
MOORE’S THEOREM

V. TIMORIN

Abstract. In this expository paper, we review a proof of the following old the-
orem of R.L. Moore: for a closed equivalence relation on the 2-sphere such that
all equivalence classes are connected and non-separating, and not all points are
equivalent, the quotient space is homeomorphic to the 2-sphere. The proof uses a
general topological theory close to but simpler than an original theory of Moore.
The exposition is organized so that to make applications of Moore’s theory (not
only Moore’s theorem) in complex dynamics easier, although no dynamical appli-
cations are mentioned here.

1. Introduction

In this expository paper, we review a proof of the following theorem of R.L. Moore
[M25]:

Theorem 1.1. Let ∼ be a closed equivalence relation on the 2-sphere S2 such that
all equivalence classes are connected and non-separating, and not all points are equiv-
alent. Then the quotient space S2/ ∼ is homeomorphic to the 2-sphere.

Here, a closed equivalence relation on S2 is defined as an equivalence relation on
S2, which is a closed subset of S2× S2. A set A ⊂ S2 is called non-separating if the
complement S2 − A is connected.

In the original proof of Theorem 1.1 (a complete proof is spread over several
publications [M16, M19, M20, M24, M25, M25Z], and it uses some results of [J, Mu]),
Moore used his axiomatic description of the sphere [M16]: a system of axioms on a
topological space X that guarantee that X is homeomorphic to the 2-sphere. We
follow (in a much simplified form) this original approach. Our objective, however,
is not to give a simpler proof of Theorem 1.1 but rather to introduce a topological
theory (close to that of Moore) describing the 2-sphere. In fact, the author keeps
several other applications of the same theory in mind, motivated mainly by rational
dynamics. They will be described in separate preprint(s) or publication(s).

Let X be a Hausdorff topological space. Recall that a path in X is a continuous
map α : [0, 1] → X. A path α is called simple if α(t) 6= α(t′) unless t = t′. A simple
curve in X is defined as the image of some simple continuous path. If A = α[0, 1]
for a simple path α, then α(0) and α(1) are called the endpoints of the simple curve
A; and for 0 ≤ a < b ≤ 1, the simple curve α[a, b] is called a segment of the simple
curve A. A simple closed curve in X is defined as the image of S1 under a continuous
embedding γ : S1 → X. Clearly, the image under γ of a closed arc of S1 is a simple
curve — we call it an arc of the closed simple curve γ(S1).
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One system of axioms that characterizes the 2-sphere is the following (remarkably,
only two axioms are enough!):

(1) Jordan domain axiom. For every simple closed curve C, the complement
X − C consists of two connected components called the Jordan domains
bounded by C. Moreover, the boundary of a Jordan domain bounded by C
is exactly C.

(2) Basis axiom. There is a countable basis of topology in X consisting of Jordan
domains.

Theorem 1.2. Suppose that a compact, connected, locally path connected, Hausdorff
topological space X satisfies the Jordan domain axiom and the Basis axiom. Then
X is homeomorphic to the 2-sphere.

The statement of Theorem 1.2 is very close to Moore’s axiomatic description
of S2. This statement can be strengthened. One of the strongest versions is due
to R.H. Bing [B]: a compact connected locally connected Hausdorff space X with
more than one point is homeomorphic to the 2-sphere, provided that no embedded
S0 separates X, and all embedded S1 separate X. The assumption that no pair of
points (=embedded S0) separates X in Bing’s theorem replaces the earlier stronger
assumption that no simple curve separates X [Z, vK]. Although these stronger
characterizations of the 2-sphere imply Moore’s Theorem 1.1 more directly, we use
Theorem 1.2 for two reasons: first, it is simpler to prove; second, a version of this
characterization can be stated dealing with more restricted classes of curves (see
Section 7). For the same reason, we work with the rather strong Basis axiom,
although we could have replaced it with a much weaker statement that there exists
at least one simple closed curve in X [vK].

We will first prove Theorem 1.2 (Sections 2–4), and then deduce Theorem 1.1
from it (Sections 5–6). Many of the intermediate results should be also attributed
to Moore, some of the results are even older. In the proof of generalized Jordan
curve theorem, I have used some more recent ideas, see e.g. [N]. It took me a
considerable effort to recover a complete argument presented here, and I hope that
my exposition would be helpful to other people. Some of the arguments are new.
Section 7 is aimed to extend Theorem 1.2 and make it suitable for other topological
applications (cf. e.g. [T]).

I am grateful to A. Epstein for communicating some useful references.

2. The extension property

Let X be a topological space satisfying the assumptions of Theorem 1.2. In this
section, we will prove the following important property:

Theorem 2.1 (Extension property). Let D be a Jordan domain in X bounded by a
simple closed curve C. Then, for every pair of different points a, b ∈ C there exists
a simple curve connecting a to b and lying entirely in D, except for the endpoints.
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Let us first note that any Jordan domain is an open set, as a connected component
of the complement to a compact set. An open connected set in a locally path
connected space is path connected. Thus all Jordan domains are path connected.

Proposition 2.2. Every Jordan domain coincides with the interior of its closure.

Proof. Let D be a Jordan domain. Since D is an open set, we have D ⊆ Interior(D).
Suppose that there is a point x in the interior of D such that x 6∈ D. Then we must
have x ∈ ∂D. By the Jordan domain axiom, ∂D = ∂(X −D) (note that X −D is
the other Jordan domain bounded by ∂D), thus the point x is also on the boundary
of X −D. A contradiction. ¤
Proposition 2.3. No proper arc of a simple closed curve separates X.

Proof. Assume the contrary: A is a proper arc of a simple closed curve C, and D1,
D2 are different components of X − A. The set C − A lies in some component of
X − A, suppose e.g. that C − A ⊂ D2. Then D1 is disjoint from C, therefore, it
lies in some Jordan domain D′

1 bounded by C. The boundary of D1 is disjoint from
D′

1, hence D1 must coincide with D′
1. However, ∂D1 ⊆ A, a contradiction with the

Jordan domain axiom, which says, in particular, that ∂D1 = C. ¤
Proposition 2.4. Let U be a Jordan domain, and C a simple closed curve in U .
Then there exists a Jordan domain V bounded by C such that V ⊆ U .

Proof. The Jordan domain X − U is a connected set disjoint from C. Therefore,
it lies in one of the two Jordan domains bounded by C. It follows that the other
Jordan domain bounded by C (call it V ) is contained in U . Since V is open, it is
also contained in the interior of U , which coincides with U by Proposition 2.2. ¤
Lemma 2.5 (Simplification of paths). Let α : [0, 1] → X be a continuous path in
X such that α(0) 6= α(1). Then there exists a simple path β : [0, 1] → X such that
β(0) = α(0), β(1) = α(1), and β[0, 1] ⊆ α[0, 1].

We will call β a simplification of α. Of course, in general, a simplification is
not unique. This lemma works in greater generality: X can be replaced with any
Hausdorff topological space.

Proof. Let I1 = [a1, b1] be a longest segment of [0, 1] such that α(a1) = α(b1) (it is
possible that a1 = b1; this happens if α was already simple). Define In = [an, bn]
inductively as a longest segment of [0, 1] essentially disjoint from I1, . . . , In−1 such
that α(an) = α(bn). The segments In thus defined are actually pair-wise disjoint, due
to the maximality of length assumption. There is a continuous map ξ : [0, 1] → [0, 1]
whose non-trivial fibers are precisely the segments In. Define the map β : [0, 1] → X
as follows: if ξ−1(s) is a single point t, then we set β(s) = α(t). If ξ−1(s) = [an, bn],
then we set β(s) = α(an) = α(bn). Clearly, β is a continuous path. It remains to
prove that β is simple. Suppose that β(s) = β(s′) for s 6= s′. Let I be the smallest
segment containing both ξ−1(s) and ξ−1(s′). For every n, we have either In ⊂ I
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or In ∩ I = ∅ (i.e. an endpoint of I cannot be in the interior of In). Choose the
maximal n, for which In ∩ I = ∅ (set n = 0 if all In are in I). We must have
In+1 ⊂ I, which contradicts the maximality of In+1. ¤
Proposition 2.6 (Approximate extension property). Let U be an open connected
subset of X. For any two boundary points a, b ∈ ∂U and any connected neighborhoods
Va 3 a, Vb 3 b, there exists a simple path α : [0, 1] → U such that α(0) ∈ ∂U ∩ Va,
α(1) ∈ ∂U ∩ Vb, and α(0, 1) ⊂ U .

Proof. Since U is open and connected, it is path connected. Therefore, there exists
a continuous path (not necessarily simple) in U connecting some point a′ of Va ∩ U
to some point b′ of Vb ∩ U . There is also a continuous path in Va connecting a
to a′, and a continuous path in Vb connecting b′ to b. Let α̃ : [0, 1] → X be the
concatenation of these three paths. The path α̃ connects points a and b in X but
does not necessarily lie in U . We can choose a parameterization, however, so that
α(t) lies in Va for t close to 0, in Vb for t close to 1, and in U for all other values of
t. Let (t0, t1) be the maximal interval such that α̃(t0, t1) ⊂ U . Reparameterize the
restriction of α̃ to [t0, t1] by [0, 1], and simplify this path (by Lemma 2.5). The path
α thus obtained satisfies the desired properties. ¤
Proposition 2.7. Consider a Jordan domain D and four different points a, b,
c, d in ∂D in this cyclic order. Let ac be a simple curve connecting a to c and
lying entirely in D, except for the endpoints. Then ac divides D into exactly two
components; these components are Jordan domains.

Proof. Define the simple closed curves abc and adc as the unions of ac with the
arcs of ∂D bounded by {a, c} and containing b and d, respectively. Let Dabc be the
Jordan domain bounded by abc and contained in D (it exists by Proposition 2.4).
Similarly, define Dadc as the Jordan domain bounded by adc and contained in D.
Since Dabc is contained in D−ac, but ∂Dabc is disjoint from D−ac, the domain Dabc

is a connected component of D− ac. Similarly, Dadc is also a connected component
of D−ac. We need to prove that there are no other connected components of D−ac.
Assume the contrary: Ω is yet another connected component.

There must be points e ∈ ∂Ω ∩ ∂D − ac and f ∈ ∂Ω ∩ ac− ∂D (we cannot have
∂Ω ⊆ ∂D, otherwise Ω = D; the curve ac is a proper arc of the simple closed curve
abc, thus ac cannot contain the boundary of Ω by Proposition 2.3). To fix the ideas,
assume that e ∈ abc − ac. Choose small disjoint Jordan neighborhoods Ve 3 e and
Vf 3 f . We can also arrange that Ve be disjoint from ac, and Vf from ∂D. In
this case, Ve ∩ ∂Ω ⊂ abc − ac and Vf ∩ ∂Ω ⊂ ac. By Proposition 2.6, there is a
simple curve connecting a point in Ve ∩ (abc − ac) to a point in Vf ∩ ac and lying
entirely in Ω, except for the endpoints. There is also a simple curve connecting a
(possibly different) point in abc − ac to a (possibly different) point in ac and lying
entirely in Dabc, except for the endpoints. The union of these two simple curves and
two arcs of abc (one in abc − ac, the other in ac) is a simple closed curve C in D.
Consider the Jordan domain Def bounded by C and contained in D. The boundary
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of Def intersects both Ω and Dabc. Therefore, Def itself intersects both Ω and Dabc

(since these two sets are open). Thus Def must also intersect ac. This is impossible,
however, because in this case, the intersection of the boundary of Def with ac must
have more than one connected component. ¤
Proposition 2.8. Consider a Jordan domain D and four different points a, b, c, d
in ∂D that appear in this cyclic order. Let ac (resp. bd) be a simple curve connecting
a with b (resp. b with d) and lying entirely in D, except for the endpoints. Then the
curves ac and bd intersect.

Proof. Let Dabc and Dadc be as in Proposition 2.7. We know that D is the union of
Dabc, Dadc and the curve ac minus the endpoints. The points on the curve bd that
are close to b must belong to Dabc because b is not in the closure of Dadc. Similarly,
the points on bd that are close to d must belong to Dadc. It follows that bd intersects
ac. ¤
Proposition 2.9. Let U and V be Jordan domains, and x ∈ ∂U ∩ V . There exists
a Jordan domain W ⊆ U ∩ V such that x ∈ ∂W . Moreover, W can be chosen as a
connected component of U ∩ V .

Proof. Let u : [0, 1] → ∂U be a surjective continuous path such that u(0) = u(1) =
x, and u(t) 6= u(t′) for t 6= t′, unless t or t′ is 0. Define a supporting segment
as a subsegment [a, b] of (0, 1) such that a, b ∈ ∂V , and there is a component of
∂V − {u(a), u(b)} that lies in U . We call this component a penetrating arc. Note
that two different penetrating arcs are necessarily disjoint (because an endpoint of a
penetrating arc cannot lie in another penetrating arc). Note that, by Proposition 2.8,
any two supporting segments are either nested or essentially disjoint (i.e. disjoint
except, possibly, for a common endpoint).

Since penetrating arcs are disjoint, they form a null-sequence (i.e. every subse-
quence contains a further subsequence converging to a point). It follows that the
corresponding supporting segments also form a null-sequence. In particular, in any
subset of supporting segments, there exists a longest segment with respect to the
standard length (i.e. the length of [a, b] is |b− a|).

Let I1 be the longest supporting subsegment, I2 the longest supporting segment
essentially disjoint from I1, etc. For any n > 1, we define In as the as the longest
supporting segment essentially disjoint from I1, . . . , In−1 (if any). In this way, we
obtain a finite or countable sequence of essentially disjoint supporting segments. In
the case of countably many segments, their lengths tend to zero.

Consider the simple closed curve Γ obtained from ∂U by replacing every segment
u(Ik) = u[ak, bk] with a corresponding penetrating component of V − {u(ak), u(bk)}
(e.g. this component can be re-parameterized by the segment [ak, bk]). Clearly, Γ
contains x and lies in U . Therefore, there is a Jordan domain W bounded by Γ and
contained in U . We claim that also W ⊆ V . Since Γ intersects V (e.g. x ∈ Γ ∩ V ),
the domain W also intersects V . It suffices to prove that W is disjoint from the
boundary of V . Assume the contrary: there is a component A of ∂V ∩W connecting
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a pair of points in Γ. Since W ⊂ U , the arc A belongs to some penetrating arc of ∂V
bounded by u(a) and u(b). The endpoints of A are in Γ, therefore, A coincides with
this penetrating arc. By definition, the segment [a, b] is a supporting subsegment
of (0, 1). By construction, it must belong to some Ik = [ak, bk]. Then the points
u(a) and u(b) can only be in Γ if a = ak and b = bk. However, in this case, u(a)
and u(b) cannot be endpoints of a component of ∂V ∩W . The contradiction shows
that W ⊆ V and, therefore, W ⊆ U ∩ V . Since all boundary points of W belong
to ∂U ∪ ∂V , there is no connected open set contained in U ∩ V and having W as a
proper subset. It follows that W is a connected component of U ∩ V . ¤
Proposition 2.10. Consider a Jordan domain U in X and a point x on the bound-
ary of U . Then there is a sequence of Jordan domains Un such that

Un+1 ⊂ Un ⊂ U,
⋂

Un = {x}.
Proof. Let Vn be a basis of neighborhoods of x consisting of Jordan domains. Set
U1 to be the component of U ∩ V1, whose boundary contains x (there exists such
component by Proposition 2.9). We know (again by Proposition 2.9) that U1 is a
Jordan domain. Set U2 to be the component of U1 ∩ V2, whose boundary contains
x, etc. In this way, we construct a sequence Un of Jordan domains with the desired
properties. ¤
Proposition 2.11. Let U be a Jordan domain in X. For any point o ∈ U and
any point x on the boundary of U , there is a simple path β : [0, 1] → U such that
β(0) = o, β(1) = x, and β(t) ∈ U for all t ∈ (0, 1).

Proof. Let Un be a nested sequence of Jordan domains such that Un+1 ⊆ Un ⊆ U
and

⋂
Un = {x} (such sequence exists by Proposition 2.10). Take xn ∈ Un. We can

now define a continuous path α (not necessarily simple) as follows. The restriction
of α to [0, 1/2] is a path connecting o to x1 in U . Next, the restriction of α to
[1/2, 3/4] is defined as a path connecting x1 to x2 in U1. Inductively, we define the
restriction of α to [1 − 2−n, 1 − 2−n−1] as a path connecting xn to xn+1 in Un. We
obtain a path α : [0, 1) → U such that α(t) → x as t → 1. (This is because x is
the only intersection point of Un). Therefore, we can set α(1) = x thus obtaining
a continuous path α : [0; 1] → U such that α(t) ∈ U for all t ∈ (0, 1). Finally, we
define β as a simplification of α. ¤

The Extension property (Theorem 2.1) follows from Proposition 2.11 and Lemma
2.5.

3. Simple intersections

The boundaries of two Jordan domains can intersect in a complicated way. In
this section, we will develop a machinery that reduces many questions on mutual
position of Jordan domains to the case, where the boundaries intersect in a simple
way. As in the preceding section, we consider a compact, connected, locally path
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connected, Hausdorff topological space X satisfying the Jordan domain axiom and
the Basis axiom.

We say that two simple closed curves A, B in X have only simple intersections if
A ∩ B is a finite set, and every two adjacent components of A − B lie on different
sides of B (i.e. in different Jordan domains bounded by B). It follows (by a simple
argument involving the Jordan domain axiom) that every two adjacent components
of B − A lie on different sides of A. The main objective of this section is to prove
the following

Theorem 3.1 (Covering property). Let U be a finite open covering of D, where
D is a Jordan domain in X. Then there exists a ramification U ′ of U of the same
cardinality such that every element U ′ ∈ U ′ is a Jordan domain, whose boundary
has only simple intersections with ∂D.

Recall that a covering U ′ is a ramification of U if for every U ′ ∈ U ′ there exists
U ∈ U such that U ′ ⊆ U .

Lemma 3.2 (The Scylla and Charybdis Lemma). Let D be a Jordan domain and Γ
a simple closed curve intersecting ∂D. Fix two points a, b ∈ ∂D that are not on the
boundary (taken in ∂D) of Γ ∩ ∂D and such that, for every component A of Γ ∩D,
the endpoints of A do not separate a from b in ∂D. Then the points a and b can
be connected by a simple curve lying entirely in D (except for the endpoints) and
disjoint from Γ (except, possibly, for the endpoints).

The name of the lemma is due to the fact that parts of Γ can “penetrate” into D
from “both sides”, i.e. through both components of ∂D − {a, b}.
Proof. Let U be a Jordan domain bounded by Γ that contains a. By Proposition
2.9, there is a component V of D∩U such that a ∈ ∂V . (In the case a is an interior
point, with respect to ∂D, of Γ∩∂D, we need an obvious modification of Proposition
2.9, the proof is the same). Moreover, V is a Jordan domain. From the construction
of V given in the proof of Proposition 2.9 it follows that b is also on the boundary of
V . It remains to use the Extension property (Theorem 2.1) to conclude that there is
a simple curve connecting a and b and lying in V , except for the endpoints. Clearly,
this curve is disjoint from Γ. ¤

The following lemma is taken from [M19]:

Lemma 3.3 (The Bump Lemma). Let D be a Jordan domain and Γ a simple
closed curve. Consider two points a, b ∈ ∂D that are not on the boundary (taken in
∂D) of Γ ∩ ∂D. Then there is a simple curve C with endpoints a and b such that
C − {a, b} ⊂ D, and C ∩ Γ is finite.

Proof. It is not hard to see that there is a simple curve C ′ connecting a with b and
lying in D, except for the endpoints, with the following property: there are non-
degenerate segments ad and bc of C ′ that are disjoint from Γ, apart from (possibly)
the endpoints (non-degenerate means containing more than one point). Consider
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the Jordan domain U ⊂ D bounded by C ′ and a segment of ∂D between a and b.
These two curves will be referred to as the sides of U , and the points a and b as the
vertices of U .

Let L be a component of Γ∩U . We call L a crossing component if the endpoints of
L belong to different sides of U . There are only finitely many crossing components
(otherwise, they would accumulate somewhere, which contradicts the fact that Γ
is a simple closed curve). By the Jordan domain axiom, the crossing components
subdivide U into several Jordan subdomains U0, . . . , Un so that ∂Ui ∩ ∂Ui+1 is the
closure of a crossing component Li for i = 0, . . . , n − 1. Choose arbitrary points
ai ∈ Li for i = 1, . . . , n − 1, and set a0 = a, an = b. By the Scylla and Charybdis
Lemma, Lemma 3.2, we can connect ai to ai+1 by a simple curve lying entirely in
Ui, except for the endpoints, and disjoint from Γ (except, again, for the endpoints).

The union of the curves thus obtained is a simple curve C connecting a with b,
for which the intersection C ∩ Γ is finite (one point in every crossing component of
Γ, and possibly the endpoints a and/or b). ¤

A corollary of the Bump Lemma is the following

Corollary 3.4. Let D be a Jordan domain, and Γ a simple closed curve. For every
compact subset K ⊂ D, there exists a Jordan domain D̃ ⊆ D containing K such
that ∂D̃ ∩ Γ is finite.

Proof. Divide the boundary of D into many small arcs. Consider an arc A of our
subdivision with endpoints a and b. There is a Jordan domain U containing A and
disjoint from K. This follows from the Basis Axiom, provided that all segments of
our subdivision are small enough. Let V be a component of U ∩D, whose boundary
contains A (such component exists by Proposition 2.9). By the Bump Lemma,
Lemma 3.3, there is a simple curve C connecting a with b, lying entirely in V ,
except for the endpoints, and intersecting Γ in finitely many points (we may need
to replace a and b with some nearby points, bounding a slightly larger arc, to make
the Bump Lemma applicable). Replace A with C in ∂D. Then we obtain a new
Jordan curve. It is straightforward to check (using the Jordan domain axiom) that
the Jordan domain D′ bounded by the new Jordan curve and containing K satisfies
the following property: K ⊂ D′ ⊂ D. It remains to repeat the same procedure with
other arcs of our subdivision. ¤

If two simple closed curves have only finitely many intersection points, then one
can perturb one of the curves to make the intersections simple:

Proposition 3.5. Let Γ be a simple closed curve, and D a Jordan domain such
that ∂D ∩ Γ is finite. Then, for any compact subset K ⊂ D, there exists a Jordan
domain D̃ such that ∂D̃ and Γ have only simple intersections, and K ⊂ D̃ ⊂ D.

Proof. Indeed, let x be an intersection point of Γ and ∂D such that the two com-
ponents of ∂D − Γ having x as a limit point lie on the same side of Γ, i.e. in the
same Jordan domain bounded by Γ. Let V be a small neighborhood of x such that
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V is disjoint from K and V ∩ ∂D ∩ Γ = {x}. Consider an arc A of ∂D lying in
V and containing x in its interior (taken in ∂D). There is a simple curve A′ ⊂ V
connecting the endpoints of A that lies in V , except for the endpoints, and has only
simple intersections with Γ (a construction of such curve is given in the proof of the
Bump Lemma, Lemma 3.3).

Let D′ be the Jordan domain bounded by (∂D − A) ∪ A′ and not containing x.
Then the number of non-simple intersection points in ∂D′ ∩ Γ is less than that in
∂D∩Γ. Moreover, we have K ⊂ D′ ⊂ D. Proceed in the same way to remove other
non-simple intersections. ¤

The Covering property (Theorem 3.1) follows from Proposition 3.5.

4. Quadrilaterals and grids

As in the preceding sections, consider a compact, connected, locally path con-
nected, Hausdorff topological space X satisfying the Jordan domain axiom and the
Basis axiom. A quadrilateral Q in X is defined as a Jordan domain with a distin-
guished quadruple of points a, b, c, d ∈ ∂Q (appearing on ∂Q in this cyclic order)
called the vertices of Q. The four vertices divide ∂Q into four (open in ∂Q) arcs
called the edges of Q. We will refer to the edges ab and cd as the vertical edges, and
to the edges bc and ad as the horizontal edges, although this terminology depends,
of course, on the labeling of vertices.

A simple curve C is called horizontal with respect to a quadrilateral Q if C ⊆ Q,
the endpoints of C belong to different vertical edges, and C intersects ∂Q only by
the endpoints. Similarly, a simple curve C is called vertical with respect to Q if
C ⊆ Q, the endpoints of C belong to different horizontal edges, and C intersects ∂Q
only by the endpoints. Define a grid in the quadrilateral Q as a collection of finitely
many horizontal curves and finitely many vertical curves such that two different
horizontal curves and two different vertical curves are disjoint, and every horizontal
curve meets every vertical curve at exactly one point. A repeated application of the
Jordan domain axiom yields that a grid consisting of n horizontal and m vertical
curves divides Q into nm Jordan domains called cells of the grid. We will prove the
existence of grids with certain properties. To this end, we will need the following
Proposition, which is a corrected version of some statement from [M19].

Proposition 4.1. Let Γ be a simple closed curve such that Γ ∩ ∂Q is nonempty,
contains simple intersections only (in particular, is finite), and does not contain
vertices of Q. Then there exists a grid G in Q such that Γ ∩ Q is contained in the
union of all horizontal and vertical curves of G.

Proof. The intersection Γ ∩ Q consists of several simple curves with endpoints on
∂Q. Let Q′ be the unit square in the plane. There is a bijection between the finite
set P = (Γ ∩ ∂Q) ∪ {a, b, c, d} and a finite set P ′ of points on ∂Q′ containing all
vertices of Q′ such that vertices correspond to vertices and the bijection preserves
the cyclic order. On P ′, we can define the adjacency relation as follows: two points

9



are called adjacent if the corresponding points in P are connected by an arc of Γ
lying in Q. It follows from Proposition 2.8 that a pair of adjacent points cannot
separate another pair of adjacent points in ∂Q′.

An xy-curve in the plane is defined as a broken line consisting of intervals parallel
to the x-axis or to the y-axis. Clearly, we can connect all pairs of adjacent points
in P ′ by disjoint xy-curves lying entirely in Q′, except for the endpoints. This set
of disjoint xy-curves lies in the union of all vertical and horizontal intervals of some
grid G′ in Q′ consisting of vertical, i.e. parallel to the y-axis, straight line intervals
and horizontal, i.e. parallel to the x-axis, straight line intervals. To construct G′, it
suffices to extend all intervals in all xy-curves that we have.

Using the Extension property (Theorem 2.1) several times, we can extend Γ ∩Q
to a grid “combinatorially equivalent” (in an obvious sense) to the grid G′ in Q′. ¤

The following result is crucial for the proof of Theorem 1.2.

Theorem 4.2. Let U be any open covering of Q. Then there exists a grid G in Q
that is subordinate to U , i.e. such that the closure of every cell of G is contained in
some element of U .

Proof. By the Basis axiom, we can assume that U consists of Jordan domains. By
compactness, we can also assume that U is finite. We will now proceed by induction
on the cardinality of U (always keeping the assumption that U consists of Jordan
domains). The base of induction is obvious: if U consists of only one Jordan domain
U , then Q ⊂ U , and the empty grid works.

We can now perform the induction step. Let U ∈ U be a Jordan domain containing
the vertex a of Q. By Propositions 3.4 and 3.5, there is a Jordan domain V ⊆ U
such that U −{U}∪{V } is still a covering of Q, and ∂V ∩∂Q is a finite set of simple
intersections. By Proposition 4.1, there is a grid G0 in Q such that ∂V is contained
in the union of all horizontal and all vertical curves of G0. Let C be any cell of G0

not covered by V (hence disjoint from V ). Since C is covered by U − {U}, we can
use the induction hypothesis to conclude that there is a grid GC in C subordinate
to U . In this way, we get grids subordinate to U in all cells of G0. It remains to use
the Extension property (Theorem 2.1) to extend all these grids to a single grid in
Q, which would also be subordinate to U . ¤
Proof of Theorem 1.2. Consider an arbitrary quadrilateral Q in X. It suffices to
prove that the closure of Q is homeomorphic to the closed disk or, equivalently, to
the standard square [0, 1]× [0, 1].

By the Basis axiom, there is a countable basis B of the topology in X. There
are countably many finite open coverings of Q by elements of B. Number all such
coverings by natural numbers. We will define a sequence of grids Gn in Q by in-
duction on n. For n = 1, we just take the empty grid, the one that does not have
any horizontal or vertical curves. Suppose now that Gn is defined. Let Un be the
n-th covering of Q. Using Theorem 4.2, we can find a grid in each cell of Gn that
is subordinate to Un. Using the Extension property (Theorem 2.1), we can extend
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these grids to a single grid Gn+1 in Q. Thus Gn+1 contains Gn and is subordinate
to Un.

Consider any pair of different points x, y ∈ Q. There exists n such that x and
y do not belong to the closure of the same cell in Gn+1. Indeed, let us first define
a covering of Q as follows. For any z ∈ Q, choose Uz to be an element of B that
contains z but does not include the set {x, y}. The sets Uz form an open covering
of Q. Since Q is compact, there is a finite subcovering. This finite subcovering
coincides with Un for some n. Then, by our construction, the closure of every cell in
Gn+1 is contained in a single element of Un. However, the set {x, y} is not contained
in a single element of Un. Therefore, {x, y} cannot belong to the closure of a single
cell.

Consider a nested sequence C1 ⊂ C2 ⊃ · · · ⊃ Cn ⊃ . . . , where Cn is a cell of
Gn. We claim that the intersection of the closures Cn is a single point. Indeed, this
intersection is nonempty, since Cn form a nested sequence of nonempty compact sets.
On the other hand, as we saw, there is no pair {x, y} of different points contained
in all Cn.

Consider the standard square [0, 1] × [0, 1] and a sequence Hn of grids in it with
the following properties:

(1) all horizontal curves in Hn are horizontal straight intervals, all vertical curves
in Hn are vertical straight intervals;

(2) the grid Hn has the same number of horizontal curves and the same number
of vertical curves as Gn, thus there is a natural one-to-one correspondence
between cells of Hn and cells of Gn respecting “combinatorics”, i.e. the cells
in Hn corresponding to adjacent cells in Gn are also adjacent;

(3) the grid Hn+1 contains Hn; moreover, if a cell of Hn+1 is in a cell of Hn, then
there is a similar inclusion between the corresponding cells of Gn+1 and Gn;

(4) between any horizontal interval of Hn and the next horizontal interval, the
horizontal intervals of Hn+1 are equally spaced; similarly, between any ver-
tical interval of Hn and the next vertical interval, the vertical intervals of
Hn+1 are equally spaced.

It is not hard to see that any nested sequence of cells Dn of Hn converges to a point:⋂
Dn = {pt}.
We can now define a map Φ : Q → [0, 1] × [0, 1] as follows. For a point x ∈ Q,

there is a nested sequence of cells Cn of Gn such that Cn contains x for all n. Define
the point Φ(x) as the intersection of the closures of the corresponding cells Dn in
Hn. (Note that they also form a nested sequence according to our assumptions).
Clearly, the point Φ(x) does not depend on a particular choice of the nested sequence
Cn (there can be at most four different choices). It is also easy to see that Φ is a
homeomorphism between Q and the standard square [0, 1]× [0, 1]. ¤
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5. The Jordan curve theorem

In this section, we deal with topology of the 2-sphere S2. One of the most funda-
mental results in topology of S2 is the Jordan curve theorem: a simple closed curve
in the 2-sphere divides the sphere into two connected components. In this section,
we prove a certain generalization of the Jordan curve theorem, which we need to
prove Theorem 1.1. This generalization is also due (mainly) to Moore. A proof,
however, can be obtained by a slight modification of a modern standard proof of the
Jordan curve theorem.

We will need the following standard facts from algebraic topology, which we quote
without proof:

Theorem 5.1 (Alexander’s duality). Let U be an open subset of the sphere such
that S2 − U has k < ∞ connected components. Then the first Betti number h1(U)
is equal to k − 1.

Theorem 5.2 (Mayer–Vietoris sequence). Let U1 and U2 be open subsets of the 2-
sphere. Then the homology spaces of U1, U2, U1∩U2 and U1∪U2 with real coefficients
form the following exact sequence

0 → H1(U1 ∩ U2) → H1(U1)⊕H1(U2) → H1(U1 ∪ U2)
∂∗−→

∂∗−→ H0(U1 ∩ U2) → H0(U1)⊕H0(U2) → H0(U1 ∪ U2) → 0.

These are partial cases of much more general theorems known by the names given
in parentheses. Note that no fancy homology theory is needed because open sets in
the sphere are smooth manifolds. E.g. one can use simplicial homology. Proofs of
the facts cited above (and their generalizations) can be found in standard textbooks
on algebraic topology. See e.g. [N] for Theorem 5.1 and [Mun] for Theorem 5.2.

Let U1 and U2 be open sets in S2. Then the Betti numbers of U1, U2, U1∩U2 and
U1 ∪ U2 are related as follows:

h1(U1 ∩ U2)− h1(U1)− h1(U2) + h1(U1 ∪ U2)−
−h0(U1 ∩ U2) + h0(U1) + h0(U2)− h0(U1 ∪ U2) = 0.

This follows immediately from Theorem 5.2 and the following algebraic fact: the
alternating sum of the dimensions of vector spaces forming an exact sequence is
equal to zero.

The most nontrivial and interesting map in the Mayer–Vietoris exact sequence is
the connecting homomorphism ∂∗. It is defined as follows. Represent an element of
H1(U1∪U2) by a simplicial cycle β = α1−α2, where αi is a simplicial chain supported
in Ui. The image ∂∗[β] is defined as the element of H0(U1 ∩ U2) represented by the
cycle ∂α1 = ∂α2 in U1 ∩U2 (note that this cycle is homologous to zero in U1 and in
U2 but, in general, not in U1 ∩ U2). All other maps in the Mayer–Vietoris sequence
are induced by the inclusions

U1 ∩ U2 ↪→ U1, U2 ↪→ U1 ∪ U2.
12



We say that a closed set Z ⊂ S2 separates two points of S2 if they belong to
different connected components of S2 − Z.

Proposition 5.3. Suppose that subsets X1 and X2 of S2 are closed and do not
separate points a and b in the sphere. If X1 ∩ X2 is connected, then X1 ∪ X2 does
not separate a from b.

Proof. Let Ui denote the complement to Xi in the sphere, i = 1, 2. Thus U1 and U2

are open sets. Moreover, a and b are in the same component of U1 and in the same
component of U2. Thus, we can connect a to b by a simple curve Ai lying entirely
in Ui, i = 1, 2. Moreover, we can assume that Ai is the support of some simplicial
chain αi oriented from a to b. Then β = α1 − α2 is a simplicial cycle.

By definition of the boundary map (in the Mayer–Vietoris exact sequence)

∂∗ : H1(U1 ∪ U2) → H0(U1 ∩ U2),

the homology class of ∂α1 = ∂α2 is equal to ∂∗([β]), where [β] is the homology class
of β. On the other hand, H1(U1 ∪ U2) = 0 by Alexander’s duality and the fact that
X1∩X2 is connected. It follows that ∂α1 is a boundary. But then 0 = [∂α1] = [b]−[a],
where [a] and [b] are classes of points a and b in H0(U1∩U2). It follows that a and b are
in the same connected component of U1∩U2, i.e. are not separated by X1∪X2. ¤

Recall that a map F : t 7→ F (t) assigning a compact subset F (t) in a Hausdorff
space X to every element t of some topological space T is called upper semicontin-
uous if for every t ∈ T and every open neighborhood U of F (t), there is an open
neighborhood V of t with the property F (t′) ⊂ U for all t′ ∈ V .

Proposition 5.4. Consider a map F of the interval [0, 1] into the set of compact
subsets in S2 such that F (t)∩F (t′) = ∅ for t 6= t′. Then F is upper semi-continuous
if and only if for every closed subinterval A of [0, 1], the union

F (A) =
⋃
t∈A

F (t)

is closed. The same statement is true if, instead of just subintervals, we consider all
closed subsets in [0, 1].

A similar statement is true if [0, 1] is replaced with S1, with the same proof.

Proof. Suppose that F (A) is closed for every closed subinterval A ⊂ [0, 1]. Choose
a point t∞ in [0, 1] and a nested sequence An of subintervals in [0, 1] containing t∞
in their relative interiors (taken in [0, 1]), whose intersection is {t∞}. Clearly, the
intersection of compact sets F (An) is then F (t∞) (this follows from the fact that
F (t) is disjoint from F (t′) for t 6= t′). Let U be any open neighborhood of F (t∞)
in the sphere. The sets F (An) − U form a nested sequence of compact sets, whose
intersection is empty. Therefore, all these sets must be empty for n big enough, i.e.
F (t) ⊂ U for all t ∈ An.

Conversely, suppose that the map F is upper semicontinuous. Let A be a closed
subset of [0, 1] (not necessarily a subinterval). We need to prove that the set F (A) is
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closed. Indeed, choose any sequence xn ∈ F (tn) that converges to some point x∞ of
the sphere. Passing to a subsequence if necessary, we can assume that the sequence
tn converges to some t∞ ∈ A. Since the sets F (tn) accumulate on F (t∞), we must
have x∞ ∈ F (t∞) ⊂ F (A). ¤

Proposition 5.5. Consider an upper semicontinuous map F from [0, 1] to the set
of compact subsets in S2. If F (t) is connected for every t ∈ [0, 1], then the union
F [0, 1] is also connected.

Proof. Assume the contrary: there is a splitting F [0, 1] = F (A) t F (B), where
[0, 1] = A t B, and both F (A) and F (B) are closed (any splitting of F [0, 1] into
two disjoint closed sets must have this form, since all F (t) are connected). However,
since [0, 1] is connected, we cannot have that both A and B are closed. Suppose,

say, that A∩B 6= ∅. Then, for every t ∈ A∩B, we must have F (t) ⊂ F (A)∩F (B),
which contradicts the fact that F (A) and F (B) are disjoint. ¤

A subset of S2 is called non-separating if it does not separate the sphere. The
following theorem generalizes the fact that a simple curve is non-separating [J].

Theorem 5.6. Consider an upper semicontinuous map F from [0, 1] to the set of
compact connected subsets of the sphere. If all F (t) are disjoint and non-separating,
then F [0, 1] is non-separating.

Proof. Assume the contrary: there are two points a and b in the complement to
F [0, 1] such that F [0, 1] separates a from b. Consider two compact sets F [0, 1/2]
and F [1/2, 1]. Their intersection F (1/2) is connected. By Proposition 5.3, either
F [0, 1/2] or F [1/2, 1] separates a from b. We can continue the same process to obtain
a nested sequence of subintervals An ⊂ [0, 1] such that F (An) separate a from b and⋂

An is a single point t ∈ [0, 1]. However, we know that F (t) is non-separating.
Choose a simple curve C connecting a to b in the complement to F (t). There is a
neighborhood U of F (t) disjoint from C. The sets F (An) must be contained in U
for all large n. A contradiction with the fact that F (An) separates a from b. ¤

The main theorem of this section, which is a generalization of the Jordan curve
theorem, is the following:

Theorem 5.7. Consider an upper semicontinuous map F from the circle S1 to the
set of compact connected subsets in the sphere. Suppose that all F (t) are disjoint,
and do not separate the sphere. Then the complement to the set F (S1) consists of
exactly two connected components.

Proof. Consider two closed arcs A1 and A2 of S1 such that A1∩A2 is a pair of points
(the common endpoints of A1 and A2) and S1 = A1∪A2 (the second condition follows
from the first). Set Xi = F (Ai) and Ui = S2 −Xi. We can use the Mayer–Vietoris
theorem 5.2 for U1 and U2. What we want to know is the term h0(U1∩U2). It turns
out that we can compute all other terms. By Theorem 5.1 and Proposition 5.5, we
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know all h1-terms:

h1(U1 ∩ U2) = h1(U1) = h1(U2) = 0, h1(U1 ∪ U2) = 1.

By Proposition 5.6, the set Xi does not separate the sphere, hence h0(Ui) = 1. The
complement to U1∪U2 is the union of two disjoint compact connected non-separating
sets. By Proposition 5.3, this union does not separate the sphere. Therefore, h0(U1∪
U2) = 1. By Theorem 5.2, we can now conclude that h0(U1 ∩U2) = 2 as stated. ¤

6. Quotients of the sphere

In this section, we prove Theorem 1.1. Consider a closed equivalence relation ∼
on S2 satisfying the assumptions of the theorem. The quotient space of a compact
connected Hausdorff space by a closed equivalence relation is also compact, con-
nected and Hausdorff. In addition, if the space is locally path connected, and all
equivalence classes are connected, then the quotient is also locally path connected.
See e.g. [K]. Thus we know that X = S2/ ∼ is compact, Hausdorff, connected and
locally path connected. To prove Theorem 1.1, we need to show that X satisfies the
Jordan domain axiom and the Basis axiom. Let π : S2 → X denote the canonical
projection.

Theorem 6.1. The space X satisfies the Jordan domain axiom. Namely, for every
simple closed curve C in X, the complement to C consists of exactly two connected
components. The boundary of each of these components coincides with C.

As before, we call these connected components the Jordan domains bounded by
the curve C.

Proof. Consider a closed simple path γ : S1 → X parameterizing C, i.e. such that
γ(S1) = C. Define the function F from S1 to the set of compact subsets in the
sphere by the formula F (t) = π−1(γ(t)). The sets F (t) are disjoint, connected
and non-separating. For any closed (hence compact) arc A ⊆ S1, the set γ(A) is
compact (hence closed) in X, therefore, the set π−1(γ(A)) is closed in S2. It follows
that F satisfies the assumptions of Theorem 5.7. By this theorem, the complement
to F (S1) = π−1(C) splits into two disjoint open connected sets. These sets project
to some open connected sets U1 and U2 in X. Clearly, X = C t U1 t U2.

It remains to prove that ∂Ui = C for i = 1, 2. Clearly, ∂Ui ⊆ C. We want to show
that the opposite inclusion holds. Take a point x = γ(t) ∈ C and a neighborhood
V of x. It suffices to prove that V will necessarily intersect ∂U1 and ∂U2. Let I be
an arc of S1 such that t 6∈ I and I ∪ γ−1(V ) = S1. By Theorem 5.6, the set γ(I)
does not separate X. It follows that x can be connected to some point in U1 and to
some point in U2 by continuous paths avoiding γ(I). Since x is neither in U1 nor in
U2, these paths must intersect ∂U1 and ∂U2 (respectively), and these intersections
can only happen in V . ¤

It remains to prove that X satisfies the Basis axiom.
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Theorem 6.2. Let x, y ∈ X be two points, and α : S1 → S2 a simple closed path
that separates π−1(x) from π−1(y). Then there is a simple closed curve Γ in X that
separates x from y and such that Γ ⊆ π ◦ α(S1).

In the proof given below, we assume that α is a smooth embedding. This is
sufficient for our purposes. The proof can be easily extended to the general case
using relative homology.

Proof. Let A be an open arc of S1. Suppose that the endpoints of A belong to
π−1(C) for some equivalence class C of ∼. Consider a smooth curve β connecting
π−1(x) to π−1(y) in S2 and avoiding C (i.e. the endpoints of β belong π−1(x)
and π−1(y), respectively, and β ∩ C = ∅). By a small perturbation, we can make
β transverse to α(A). We say that A is even (respectively, odd), if every such β
intersects α(A) even (respectively, odd) number of times. Note that the parity does
not depend on β provided that β satisfies our assumptions, i.e. connects π−1(x) to
π−1(y), avoids C and is transverse to α(A). Indeed, consider two such curves β1

and β2. Let βi · α(A) ∈ Z/2Z be the residue modulo 2 that represents the parity
of the cardinality of βi ∩ α(A), i = 1, 2. The sum γ = β1 + β2 represents a cycle in
H1(S

2 − C,Z/2Z). Since H1(S
2 − C,Z/2Z) = 0, this cycle is homologous to 0. On

the other hand, β1 ·α(A) + β2 ·α(A) is the image of ([γ], [α(A)]) under the Poincaré
pairing

H1(S
2 − C,Z/2Z)×Hc

1(S
2 − C,Z/2Z) → Z/2Z.

Here Hc
1 is the first homology space with compact support. This image is zero,

therefore, β1 · α(A) = β2 · α(A). The proof will now consist of several steps.
Step 1. Let An be a sequence of even arcs that converges to some arc A. Then

A is also an even arc. Suppose that the endpoints of An belong to α−1(Cn) for an
equivalence class Cn of ∼. Clearly, Cn accumulate on some equivalence class C, and
the endpoints of A belong to α−1(C). Consider a smooth curve β connecting π−1(x)
to π−1(y), avoiding C, and transverse to α(A). Since Cn accumulate on C, the path
β is disjoint from Cn for sufficiently large n. It follows that the number β · α(An) is
even. Moreover, β ∩α(An) = β ∩α(A) for sufficiently large n. Therefore, A is even.

Step 2. Let A1 be a longest even arc of S1. From Step 1, it follows that such arc
exists. (We measure the lengths with respect to some fixed metric on S1). Denote
by C1 the equivalence class of ∼ such that α−1(C1) contains the endpoints of A1.
By induction, we define An as a longest even arc disjoint from A1, . . . , An−1. We set
Cn to be the equivalence class of ∼ such that α−1(Cn) contains the endpoints of An.
Let Kn be the complement to the union A1 ∪ · · · ∪An, and K the intersection of all
Kn. Set Γn = π ◦ α(Kn) and Γ = π ◦ α(K). The set

α(Kn) ∪
n⋃

i=1

Ci

separates π−1(x) from π−1(y). Indeed, let β be a smooth curve connecting π−1(x)
to π−1(y), avoiding C1, . . . , Cn, and transverse to α(S1). There is a component I of
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Kn such that β intersects α(I) an odd number of times. Indeed, β must intersect
α(S1) in an odd number of points, but it intersects the set α(A1 ∪ · · · ∪ An) even
number of times. It follows that β ∩ α(Kn) is nonempty. Therefore, Γn separates x
from y.

Step 3. We now prove that Γ separates x from y. Suppose not. Then x and y lie
in the same component of the complement to Γ. Since Γ is compact, this component
must be open. By local path connectivity, there is a continuous path γ : [0, 1] → X
such that γ(0) = x, γ(1) = y, and γ[0, 1] avoids Γ. However, for every n, the set
Γn separates x from y. It follows that γ(tn) ∈ Γn for some tn ∈ [0, 1]. Let t be any
limit point of the sequence tn. Then γ(t) ∈ Γ, a contradiction.

Step 4. It remains to prove that Γ is a simple closed curve in X. In other words:
if π ◦ α(s) = π ◦ α(t) for two different points s and t in K, then s and t are the
endpoints of some An. In any case, s and t belong to α−1(C) for some equivalence
class C of ∼. One of the arcs bounded by s and t must be even. Let A be the
even arc with endpoints s and t. Set n to be the smallest positive integer such that
An ⊆ A. If there is no such integer, then A is disjoint from all An. On the other
hand, the length of An must tend to zero. Therefore, there will be some m for which
Am is shorter than A. A contradiction with the choice of Am, which shows that n
is well defined. Now, by the choice of An, we must have An = A. It follows that s
and t are the endpoints of An. ¤

We can now prove the Basis axiom for X, thus completing the proof of Theorem
1.1. Given a point x ∈ X and an open set U containing x, we need to find a
Jordan domain in X containing x and contained in U . Let D be a small Jordan
neighborhood of π−1(x) compactly contained in π−1(U). We can assume that all
equivalence classes of ∼ intersecting D lie in π−1(U) (the existence of such D follows
from the fact that the equivalence relation ∼ is closed). Take an even smaller Jordan
neighborhood E of π−1(x) such that all equivalence classes of ∼ intersecting E lie in
D. The boundary of E is a simple closed curve C such that π(C) lies in π(D) ⊆ U .
Choose any point y ∈ X − U . Then C separates π−1(x) from π−1(y). By Theorem
6.2, there exists a simple closed curve Γ ⊆ π(C) ⊂ U that separates x from y. We
claim that the Jordan domain V bounded by Γ and containing x is a subset of U .
Indeed, the boundary of V is disjoint from the connected set π(S2 − D) (if π(C)
intersects π(S2−D), then C intersects some equivalence class of ∼ not lying in D, a
contradiction). Since y is in π(S2−D) but not in V , the set V must also be disjoint
from π(S2 −D) ⊇ X − U . This concludes the proof of the Basis axiom.

7. A relative version of Theorem 1.2

In this section, we extend Theorem 1.2 to make it applicable in a wider variety
of contexts. Consider a compact connected Hausdorff space X. Let E be a set of
simple curves in X. Suppose that any simple curve that is a subset of a countable
union of curves in E is also an element of E . In particular, any segment of a simple
curve in E is also a simple curve in E . Define the set E◦ of simple closed curves as
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follows: a simple closed curve C belongs to E◦ if all proper arcs of C are in E . If the
set E is fixed, we will refer to elements of E as elementary curves, and to elements
of E◦ as elementary closed curves.

The Jordan domain axiom and the Basis axiom have the following relative versions
with respect to E :

(1) Relative Jordan domain axiom. Every elementary closed curve C divides X
into two connected components such that the boundary of each component
is equal to C. The Jordan domains bounded by C are called elementary
domains.

(2) Relative Basis axiom. There is a countable basis of topology in X consisting
of elementary domains.

Theorem 7.1. Let a space X and a set E of simple curves in X be as above. Suppose
that, for every open set U ⊆ X, every pair of points in U can be connected by an ele-
mentary curve lying in U . Suppose also, that X satisfies the relative Jordan domain
axiom, and the relative Basis axiom with respect to E. Then X is homeomorphic to
the 2-sphere.

The proof of Theorem 7.1 is the same as that of Theorem 1.2, with simple curves
and simple closed curves replaced with elementary curves and elementary closed
curves, respectively. The fact that makes everything work is the following. Every
time we formed a new simple curve, or a new simple closed curve, we stayed in a
countable union of existing simple curves.
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