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A standard commutative diagram

To do a surgery, one needs to make ¢ discontinuous.



An example of regluing

A branch of the analytic function
j(2)=vz2+1

is defined on the complement to [—/,/]. It reglues the segment
[—i,i] into [-1,1].



A regluing: before

E DA






The Julia set of z +— z? — 3 is a Cantor subset of R. Reglue all
complementary segments. We obtain the map z — z? — 2, whose
Julia set is a segment!



More generally, let f be a quadratic polynomial z — z? + ¢, where
c is the landing point of an external parameter ray R. Suppose
that the Julia set of f is locally connected, and all periodic points
are repelling. Also, consider a quadratic polynomial g, for which
the corresponding parameter value belongs to R. Thus the Julia
set of g is disconnected. Then ® o f = g o ® for a regluing .



Regluing: before
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Regluing: after
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Existence of topological regluing

Let X be a compact metric space, and A a set of compact subsets
of X. We say that A is contracted if for every € > 0, there are
only finitely many elements of 4, whose diameter exceeds ¢. It is
not hard to see that this property is topological, i.e. does not
depend on the choice of metric.

Theorem

Let A be a contracted set of disjoint simple curves in S®>. There
exists a homeomorphism ® : 5 — |J A — S? — |J B regluing A
into another set B of disjoint simple curves.



Regluing of z> — 2 into z2 — 2: step 0

o 5 = = E DA



Regluing of z?> — 2 into z° — 2: step 1

o 5 = = £ DA



Regluing of z?> — 2 into z? — 2: step 2

o 5 = = £ DA



Regluing of z> — 2 into z%> — 2: step 3

o = = = z 9ace



Regluing of z° — 2 into z° — 2: step 4

o 5 = = £ DA



Regluing of z> — 2 into z> — 2: step 5

o 5 = = E DA



Regluing of z> — 2 into z%> — 2: step 6

o 5 = = E DA



Regluing of z° — 2 into z? — 2: the limit

o 5 = = E DA



Regluing of z° — 2 into z? 4 i: step 0

=] 5 = = £ DA



Regluing of z° — 2 into z? 4 i: step 1




Regluing of z° — 2 into z> 4 i: step 2




Regluing of z° — 2 into z? 4 i: step 3




Regluing of z° — 2 into z%2 + i: step 4




Regluing of z°> — 2 into z° 4 i: step 5




Regluing of z° — 2 into z? 4 i: step 6




Regluing of z° — 2 into z> 4 i: step 7




Regluing of z° — 2 into z? 4 i: step 8




Regluing of z° — 2 into z? 4 i: step 9




Regluing of z? — 2 into z? + i: the limit




Regluing of z2 into z2 — 2: step 0




Regluing of z% into z2 — 2: step 1




Regluing of z? into z2 — 2: step 2




Regluing of z? into z> — 2: step 3



Regluing of z? into z> — 2: step 4



Regluing of z? into z2 — 2: step 5



«O>» «F>» «E» «E>»



«O>» «F>» «E» «E>»



«O>» «F>» «E» «E>»



Regluing of z% into (22 +2)/(z*> — 1): step 0




Regluing of z% into (22 +2)/(z> — 1): step 1




Regluing of z% into (22 +2)/(z%> — 1): step 2




Regluing of z% into (22 +2)/(z* — 1): step 3




Regluing of z% into (22 +2)/(z® — 1): step 4




Regluing of z% into (22 +2)/(z*> — 1): step 5




Regluing of z% into (22 +2)/(z*> — 1): step 6




Regluing of z% into (22 +2)/(z*> — 1): step 7
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Regluing of z% into (22 +2)/(z*> — 1): step 8




Regluing of z% into (22 +2)/(z*> — 1): step 9




Regluing of z2 into (z? + 2)/(z?> — 1): step 10




Regluing of z% into (22 +2)/(z> — 1): step 11




Regluing of z% into (22 +2)/(z%> — 1): the limit




Parameter slices

Per;(0) = {classes of quadratic rational functions f with marked
critical points ¢;, ¢ such that f°K(c;) = ¢1}.
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e Suppose that k > 1, and f is a quadratic rational function
with a k-periodic critical point ¢; and a free critical point ¢p.



e Suppose that k > 1, and f is a quadratic rational function
with a k-periodic critical point ¢; and a free critical point ¢p.
e f is hyperbolic rational function of type B if ¢, lies in the

immediate basin of ¢; (but necessarily not in the same
component).



e Suppose that k > 1, and f is a quadratic rational function
with a k-periodic critical point ¢; and a free critical point ¢p.

e f is hyperbolic rational function of type B if ¢, lies in the
immediate basin of ¢; (but necessarily not in the same
component).

e f is a hyperbolic rational function of type C if ¢ lies in the
full basin of ¢, but not in the immediate basin.



Suppose that k > 1, and f is a quadratic rational function
with a k-periodic critical point ¢; and a free critical point ¢p.

f is hyperbolic rational function of type B if ¢, lies in the
immediate basin of ¢; (but necessarily not in the same
component).

f is a hyperbolic rational function of type C if ¢, lies in the
full basin of ¢, but not in the immediate basin.

The set of hyperbolic rational functions with a k-periodic
critical point splits into hyperbolic components.



Suppose that k > 1, and f is a quadratic rational function
with a k-periodic critical point ¢; and a free critical point ¢p.

f is hyperbolic rational function of type B if ¢, lies in the
immediate basin of ¢; (but necessarily not in the same
component).

f is a hyperbolic rational function of type C if ¢, lies in the
full basin of ¢, but not in the immediate basin.

The set of hyperbolic rational functions with a k-periodic
critical point splits into hyperbolic components.

We say that a hyperbolic component is of type B or C if it
consists of hyperbolic rational functions of this type.



Types of hyperbolic components



Theorem

If f is on the boundary of a type C hyperbolic component, but not
on the boundary of a type B hyperbolic component, then

®of =hod, where h is the center of a type C hyperbolic
component, whose boundary contains f, and ® is a regluing.



Regluing: before




Regluing: after




Generalized holomorphy

Let Z be a countable union of disjoint simple curves. Assume that
Z has zero Lebesgue measure. We say thatamap ®: C—-Z — C
is holomorphic modulo Z if there is a function ¥ : Z — C such

that
/ CDaw:/\Ilw
Cc-Z V4

for every smooth (1,0)-form w on C with compact support.



Theorem

Consider a quadratic polynomial f : z — z% 4 ¢ with connected
Julia set such that the critical value c is accessible from the basin
of infinity. There exists a countable union Z of disjoint simple
curves of zero area, and a quadratic polynomial g with totally
disconnected Julia set such that o f = go® on C — Z, where
¢ :C— Z — C is a holomorphic map modulo Z.



