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Binary quadratic forms

Definition
A binary quadratic form is a function

f (x , y) = ax2 + bxy + cy2.

Notation
A quadratic form f is sometimes represented as a triple (a, b, c) of
coefficients.

Definition
We say that a number A is represented by f is A = f (x , y) for
some x , y ∈ Z.
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Example: sum of squares

Example

The product of two integers represented by x2 + y2 is also
represented by this quadratic form.

Explanation

(x2
1 + y2

1 )(x2
2 + y2

2 ) = (x1y1 − x2y2)
2 + (x1y2 + x2y1)

2.

This is equivalent to

|z1 · z2| = |z1| · |z2|, z1 = x1 + iy1, z2 = x2 + iy2.
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Semigroup property

Definition
A quadratic form f is said to have semigroup property if the
product of any two integers represented by f is also represented by
f .

Fact
Among quadratic forms with small (say, < 100) coefficients, most
forms have semigroup property.

Example

Every quadratic form (1, b, c) has semigroup property.
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Trigroup property

Theorem (Gauss, Arnold)

The product of any three integers represented by a quadratic form
f is also represented by f .

Corollary

If f represents 1, then it has semigroup property.

Problem (Arnold)

Describe all quadratic forms with semigroup property.
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Integer normed pairings

Definition
A bilinear map s : Z2 × Z2 → Z2 is called an integer normed
pairing for a quadratic form f if

f (s(x, y)) = f (x) · f (y)

for all x, y ∈ Z2.

Remark
If a quadratic form f admits an integer normed pairing, then it has
semigroup property.

Remark
We do not know any other examples of quadratic forms with
semigroup property.
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The main result

The main result
We give explicit integer parameterization for all integer normed
pairings and the corresponding quadratic forms.

Remark
Integer normed pairings are intimately related to Gauss
composition law. There are four types of integer normed pairings.

Notation
An integer normed pairing z = s(x, y) can be given by a pair of
matrices A1, A2:

zj = xAjy
t , j = 1, 2.

We write s = (A1|A2).
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The formulas

The explicit integer parameterization for all integer normed
pairings and the corresponding quadratic forms:

s1 =

(
mp + kq nq

nq −np
−mq mp
mp nq + kp

)
,

f1 = (rm, rk, rn),
r := mp2 + kpq + nq2.

s2 =

(
mp nq + kp
−nq np

mq −mp
mp + kq nq

)
,

f2 = (rm, rk, rn),
r := mp2 + kpq + nq2.

s3 =

(
mp −nq

nq + kp np
mq mp + kq
−mp nq

)
,

f3 = (rm, rk, rn),
r := mp2 + kpq + nq2.

s4 =

(
a c
c b

−d −a
−a −c

)
, f4 = (a2 − cd , ac − bd , c2 − ab)



Quadratic forms vs lattices

Correspondence

There is a correspondence between positive definite quadratic
forms and lattices in C.

Theorem
Suppose that a quadratic form f admits an integer normed pairing.
Then the corresponding lattice is stable under one of the following
operations:

σ1 : (z ,w) 7→ zw ,
σ2 : (z ,w) 7→ zw ,
σ3 : (z ,w) 7→ zw ,
σ4 : (z ,w) 7→ zw .
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High-school algebra

Definition
The discriminant of a quadratic form (a, b, c) is defined as
∆ = b2 − 4ac.

Definition
A quadratic form is called definite (respectively, indefinite,
degenerate) if ∆ < 0 (respectively, ∆ > 0, ∆ = 0).

Definition
A quadratic form f is called positive definite if f > 0 except at the
origin (equivalently, (a, b, c) is positive definite if a > 0 and
∆ < 0).
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Indefinite forms

Definition
Define the ring H of hyperbolic numbers as R[x ]/(x2 − 1). In
other terms H is spanned (as an R-linear space) by 1 and j , where
j2 = 1.

Correspondence

There is a correspondence between indefinite quadratic forms and
lattices in H. This correspondence has many of the same
properties as that for positive definite forms.
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Class groups

Definition
Two quadratic forms f and g are called equivalent if there is
A ∈ SL2(Z) such that f = g ◦ A.

Gauss composition

The set of all classes with a given discriminant has a natural
commutative group structure.

Theorem
If a quadratic form f admits an integer normed pairing, then the
class α of f satisfies α = 1 or α3 = 1 in the class group.
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Integer normed lattices

Definition
Lattices L corresponding to integer quadratic forms are integer
normed, i.e. |z |2 ∈ Z for all z ∈ L.

Theorem
For any binary integer quadratic form f , there exists a lattice L and
a linear orientation preserving isomorphism φ : Z2 → L such that
f (x) = |φ(x)|2 for all x ∈ Z2. The lattice L depends only on the
class of f , and is unique up to a Euclidean rotation.

Definition
An integer normed lattice L is said to be primitive if L/

√
n is not

integer normed for integer n > 0.
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Class groups via lattices

Definition
The product of two lattices L1, L2 ⊂ C is defined as

L1L2 = {z1z2 | z1 ∈ L1, z2 ∈ L2}.

In general, this is not a lattice.

Theorem (Gauss?)

Let L1 and L2 be two integer normed lattices of the same
discriminant ∆. Then L1L2 is also an integer normed lattice of
discriminant ∆.

Definition
The product of two classes represented by lattices L1 and L2 is the
class represented by L1L2.
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Integer normed pairings of type 4

Recall that an integer normed pairing of type 4 is that
corresponding to σ4 : (z ,w) 7→ zw . The class α of the
corresponding quadratic form satisfies α3 = 1.

Commutative traceless pairings

Consider an integer normed pairing s : Z2 × Z2 → Z2 that is

• commutative: s(x, y) = s(y, x) for all x, y ∈ R2,

• traceless, i.e. for any x ∈ R2 the operator Mx : y 7→ s(x, y)
has trace zero.

Theorem
An integer normed pairing is of type 4 iff it is commutative and
traceless. The corresponding quadratic form f is recovered from
the relation

s(x, s(x, y)) = f (x)y, x, y ∈ R2
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Bhargava cubes

• The coefficients of a bilinear map s : Z2 × Z2 → Z2 can be
arranged in the form of a cube:

•
e f

a

����
b

����

g h

c

����
d

����

• From the pairs of opposite faces, one reads three classes α, β
and γ such that α + β + γ = 0.

• Integer normed pairings of type 4 correspond to cubes with a
rotational 3-fold symmetry.
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