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Some classical theorems

Theorem (Möbius, 1827)

Suppose that f : RPn → RPn is a one-to-one map taking all
straight lines to straight lines. Then f is a projective
transformation.

Theorem (Möbius, 1820s)

Suppose that f : Sn → Sn is a one-to-one map taking all circles to
circles. Then f is a Möbius transformation (i.e. an element of the
group generated by inversions).
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Automorphisms of geometric structures

Möbius’ theorems are important because they describe all
automorphisms of the most fundamental geometric structures:

• the projective structure and

• the Möbius structure.

Question:
What about morphisms between different geometric structures?
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A problem

Problem
Describe all (sufficiently smooth) (one-to-one) maps from an open
subset of RPn to an open subset of Sn that take all lines to circles.

Definition
We say that a map f : U ⊂ RPn → V ⊂ Sn takes all lines to
circles if the image of each straight segment contained in U is an
arc of Euclidean circle contained in V .
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Some other classical theorems

Theorem (Beltrami, 1880s)

Let g be a Riemannian metric on an open subset of RPn such that
all geodesics are straight segments. Then g is a classical metric,
i.e. has constant sectional curvature.

Theorem (Segre, 1950s)

Let g be a Riemannian metric on an open subset of S2 such that
all geodesics are arcs of circles. Then g is a classical metric, i.e.
has constant Gaussian curvature.
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Another problem

Remark
Note that the theorem of Segre is only about dimension 2!

Problem
Describe all Riemannian metrics on an open subset of Sn such that
all geodesics are arcs of circles.
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Motivation: Nomography

Nomograms:

A nomogram is a planar picture representing a function of many
variables. Usually, it consists of several curves equipped with
scalings. One uses a straightedge or a compass to read the output.

Compass vs Straightedge:

Compass is more accurate than a straightedge, because it draws
round circles even when deformed. Thus circular nomograms are
more practical, while nomograms with aligned points (those using
a straightedge) are easier theoretically.
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A simple nomogram computing (x , y) 7→ 2y − x
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Results in dimensions 2 and 3

Theorem (Khovanskii, 70s)

Suppose that a diffeomorphism f : U ⊂ RP2 → V ⊂ S2 takes all
lines to circles. Up to projective transformations in the source and
Möbius transformations in the target, there are only 3 such maps
f , and they correspond to classical models of classical geometries
(i.e. Euclidean, spherical or hyperbolic geometry).

Theorem (Izadi,2003)

The same result is true for diffeomorphisms
f : U ⊂ RP3 → V ⊂ S3.
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Example

Example

A map establishing an isomorphism between the Klein model and
the Poincaré model of the classical hyperbolic geometry.



In dimension 4, this is WRONG

Example

Complex projective transformations U ⊂ C2 → V ⊂ C2 take all
lines to circles.

Example

The (left and right) quaternionic Hopf fibrations RP7 → S4 take
all lines to circles, so do their restrictions to RP4 ⊂ RP7.
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Quaternionic Hopf fibrations

Definition
Consider the map

H2 → HP1, (q1, q2) 7→ [q1 : q2],

where HP1 is the (left or right) quaternionic projective line. Note
that HP1 = S4. This map factors through the real projectivization

H2 → RP7

to give a map
RP7 → S4

called a quaternionic Hopf fibration.



Results in dimension 4

Theorem (VT)

Let f : U ⊂ RP4 → V ⊂ S4 be a diffeomorphism taking all lines to
circles. Then

• either f corresponds to one of the three classical geometries

• or f is of the form RP4 ↪→ RP7 → S4, where the first arrow is
a projective embedding, and the second is a quaternionic Hopf
fibration.

There are much more maps of the second kind.
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Results in dimension 4

Theorem (VT)

Let g be a Kähler metric on an open subset of C2 such that all
geodesics are arcs of circles (or straight segments). Then g has
constant holomorphic sectional curvature, i.e. g is a
“complexification” of one of the classical geometries.



Higher dimensions

In higher dimensions, the problem is still OPEN, but there are
remarkable relations with classical problems in algebra, including:

• Hurwitz problem on sums of squares,

• quadratic maps between spheres,

• fractional quadratic parameterizations of quadrics
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Results in higher dimensions

Theorem (VT)

Suppose that f : U ⊂ RPn → V ⊂ Sn takes all lines passing
through a particular point p ∈ U to circles. Also, let f be
differentiable sufficiently many times and satisfy rank(dpf ) > 1.
Then there is a fractional quadratic map Q : RPn 99K Sm such
that f (l) = Q(l) for all lines l 3 p.



Open problems in algebra

Problem
Describe all fractional quadratic maps RPn 99K Sm.

Remark:
This problem is very difficult. A special case of it is the following

Problem (Hurwitz, 1898)

Describe all triples of integers (r , s, n) such that

(x2
1 + · · ·+ x2

r )(y2
1 + · · ·+ y2

s ) = z2
1 + · · ·+ z2

n ,

where zi are some bilinear combinations of xj and yk .
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Example

(2,2,2) = multiplication of complex numbers.

(4,4,4) = multiplication of quaternions.

(8,8,8) = multiplication of octonions.

(r , n, n) = representations of Clifford algebras.
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Fractional quadratic transformations in terms of Hurwitz
formulas

Set

X = (x1, . . . , xr ), Y = (y1, . . . , ys), Z = (z1, . . . , zn).

Then

Q[X ,Y ] =

(
2Z

|X |2 + |Y |2
,
|X |2 − |Y |2

|X |2 + |Y |2

)
is a fractional quadratic map from RPr+s−1 to Sn.



Some similar problems

Problem
Describe all maps that take one nice class of curves to another nice
class of curves.

E.g.

Problem
Describe all maps that take all lines to conics.
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A sample result

Theorem (VT)

Suppose that a local analytic diffeomorphism f : (C2, 0) → (C2, 0)
takes all lines through 0 to conics and satisfies a minor
non-degeneracy assumption. Then, for almost all lines l 3 0, the
conic f (l) has 3 points of tangency with a curve of class 3 (i.e.
dual curve to a cubic).



Continuation ...

• Work in progress by V. Matveev and S. Tabachnikov: look at
the problem from the viewpoint of completely integrable
systems.

• Find geometric approach to difficult algebraic problems like
the Hurwitz problem.
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