Analogs of Hodge–Riemann relations in algebraic geometry, convex geometry and linear algebra

#### V. Timorin\*

\*State University of New York at Stony Brook

March 28, 2006

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Hodge-Riemann form

Let X be a compact Kähler *n*-manifold with a Kähler form  $\omega$ .

#### Example

X is an algebraic manifold in projective space, and  $\omega$  is a differential form defining the cohomology class Poincaré dual to a hyperplane section.

Let  $\alpha$  be a (p, q)-form: the space of such forms is locally spanned by products of p holomorphic and q anti-holomorphic differentials. The *Hodge-Riemann form* is

$$q(\alpha) = C \int_X \alpha \wedge \overline{\alpha} \wedge \omega^{n-p-q}.$$

The coefficient C is  $\pm 1$  or  $\pm i$ , and depends only on p and q. (if  $\alpha$  is dual to an analytic cycle  $\sigma$ , then this is the "projective degree" of the self-intersection  $\sigma^2$ )

#### Hodge-Riemann relations

• Suppose that  $[\alpha] \neq 0$  is a *primitive class*, i.e.

$$[\alpha \wedge \omega^{n-p-q+1}] = 0.$$

• Then

$$q(\alpha) > 0.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

In particular, if a divisor σ on a projective surface has "degree"
0, then its self-intersection is negative (the *index theorem*).

#### Hodge-Riemann relations

• Suppose that  $[\alpha] \neq 0$  is a *primitive class*, i.e.

$$[\alpha \wedge \omega^{n-p-q+1}] = 0.$$

Then

$$q(\alpha) > 0.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

In particular, if a divisor σ on a projective surface has "degree"
0, then its self-intersection is negative (the *index theorem*).

#### Hodge-Riemann relations

• Suppose that  $[\alpha] \neq 0$  is a *primitive class*, i.e.

$$[\alpha \wedge \omega^{n-p-q+1}] = 0.$$

Then

$$q(\alpha) > 0.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In particular, if a divisor σ on a projective surface has "degree"
0, then its self-intersection is negative (the *index theorem*).

#### Hard Lefschetz theorem

#### The map

$$\wedge [\omega]^{n-p-q}: H^{p,q} \to H^{n-q,n-p}$$

is an *isomorphism* of vector spaces  $(H^{p,q})$  is the (p,q)-cohomology space: closed (p,q)-forms modulo exact (p,q)-forms)

- The Hodge–Riemann relations imply the Hard Lefschetz theorem.
- There is a close relation between the Hodge-Riemann relations and some inequalities from *convex geometry*.

#### Hard Lefschetz theorem

#### The map

$$\wedge [\omega]^{n-p-q}: H^{p,q} \to H^{n-q,n-p}$$

is an *isomorphism* of vector spaces  $(H^{p,q})$  is the (p,q)-cohomology space: closed (p,q)-forms modulo exact (p,q)-forms)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The Hodge-Riemann relations imply the Hard Lefschetz theorem.
- There is a close relation between the Hodge-Riemann relations and some inequalities from *convex geometry*.

#### Hard Lefschetz theorem

#### The map

$$\wedge [\omega]^{n-p-q}: H^{p,q} \to H^{n-q,n-p}$$

is an *isomorphism* of vector spaces  $(H^{p,q})$  is the (p,q)-cohomology space: closed (p,q)-forms modulo exact (p,q)-forms)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The Hodge–Riemann relations imply the Hard Lefschetz theorem.
- There is a close relation between the Hodge-Riemann relations and some inequalities from *convex geometry*.

Let A and B be convex sets in ℝ<sup>n</sup>. The Minkowsi sum A + B is defined as

$$A+B:=\{a+b\mid a\in A,\quad b\in B\}.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- We can think of *A* + *B* as the union of copies of *B* attached to every point of *A*.
- E.g. if B is the ball of radius ε, then A + B is the ε-neighborhood of A.

Let A and B be convex sets in ℝ<sup>n</sup>. The Minkowsi sum A + B is defined as

$$A+B:=\{a+b\mid a\in A, \quad b\in B\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- We can think of *A* + *B* as the union of copies of *B* attached to every point of *A*.
- E.g. if B is the ball of radius ε, then A + B is the ε-neighborhood of A.

Let A and B be convex sets in ℝ<sup>n</sup>. The Minkowsi sum A + B is defined as

$$A+B:=\{a+b\mid a\in A, \quad b\in B\}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We can think of *A* + *B* as the union of copies of *B* attached to every point of *A*.
- E.g. if B is the ball of radius  $\varepsilon$ , then A + B is the  $\varepsilon$ -neighborhood of A.



<□> <□> <□> <=> <=> <=> <=> <=> <<

- Let A and B be convex bodies in  $\mathbb{R}^n$ , then  $\operatorname{Vol}(A+B)^{\frac{1}{n}} \geq \operatorname{Vol}(A)^{\frac{1}{n}} + \operatorname{Vol}(B)^{\frac{1}{n}}.$
- (i.e. the function  $\operatorname{Vol}^{\frac{1}{n}}$  is *concave*).
- If B is the unit ball, this is a variant of the *isoperimetric inequality*: note that the surface area is the growth rate of volume of the ε-neighborhood.
- In general: isoperimetric inequality in *Minkowski geometry* (where *B* plays the role of the unit ball).

• Let A and B be convex bodies in  $\mathbb{R}^n$ , then

$$\operatorname{Vol}(A+B)^{\frac{1}{n}} \geq \operatorname{Vol}(A)^{\frac{1}{n}} + \operatorname{Vol}(B)^{\frac{1}{n}}.$$

- (i.e. the function  $\operatorname{Vol}^{\frac{1}{n}}$  is *concave*).
- If B is the unit ball, this is a variant of the *isoperimetric inequality*: note that the surface area is the growth rate of volume of the ε-neighborhood.
- In general: isoperimetric inequality in *Minkowski geometry* (where *B* plays the role of the unit ball).

• Let A and B be convex bodies in  $\mathbb{R}^n$ , then

$$\operatorname{Vol}(A+B)^{\frac{1}{n}} \geq \operatorname{Vol}(A)^{\frac{1}{n}} + \operatorname{Vol}(B)^{\frac{1}{n}}.$$

- (i.e. the function  $\operatorname{Vol}^{\frac{1}{n}}$  is *concave*).
- If B is the unit ball, this is a variant of the *isoperimetric inequality*: note that the surface area is the growth rate of volume of the ε-neighborhood.
- In general: isoperimetric inequality in *Minkowski geometry* (where *B* plays the role of the unit ball).

• Let A and B be convex bodies in  $\mathbb{R}^n$ , then

$$\operatorname{Vol}(A+B)^{\frac{1}{n}} \geq \operatorname{Vol}(A)^{\frac{1}{n}} + \operatorname{Vol}(B)^{\frac{1}{n}}.$$

- (i.e. the function  $\operatorname{Vol}^{\frac{1}{n}}$  is *concave*).
- If B is the unit ball, this is a variant of the *isoperimetric inequality*: note that the surface area is the growth rate of volume of the ε-neighborhood.
- In general: isoperimetric inequality in *Minkowski geometry* (where *B* plays the role of the unit ball).

## Minkowski addition and the surface area

If we differentiate the volume of  $\varepsilon$ -neighborhood by  $\varepsilon$  at  $\varepsilon = 0$ , then we obtain the surface area (surface volume):

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ



## Analogs in algebraic geometry

"Algebro-geometric" Brunn theorem (Khovanskii and Teissier, 70s):

 $V \subset \mathbb{P}_1 imes \mathbb{P}_2$  irreducible algebraic submanifold.

Then

$$\operatorname{Vol}(V)^{\frac{1}{n}} \geq \operatorname{Vol}(V_1)^{\frac{1}{n}} + \operatorname{Vol}(V_2)^{\frac{1}{n}},$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where  $V_1$  and  $V_2$  are projections of V on  $\mathbb{P}_1$  and  $\mathbb{P}_2$ , respectively.

## Mixed volumes

The function of Volume is a homogeneous polynomial on convex sets in  $\mathbb{R}^n$ , i.e.

$$\operatorname{Vol}(\lambda_1 A_1 + \cdots + \lambda_n A_n)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is a homogeneous polynomial in  $\lambda_1, \ldots, \lambda_n$  of degree *n*, for  $\lambda_1, \ldots, \lambda_n \ge 0$ . *Mixed volume*  $\operatorname{Vol}(A_1, \ldots, A_n)$  is the *polarization* of  $\operatorname{Vol}$  (symmetric *n*-linear form s.t.  $\operatorname{Vol}(A, \ldots, A) = \operatorname{Vol}(A)$ ).

#### Polarization

• The main idea of polarization is:

$$ab = \frac{(a+b)^2 - a^2 - b^2}{2}$$

(product can be expressed through squares).

• Similarly, for the mixed area:

$$\operatorname{Vol}_2(A,B) = rac{\operatorname{Vol}_2(A+B) - \operatorname{Vol}_2(A) - \operatorname{Vol}_2(B)}{2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• There are explicit formulas like that in any dimension.

#### Polarization

• The main idea of polarization is:

$$ab = \frac{(a+b)^2 - a^2 - b^2}{2}$$

(product can be expressed through squares).

• Similarly, for the mixed area:

$$\operatorname{Vol}_2(A, B) = rac{\operatorname{Vol}_2(A + B) - \operatorname{Vol}_2(A) - \operatorname{Vol}_2(B)}{2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• There are explicit formulas like that in any dimension.

#### Polarization

The main idea of polarization is:

$$ab = \frac{(a+b)^2 - a^2 - b^2}{2}$$

(product can be expressed through squares).

• Similarly, for the mixed area:

$$\operatorname{Vol}_2(A,B) = rac{\operatorname{Vol}_2(A+B) - \operatorname{Vol}_2(A) - \operatorname{Vol}_2(B)}{2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

• There are explicit formulas like that in any dimension.

#### Minkowski theorem

The Brunn theorem is equivalent to the following inequality on mixed volumes:

$$\operatorname{Vol}(A, B, \underbrace{B, \ldots, B}_{n-2 \ times})^2 \ge \operatorname{Vol}(A, A, \underbrace{B, \ldots, B}_{n-2 \ times}) \cdot \operatorname{Vol}(B).$$

In other words, the bilinear form

$$\operatorname{Vol}(\cdot, \cdot, \underbrace{B, \dots, B}_{n-2 \ times})$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

satisfies the reversed Cauchy-Schwartz inequality  $\Leftrightarrow$  it has positive index 1.

#### Hodge index theorem

This is related to the *Hodge index theorem*: the intersection form for divisors on a smooth compact projective surface has positive index 1, i.e.

$$(D_1 \cdot D_2)^2 \ge (D_1 \cdot D_1)(D_2 \cdot D_2), \quad D_1 > 0$$

More generally, for positive divisors  $D_1, \ldots, D_n$  on a compact projective manifold,

$$(D_1 \cdot D_2 \cdot D_3 \cdots D_n)^2 \ge (D_1 \cdot D_1 \cdot D_3 \cdots D_n)(D_2 \cdot D_2 \cdot D_3 \cdots D_n).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(mixed Hodge index theorem — A. Khovanskii, B. Teissier)

#### Aleksandrov-Fenchel inequalities

Let  $A_1, \ldots, A_n$  be convex bodies. Then

$$\operatorname{Vol}(A_1, A_2, A_3, \dots, A_n)^2 \geq$$

 $\operatorname{Vol}(A_1, A_1, A_3, \ldots, A_n) \operatorname{Vol}(A_2, A_2, A_3, \ldots, A_n)$ 

[A. Aleksandrov, 1937] Aleksandrov gave two proofs of this theorem:

- through convex polytopes ("intersection theory on toric varieties"),
- 2. through elliptic differential operators ("Hodge theory")

# Table of correspondence (beginning)

| Minkowski inequality          | Hodge index theorem          |
|-------------------------------|------------------------------|
| Aleksandrov–Fenchel           | mixed Hodge index theorem    |
| inequality                    | (A. Khovanskii, B. Teissier) |
| "Hodge–Riemann relations"     | Hodge–Riemann relations      |
| for simple polytopes          |                              |
| (P. McMullen, V.T.)           |                              |
| "mixed Hodge–Riemann          | mixed Hodge–Riemann          |
| relations" for simple         | relations                    |
| polytopes (P. McMullen, V.T.) | (T. Dinh and V. Nguyên)      |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

#### Inequalities from Linear Algebra

*Mixed discriminant* det $(A_1, \ldots, A_n)$  of symmetric matrices  $A_1, \ldots, A_n$  is the polarization of the discriminant (=determinant). The Aleksandrov inequality for mixed discriminants:

$$\det(A_1, A_2, A_3, \ldots, A_n)^2 \geq$$

$$det(A_1, A_1, A_3, \ldots, A_n) det(A_2, A_2, A_3, \ldots, A_n)$$

(日) (同) (三) (三) (三) (○) (○)

for positive definite matrices  $A_1, \ldots, A_n$ . This is an infinitesimal version of both Aleksandrov–Fenchel inequality and the mixed Hodge index theorem.

## Van der Waerden problem

The Aleksandrov inequality for mixed discriminants was used in a proof of the Van der Waerden conjecture on permanents of doubly stochastic matrices (Falikman, Egorychev). (an inequality for the probability of a random self-map of a finite set to be a permutation).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Inequalities from Linear Algebra

Let 
$$\omega_1, \ldots, \omega_{n-p-q+1}$$
 be positive  $(1, 1)$ -forms on  $\mathbb{C}^n$ . Set  $\Omega = \omega_1 \wedge \cdots \wedge \omega_{n-p-q}$ . For any  $(p, q)$ -form  $\alpha \neq 0$  such that  $\alpha \wedge \Omega \wedge \omega_{n-p-q+1} = 0$ ,

$$C * (\alpha \wedge \overline{\alpha} \wedge \Omega) > 0$$

(V.T., 1998). This is a generalization of the Aleksandrov inequality for mixed discriminants.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

#### Mixed Hodge–Riemann relations

Let  $\omega_1, \ldots, \omega_{n-p-q+1}$  be Kähler forms on a compact complex *n*-manifold X. Set  $\Omega = \omega_1 \wedge \cdots \wedge \omega_{n-p-q}$ . For any closed (but not exact) (p, q)-form  $\alpha$  such that  $[\alpha \wedge \Omega \wedge \omega_{n-p-q+1}] = 0$ ,

$$C\int_{X}\alpha\wedge\overline{\alpha}\wedge\Omega>0$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(T. Dinh and V. Nguyên, 2005).

This result was motivated by dynamics of holomorphic automorphisms.

# Analogs of Hodge–Riemann relations for simple convex polytopes

- A convex polytope Δ ∈ ℝ<sup>n</sup> is said to be simple if exactly n facets meet at each vertex. Simple polytopes are stable under small perturbations of facets.
- A polytope analogous to Δ is any polytope obtained from Δ by parallel translations of facets, without changing the combinatorial type.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Analogs of Hodge–Riemann relations for simple convex polytopes

- A convex polytope Δ ∈ ℝ<sup>n</sup> is said to be simple if exactly n facets meet at each vertex. Simple polytopes are stable under small perturbations of facets.
- A polytope analogous to Δ is any polytope obtained from Δ by parallel translations of facets, without changing the combinatorial type.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Analogous polytopes



- The set of polytopes analogous to a given one, is stable under Minkowski addition and multiplication by positive numbers. This is a convex cone, which can be extended to a finite dimensional vector space.
- *Coordinates* in this space are *support numbers* (signed distances from the origin to support hyperplanes containing the facets).
- The space of all "virtual" polytopes analogous to a given one has the dimension *N* = the number of all facets.

- The set of polytopes analogous to a given one, is stable under Minkowski addition and multiplication by positive numbers. This is a convex cone, which can be extended to a finite dimensional vector space.
- *Coordinates* in this space are *support numbers* (signed distances from the origin to support hyperplanes containing the facets).
- The space of all "virtual" polytopes analogous to a given one has the dimension *N* = the number of all facets.

- The set of polytopes analogous to a given one, is stable under Minkowski addition and multiplication by positive numbers. This is a convex cone, which can be extended to a finite dimensional vector space.
- *Coordinates* in this space are *support numbers* (signed distances from the origin to support hyperplanes containing the facets).
- The space of all "virtual" polytopes analogous to a given one has the dimension *N* = the number of all facets.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



#### Volume polynomial

The restriction of the volume polynomial to the space of polytopes analogous to a simple polytope  $\Delta$  can be expressed as a polynomial

$$\operatorname{Vol}_{\Delta}(h_1,\ldots,h_N)$$

in support numbers  $h_1, \ldots, h_N$ . Let  $H_1, \ldots, H_N$  be the support numbers of  $\Delta$ . Introduce the operator

$$L_{\Delta} = \sum_{k=1}^{N} H_k \frac{\partial}{\partial h_k}$$

of differentiation along  $\Delta$ . Then

$$\operatorname{Vol}_{\Delta} = \frac{1}{n!} L_{\Delta}^{n}(\operatorname{Vol}_{\Delta}).$$

## Description of the "cohomology ring"

With each simple polytope  $\Delta$ , one associates a "cohomology algebra". For lattice polytopes, it is isomorphic to the cohomology algebra of the corresponding toric variety:

$$A_{\Delta} = rac{\text{Diff. operators with const. coefficients } \alpha}{\alpha \text{Vol}_{\Delta} = 0}$$

(A. Khovanskii and A. Pukhlikov, unpublished) Poincaré duality and the Lefschetz operator look especially simple in this description.

Consider a differential operator  $\alpha$  of order k with constant coefficients. The operator  $\alpha$  is said to be *primitive*, if

$$L^{n-2k+1}_{\Delta}\alpha(\mathrm{Vol}_{\Delta})=0.$$

Equivalently, the polynomial  $\alpha Vol_{\Delta}$  has zero of order  $\geq k$  at point  $(H_1, \ldots, H_N)$ . If  $\alpha \neq 0$  is primitive, then

$$(-1)^k \alpha^2 L^{n-2k}_{\Delta}(\operatorname{Vol}_{\Delta}) > 0.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(P. McMullen 1993; in this form V.T. 1999)

- "Hodge-Riemann relations" for convex simple polytopes imply an analog of Hard Lefschetz theorem, which can be expressed as certain inequalities on combinatorial parameters of the polytope.
- For a simple convex *n*-polytope Δ, let *f<sub>k</sub>*(Δ) be the number of all *k*-faces in Δ. The vector (*f*<sub>0</sub>(Δ),...,*f<sub>n</sub>*(Δ)) is called the *f*-vector of Δ.
- The *g*-theorem: An integer vector  $(f_0, ..., f_n)$  is the *f*-vector of a simple *n*-polytope if and only if it satisfies certain explicit inequalities.
- An algebro-geometric proof: R. Stanley, 1980 (intersection cohomology for toric varieties), a convex-geometric proof: P. McMullen, 1993.

- "Hodge-Riemann relations" for convex simple polytopes imply an analog of Hard Lefschetz theorem, which can be expressed as certain inequalities on combinatorial parameters of the polytope.
- For a simple convex *n*-polytope Δ, let *f<sub>k</sub>*(Δ) be the number of all *k*-faces in Δ. The vector (*f*<sub>0</sub>(Δ),...,*f<sub>n</sub>*(Δ)) is called the *f*-vector of Δ.
- The *g*-theorem: An integer vector  $(f_0, ..., f_n)$  is the *f*-vector of a simple *n*-polytope if and only if it satisfies certain explicit inequalities.
- An algebro-geometric proof: R. Stanley, 1980 (intersection cohomology for toric varieties), a convex-geometric proof: P. McMullen, 1993.

- "Hodge–Riemann relations" for convex simple polytopes imply an analog of Hard Lefschetz theorem, which can be expressed as certain inequalities on combinatorial parameters of the polytope.
- For a simple convex *n*-polytope Δ, let f<sub>k</sub>(Δ) be the number of all k-faces in Δ. The vector (f<sub>0</sub>(Δ),..., f<sub>n</sub>(Δ)) is called the f-vector of Δ.
- The *g*-theorem: An integer vector  $(f_0, ..., f_n)$  is the *f*-vector of a simple *n*-polytope if and only if it satisfies certain explicit inequalities.
- An algebro-geometric proof: R. Stanley, 1980 (intersection cohomology for toric varieties), a convex-geometric proof: P. McMullen, 1993.

- "Hodge–Riemann relations" for convex simple polytopes imply an analog of Hard Lefschetz theorem, which can be expressed as certain inequalities on combinatorial parameters of the polytope.
- For a simple convex *n*-polytope Δ, let f<sub>k</sub>(Δ) be the number of all k-faces in Δ. The vector (f<sub>0</sub>(Δ),..., f<sub>n</sub>(Δ)) is called the f-vector of Δ.
- The *g*-theorem: An integer vector  $(f_0, ..., f_n)$  is the *f*-vector of a simple *n*-polytope if and only if it satisfies certain explicit inequalities.
- An algebro-geometric proof: R. Stanley, 1980 (intersection cohomology for toric varieties), a convex-geometric proof: P. McMullen, 1993.

Consider a differential operator  $\alpha$  of order k with constant coefficients. The operator  $\alpha$  is said to be *primitive* with respect to simple analogous polytopes  $\Delta_1, \ldots, \Delta_{n-2k+1}$ , if

 $\Lambda L_{n-2k+1}\alpha(\mathrm{Vol}_{\Delta})=0,$ 

where  $\Lambda = L_{\Delta_1} \cdots L_{\Delta_{n-2k}}$ . If  $\alpha \neq 0$  is primitive, then

 $(-1)^k \alpha^2 \Lambda(\operatorname{Vol}_{\Delta}) > 0.$ 

(P. McMullen 1993; in this form V.T. 1999) This is a generalization of the Aleksandrov–Fenchel inequality.

# Table of correspondence

| Minkowski inequality          | Hodge index theorem          |
|-------------------------------|------------------------------|
| Aleksandrov–Fenchel           | mixed Hodge index theorem    |
| inequality                    | (A. Khovanskii, B. Teissier) |
| "Hodge–Riemann relations"     | Hodge–Riemann relations      |
| for simple polytopes          |                              |
| (P. McMullen, V.T.)           |                              |
| "mixed Hodge–Riemann          | mixed Hodge–Riemann          |
| relations" for simple         | relations                    |
| polytopes (P. McMullen, V.T.) | (T. Dinh and V. Nguyên)      |
| "Hodge–Riemann relations"     | Hodge–Riemann relations      |
| for arbitrary polytopes       | in intersection cohomology   |
| (K.Karu, )                    | (M. Saito, )                 |

- Combinatorial intersection cohomology (P. Bressler and V. Lunts; G. Barthel, J.-P. Brasselet, K.-H. Fiesler and L. Kaup): for rational polytopes, isomorphic to intersection cohomology of the corresponding toric varieties.
- First, one defines a sheaf on the dual fan (regarded as a finite topological space), which is an analog of the *equivariant intersection cohomology sheaf* (in the sense of J. Bernstein and V. Lunts).
- The combinatorial intersection cohomology is a certain quotient of the space of global sections.
- K. Karu (2003) proved Hodge–Riemann relations in combinatorial intersection cohomology of arbitrary polytopes.

- Combinatorial intersection cohomology (P. Bressler and V. Lunts; G. Barthel, J.-P. Brasselet, K.-H. Fiesler and L. Kaup): for rational polytopes, isomorphic to intersection cohomology of the corresponding toric varieties.
- First, one defines a sheaf on the dual fan (regarded as a finite topological space), which is an analog of the *equivariant intersection cohomology sheaf* (in the sense of J. Bernstein and V. Lunts).
- The combinatorial intersection cohomology is a certain quotient of the space of global sections.
- K. Karu (2003) proved Hodge–Riemann relations in combinatorial intersection cohomology of arbitrary polytopes.

- Combinatorial intersection cohomology (P. Bressler and V. Lunts; G. Barthel, J.-P. Brasselet, K.-H. Fiesler and L. Kaup): for rational polytopes, isomorphic to intersection cohomology of the corresponding toric varieties.
- First, one defines a sheaf on the dual fan (regarded as a finite topological space), which is an analog of the *equivariant intersection cohomology sheaf* (in the sense of J. Bernstein and V. Lunts).
- The combinatorial intersection cohomology is a certain quotient of the space of global sections.
- K. Karu (2003) proved Hodge–Riemann relations in combinatorial intersection cohomology of arbitrary polytopes.

- Combinatorial intersection cohomology (P. Bressler and V. Lunts; G. Barthel, J.-P. Brasselet, K.-H. Fiesler and L. Kaup): for rational polytopes, isomorphic to intersection cohomology of the corresponding toric varieties.
- First, one defines a sheaf on the dual fan (regarded as a finite topological space), which is an analog of the *equivariant intersection cohomology sheaf* (in the sense of J. Bernstein and V. Lunts).
- The combinatorial intersection cohomology is a certain quotient of the space of global sections.
- K. Karu (2003) proved Hodge–Riemann relations in combinatorial intersection cohomology of arbitrary polytopes.