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A family of quadratic rational maps

• Consider the space V2 of all quadratic rational maps with a
super-attracting orbit of period 2.

• the quadratic family z 7→ z2 + c is V1.

• Holomorphic conjugacy classes of maps from V2 are
parameterized by 1 complex number a:

fa =
a

z2 + 2z

(here the critical 2-orbit is {0,∞} and the free critical point is
−1).
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Analog of the Mandelbrot set

Define N as the set of all maps f ∈ V2 such that the orbit of −1 is
bounded. This is an analog of the Mandelbrot set.



The set N



Conjectural description of ∂N (Ben Wittner, 1988)

• ∂N is conjectured to be the “mating” of a part of the
Mandelbrot set and a part of the basilica (the Julia set for
z 7→ z2 − 1).

• ∂M1/2 = the boundary of the Mandelbrot set with the
1/2-limb removed.

• J1/2 = basilica (Julia for z 7→ z2 − 1) with the 1/2-limb
removed.

• Conjecture ∂N = “mating” of ∂M1/2 with J1/2.
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The Mandelbrot set with 1/2-limb removed



The basilica (the Julia set for z 7→ z2 − 1)



The basilica with 1/2-limb removed



Conjectural description of the Mandelbrot set

• If MLC conjecture is true, then the boundary of the
Mandelbrot set is a quotient of the unit circle.

• Connect equivalent points by geodesics in the unit circle.

• The set of geodesics is a geodesic lamination in the sense of
Thurston (in particular, geodesics do not intersect).
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The lamination for the Mandelbrot set
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Actual topological description of the basilica

• The basilica is a quotient of the unit circle.

• The corresponding geodesic lamination does not have
accumulation points inside the unit disk.



Actual topological description of the basilica

• The basilica is a quotient of the unit circle.

• The corresponding geodesic lamination does not have
accumulation points inside the unit disk.



The lamination for the basilica
1/3

7/12

1/6

1/12

11/12

2/3 5/6

5/12



The “mating” of the ∂M1/2 and J1/2 is done as follows:

• Inside the unit disk, draw the lamination for ∂M1/2.

• Outside the unit disk, draw the lamination for J1/2.

• Take the quotient with respect to both laminations.
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Main results

• Explicit topological models are constructed for all maps
f ∈ V2 such that −1 is on the boundary of the immediate
basin of {0,∞}.

• These maps, together with countably many parabolic maps,
form the “exterior boundary” of the set N.

• All exterior parameter rays land.

• Periodic rays land at parabolic parameter values (except for
0-ray that lands at point a = 0 not corresponding to any
quadratic rational map).

• All other rays (including strictly pre-periodic) land at
parameter values, for which −1 is on the boundary of the
basin of {0,∞}
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A map from the exterior boundary
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A parabolic map from the exterior boundary



Exterior hyperbolic component

consists of parameter values, for which −1 is in the immediate
basin of {0, 1}.

Theorem (Sullivan) For such maps, the Julia set is a quasi-circle.

The complement to the Julia set is the union of open topological
disks Ω0 and Ω∞:

0,−1 ∈ Ω0, ∞ ∈ Ω∞.
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Ray combinatorics

• Let f be a map from the exterior hyperbolic component.

• Consider rays for f ◦2 emanating from iterated preimages of 0
and ∞. Recall that rays are the gradient lines of the Green
function

G (z) = lim
n→∞

log |f ◦2n(z)|
2n

(which is positive near infinity and negative near zero).

• Some of these rays crash into an iterated pre-image of −1 and
split.

• If the parameter ray containing f is not periodic, then the
dynamic rays can not split more than once.
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Ray laminations

• Consider a ray that splits.

• A ray leaf = the union of the two branches (that appear after
the splitting).

• This is a curve going from one point in the Julia set to
another point.

• Ray leaves live both inside and outside the Julia set.
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2-sided laminations

• The Julia set is canonically identified with the unit circle.

• Thus we have 2 Thurston laminations defined inside and
outside of the unit circle. The outside leaves correspond to
inside leaves under the map z 7→ 1/z2.

• We call this pair of laminations a 2-sided lamination.

• This 2-sided lamination is the same along any parameter ray.

• For different parameter rays, the corresponding 2-sided
laminations are not equivalent.
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Shrinking of ray leaves

• As one approaches to the exterior boundary along a parameter
ray, the ray leaves become shorter and shorter.

• In the limit, they define identifications on the unit circle.

• Rigidity: a map from the exterior boundary is not
topologically conjugate to any other rational map.
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Combinatorial model: the measure µ

Let z0 be any point on the unit circle. There is a unique probability
measure µ on the unit circle with the following properties:

• The measure µ is concentrated on countably many points,
namely, on all iterated preimages of the point z0 under the
map z 7→ z2 (the point z0 itself is also regarded as an iterated
preimage of z0).

• For any point z on the unit circle different from z0, we have
µ{z2} = 4µ{z}.



Combinatorial model: the measure µ

Let z0 be any point on the unit circle. There is a unique probability
measure µ on the unit circle with the following properties:

• The measure µ is concentrated on countably many points,
namely, on all iterated preimages of the point z0 under the
map z 7→ z2 (the point z0 itself is also regarded as an iterated
preimage of z0).

• For any point z on the unit circle different from z0, we have
µ{z2} = 4µ{z}.



the measure µ

The measure µ can be given by the following formula

µ{z} =
∑

m: z2m=z0

1

2 · 4m
.

The summation is over all nonnegative integers m such that
z2m

= z0. In particular, if the point z0 is not periodic under the
map z 7→ z2, then there is at most one summand.
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The map h0

There is a unique continuous map h0 : S1 → S1 with the following
properties:

• h0(1) = 1, and 1 is in the center of h−1
0 (1).

• the push-forward of the uniform probability measure under the
map h0 is the measure µ,

• the map h0 has topological degree 1.

Then h0 almost semi-conjugates z 7→ z4 with z 7→ z4:

h0(z
4) = h0(z)2, h0(z) 6= z0.
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The forward invariant lamination L0

• Define the set L0 = L0(z0) of geodesics in the unit disk as
follows: x and y are connected with a geodesic iff the arc
between x and y is the full pre-image of some point under h0.

• These geodesics do not intersect — they form a geodesic
lamination.

• The lamination L0 is forward invariant under z 7→ z4:
endpoints of any leaf are mapped to endpoints of a leaf or to
the same point.
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The invariant lamination L

The lamination L0 can be extended to an invariant lamination L:

• take arcs subtended by all leaves of L0,

• take all iterated pre-images of these arcs under z 7→ z4,

• take geodesics subtending these pre-images: this is the
lamination L.
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The two-sided lamination 2L

• The lamination L is symmetric with respect to the antipodal
map z 7→ −z .

• Therefore, the image of L under z 7→ 1/z2 is a lamination in
the exterior of the unit circle.

• lamination 2L(z0) represents the ray splitting of maps from
the exterior hyperbolic component.
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Topological models — non-periodic case

Theorem 1. For any map from the exterior hyperbolic component
not lying on a periodic ray, the 2-sided ray lamination coincides
with 2L(z0) for some z0 on the unit circle.

Theorem 2. For any map on the exterior boundary that is not a
landing point of a periodic ray, the Julia set is the quotient of the
unit circle by the equivalence relation generated by the 2-sided
lamination 2L(z0) for some z0.



Periodic parameter rays

• For a map f from a periodic parameter ray, the dynamic rays
split infinitely many times.

• The corresponding combinatorial picture is a geodesic
pseudo-lamination, in which leaves intersect.
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The pseudo-lamination corresponding to the 0-ray.
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