuous

at all points of S1, and its restriction to S1 is the identity.
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Fig. 1. A schematic picture of regluing

Example 1. As an example, consider a branch of the function

j(z) =
√

z2 − 1

on the sphere with the interval [−1, 1] removed. Then j maps the set
C− [−1, 1] to the set C− [−i, i] homeomorphically. Set α(t1, t2) = t1
and β(t1, t2) = it2. The map j reglues α into β, for a suitable choice
of the branch.

Proposition 1. Consider a regluing Φ : S2 − ImA → S2 − ImB.
There exists a homeomorphism Φ̂ : ΥA → ΥB that makes the following
diagram commutative:

ΥA
πA−−−→ S2 inclusion←−−−−− S2 − ImA

Φ̂

y
yΦ

ΥB
πB−−−→ S2 inclusion←−−−−− S2 − ImB

Moreover, the homeomorphism Φ̂ commutes with the action of V4 on
the ungluing spaces.

Proof. On Υ ◦A, we define Φ̂ as π−1
B ◦ Φ ◦ πA. On S1

α, α ∈ A, define Φ̂
as hβ ◦ h−1

α , where β is the β-path corresponding to the α-path α.
It is clear that Φ̂ is one-to-one. This map is continuous on Υ ◦A by

definition. The continuity on S1
α, α ∈ A, follows from the formula

Φ̂ = pr−1
β ◦ π−1

β ◦ Φ ◦ πα ◦ prα

on Υ ◦A, where prα : ΥA → S2 is the projection χ 7→ χ(α). Since
the ungluing spaces are Hausdorff and compact, it follows that Φ̂
is a homeomorphism. Since Φ̂ acts as the identity under standard
identifications of S1

α and S1
β with S1, the action of V4 is preserved.

ut
For every α-path α : S1 → S2, define a β-path α# as follows:

α#(t1, t2) = α(t2, t1). Similarly, the formula β#(t1, t2) = β(t2, t1)
makes a β-path β into an α-path β#. For a set A of α- or β-paths,
we can form the set A# = {α# | α ∈ A}.
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Proposition 2. Consider a regluing Φ of a set A of disjoint α-paths
into a set B of disjoint β-paths.

– The map Φ : S2 − ImA → S2 − ImB is a homeomorphism.
– The map Φ−1 is a regluing of B# into A#.

Proof. This follows immediately from the existence of the homeomor-
phism Φ̂ and the fact that it commutes with the action of V4 on the
ungluing spaces. ut

Let f : S2 → S2 be a continuous map. Assume that a countable
set A of disjoint α-paths satisfies the following conditions:

– Forward semi-invariance: for any path α ∈ A, we have f◦α ∈ A or
f ◦α(t1, t2) = f ◦α(−t1, t2) for all (t1, t2) ∈ S1. In the latter case,
f ◦α(S1) must be disjoint from ImA. In the former case, the map
π−1

α◦f ◦f ◦πα must be defined for all points of ∆∞ sufficiently close
to S1, and must extend to a neighborhood of S1 in ∆∞ so that
the extension is continuous at all points of S1, and its restriction
to S1 is the identity.

– Backward invariance: we have f−1(ImA) ⊆ ImA.

We say in this case that A is f-stable.

Proposition 3. If the set A is f-stable, then there is a continuous
map f̂ : ΥA → ΥA that makes the following diagram commutative:

ΥA
πA−−−→ S2

f̂

y
yf

ΥA
πA−−−→ S2

Moreover, f̂ is equivariant with respect to the action of V4 on ΥA.

Proof. Suppose that f ◦ πA(χ) 6∈ ImA, then we set f̂(χ) = π−1
A ◦

f ◦ πA(χ). Now suppose that f ◦ πA(χ) ∈ α(S1) for some α ∈ A.
By the backward invariance, we necessarily have πA(χ) ∈ α′(S1)
for some other α′ ∈ A, hence χ(α′) ∈ S1. In this case, we can set
f̂(χ) = hα ◦ χ(α′). The continuity of f̂ at points of S1

α follows from
the forward semi-invariance and the formula

f̂ = pr−1
α ◦ π−1

α ◦ f ◦ πα′ ◦ prα′

on Υ ◦A. It is straightforward to check that f̂ commutes with the action
of V4. ut

Our main construction is based on the following simple fact:
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Theorem 2. Suppose that f : S2 → S2 is a continuous map, and A
is an f-stable set of disjoint α-paths. Let Φ be a regluing of A into a
set B of disjoint β-paths. Then the map g = Φ ◦ f ◦ Φ−1 extends to a
continuous map from S2 to S2. Moreover, the set B is g-stable, and
ĝ = Φ̂ ◦ f̂ ◦ Φ̂−1.

Proof. Consider the map ĝ = Φ̂ ◦ f̂ ◦ Φ̂−1, which takes ΥB to ΥB.
Since both Φ̂ and f̂ are equivariant under the action of V4, this map
is also equivariant. It follows that it descends to a continuous map
g : S2 → S2. ut

We would like to apply this theorem as follows. Let f : C → C
be a rational function. For certain classes of rational functions f ,
there are natural ways to produce f -stable sets of paths. Then the
corresponding map g is often a model for a new rational function.
Note that the topological dynamics of g is very easy to understand
in terms of the topological dynamics of f , because Φ is a topological
conjugation except on Im(A). A remarkable fact is that in many
cases, the regluing Φ makes sense in a certain holomorphic category,
so that the construction may actually produce a rational function g
rather than just a continuous map.

Let X be a compact metric space, and S a set of compact sub-
sets of X. Recall that S forms a null-sequence if for every ε > 0,
there are only finitely many elements of S, whose diameter exceeds
ε. The following theorem is needed for the construction of topological
models:

Theorem 3. Let A be a countable set of disjoint α-paths such that
the sets α(S1), α ∈ A, form a null-sequence. Then
1. the ungluing space ΥA embeds homeomorphically to S2;
2. there exists a regluing of A into some set B of disjoint β-paths;

moreover, one can arrange that β(S1), β ∈ B also form a null-
sequence.

The statement of the theorem may seem intuitively obvious (and
it is in fact obvious for the case of finite A). Note, however, that
the set ImA may be everywhere dense in the sphere, and even have
full measure. We will prove Theorem 3 in Section 6.3 using Moore’s
theory. It is useful to know that the property of being a null-sequence
is topological, and does not depend on a particular metric:

Proposition 4. Let X be a compact metric space. A set S of compact
subsets of X forms a null-sequence if and only if for every open cov-
ering E of X, there is a finite subset S ′ ⊂ S such that every element
of S − S ′ is contained in an element of E.

In other terms, the number ε > 0 can be replaced with an open
covering E . The following proof is rather standard.
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Proof. We first prove the only if part. Let E be an open covering of
X, and ε its Lebesgue number. Recall that a Lebesgue number of E
is defined as a real number ε > 0 such that every set of diameter less
than ε belongs to an element of E . Set S ′ to be the set of all elements
of S, whose diameter is at least ε. Then, by the Lebesgue number
lemma, every element of S − S ′ is contained in an element of E .

Let us now prove the if part. Choose any ε > 0, and consider the
covering E of X by all ε/2-balls. Then there is a finite subset S ′ ⊂ S
such that every set in S−S ′ is contained in an element of E . It follows
that the diameter of any set in S − S ′ does not exceed ε. ut
Corollary 1. Let X and Y be compact metric spaces, and φ : X → Y
a continuous map. If S is a set of compacts subsets in X that form a
null-sequence, then the sets φ(A), A ∈ S, form a null-sequence in Y .

Proof. Indeed, let E be any open covering of Y . Consider the corre-
sponding covering φ∗(E) of X. By Proposition 4, all elements of S
but finitely many are subsets of elements of φ∗(E). It follows that all
φ(A), A ∈ S, but finitely many are subsets of elements of E . ut

2.2. Regluing of branched coverings

The setting of branched coverings is most commonly used for topo-
logical discussions of rational functions. On one hand, branched cov-
erings are objects of topological nature, and are much more flexible
than holomorphic functions. On the other hand, they are nice objects
and do not have pathologies of general continuous maps. This is why
we want the regluing construction to fit into the contest of topological
branched coverings.

Let f : S2 → S2 be a branched covering. Consider a set A of
simple disjoint α-paths in the sphere such that α(S1), α ∈ A, form
a null-sequence. We say that A is strongly f-stable if it is f -stable,
and satisfies the following additional assumption: all critical points
in ImA have the form α(0, 1), where α ∈ A is a path such that
f ◦ α(t1, t2) = f ◦ α(−t1, t2) for all (t1, t2) ∈ S1; moreover, these
critical points are simple. Note that the null-sequence property is
included into the notion of a strongly f -stable set of paths.

Theorem 4. Let f : S2 → S2 be a branched covering, and A a
strongly f-stable set of disjoint α-paths. Consider a regluing Φ :
S2 − ImA → S2 − ImB of A into some set B of disjoint β-paths.
Then the map g = Φ ◦ f ◦ Φ−1 extends to a branched self-covering of
S2.

We will prove this theorem in Section 6.4. In the statement of the
theorem, the curves β(S1), β ∈ B, will automatically form a null-
sequence. Indeed, by Theorem 3, there is a regluing Φ′ of A into
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some set B′ of disjoint β-paths such that β′(S1), β′ ∈ B′, form a
null-sequence. Then Φ ◦ (Φ′)−1 extends to the sphere as a continuous
map. Moreover, it maps B′ to B. By Corollary 1, the curves β(S1),
β ∈ B, must also form a null-sequence.

2.3. Topological regluing of quadratic polynomials

In this section, we will not say much new about the dynamics of
quadratic polynomials. However, we can illustrate the idea of regluing
using quadratic polynomials as an example.

Let R be an external ray in the parameter plane of quadratic
polynomials (we write quadratic polynomials in the form pc(z) =
z2 + c, thus the parameter plane is the c-plane). Suppose that R
lands at a point c on the boundary of the Mandelbrot set. Suppose
that the Julia set of f = pc is locally connected, and that all periodic
points of f (except ∞) are repelling. The ray R determines a pair of
rays R+

f and R−
f in the dynamical plane of f that land at the critical

point 0 (for parameter values in the ray R, these two rays crash into
0). Note that there may be more rays landing at 0, but the pair of
rays R+

f , R−
f is distinguished (i.e. determined by the choice of R).

Fix any real number ρ > 0. Consider the α-path α0 : S1 → C in
the dynamical plane of f defined as follows:

α0(t1, t2) =





R+
f (t1ρ), t1 > 0,

0, t1 = 0,
R−

f (−t1ρ), t1 < 0.

Here the dynamical rays are parameterized by the values of the Green
function, thus R(t) stands for the point in the ray R, at which the
Green function is equal to t. Then, for each n ≥ 0, the multivalued
function f−n ◦ α0 has 2n branches, each being an α-path. All these
paths are called pullbacks of α0 under the iterates of f . Let A denote
the set of such pullbacks, including α0. Clearly, A is strongly f -stable.

Now consider the quadratic polynomial g = pc0 , where c0 = R(2ρ)
is the point on the external parameter ray R with parameter 2ρ (the
external parameter rays are parameterized by the value of the Green
function at the critical value). This means that, in the dynamical
plane of g, the value of the Green function at the critical value c0 is
equal to 2ρ. Therefore, the value of the Green function at the critical
point 0 is equal to ρ. There are exactly two rays that are bounded and
contain 0 in their closures (here by a ray we mean any gradient curve
of the Green function). Denote these rays by R+

g and R−
g . These two

rays can also be parameterized by the values of the Green function,
thus the parameter runs through the interval (0, ρ). Let z+ and z− be
the landing points of the rays R+

g and R−
g (these rays land because
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the angle ofR cannot be a rational number with an odd denominator,
which is the only case where one of the rays R+

g and R−
g can crash

into a precritical point). Define the following β-path β0 : S1 → C in
the dynamical plane of g:

β0(t1, t2) =





z+, t2 = 1,
R+

g (|t1|ρ), t2 > 0,
0, t2 = 0,

R−
g (|t1|ρ), t2 < 0,

z−, t2 = −1.

Let B denote the set of all pullbacks of β0, including β0.
There is a natural one-to-one correspondence between the sets of

paths A and B. For any path α ∈ A, the point α(1, 0) belongs to a
unique external ray of angle θ. There is a unique path β ∈ B such
that the ray of angle θ crashes into β(1, 0). We will make this path β
correspond to the path α.

Theorem 5. There exists a regluing Φ of A into B such that g(x) =
Φ ◦ f ◦ Φ−1(x) at all points x, where the right-hand side is defined.

Before we proceed with the proof of this theorem, we need to
recall the definition of symbolic itineraries. The union Γf of the rays
R+

f and R−
f together with their common landing point 0 divides the

complex plane into two connected components. For a point x not
in f−n(Γf ), we define σn

f (x) to be 0 or 1 depending on whether or
not f◦n(x) is separated from the critical value c of f by Γf . The
sequence of numbers σn

f (x), n = 1, 2, . . . (which may be finite or
infinite depending on whether or not x is eventually mapped to Γf )
is called the symbolic itinerary of x. Similarly, we define Γg to be
the union of {0} and the external rays in the dynamical plane of
g that crash into 0 (they have the same external angles as the rays
R+

f and R−
f ). The definition of symbolic itineraries carries over to the

dynamical plane of g, where we use Γg instead of Γf . In the dynamical
plane of g, as well as in the dynamical plane of f , there cannot be
two different points in the Julia set with the same symbolic itinerary.
This is a basic Poincaré distance argument, see e.g. [Mi06].

Proof of Theorem 5. Consider the complement U to the closure of
ImA. Since the closure of ImA contains the Julia set of f , the set U
is an open subset of the Fatou set. Actually, U is the complement in
the Fatou set to ImA.

We first define the map Φ just on U . Let φf be the Böttcher
parameterization for f , i.e. the inverse of the Böttcher coordinate
function. Since the Fatou set of f contains no precritical points except
for ∞, the map φf is a holomorphic isomorphism between the unit
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disk ∆ and the Fatou set of f such that φf (z2) = f ◦ φf (z) for all
z ∈ ∆. Similarly, let φg be the Böttcher parameterization for g. Note
that φg is not everywhere defined on the unit disk, because the Fatou
set of g contains the critical point 0 and its preimages. However,
φg is well-defined on the complement to φ−1

f (ImA) in the unit disk,
and gives a holomorphic isomorphism between this complement and
the complement to ImB in the sphere. The set φ−1

f (ImA) consists of
countably many intervals of the form [z, z/|z|]. Set Φ = φg ◦φ−1

f . The
map Φ is defined on U . Clearly, we have g = Φ ◦ f ◦ Φ−1 on Φ(U).
Note also that Φ preserves the values of the Green function.

It is easy to see that Φ extends continuously to each side of each
curve α(S1), α ∈ A. The extension preserves the values of the Green
function. It follows that, for every α ∈ A and the corresponding
β ∈ B, the function π−1

β ◦ Φ ◦ πα extends to S1 ∪ π−1
α (U) so that the

extension is continuous at all points of S1, and its restriction to S1

is the identity.
We now need to show that for any point z ∈ C − ImA and any

sequence zn ∈ U converging to z, the sequence wn = Φ(zn) converges
to a well-defined point in the dynamical plane of g, and that this
point does not depend on the choice of the sequence zn. Since Φ is
continuous on U , it suffices to assume that z belongs to the Julia
set of f . Any limit point of the sequence wn must have the same
symbolic itinerary as z, therefore, this can only be one point. We
denote this point by Φ(z), which is justified by the fact that Φ extends
continuously to z. Note that, for different points z in the Julia set of
f but not in ImA, the points Φ(z) have different symbolic itineraries,
and hence are different. This finishes the proof of the theorem. ut

The reason for the proof shown above to be so simple is that we
know a lot about topological dynamics of both f and g. However,
we would like to use regluing to describe new kinds of topological
dynamics, and that would be necessarily more complicated.

2.4. Topological models via regluing

First, we need to make the notion of topological model more pre-
cise. Define an (abstract) topological model as the collection of the
following data:
– A branched covering f : X → X, where X is a topological space

homeomorphic to the 2-sphere.
– A compact fully invariant subset J ⊂ X, called the Julia set of f .

The complement to the Julia set is called the Fatou set.
– A complex structure (i.e. a structure of a one-dimensional complex

manifold, not necessarily connected) on the Fatou set such that f
is holomorphic with respect to this structure.
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The topological space X, the map f and the set J are called the model
space, the model map and the model Julia set, respectively. Instead of
referring to a topological model as (f, X, J), we will sometimes simply
say “topological model f”. We will sometimes call X the dynamical
sphere of f . Of course, any rational function is an abstract topological
model. We say that two abstract topological models (f, Xf , Jf ) and
(g, Xg, Jg) are equivalent if there is a homeomorphism φ : Xf →
Xg conjugating f with g and such that φ(Jf ) = Jg and φ|Xf−Jf

is holomorphic. We say that f models a rational function R if f is
equivalent to R as an abstract topological model.

Although a rational function can be given by a very explicit for-
mula, it may be very hard to see its dynamics from this formula. Even
drawing an accurate picture requires a lot of computational power.
However, we need a dynamically explicit description of rational func-
tions. In other terms, we want to find explicit topological models for
rational functions. The notion of abstract topological model formal-
izes this goal, except for the notion of being (dynamically) explicit,
which is, of course, an informal notion. The situation is similar to
finding explicit solutions of algebraic equations — the notion of solu-
tion is rigorously defined, but the notion of being explicit is informal,
and depends on the taste, philosophy, etc.

There are several important combinatorial constructions that
modify or combine topological models into new topological models.
Among the most well-known are matings and captures. Let us now
define another combinatorial operation on topological models that
uses regluing. There are interesting relationships between matings,
captures and regluings, which we may discuss elsewhere.

Consider a topological model (f, X, J) with a hyperbolic Fatou
set (i.e. the complex 1-manifold X − J is of hyperbolic type), and a
strongly f -stable set A of disjoint α-paths in X. We will now assume
that A is non-wandering: for every α ∈ A, there exists n > 0 such
that f◦n ◦ α 6∈ ImA. In particular, α(0, 1) is eventually mapped to
a critical point of f . Under this assumption, we will define another
topological model using regluing.

Define an accumulation point of A as a point x ∈ X such that
every open neighborhood of x intersects infinitely many curves α(S1),
α ∈ A. All accumulation points of A belong to the Julia set of f .
Indeed, since f : X − J → X − J is a holomorphic self-map of a
hyperbolic complex 1-manifold, backward f -orbits of critical points
cannot accumulate in X−J (see e.g. [Mi06]). Since the curves α(S1),
α ∈ A, form a null-sequence, all accumulation points of A are also
accumulation points of the backward orbits of critical points.

There exists a regluing Φ : X−ImA → Y −ImB of A into some set
B of disjoint β-paths in a topological sphere Y . Moreover, the curves
β(S1), β ∈ B, form a null-sequence. We set g to be the continuous
extension of Φ ◦ f ◦ Φ−1, which exists by Theorem 2. Since f is a
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branched covering, and A is strongly f -stable, the map g is also
a branched covering by Theorem 4. Define the Fatou set of g as
the set of all points y ∈ Y such that, for some nonnegative integer
n, we have g◦n(y) 6∈ ImB (thus Φ−1 is defined at this point) and
Φ−1(g◦n(y)) ∈ X − J . Clearly, if this condition is satisfied for one
particular n, then it also holds for all bigger n. Therefore, the Fatou
set of g thus defined is fully invariant.

It remains to define a complex structure on the Fatou set of g
invariant under g. Take a point y in the Fatou set of g and its iterated
image y′ = g◦n(y) such that y′ 6∈ ImB and x′ = Φ−1(y′) is in the Fatou
set of f . Since A does not accumulate in the Fatou set of f , there
is a neighborhood U of x′ disjoint from ImA, and a holomorphic
embedding ξ : U → C such that ξ(x′) = 0. Note that Φ : U →
Φ(U) is a homeomorphism. Therefore, ξ ◦Φ−1 is an embedding of the
neighborhood Φ(U) of y′ into C. Finally, if k is the local degree of g◦n
at y, then we can define a local complex coordinate near y as a branch
of k

√
ξ ◦ Φ−1 ◦ g◦n. We have now defined a complex coordinate near

every point of the Fatou set of g. It is easy to check that all transition
functions are holomorphic, and that g is holomorphic with respect to
the obtained complex structure on the Fatou set.

We have defined a topological model g. This topological model
will be called the model obtained from (f, X, J) by regluing of A.
It is not hard to check that J lifts to the ungluing space ΥA as a
compact subset Ĵ fully invariant under both f̂ and the action of V4.
Moreover, the set Φ̂(Ĵ) is precisely the lift of the Julia set of g to the
ungluing space ΥB.

3. Boundary points of type C hyperbolic components

In this section, we discuss some general properties of quadratic rational functions

on the boundaries of type C hyperbolic components, preparing for the proof of

Theorem 1.

3.1. Equicontinuous families and holomorphic motion

Below, we recall a standard fact about equicontinuous families widely
used in complex dynamics:

Proposition 5. Let Λ be a topological space, and X a metric space.
Consider an equicontinuous family F of maps from Λ to X. Let S ⊂ Λ
be a subset, and ν : Λ → X a continuous map such that ν(λ) ∈ F(λ)
for all λ ∈ S. Then for all λ∗ ∈ S, we have

ν(λ∗) ∈ F(λ∗).
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Proof. Assume the contrary: d(ν(λ∗),F(λ∗)) = ε > 0, where d de-
notes the distance in X. There is a neighborhood V ′ of λ∗ in Λ such
that

d(ν(λ), ν(λ∗)) <
ε

2

for all λ ∈ V ′. This follows from the continuity of ν. On the other
hand, there is a neighborhood V ′′ of λ∗ such that

d(f(λ), f(λ∗)) <
ε

2

for all λ ∈ V ′′ and all f ∈ F . This follows from the equicontinuity of
F . Therefore, for every λ ∈ V ′ ∩ V ′′ and every f ∈ F , we have

d(ν(λ∗), f(λ∗)) ≤ d(ν(λ∗), ν(λ)) + d(ν(λ), f(λ)) + d(f(λ), f(λ∗)) <

< d(ν(λ), f(λ)) + ε.

Take λ ∈ V ′ ∩ V ′′ ∩ S and f ∈ F such that ν(λ) = f(λ). Then
d(ν(λ∗), f(λ∗)) < ε, a contradiction. ut

Let Λ be a complex analytic manifold, and A a set. Recall that
a holomorphic motion over Λ is a map µ : Λ × A → C such that
µ(λ, a) 6= µ(λ, b) for a 6= b and the map µa : λ 7→ µ(λ, a) is holo-
morphic for every a ∈ A. We do not require that A ⊂ C and that
a 7→ µ(λ0, a) is the identity for some λ0 ∈ Λ, although these con-
ditions are usually included into a definition. Thus we use the term
“holomorphic motion” in a slightly more general sense. The following
well-known fact is very simple but important (see e.g. [MSS]):

Theorem 6. Let Λ be a Riemann surface and µ : Λ×A → C a holo-
morphic motion. Then the family of functions µa, a ∈ A, is equicon-
tinuous.

Proof. If A is finite, then the statement is obvious. Suppose that
A is infinite, and take three different points a1, a2, a3 ∈ A. We can
use the following generalization of Montel’s theorem: if a family of
holomorphic functions on Λ is such that the graphs of all functions in
the family avoid the graphs of three different holomorphic functions,
and these three graphs are disjoint, then the family is equicontinuous.
In our case, we can take µai , i = 1, 2, 3. These three holomorphic
functions have disjoint graphs, and the graph of any function µa,
a 6= a1, a2, a3, is disjoint from the graphs of µai . Thus the family of
functions µa is equicontinuous. ut

The following well-known theorem is proved in [MSS]:
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Theorem 7. Let Λ be a Riemann surface, and µ : Λ × A → C a
holomorphic motion. Suppose that A ⊂ C and that µ(λ0, a) = a for
some λ0 ∈ Λ and all a ∈ A. Then µ extends to a holomorphic motion
µ : Λ × A → C, and, for every λ ∈ Λ, the map a 7→ µ(λ, a) from A
to C is quasi-symmetric.

Using this theorem, we can prove the following (cf. e.g. [AY]):

Proposition 6. Consider a holomorphic motion µ satisfying the as-
sumptions of Theorem 7. Assume that A is an open subset of C.
Consider a continuous function ν : Λ → C and the subset O of Λ
consisting of all λ ∈ Λ such that ν(λ) ∈ µ(λ, A). Then O is open.
Moreover, ν(λ∗) ∈ ∂µ(λ,A) if λ∗ ∈ ∂O.

Proof. Consider the point λ0 from Theorem 7. We can assume with-
out loss of generality that λ0 ∈ O. Then ν(λ0) is some point a0 ∈ A.
Suppose that a0 6= ∞. Let α : S1 → A be a small loop around a0.
Then we have

I(λ0) =
∫

S1

dα(t)
α(t)− a0

= 2πi.

Set ε to be the minimal spherical distance between a0 and α(t). There
is an open neighborhood V of λ0 such that the distance between ν(λ)
and µ(λ, α(t)) is bigger than ε/2 for all λ ∈ V and all t ∈ S1. This
follows from the continuity of ν and equicontinuity of µ(·, a), a ∈ A.
We can also assume that µ(λ, α(t)) 6= ∞ for all λ ∈ V and t ∈ S1.
Then the integral

I(λ) =
∫

dµ(λ, α(t))
µ(λ, α(t))− ν(λ)

(with respect to t) is a well-defined and continuous function on V .
Since the possible values of this integral are discrete, we must have
I(λ) = 2πi for all λ ∈ V . Therefore, ν(λ) ∈ µ(λ,A) for such λ, and
V ⊂ O. Thus we have proved that O is open.

Suppose now that λ∗ ∈ ∂O. Then ν(λ∗) ∈ µ(λ∗, A) by Proposition
5. On the other hand, we have ν(λ∗) 6∈ µ(λ∗, A) because λ∗ 6∈ O.
Therefore, ν(λ∗) ∈ ∂µ(λ,A). ut

3.2. Parameter curves

Quadratic rational functions that are conjugate by a Möbius trans-
formation have the same dynamical properties. Therefore, one wants
to parameterize conjugacy classes, choosing one (or finitely many)
particular representative(s) from every conjugacy class. There are
many different ways to do this parameterization, see e.g. [Mi93,R].
For our purposes, it will be convenient to do the following: send the
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two critical points of a rational function f to 0 and ∞ by a suitable
Möbius transformation. If ∞ is fixed, then we can reduce f to the
form pc : z 7→ z2+c. If ∞ is not fixed, then we can send a preimage of
∞ to 1 (unless 0 is a critical point mapping to ∞, i.e. f is conjugate
to z 7→ 1/z2), thus f will have the form

Ra,b(z) =
az2 − b

z2 − 1
.

In any case, f is Möbius conjugate to pc, or to Ra,b, or to 1/z2.
We will now consider the following algebraic curves in C2:

Vk = {(a, b) | R◦ k−1
a,b (∞) = 1}, k = 2, 3, . . .

These are complex one-dimensional slices of the parameter space of
quadratic rational functions. These slices correspond to simple (peri-
odic) types of behavior of one critical point (note that Ra,b(1) = ∞
so that for all (a, b) ∈ Vk, the critical point ∞ of the function Ra,b is
periodic of period k).

We will identify pairs (a, b) ∈ Vk with the corresponding rational
functions Ra,b. For every (a, b) ∈ Vk, let Ωa,b denote the immediate
basin of the super-attracting fixed point ∞ of the rational function
R◦k

a,b. We will sometimes write ΩF instead of Ωa,b if F = Ra,b. Define
the set

Bk = {(a, b) ∈ Vk | 0 ∈ R◦m
a,b (Ωa,b), m ≥ 0}.

This set consists of all parameter values such that the critical point
0 is in the immediate basin of the cycle of ∞. Thus Bk is the union
of all type B hyperbolic components in Vk. Define the set

Λk = Vk − Bk.

This is a one-dimensional complex manifold (for smoothness, see e.g.
[S,R03]).

Recall that a function Ra,b ∈ Λk is hyperbolic of type C if
R◦m

a,b (0) ∈ Ωa,b for some m > 0. The set of type C hyperbolic functions
is open by Proposition 6.

3.3. Notation needed for the proof of Theorem 1

We will use the following notation throughout the proof of Theorem
1: Let H ⊂ Λk be a hyperbolic component of type C, and f ∈ ∂H.
Note that the boundary is taken in Λk, so that the boundaries of
type B components are automatically excluded. Set Ω = Ωf . Also,
let h be the center of the hyperbolic component H, i.e. the unique
critically finite map in H. There is a positive integer k′ such that for
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any parameter value (a, b) ∈ H, we have R◦k′
a,b (0) ∈ Ωa,b, and k′ is the

minimal integer with this property.
Let ∆ denote the unit disk {|z| < 1}. There is a holomorphic

motion
µ : Λk ×∆ → C

such that µ((a, b), z) is the point in Ωa,b, whose Böttcher coordinate
is equal to z. By Theorem 7, this holomorphic motion extends to a
holomorphic motion

µ : Λk ×∆ → C

By Proposition 6, we have f◦k′(0) ∈ ∂µ(λ0,∆) = ∂Ω, where λ0 ∈ Λk

is the parameter value corresponding to f . Therefore, f(0) is on the
boundary of some Fatou component V containing a point v such that
f◦k′−1(v) = ∞.

Note that there may be several Fatou components containing f(0)
on their boundary and eventually mapping to Ω. The choice of the
Fatou component V is determined by the choice of the hyperbolic
component H: as the parameter value enters H, the critical value
corresponding to f(0) enters a Fatou component corresponding to V
(here “corresponding” means “included into the holomorphic motion
of”).

3.4. Accessibility and non-recurrence

The following Proposition shows that the Fatou components of f do
not have topological pathologies (cf. [AY]):

Proposition 7. The boundary of Ω is locally connected. In particu-
lar, every boundary point is accessible from Ω.

Proof. Let λ0 be the parameter value corresponding to f . Then the
function µf : z 7→ µ(λ0, z) is a quasi-symmetric homeomorphism
between ∆ and Ω, by Theorem 7. It follows that the boundary of Ω
is locally connected. ut

Since V is a pullback of Ω, the boundary of V is also locally
connected. In particular, f(0) ∈ ∂V is accessible from V . The follow-
ing proposition shows that the dynamical properties of f are rather
simple:

Proposition 8. The critical point 0 of f is non-recurrent.

Proof. Note that all limit points of the orbit of 0 belong to the forward
orbit of ∂Ω under f . Therefore, if 0 is recurrent, then 0 ∈ f◦l(∂Ω) for
some l = 0, . . . , k − 1. In other terms, 0 = f◦l(µ(λ0, z)), where z is a
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point on the unit circle, and λ0 is the parameter value corresponding
to f .

Consider the holomorphic function ν(λ) = R◦l
λ (µ(λ, z)) on Λk.

(Recall that Rλ is the rational function Ra,b corresponding to the
point λ = (a, b) ∈ Λk). This function vanishes at the point λ0. How-
ever, ν is not identically equal to zero, because e.g. for h ∈ H, the
critical point is not in the orbit of ∂Ωh. Therefore, we can choose a
small loop γ : S1 → Λk around λ0 such that ν ◦γ loops around 0 (i.e.
the algebraic number of full turns is nonzero). Take z̃ ∈ ∆ sufficiently
close to z. Then the function ν̃(λ) = R◦l

λ (µ(λ, z̃)) is uniformly close
to ν. In particular, ν̃ ◦ γ loops around 0. Therefore, there exists a
parameter value λ1 inside γ such that ν̃(λ1) = 0. This means that 0
lies in R◦l

λ1
(Ωλ1), i.e. λ1 ∈ Bk, a contradiction. ut

3.5. Restatement of Theorem 1

In this section, we will restate Theorem 1, and give some details on
the particular set of paths that was mentioned but not defined in
the statement of Theorem 1. We also need to introduce some more
notation. Consider a simple path α−1 : [0, 1] → V such that α−1(0) =
f(0), α−1(1) = v, and α−1(0, 1] ⊂ V . The existence of such path
follows from Proposition 7. There is an α-path α0 : S1 → C such
that f ◦α0(t1, t2) = α−1(|t1|). This α-path is unique up to the change
of variables t1 → −t1. Let A be the set of all pullbacks of α0 under
iterates of f , including α0.

Proposition 9. The curves α(S1), α ∈ A form a null-sequence.

Proof. Since the critical point 0 is non-recurrent, there exists a neigh-
borhood U of α0(S1) that does not intersect the post-critical set.
Choose a smaller neighborhood U ′ of α0(S1) that is compactly con-
tained in U . By the Koebe distortion theorem, the set of pullbacks
of U ′ forms a null-sequence. It follows that the curves α(S1), α ∈ A,
also form a null-sequence. ut

We can conclude that there exists a regluing Φ of A into some set
of disjoint β-paths. Moreover, the function g = Φ ◦ f ◦ Φ−1 is well-
defined as a topological model, since A is strongly f -stable and non-
wandering (both properties follow immediately from the definition
of A). We can now give a precise statement, from which Theorem 1
follows:

Theorem 8. The map g is equivalent as a topological model to the
critically finite hyperbolic rational function h ∈ H.
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Theorem 8 implies Theorem 1. Indeed, if g = Φ ◦ f ◦ Φ−1 is con-
jugate to h, then h = Ψ ◦ f ◦ Ψ−1 for some topological regluing Ψ . It
follows that f = Ψ−1 ◦ h ◦ Ψ . Note that Ψ−1 is also a regluing.

Thus it remains to prove Theorem 8. We first prove that g is
Thurston equivalent to h. By a theorem of Mary Rees [R92], Thurston
equivalence to a hyperbolic rational function implies semi-conjugacy.
We will recall the proof of this theorem. What remains is to prove
that all fibers are trivial. Several ideas for this part were also taken
from [R92]. Overall, the argument is rather simple, but we need to
know from the very beginning that g is well-defined as a branched
covering. Here we use results of Section 6 on the existence of topo-
logical regluing.

4. The proof of Theorem 1

In this section, we prove Theorem 1. We use notation introduced in Sections 3.5

and 3.3.

4.1. Backward stability

Recall the following theorem of Mañe [Ma,TS]:

Theorem 9 (Backward stability). Let F be a rational function
with the Julia set J . Suppose that there are no recurrent critical points
in J . Then, for every ε, ε′ > 0, there exist a positive real number δ(ε)
(depending only on ε), and a positive integer n0(ε, ε′) (depending on
ε and ε′) such that for x, y ∈ J

1. if d(x, y) < δ(ε), then for every n ≥ 0 and for every x′ ∈ F−n(x),
there is a point y′ ∈ F−n(y) such that d(x′, y′) < ε,

2. if d(x, y) < δ(ε) and n ≥ n0(ε, ε′), then for every x′ ∈ F−n(x),
there is a point y′ ∈ F−n(y) such that d(x′, y′) < ε′.

Here d is any metric on C compatible with the topology.

By Proposition 8, this theorem is applicable to the function f .
From the backward stability of f on its Julia set Jf , we can deduce
the backward stability of g on its Julia set Jg:

Proposition 10 (Backward stability of g on Jg). The map g is
backwards stable on Jg, in the sense of Theorem 9.

Proof. Let f̂ be the lift of f to the ungluing space ΥA, and Ĵf the lift
of the Julia set Jf . It is easy to see that f̂ is backwards stable on Ĵf .
This follows from the backward stability of f on Jf and the fact that
the fibers of the projection πA : Ĵf → Jf form a null-sequence. Since
backward stability is a topological property, ĝ is backwards stable on
Ĵg. It follows that g is backwards stable on Jg. ut
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4.2. Thurston equivalence

The map g is critically finite. Indeed, the critical values of g are
Φ ◦ f(∞) and Φ(v). The forward orbit of Φ ◦ f(∞) under g is the
Φ-image of the forward orbit of f(∞) under f . Similarly, the forward
orbit of Φ(v) under g is the Φ-image of the forward orbit of v under
f . It remains to note that both f(∞) and v have finite forward orbits
under f . In this section, we will prove that the map g is Thurston
equivalent to h.

We first recall the notion of Thurston equivalence. A branched
self-covering of the sphere with finite post-critical set is sometimes
called a Thurston map. Recall that the post-critical set is the union
of forward orbits of all critical values. Two Thurston maps F and G
with post-critical sets PF and PG, respectively, are called Thurston
equivalent if there exist homeomorphisms φ, ψ : S2 → S2 that make
the following diagram commutative

(S2, PF ) F−−−→ (S2, PF )

ψ

y
yφ

(S2, PG) G−−−→ (S2, PG)

and such that φ and ψ are homotopic relative to PF through homeo-
morphisms, in particular, φ|PF

= ψ|PF
. The following are well-known

useful criteria of Thurston equivalence:

Theorem 10. Suppose that Ft, t ∈ [0, 1], is a continuous family of
Thurston maps of degree 2 such that the number of points in PFt does
not change with t. Then F0 is Thurston equivalent to F1.

Let CF denote the set of critical points of f .

Theorem 11. Let Z be a compact connected locally connected subset
of S2 such that S2−Z is connected and dense. Suppose that quadratic
Thurston maps F and G are such that F = G on Z and PF ∪ CF =
PG ∪ CG ⊂ Z. Then F and G are Thurston equivalent.

For completeness, we sketch the proofs of these theorems.

Proof of Theorem 10. It suffices to prove that Ft is Thurston equiv-
alent to Ft′ provided that t is close to t′. The ramified coverings Ft

and Ft′ are then uniformly close, therefore, their post-critical sets
are also close (this follows from the fact that the (weighted) number
of critical points in a disk can be computed as a winding number).
In particular, these maps are conjugate on their post-critical sets.
Moreover, we can choose a homeomorphism φ : S2 → S2 that is close
to the identity, maps PFt to PFt′ and conjugates the dynamics of Ft
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on PFt with the dynamics of Ft′ on PFt′ . The multivalued function
F−1

t′ ◦ φ ◦ Ft has two single valued branches. Indeed, every critical
value of φ ◦ Ft is a critical value of Ft′ , and the only Ft′-preimage of
this critical value is the corresponding critical point, since the map
is quadratic. Thus, whenever φ(Ft(z)) is a ramification point of F−1

t′ ,
the function F−1

t′ ◦φ ◦Ft can be written as
√

u2 in some local coordi-
nate. It follows that this function has no ramification points, hence it
splits into two single valued branches. One of the branches is close to
the identity; denote this branch by ψ. The homeomorphisms φ and
ψ thus constructed provide a Thurston equivalence between Ft and
Ft′ (they are homotopic relative to the post-critical set because they
are both close to the identity). ut
Proof of Theorem 11. We can assume without loss of generality that
F = G on some neighborhoods of all critical points. This can be
arranged e.g. by a small variation of G near its critical points, without
changing the post-critical set.

By the same argument as in the proof of Theorem 10, the multi-
valued function G−1 ◦ F splits into two single valued branches. Near
every critical point, one of the branches of G−1 ◦F is the identity. It
follows that there is a branch φ of G−1 ◦F that restricts to the iden-
tity on Z. Indeed, the branches cannot switch outside of the critical
points, and z ∈ G−1(F (z)) for all z ∈ Z. There exists a continuous
map γ : ∆ → S2 that restricts to a holomorphic homeomorphism
between ∆ and S2 − Z (the set Z is infinite because any quadratic
map has two different critical values). It is not hard to see (with the
help of Carathéodory’s theory) that γ−1 ◦ φ ◦ γ extends continuously
to a self-homeomorphism of ∆ that is the identity on the unit circle.
Such homeomorphism is isotopic to the identity relative to the unit
circle (i.e. through homeomorphisms that are the identity on S1). It
follows that φ is isotopic to the identity through homeomorphisms
of S2, whose restrictions to Z, in particular, to the post-critical set
PF = PG, are the identity. The theorem follows. ut

Consider a simple curve in the parameter space Λk that connects f
to h and lies entirely in H except for the endpoint f . Let ft, t ∈ [0, 1]
be the corresponding one-parameter family of rational functions so
that f0 = f and f1 = h. Consider a point vt depending continuously
on t ∈ [0, 1] and satisfying the following properties:

v0 = v, f◦k
′−1

t (vt) = ∞.

Then v1 = h(0). Define a quadratic rational function Qt by the prop-
erty that the critical values of Qt coincide with ft(∞) and vt. We
can even assume that the corresponding critical points of Qt are ∞
and 0, respectively (explicit formulas for such functions are very easy
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to obtain; they are given in Section 5). There exists a continuous
family of α-paths αt, t ∈ [0, 1) connecting the two preimages of vt

under ft and having the property that αt(−t1, t2) = −αt(t1, t2). Ad-
ditionally, we can assume that αt converge to the constant path 0
uniformly as t → 1. Moreover, this continuous family can be chosen
in such a way that for t = 0, we obtain the same α-path α0 as that
introduced in Section 3.5. (Recall that α0 and all its pullbacks form
the set A of α-paths that is used in our regluing construction). The
multivalued analytic function Q−1

t ◦ ft has a holomorphic branch on
the complement to αt(S1). Denote this branch by jt. The choice of
particular branch is not important; however, we need that jt depend
continuously on t. This can obviously be arranged.

Set qt = jt ◦ Qt. This function is defined on the complement
to Q−1

t (αt(S1)), i.e. on the complement to a pair of disjoint sim-
ple curves. Intuitively, the function qt is obtained from ft by regluing
the path αt, or, to be more precise, we have qt = jt ◦ ft ◦ j−1

t wher-
ever the right-hand side is defined (however, qt is defined on a larger
set). Note that qt is always defined and analytic in a neighborhood
of 0, because Qt(0) = vt avoids the curve αt(S1). In particular, 0 is
a critical point of qt. Another critical point is jt(∞) = ∞. Moreover,
the critical orbits of qt are finite and of constant size. More precisely,
we have

q◦ k′
t (0) = jt ◦ f◦ k′−1

t (vt) = ∞, q◦ k
t (∞) = jt ◦ f◦ k

t (∞) = ∞.

In other words, the orbits of 0 and∞ under qt have the same dynamics
as the orbits of the same points under h. The relations given above
can be easily proved using that qt = jt ◦ Qt and that Qt ◦ jt = ft

wherever the left-hand side is defined. The construction of the map
qt will reappear in Section 5, where more details can be found.

The maps qt are critically finite but they are not Thurston maps
because of discontinuities. However, one can “approximate” qt by
branched coverings q̂t that differ from qt only in a small neighborhood
of Q−1

t (αt(S1)). Of course, in a small neighborhood of Q−1
t (αt(S1)),

we cannot hope to make the maps q̂t uniformly close to qt, thus the
word “approximate” comes in the quotation marks. However, we can
do the following. Choose a sufficiently small Jordan neighborhood D
of αt(S1). Then Q−1

t (D) is a pair of disjoint Jordan disks D1 and D2.
The boundaries ∂D1, ∂D2 get mapped to the same Jordan curve by
qt, moreover, qt acts as an orientation-preserving homeomorphism on
∂Di, i = 1, 2. Therefore, it is possible to extend qt homeomorphically
inside D1 ∪D2. The extension thus obtained is our map q̂t. We can
choose q̂t to vary continuously with t. Additionally, we can arrange
that q̂1 = h; in any case, q̂1 is Thurston equivalent to h. Thus q̂t is a
continuous family of Thurston maps, whose post-critical sets are of
constant cardinality. By Theorem 10, we obtain
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Lemma 1. The map q̂0 is Thurston equivalent to q̂1 = h.

What remains to prove is the following

Lemma 2. The maps q̂0 and g are Thurston equivalent.

Proof. Recall that g = Φ ◦ f ◦ Φ−1 wherever the right-hand side is
defined. Here Φ is a regluing of the set A of α-paths consisting of the
path α0 and all its pullbacks under f0 = f . The corresponding set
of β-paths in the dynamical sphere of g is B. Let β0 be the β-path
corresponding to the α-path α0.

Consider the map j0◦Φ−1. It is defined on the complement to ImB,
it establishes a homeomorphism between S2−ImB and j0(S2−ImA),
and extends continuously to β0(S1). Denote the extension by Ψ−1.
Then Ψ is a homeomorphism between the complement to j0(ImA −
α0(S1)) the complement to ImB − β0(S1).

We claim that Ψ−1 ◦ g(y) = q0 ◦ Ψ−1(y) for every point y ∈ S2

in the complement to ImB − β0(S1). Indeed, the point x = Ψ−1(y)
is well-defined and lies in S2 − j0(ImA − α0(S1)). The point Q0(x)
cannot be in ImA, otherwise

x ∈ Q−1
0 (ImA) = j0(f−1(ImA)) ∈ j0(ImA− α0(S1)).

Therefore, j0 ◦ Q0(x) = q0(x) = q0 ◦ Ψ−1(y) is well-defined. Clearly,
Ψ−1 ◦ g(y) is also well-defined. Thus both parts of the equality Ψ−1 ◦
g = q0 ◦ Ψ−1 are defined on the complement to ImB − β0(S1). The
equality itself holds wherever both parts are defined, because at least
on some dense set, we have

Ψ−1 ◦ g = j0 ◦ Φ−1 ◦ Φ ◦ f ◦ Φ−1 = j0 ◦ f ◦ Φ−1 =

= j0 ◦Q0 ◦ j0 ◦ Φ−1 = q0 ◦ Ψ−1.

Note that the set Pg ∪Cg is disjoint from ImB− β0(S1). Consider
a simple curve Z disjoint from ImB−β0(S1) and containing Pg ∪Cg.
(The existence of such curve follows from a simple Baire category
argument, see Section 6.2 for more detail.) Then we can define a
homeomorphism Ψ̂ : S2 → S2 such that Ψ̂−1 = Ψ−1 on Z and on
g(Z). Indeed, both curves Z and g(Z) are disjoint from ImB−β0(S1),
thus Ψ−1 is well-defined on the union of these curves, and acts as a
homeomorphism. It is not hard to see that Ψ−1 can be extended inside
every component of the complement to Z ∪ g(Z) homeomorphically.
Doing this for all components, we obtain a homeomorphism Ψ̂−1.

The restriction of g to Z is the same as the restriction of Ψ̂◦q0◦Ψ̂−1

to Z. Indeed, for every x ∈ Z, we have

Ψ̂ ◦ q0 ◦ Ψ̂−1(x) = Ψ̂ ◦ q0 ◦ Ψ−1(x) = Ψ̂ ◦ Ψ−1 ◦ g(x) = g(x).
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We can even find a continuous “approximation” q̂0 of q0 such that
the restriction of Ψ̂ ◦ q̂0 ◦ Ψ̂−1 to Z is still the same. Indeed, we must
have q0 = q̂0 on the set Ψ−1(Z), where q0 is well-defined (as we know,
q0 is defined on all points Ψ−1(x), where x 6∈ ImB − β0(S1)).

By Theorem 11, g is Thurston equivalent to Ψ̂ ◦ q̂0 ◦ Ψ̂−1, hence to
q̂0. ut

4.3. Semi-conjugacy

Recall the following theorem of Mary Rees [R92]:

Theorem 12. Suppose that a Thurston map F of degree 2 is
Thurston equivalent to a hyperbolic rational function G. Moreover,
suppose that there is an F -invariant complex structure near the crit-
ical orbits of F . Then there is a continuous map φ : S2 → S2 such
that φ ◦ F = G ◦ φ.

Proof. We can assume F to be defined on C (i.e. on a sphere with
a global complex structure) and holomorphic on some open set U
containing the post-critical set and satisfying F (U) b U . We have
the diagram

C F−−−→ Cyφ1

yφ0

C G−−−→ C
where φ0 and φ1 are homeomorphisms holomorphic on U ; moreover,
φ1 = φ0 on U , and φ0 is isotopic to φ1 relative to U (the existence of
such homeomorphisms φ0 and φ1 follows from Böttcher’s theorem).
Consider the multivalued function G−1 ◦ φ1 ◦ F . Since the critical
values of φ1 ◦ F coincide with ramification points of G−1, this multi-
valued function has a single valued branch φ2 such that φ2 = φ1 on
F−1(U). We have the following diagram:

C F−−−→ C F−−−→ Cyφ2

yφ1

yφ0

C G−−−→ C G−−−→ C
Similarly, we can define a sequence of homeomorphisms φn with the
following properties: G◦φn = φn−1◦F and φn = φn−1 on F−(n−1)(U).
Then φn is a single valued branch of G−n ◦ φ0 ◦ F ◦n.

We would like to prove that the sequence of maps φn converges
uniformly. This would follow from the estimate

d(φn+1(x), φn(x)) ≤ Cq−n,
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where 0 < q < 1 is a number independent of x. We can assume that
x 6∈ F−n(U), otherwise the left-hand side is zero. Consider a curve γ

connecting φ0 ◦F ◦n(x) with φ1 ◦F ◦n(x) in C−φ0(U) (we can arrange
that this open set be connected by choosing a smaller U if necessary).
Since C−U is compactly contained in C−G ◦ φ0(U), the hyperbolic
length of γ in C−G ◦ φ0(U) can be made bounded by some constant
independent of x and n. The length of the pull-back of γ under G◦n is
bounded by Cq−n with 0 < q < 1 by the Poincaré distance argument.
The desired estimate now follows.

Let φ denote the limit of φn. Passing to the limit in both sides of
the equality G ◦ φn = φn−1 ◦ F , we obtain that G ◦ φ = φ ◦ F . ut

We also need the following general fact:

Proposition 11. Suppose that a continuous map φ : S2 → S2 is
the limit of a uniformly convergent sequence of homeomorphisms φn.
Then φ is onto and, for any point v ∈ S2, the fiber φ−1(v) is con-
nected.

Proof. Any point y of S2 − φ(S2) has a neighborhood V such that
V ⊂ S2−φ(S2). We have y = φn(xn) for all n. Since φn is uniformly
close to φ for large n, we must have φ(xn) ∈ V , a contradiction.

Consider two points z and w in the fiber φ−1(v). For large n, the
points φn(z) and φn(w) are very close to each other. Let Dn be a
small closed disk containing both of them, and set An = φ−1

n (Dn).
We can assume that the diameter of Dn tends to 0 as n → ∞. The
sequence of compact sets An has a subsequence that converges in
the Hausdorff metric. Denote the limit by A. As a Hausdorff limit of
compact connected sets, the set A is connected. Moreover, it contains
both points z and w. We claim that φ(A) = v. Indeed, for any point
a ∈ A, there is a sequence an ∈ An such that an → a. The distance
between φn(an) and φ(a) tends to zero, and φn(an) → v, hence φ(a) =
v. Thus any pair of points in φ−1(v) belongs to a common connected
subset of φ−1(v). This means that φ−1(v) is connected. ut

Thus, in our setting, we obtain the following

Theorem 13. The map h is semi-conjugate to g, i.e. there is a con-
tinuous surjective map φ : S2 → C such that h ◦φ = φ ◦ g. Moreover,
the fibers of φ are connected (i.e. φ is monotone).

4.4. Dynamics of g

In this section, we discuss some simple dynamical properties of g that
we need for the proof that g is conjugate to h.
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Lemma 3. There is a positive real number δ0 such that for every pair
x, y ∈ Jg with 0 < d(x, y) < δ0, we have g(x) 6= g(y).

Proof. Since there are no critical points in Jg, every point x ∈ Jg

has a neighborhood Ux such that g|Ux is injective. Let δ0 be the
Lebesgue number of the covering U = {Ux}x∈Jg . Now assume that
0 < d(x, y) < δ0. Then x, y ∈ U , where U ∈ U . Since g is injective on
U , the result follows. ut
Lemma 4. There is a self-homeomorphism M 6= id of the dynamical
sphere of g such that M◦2 = id, and g ◦M = g. Moreover, we have
φ ◦M = −φ, where φ is the map from Theorem 13.

Proof. Indeed, the multivalued map g−1 ◦ g splits into two single
valued branches. One of these branches is the identity transformation.
Let M be the other branch. We have g◦M = g by definition. It follows
that g◦M◦2 = g, thus M◦2 is either M or the identity. Since M 6= id,
we have M◦2 6= M . Therefore, M◦2 = id.

We have

h ◦ φ ◦M = φ ◦ g ◦M = φ ◦ g = h ◦ φ,

therefore φ(M(x)) = ±φ(x) for all x in the dynamical sphere of g.
Near the critical points of g (which are the φ-preimages of 0 and ∞),
the map φ is a homeomorphism, and we have the minus sign. By
continuity, the sign is the same for all points. ut

4.5. Triviality of fibers

In this section, we prove that the continuous map φ from Theorem
13 is actually a homeomorphism. Note first that the restriction of φ
to the Fatou set of g is injective. This follows from the definition of
φ given in the proof of Theorem 12. Indeed, on every compact set
contained in the Fatou set of g, the map φ coincides with a homeo-
morphism φn. We know that fibers of φ are connected. Thus they lie
entirely in Jg (a connected set intersecting the Fatou set of g by just
one point is itself a singleton).

Lemma 5. The restriction of g to any fiber of φ is injective.

Proof. Assume the contrary: g(x) = g(y) for a pair of different points
x, y such that φ(x) = φ(y). Let M be the involution introduced in
Lemma 4. Then y = M(x), and

φ(y) = φ(M(x)) = −φ(x) = −φ(y).

It follows that φ(y) = 0 or ∞, a contradiction. ut
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Lemma 6. The image of any fiber of φ under the map g is contained
in a fiber of φ

Proof. Indeed, let Z be a fiber of φ. We have φ(g(Z)) = h(φ(Z)),
which is a single point. ut

The following proposition is a minor modification of an argument
given in [R92].

Proposition 12. Suppose that φ is not a homeomorphism, i.e. it has
a non-trivial fiber. Let δ0 be the number introduced in Lemma 3. For
every ε > 0, there exist x, y ∈ Jg such that

d(x, y) > δ0/2, d(g(x), g(y)) < ε, φ(x) = φ(y).

Proof. Without loss of generality, we can assume that ε < δ0/2. Let
N be a positive integer such that every subset of Jg with at least N
points has a pair of distinct points on distance < δ(ε) (where δ(ε) is as
in Theorem 9). Consider a nontrivial fiber Z of φ, and a subset Z0 of
Z containing N points. (As a connected set of cardinality > 1, the set
Z must actually have uncountably many points). Define ε′ to be the
minimal distance between different points in Z0. Set n0 = n0(ε, ε′)
(where n0(ε, ε′) is as in Theorem 9). The set g◦n0(Z0) has cardinality
N . This follows from Lemmas 5 and 6. Therefore, there is a pair of
points xn0 , yn0 in this set such that d(xn0 , yn0) < δ(ε). Note that
δ(ε) ≤ ε, in particular, d(xn0 , yn0) < ε.

For every k = 0, . . . , n0, we can define xk and yk inductively by
the following relations:

xk, yk ∈ g◦k(Z0), g(xk) = xk+1, g(yk) = yk+1.

Then either yk is the closest to xk preimage of yk+1 and, by Proposi-
tion 10, we have d(xk, yk) < ε, or d(xk, yk) ≥ δ0 − ε > δ0/2. Indeed,
let y′k be the closest to xk preimage of yk+1. If y′k 6= yk, then

d(xk, yk) ≥ d(yk, y
′
k)− d(y′k, xk) ≥ δ0 − ε.

Suppose first that d(xk, yk) ≥ δ0/2 for some k. Then x = xk and
y = yk have the required properties. Suppose now that yk is the
closest to xk preimage of yk+1, for all k. Then we have d(x0, y0) < ε′
by Proposition 10. But this contradicts our choice of ε′, since x0, y0 ∈
Z0. ut

Suppose that φ is not a homeomorphism. Then, by Proposition
12, there exist points xn and yn in Jg such that

d(xn, yn) ≥ δ0/2, d(g(xn), g(yn)) < 1/n, φ(xn) = φ(yn).
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Passing to suitable subsequences if necessary, we can assume that xn

and yn converge to some points x and y in Jg, respectively. For these
limit points, we must have

d(x, y) ≥ δ0/2, g(x) = g(y), φ(x) = φ(y).

In other terms, x and y belong to the same fiber of φ, and the re-
striction of g to this fiber is not injective. This contradicts Lemma
5. The contradiction shows that all fibers of φ are trivial, thus φ is a
homeomorphism.

This finishes the proof of Theorem 8 and Theorem 1.

5. Holomorphic regluing

In this section, we just sketch main characters of holomorphic theory of regluing,

and give the most basic constructions.

5.1. An example

We consider first a simple example, where we define an explicit se-
quence of approximations to a regluing. This sequence will consist of
partially defined but holomorphic functions.

Let f be the quadratic polynomial z 7→ z2 − 6. The Julia set Jf

of f is a Cantor set that lies on the real line. Recall that the biggest
component of the complement to Jf in [−3, 3] is (−√3,

√
3). Suppose

we want to reglue the interval [−√3,
√

3], thus connecting two parts
of Jf . This is done by the following map:

j(z) =
√

z2 − 3

(which is understood as a branch over the complement to [−√3,
√

3]
that is tangent to the identity at infinity). The inverse map is given
by the formula j−1(z) =

√
z2 + 3, and is defined on the complement

to [−i
√

3, i
√

3].
Consider the composition f ◦ j−1. It turns out that this function

extends to a quadratic polynomial! Indeed, we have

f(
√

z2 + 3) = (z2 + 3)− 6 = z2 − 3.

We denote the polynomial in the right-hand side by p−3; in general, pc

stands for the quadratic polynomial z 7→ z2+c. On a more conceptual
level, in order to see that f ◦j−1 is a restriction of a polynomial, it suf-
fices to show that it extends continuously to the interval [−i

√
3, i
√

3].
This follows from the fact that f folds the interval [−√3,

√
3] at 0.
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In fact, what we really want to consider is not the composition
but the “conjugation” j ◦ f ◦ j−1. Since f ◦ j−1 is a restriction of the
polynomial p−3, we define the new function f1 as j ◦p−3, which has a
larger domain than j ◦ f ◦ j−1. Unfortunately, the function f1 is not
continuous. The discontinuity of this function is due to the disconti-
nuity of j. Actually, the function f1 is defined and holomorphic on
the complement to two simple curves — the pullbacks of [−√3,

√
3]

under p−3, and it “reglues” these curves in a sense. We would like
to get rid of this discontinuity by “conjugating” f1 with yet another
regluing map. To this end, we need an injective holomorphic function
j1 defined on the domain of f1 and having the same type of discon-
tinuity at the two special curves, where f1 is undefined. We cannot
take j1 = f1 because f1 is, in general, two-to-one (it is the square
root of a degree four polynomial). However, we can take

j1 =
√

f1 − f1(0).

The square root may look disturbing but it does not actually create
any ramification, so that the function j1 is a union of two branches.
These branches are still not everywhere defined (they are defined
exactly on the domain of f1) but they are single valued! Indeed, the
square root has ramification points exactly where f1 is equal to f1(0)
or ∞. But at all such places, namely at 0 and at ∞, the function
f1 has simple critical points. Thus at these places, the function j1

looks like
√

u2, where u is some local coordinate, and this does not
have any ramification. It is also easy to see that j1 has no nontrivial
monodromy around the curves, on which it is undefined (it suffices
to look at the monodromy of the square root). We choose the branch
of j1 that is tangent to the identity at infinity.

Now finding f1 ◦ j−1
1 is easy: Set w = j1(z), then w =√

f1(z)− f1(0), and

f1 ◦ j−1
1 (w) = f1(z) = w2 + f1(0)

for all w such that the left-hand side is defined. So this is again a
quadratic polynomial! By the way, the number c1 = f1(0) is easy to
compute:

f1(0) = j(−3) = −
√

6 = −21/2 · 31/2.

The only non-trivial part is the sign of the square root. It is deter-
mined by our choice of the branch for j but we skip the corresponding
computation.

Next, we define the function f2 = j1 ◦ pc1 . Note that j1 = p−1
c1 ◦ f1

on the domain of f1. It follows that

f2“ = ”p−1
c1 ◦ f1 ◦ pc1 .
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This formula looks nice but one needs to be very careful, because the
expression in the right-hand side is ambiguous (it should be consid-
ered as a single-valued branch over some domain, but what is written
does not carry any information on the domain of definition). The
right understanding of this formula is that p−1

c1 ◦f1 should be thought
of as j1 but then it coincides with the formula f2 = j1 ◦ pc1 that we
have used to define f2. In our formulas, one can recognize Thurston’s
iteration but in a slightly unusual context because we deal with dis-
continuous holomorphic functions rather than with continuous non-
holomorphic functions. There is a precise relation between what is
happening and Thurston’s theory (better seen on other examples,
because, in the case under consideration, the Teichmüller space has
dimension 0, and Thurston’s theory does not have much to say).

Continuing the same process, we obtain a sequence fn of functions,
each defined on the complement to a finite union of simple curves,
with the following recurrence property:

fn+1 = j−1
n ◦ pcn , cn = fn(0),

where jn is a branch of
√

fn − cn defined on the domain of fn and
tangent to the identity at infinity.

In our example, we can compute the numbers cn explicitly. Con-
sider the sequence f◦m1 (0). This sequence stabilizes at the second
term:

−
√

6,
√

6,
√

6, . . . ,
√

6, . . .

The sequence f◦m2 (0) can be obtained from the first sequence as fol-
lows:

f◦m2 (0) =
√

f◦m+1
1 (0)− f1(0).

Thus all terms are equal to ±
√

2
√

6 = ±21−1/4 · 31/4. The determi-
nation of signs is a bit tricky, but the correct signs are the following:
the first sign is minus, and all other signs are plus. Continuing in the
same way, we obtain that

f◦mn (0) = ±21−1/2n · 31/2n
,

where the first sign is minus, and all other signs are plus. In particular,
cn = fn(0) → −2 as n → ∞, and the convergence is exponentially
fast.

We see that the sequence of polynomials pcn converges to the poly-
nomial g : z 7→ z2 − 2. This is the so called Tchebychev polynomial.
The Julia set of this polynomial is equal to the interval [−2, 2]. Note
that the orbit of the critical point 0 is finite: 0 7→ −2 7→ 2, and 2 is
fixed.

Define the sequence of maps Φn = jn ◦ . . . j1 ◦ j. The map Φn is
defined and holomorphic on the complement to finitely many simple
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curves. The main property of Φn is that fn+1 = Φn ◦f ◦Φ−1
n wherever

the right-hand side is defined, which follows from the definition. Note
also that pcn = Φn−1◦f ◦Φ−1

n wherever the right-hand side is defined.
In our example, it can be shown that the sequence Φn converges
uniformly to a map Φ defined on the complement to countably many
curves — in our case, to all iterated pullbacks of [−√3,

√
3] under f .

The map Φ reglues all these horizontal intervals into “vertical curves”
so that the Julia set of f , which is a Cantor set, gets glued into the
interval [−2, 2] under Φ. Passing to the limit as n →∞ in the identity
pcn = Φn−1 ◦ f ◦ Φ−1

n , we obtain that

g = Φ ◦ f ◦ Φ−1.

Note that the right-hand side is only defined on the complement to
countably many curves, but it extends to the complex plane as a
holomorphic function.

5.2. Thurston’s algorithm for quadratic branched coverings

In the example above, we constructed an explicit sequence of approx-
imations to a topological regluing. We will now define these approx-
imations in a more general context. First, we recall a version of the
Thurston algorithm for branched coverings of degree two, and then
extend this algorithm to certain classes of partially defined maps.

Lemma 7. For any pair of different points a, b ∈ C, there exists a
quadratic rational function with critical values a and b.

An analog of this statement for arbitrary degree is true and well
known but the quadratic case is more explicit.

Proof. Set

Ra,b(z) =





az2−b
z2−1

, a, b 6= ∞
z2 + b, a = ∞, b ∈ C

z−2 + a, a ∈ C, b = ∞
Then the critical points of Ra,b are ∞ and 0, and we have

Ra,b(∞) = a, Ra,b(0) = b.

ut
Suppose we start with a branched covering f1 : C→ C. Let R1 be

a rational function, whose critical values coincide with those of f1.
Then there is a global branch j1 of the multi-valued function R−1

1 ◦f1.
Note that R1 is only defined up to pre-composition with a Möbius
transformation. Hence j1 is only defined up to post-composition with
a Möbius transformation. Consider the map f2 = j1 ◦ R1. This map
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is an extension of j1 ◦ f ◦ j−1
1 , hence it is only defined up to a Möbius

conjugacy. Continue the same process with function f2: consider a
quadratic rational function R2 with the same critical values, define
j2 as a branch of R−1

2 ◦ f2, etc. We obtain the following diagram:

C j1−−−→ C j2−−−→ C j3−−−→ C −−−→ . . .

f1

y f2

y f3

y f4

y
C −−−→

j1
C −−−→

j2
C −−−→

j3
C −−−→ . . .

The maps jn are only defined up to post-composition with Möbius
transformations. Therefore, we need to make some normalization in
order to fix these maps. Below, a natural normalization is suggested
for quadratic rational functions. We can ask then the following ques-
tions:

1. does the sequence of rational functions Rn converge?
2. does the sequence of maps Ψn = jn ◦ . . . ◦ j1 converge?

Convergence is understood as uniform convergence with respect to
the spherical metric.

It is not hard to show that if Ψn converge to a homeomorphism
Ψ , then the rational functions

Rn = Ψn−1 ◦ f1 ◦ Ψ−1
n

converge to a rational function R∞. Moreover, Ψ conjugates f1 with
R∞. If Ψn converge to a function Ψ (not necessarily a homeomor-
phism), and the sequence Rn is equicontinuous, then it also converges.
Indeed, for every ε > 0, the uniform distance between Ψn and Ψm is
less than ε for sufficiently large n and m. Since all Ψn are surjective,
it follows that the uniform distance between jm ◦ . . . ◦ jn+1 and the
identity is less than ε. Finally, we can conclude that Rn and

Rm = (jm−1 ◦ . . . ◦ jn) ◦Rn ◦ (jm ◦ . . . ◦ jn+1)−1

are uniformly close. Thus Rn converge to some rational function R∞,
and Ψ semi-conjugates f1 with R∞.

Suppose now that f1 is critically finite. Then Thurston’s theory
provides a technique to answer the first question. The answer to the
second question depends on a particular normalization for jn. How-
ever, once the first question is answered in the affirmative, it is in
general much easier to answer the second question.
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5.3. A modification for partially defined maps

We need to consider the case, where f1 is only defined on a part of
the sphere (e.g. on the complement to finitely many simple curves).
Thurston’s algorithm (as described above) can be modified in the
following way. Assume that f1 is defined on some open subset U1 ⊂
S2, and that f1 : U1 → f1(U1) is an orientation-preserving branched
covering of degree two with two critical points. Moreover, assume
that forward f1-orbits of both critical points are well-defined (i.e. lie
in U1). Then we can proceed as before: choose a quadratic rational
function R1, whose critical values coincide with those of f1. It is
not hard to show that the multi-valued function R−1

1 ◦ f1 has trivial
monodromy, hence splits into two single valued branches.

Let j1 be one of the branches. It is defined on the set U1. Form a
new function f2 = j1 ◦R1. It is defined on the set R−1

1 (U1). We need
to prove that the critical orbits of f2 are well-defined. Indeed, let c1

and c2 be the critical points of f1. We know that the points f◦n1 (ci)
lie in U1 for all n ≥ 0 and i = 1, 2. Therefore, the points j1 ◦ f◦n1 (ci)
are well-defined. Note also that j1(ci) are the critical points of f2,
and that

j1 ◦ f◦n1 (ci) = f◦n2 ◦ j1(ci).

(We use repeatedly that f2 = j1 ◦ R1 and f1 = R1 ◦ j1.) In partic-
ular, the right-hand side is defined. We can now repeat the step of
Thurston’ algorithm. In this way, we obtain a sequence of maps fn,
jn and rational functions Rn, as above. The only difference is that fn

and jn are not everywhere defined.
We can now be more specific regarding the normalization of jn.

Suppose that the critical points of f1 are ∞ and 0 (this can be always
arranged by a suitable Möbius conjugacy). Let a1 = f1(∞) and b1 =
f1(0) be the corresponding critical values. We choose R1 in the form
Ra1,b1 , where the rational functions Ra,b were introduced in Lemma
7. This fixes R1, however, we still need to decide between the two
branches of R−1

1 ◦f1. We will do this in two examples. These examples
are, however, the most important.

Example 2. Suppose that a1 = f1(∞) = ∞, and that f1(z) = z2 +
o(z2) near infinity. Then both branches of R−1

1 ◦ f1 fix ∞. However,
one branch is tangent to the identity at infinity. We choose j1 to be
this branch. Note by the way that j1(z) = R−1

1 ◦ f1(z) is given by the
following explicit formula

√
f1(z)− b1.

We have f2(z) = z2 + o(z2) near ∞ so that we can choose the branch
for j2 in the same way, etc.
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Example 3. Suppose that f1(1) = ∞ and that∞ is not a critical value
of f1. Then one branch of R−1

1 ◦f1 maps 1 to 1, and the other branch
to −1. Indeed, R1(1) = R1(−1) = ∞ = f1(1). We choose j1 to be
the branch that fixes 1. Note that j1(z) = R−1

1 ◦ f1(z) is given by the
following explicit formula

√
f1(z)− b1

f1(z)− a1
.

By definition, j1 fixes both 0 and ∞. Therefore, f2 = j1◦f1 also maps
1 to ∞, and ∞ is not a critical value of f2. Thus we can choose the
branch for j2 in the same way, etc.

5.4. The first regluing

Let us start with a quadratic rational function f . Consider a simple
path α0 : [−1, 1] → C such that f ◦ α0(−t) = f ◦ α0(t) for all t ∈
[−1, 1]. In particular, α0(0) must be a critical point of f . The path
α0 can be interpreted as the α-path

(t1, t2) 7→ α0(t1).

We will sometimes use this interpretation when referring to regluing,
e.g. regluing of α0 means regluing of this α-path. To fix ideas, we
assume that the critical points of f are 0 and ∞ and that α0(0) = 0.
If all pullbacks of α0 are disjoint, then we can consider a topological
regluing of these pullbacks, as defined earlier in the text. However,
we will now make a much weaker assumption, namely, that the orbits
of f ◦ α0(1) and ∞ are disjoint from α0[−1, 1].

Let R be a rational function, whose critical values are f ◦ α0(1)
and f(∞). (E.g. we can choose R to have the form Ra,b as in Lemma
7). Consider the multi-valued analytic function R−1 ◦ f . There are
two single valued branches of this function over the complement to
α0[−1, 1]. We choose one branch, and call it j. Now f1 = j◦R satisfies
the assumptions of Section 5.3, and we can run Thurston’s algorithm
for f1. In the following examples, we comment on a specific choice of
the branch for j.

Example 4. Suppose that f is a quadratic polynomial. In a suitable
coordinate, it can be written in the form f(z) = z2 + b. The rational
function R should have critical values α0(1)2 + b and ∞, thus we can
take R(z) = z2 + α0(1)2 + b. The multi-valued function R−1 ◦ f is
given by the following explicit formula:

z 7→
√

z2 − α0(1)2.



38 V. Timorin

This function has two branches over the complement to α0[−1, 1]. One
of the branches is tangent to the identity near infinity. We choose j
to be this branch. For the corresponding function f1 = j ◦R, we have
f1 = z2 + o(z2) near infinity. Therefore, the normalization of jn can
be made as in Example 2.

Example 5. Consider a quadratic rational function f that is conjugate
neither to a polynomial nor to the map z 7→ 1/z2. Then we can reduce
f to the form

z 7→ az2 − b

z2 − 1
by a suitable Möbius conjugacy. Note that a = f(∞) and b = f(0).
The rational function R should have critical values f ◦ α0(1) and
f(∞) = a. Therefore, we can take

R(z) =
az2 − f ◦ α0(1)

z2 − 1
.

The multi-valued function R−1 ◦ f is given by the following explicit
formula:

z 7→
√

z2 − α0(1)2

1− α0(1)2
.

Note that one branch of this function takes 1 to 1, and the other
branch to −1. We define j as the branch that fixes 1. The function
f1 = j ◦R takes 1 to ∞, and ∞ is not a critical value of f1. Therefore,
we can use normalization for jn introduced in Example 3.

5.5. Some questions

Starting with a quadratic rational function f and a simple path α0 :
[−1, 1] → C, we have defined sequences of maps fn, jn and rational
functions Rn (provided that α0 satisfies certain properties given in
Section 5.4). For every n, the functions fn and jn are defined on a
complement to finitely many simple curves (possibly intersecting).
As before, we can define the maps Ψn = jn ◦ . . . ◦ j1. The map Ψn

is defined on a set Un, which is also a complement to finitely many
simple curves. Since every Un is open and dense, the intersection⋂

Un is dense. We can ask whether the maps Ψn converge uniformly
on

⋂
Un.

In the case where f1 is critically finite, this question is closely re-
lated to Thurston’s theory. This theory gives an answer to the ques-
tion on convergence of Rn.

Suppose that Rn and Ψn converge uniformly. Then the limit Ψ
of Ψn is a partially defined semi-conjugacy between f1 and the ra-
tional function R∞ = lim Rn (meaning that Ψ semi-conjugates the
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restriction of f1 to a certain forward invariant dense subset with the
restriction of R∞ to a certain forward invariant dense subset). More-
over, Φ = Ψ ◦ j is a partially defined semi-conjugacy between f and
R∞.

What can be said about the limit map Ψ? To what extent is this
map holomorphic? Note that it is holomorphic in the interior of

⋂
Un

(which may well be empty) but the notion of being holomorphic is not
even defined on the boundary. Is it possible to define an appropriate
notion generalizing holomorphy to the boundary points so that Ψ
would be holomorphic everywhere on

⋂
Un? (An attempt to define

this notion is made in preprint [Tp1]).

6. Existence of topological regluing

In this section, we prove Theorems 3 and 4. Our methods are based on a theory

of Moore [Mo16] that gives a purely topological characterization of topological

spheres.

6.1. A variant of Moore’s theory

Moore [Mo16] defined a system of topological conditions that are
necessary and sufficient for a topological space to be homeomorphic
to the sphere. He used this system to lay axiomatic foundations of
plane topology. One of the most remarkable applications of Moore’s
theory is a description of equivalence relations on the sphere such that
the quotient space is homeomorphic to the sphere. Moore’s theory has
been further developed in [B,vK,Z], see also [K].

In this section, we will give a “rapid introduction” into a version
of Moore’s theory. Our axiomatics is very far from being optimal
(many axioms can be proved as theorems), and it does not have the
purpose of setting a foundation to plane topology, but just serves as
a fast working tool to prove that something is a topological sphere.
A better system of axioms is given in [Tp2].

Let X be a compact connected Hausdorff space. Recall that a
simple closed curve in X is the image in X of a continuous embedding
γ : S1 → X. Here the map γ is called a simple closed path. We also
define a simple path as a continuous embedding of [0, 1] into X, and
a simple curve as the image of a simple path. A segment of a simple
curve is defined as the image of a closed subinterval in [0, 1] under the
corresponding simple path. Similarly, we can define a segment (or an
arc) of a simple closed curve.

Suppose we fixed some set E of simple curves in X. The curves in
E are called elementary curves. We will always assume that segments
of elementary curves are also elementary curves, and that if two ele-
mentary curves have only an endpoint in common, then their union
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is also an elementary curve. We will not state these assumptions as
axioms, although, technically, they are. Define an elementary closed
curve as a simple closed curve, all of whose segments are elementary
curves.

We are ready to state the first axiom:

Axiom 1 (Elementary domain axiom). Any elementary closed
curve J divides X into two connected components called elementary
domains bounded by J .

Since a simple closed curve is homeomorphic to a circle, it makes
sense to talk about the (circular) order of points in it. Define an el-
ementary quadrilateral in X as an elementary domain bounded by
an elementary closed curve J ⊂ X with a distinguished quadruple of
different points a, b, c and d in J . We assume that the points a, b, c
and d appear in J in the same circular order as they are listed. Con-
sider an elementary quadrilateral Q bounded by J . A simple curve
connecting the segment [a, b] with the segment [c, d] of J is called
a vertical curve, provided that it lies entirely in Q, except for the
endpoints. A simple curve connecting the segments [b, c] and [d, a] is
called horizontal, provided that it lies entirely in Q, except for the
endpoints. We will also regard [a, b] and [c, d] as horizontal curves,
[b, c] and [d, a] as vertical curves.

Axiom 2 (Extension axiom). For any elementary quadrilateral Q
bounded by an elementary closed curve J , and any point x in J , there
exists a vertical or a horizontal elementary curve with an endpoint
at x. Moreover, this curve divides Q into at most two elementary
quadrilaterals.

From the Extension axiom, it follows easily that the topological
boundary of any elementary domain bounded by an elementary closed
curve J coincides with J .

Define a grid in an elementary quadrilateral Q as a system of
finitely many horizontal elementary curves and finitely many vertical
elementary curves such that all horizontal curves are pair-wise dis-
joint, all vertical curves are pair-wise disjoint, and every horizontal
curve intersects every vertical curve at exactly one point. Using the
Elementary domain axiom and the Extension axiom, it is not hard to
show that every grid with n− 1 horizontal and m− 1 vertical curves
divides Q into mn pieces. We will refer to these pieces as cells of the
grid. Cells can be regarded as elementary quadrilaterals.

Axiom 3 (Covering axiom). Consider an elementary quadrilateral
Q and an open covering U of Q. Then there exists a grid in Q such
that the closure of every cell lies in some element of U (such grid is
said to be subordinate to U).
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The following is the main topological fact we need.

Theorem 14. Let X be a compact connected Hausdorff second count-
able topological space. Suppose that a set of elementary curves E in X
satisfies the Elementary domain axiom, the Extension axiom and the
Covering axiom. Suppose also that there exists an elementary closed
curve in X. Then X is homeomorphic to the sphere.

Proof. Since there exists an elementary closed curve, by the Elemen-
tary domain axiom, there exists an elementary quadrilateral Q. It
suffices to prove that the closure of this quadrilateral is homeomor-
phic to the closed disk.

Fix a countable basis B of the topology in X. There are countably
many finite open coverings of Q contained in B. Number all such
coverings by natural numbers. We will define a sequence of grids Gn

in Q by induction on n. For n = 1, we just take the trivial grid,
the one that does not have any horizontal or vertical curves. Suppose
now that Gn is defined. Let Un be the n-th covering of Q. Using
the Covering axiom, we can find a grid in each cell of Gn that is
subordinate to Un. Using the Extension axiom, we can extend these
grids to a single grid Gn+1 in Q. Thus Gn+1 contains Gn and is
subordinate to Un.

Consider any pair of different points x, y ∈ Q. There exists n
such that x and y do not belong to the closure of the same cell in
Gn+1. Indeed, let us first define a covering of Q as follows. For any
z ∈ Q, choose Uz to be an element of B that contains z but does not
include the set {x, y}. The sets Uz form an open covering of Q. Since
Q is compact, there is a finite subcovering. This finite subcovering
coincides with Un for some n. Then, by our construction, the closure
of every cell in Gn+1 is contained in an element of Un. However, the
set {x, y} is not contained in an element of Un. Therefore, {x, y}
cannot belong to the closure of a single cell.

Consider a nested sequence C1 ⊃ C2 ⊃ . . . ⊃ Cn ⊃ . . ., where Cn

is a cell of Gn. We claim that the intersection of the closures Cn is
a single point. Indeed, this intersection is nonempty, since Cn form
a nested sequence of nonempty compact sets. On the other hand, as
we saw, there is no pair {x, y} of different points contained in all Cn.

Consider the standard square [0, 1] × [0, 1] and a sequence Hn of
grids in it with the following properties:

1. all horizontal curves in Hn are horizontal straight line segments,
all vertical curves in Hn are vertical straight line segments;

2. the grid Hn has the same number of horizontal curves and the
same number of vertical curves as Gn, thus there is a natural
one-to-one correspondence between cells of Hn and cells of Gn

respecting “combinatorics”, i.e. the cells in Hn corresponding to
adjacent cells in Gn are also adjacent;
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3. the grid Hn+1 contains Hn; moreover, if a cell of Hn+1 is in a cell
of Hn, then there is a similar inclusion between the corresponding
cells of Gn+1 and Gn;

4. between any horizontal curve of Hn and the next horizontal curve,
the horizontal curves of Hn+1 are equally spaced; similarly, be-
tween any vertical curve of Hn and the next vertical curve, the
vertical curves of Hn+1 are equally spaced.

It is not hard to see that any nested sequence of cells Dn of Hn

converges to a point:
⋂

Dn = {pt}.
We can now define a map Φ : Q → [0, 1] × [0, 1] as follows. For a

point x ∈ Q, there is a nested sequence of cells Cn of Gn such that
Cn contains x for all n. Define the point Φ(x) as the intersection of
the closures of the corresponding cells Dn in Hn. (Note that they
also form a nested sequence according to our assumptions). Clearly,
the point Φ(x) does not depend on a particular choice of the nested
sequence Cn (there can be at most four different choices). It is also
easy to see that Φ is a homeomorphism between Q and the standard
square [0, 1]× [0, 1]. ut

One of the main applications of Moore’s theory is the following
characterization of equivalence relations on S2 such that the corre-
sponding quotient spaces are homeomorphic to the sphere:

Theorem 15. Let ∼ be a closed equivalence relation on S2 such that
all equivalence classes are connected and do not separate the sphere.
Then the quotient S2/ ∼ is homeomorphic to the sphere provided that
not all points are equivalent.

Recall that a closed equivalence relation on S2 is an equivalence
relation represented by a closed subset of S2 × S2.

6.2. Blow-up space

Consider a countable set Z of disjoint compact connected locally
connected nonseparating sets in S2. Suppose that Z forms a null-
sequence. For every A ∈ Z, fix a continuous map ΠA : S2 → S2

such that ΠA restricts to an orientation-preserving homeomorphism
between ∆∞ and S2 − A, and ΠA(∆) = A (we use notation from
Section 2.1).

We can now define the blow-up space XZ of Z as the equalizer of
all maps ΠA, i.e. the subset of the product (S2)Z consisting of all
functions χ : Z → S2 such that the points ΠA(χ(A)) ∈ S2 coincide
for all A ∈ Z. Intuitively, XZ is obtained from S2 by blowing up
every A ∈ Z according to the map ΠA. As a closed subset in the
compact Hausdorff second countable space (S2)Z , the space XZ is
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also compact, Hausdorff and second countable. As a continuous map
from a compact space to a Hausdorff space, the map ΠZ is closed.
For A ∈ Z, define the subset ∆A ⊂ XZ as the set of points χ ∈ XZ
such that χ(A) ∈ ∆. Clearly, ∆A is homeomorphic to the open disk
∆, and ∆A is homeomorphic to the closed disk ∆. The topological
disks ∆A, A ∈ Z, are disjoint and form a null-sequence. Intuitively,
the sets A ∈ Z are blown up to disks ∆A.

The main result of this section is the following

Theorem 16. Under our assumptions on Z, the blow up space XZ
is homeomorphic to the sphere.

To prove Theorem 16, we will use the technique introduced in
Section 6.1. First note that there is a natural projection ΠZ : XZ →
S2 that takes χ ∈ XZ to the point ΠA(χ(A)), A ∈ Z. By definition,
this point is independent of A. Consider a finite subset Z ′ ⊂ Z.
The blow-up space XZ′ is homeomorphic to the sphere (for a finite
set Z ′, this is both intuitively obvious and technically simple). Let
∼Z′ be the equivalence relation on XZ′ , whose non-trivial classes are
pullbacks of sets in Z −Z ′ under ΠZ′ . Let YZ′ be the quotient space
by this equivalence relation. By Theorem 15 of Moore, the space YZ′
is homeomorphic to the sphere. Here, we use our assumption that Z
form a null-sequence (otherwise, the equivalence relation would not
be closed). Define the countable subset set ZZ′ ⊂ YZ′ as the set of
points in YZ′ , whose fibers under the quotient map XZ′ → YZ′ are
non-trivial.

There is a canonical projection ΠZ,Z′ : XZ → XZ′ mapping an
element χ : Z → S2 to its restriction to Z ′. Denote by φZ′ the
composition of this projection and the quotient map XZ′ → YZ′ .

We can now define elementary curves in XZ . Take a simple curve
C in YZ′ avoiding the set ZZ′ . The pullback of C under φZ′ is called
an elementary curve in XZ . A standard Baire category argument
shows that the set of paths in S2 avoiding a given countable subset
of S2 is dense in the space of all paths with uniform topology. It fol-
lows that there are many elementary curves in XZ . Clearly, the set
of elementary curves in stable under taking segments and concatena-
tions.

Proposition 13. The space XZ satisfies the Elementary domain ax-
iom and the Extension axiom.

Proof. Let Z ′ be a finite subset of Z, and C a simple closed curve
in YZ′ avoiding the set ZZ′ . By the Jordan curve theorem, C divides
YZ′ into two connected components, say, U and U ′. It follows that the
pullbacks of U and U ′ under φZ′ are components of the complement
to the elementary curve φ−1

Z′ (C) in XZ . The pullbacks of U and U ′
are connected because all fibers of φZ′ are connected. The Extension
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axiom for XZ follows from the corresponding property of YZ′ (where
the elementary curves in YZ′ are understood as simple curves avoiding
the set ZZ′). ut
Proposition 14. Elementary domains form a basis of topology in
XZ .

Proof. We need to prove that, for every open set V in XZ and every
point χ0 ∈ V , there exists an elementary domain D that contains
χ0 and is contained in V . Moreover, we can assume that V has the
following form: there are open sets U1, . . ., Un in S2 and elements
A1, . . . , An ∈ Z such that V consists of all χ ∈ XZ with the property
χ(Ai) ∈ Ui for i = 1, . . . , n. Recall that such open sets V form a basis
in the product topology.

Set Z ′ = {A1, . . . , An}. Clearly, there is an open set V ′ in XZ′ such
that χ ∈ V if and only if ΠZ,Z′(χ) ∈ V ′. (The set V ′ consists of all
χ′ ∈ XZ′ such that χ′(Ai) ∈ Ui for i = 1, . . . , n). Set χ′0 = ΠZ,Z′(χ0).
Clearly, there is a Jordan domain neighborhood of χ′0 contained in
V ′, whose boundary maps to a simple closed curve in YZ′ avoiding
the set ZZ′ . The corresponding elementary domain is a neighborhood
of χ0 contained in V . ut
Proposition 15. The space XZ satisfies the Covering axiom.

Proof. Let Q be an elementary quadrilateral in XZ , and U an open
covering of Q. By Proposition 14, it suffices to consider the case,
where all elements of U are elementary domains. By compactness, we
can also assume that U is finite. For every U ⊂ U , the curve ΠZ(∂U)
intersects only finitely many elements of Z. Let Z ′ be a finite subset
of Z such that ΠZ(∂U) are disjoint from Z − Z ′ for all U ∈ U . The
Covering axiom for XZ now follows from the corresponding statement
in YZ′ . ut

Theorem 16 now follows from Theorem 14.

6.3. Existence of regluings

In this section, we prove Theorem 3. Let A be a countable set of
disjoint α-curves in S2 such that α(S1), α ∈ A, form a null-sequence.
Consider the set Z = ImA. This set satisfies all assumptions of
Section 6.2. For every α, define Πα as a continuous extension of
πα : ∆∞ → S2 to the whole sphere S2 such that ∆ is mapped to
α(S1). Let XA be the blow-up space corresponding to the set Z and
the family of projections Πα. By Theorem 16, the space XA is home-
omorphic to the sphere. Clearly, the ungluing space ΥA embeds into
XA as a closed subset (we will identify ΥA with its image under this
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embedding). This proves the first part of Theorem 3. Any compo-
nent of the complement to ΥA in XA is a Jordan domain consisting
of all points χ ∈ XA such that χ(α) ∈ ∆ for some fixed α. Thus
components of XA − ΥA are in one-to-one correspondence with the
set A. Let Dα denote the component of XA − ΥA corresponding to
an α-path α ∈ A.

Recall (Section 2.1) that there is a natural identification hα be-
tween the boundary of Dα (=S1

α) and the unit circle S1. The com-
position of hα : S1

α → S1 with the projection of S1 to the t2-axis
extends to a continuous map Pα : Dα → [−1, 1] in such a way that
every fiber of this map is a simple curve with endpoints in S1

α. We
can now define an equivalence relation ∼A on XA as follows. Two
different points of XA are equivalent, if they lie in the same fiber of
some Pα, α ∈ A. It is easy to see that the equivalence relation ∼A is
closed, and its equivalence classes are connected and non-separating.
Therefore, by Theorem 14, the quotient space is homeomorphic to
the sphere. In other terms, there is a quotient map Ψ : XA → S2,
whose fibers are exactly equivalence classes with respect to ∼A.

Note that, for every α ∈ A, the map β = Ψ ◦ h−1
α is a β-path.

Let B be the set of all such β-paths. (We have a fixed one-to-one
correspondence between A and B). It is not hard to verify that the
curves β(S1), β ∈ B, form a null-sequence. Since the restriction of Ψ
to Υ ◦A is one-to-one, and, for every α ∈ A, the map Ψ ◦h−1

α : S1 → S2

equals to the β-path β corresponding to α, we obtain that the map

S2 − ImA π−1
A−−−→ Υ ◦A

Ψ−−−→ S2 − ImB

is a regluing of A into B. This concludes the proof of Theorem 3.

6.4. Branched coverings

Let X be a topological sphere and f : X → X a continuous map.
Recall that f is called a branched covering at x ∈ X, if there exist
neighborhoods U of x and V of f(x) and homeomorphisms φ : U → ∆
and ψ : V → ∆ such that ψ ◦ f ◦ φ−1 coincides with z 7→ zk on ∆,
where k is some positive integer. The number k is called the local
degree of f at x. The map f is a branched covering if it is a branched
covering locally at every point. The following is a topological criterion
for f to be a branched covering.

Theorem 17. Suppose that y = f(x), and there exist simply con-
nected domains U 3 x and V 3 y such that f : U − {x} → V − {y}
is a covering of degree k. Then f is a branched covering of degree k
at x.
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Proof. Both U−{x} and V −{y} can be homeomorphically identified
with the quotient of the upper half-plane H = {Imz > 0} by the
translation z 7→ z+1. Moreover, one can choose the homeomorphisms
with the following property: as a point in H/Z tends to infinity (i.e.
the imaginary part tends to infinity), the corresponding point in U −
{x} (respectively, in V −{y}) tends to x (respectively, to y). The map
f restricted to U − {x} lifts to a homeomorphism F : H → H such
that F (z +1) = F (z)+k. Consider the maps Φ(z) = exp(2πiF (z)/k)
and Ψ(z) = exp(2πiz). These maps descend to homeomorphisms φ :
U−{x} → ∆−{0} and ψ : V −{y} → ∆−{0}, respectively. Moreover,
we have ψ ◦ f = φk. Clearly, φ and ψ extend continuously to x and
y, respectively, and φ(x) = ψ(y) = 0 so that the equality ψ ◦ f = φk

still holds. ut

Corollary 2. Let f : S2 → S2 be a continuous map and C ⊂ S2 a
finite subset such that f is locally injective on S2 − C. Then f is a
branched covering.

Recall that Theorem 4 states a simple condition that guarantees
that a topological regluing of a branched covering is also a branched
covering. We are now ready to prove this theorem.

Proof of Theorem 4. Consider a branched covering f : S2 → S2 and
a strongly f -stable set A of disjoint α-paths. Let Φ : S2 − ImA →
S2−ImB be a regluing ofA into a set B of β-paths. The map Φ◦f◦Φ−1

extends to a continuous map g : S2 → S2, by Theorem 2. We want
to prove that g is a branched covering.

Define Cg as the set consisting of points Φ(c), where c 6∈ ImA is a
critical point of f , and of points β(1, 0), where β ∈ B is the β-path
corresponding to some α-path α ∈ A, and α(0, 1) is a critical point of
f . Clearly, Cg is finite (its cardinality is the number of critical points
of f). By Corollary 2, it suffices to prove that for every y 6∈ Cg there
exists a neighborhood of y, on which g is injective.

First, assume that y 6∈ ImB. Then y = Φ(x) for some point x 6∈
ImA. Consider a small neighborhood V of f(x) that does not contain
critical values of f . Let U be a Jordan neighborhood of x, whose
boundary is disjoint from ImA and which is contained in f−1(V ). It
is not hard to see that g is injective on the Jordan neighborhood of
y bounded by Φ(∂U).

Next, assume that y ∈ β(S1), where β ∈ B is the β-path corre-
sponding to some α-path α ∈ A, and α(S1) contains no critical points
of f . Consider a small neighborhood V of f(α(S1)) containing no
critical values of f . Let U be a Jordan neighborhood of α(S1), whose
boundary is disjoint from ImA and which is contained in f−1(V ). It
is not hard to see that g is injective on the Jordan neighborhood of
y bounded by Φ(∂U).
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Finally, assume that y = β(t1, t2), where β ∈ B is the β-path
corresponding to some α-path α ∈ A, and α(0, 1) is a critical point
of f . Then we necessarily have t2 6= 0. Choose a Jordan domain V
disjoint from the critical values of f and such that ∂V intersects
f ◦ α(S1) exactly by endpoints (so that the critical value f ◦ α(0, 1)
is in ∂V ). Let U1 and U2 be the pullbacks of V intersecting α(S1).
These are Jordan domains, whose boundaries intersect exactly by the
critical point α(0, 1). By a suitable choice of V , we can arrange that
∂U1 and ∂U2 do not intersect ImA − α(S1). The union of Φ(∂U1 −
{α(0, 1)}), Φ(∂U2 − {α(0, 1)}) and the endpoints of β is a pair of
simple closed curves intersecting exactly by β(1, 0). It is easy to see
that g is injective on the Jordan neighborhood of y bounded by one
of these curves. ut
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Astérisque 288 (2003)
[R90] M. Rees, “Components of degree two hyperbolic rational maps” Invent.

Math. 100 (1990), 357–382
[R92] M. Rees, “A partial description of the Parameter Space of Rational Maps

of Degree Two: Part 1” Acta Math. 168 (1992), 11–87
[R] M. Rees, “A Fundamental Domain for V3”, preprint
[S] J. Stimpson, “Degree two rational maps with a periodic critical point”,

PhD Thesis, University of Liverpool, Juli 1993
[TS] Tan Lei, M. Shishikura, “An alternative proof of Mañe’s theorem on non-
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