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Hodge–Riemann form

Let X be a compact Kähler n-manifold with a Kähler form ω.

Example

X is an algebraic manifold in projective space, and ω is a
differential form defining the cohomology class Poincaré dual to a
hyperplane section.

Let α be a (p, q)-form: the space of such forms is locally spanned
by products of p holomorphic and q anti-holomorphic differentials.
The Hodge–Riemann form is

q(α) = C

∫
X

α ∧ α ∧ ωn−p−q.

The coefficient C is ±1 or ±i , and depends only on p and q.
(if α is dual to an analytic cycle σ, then this is the “projective
degree” of the self-intersection σ2)



Hodge–Riemann relations

• Suppose that [α] 6= 0 is a primitive class, i.e.

[α ∧ ωn−p−q+1] = 0.

• Then
q(α) > 0.

• In particular, if a divisor σ on a projective surface has “degree”
0, then its self-intersection is negative (the index theorem).
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Hard Lefschetz theorem

• The map
∧[ω]n−p−q : Hp,q → Hn−q,n−p

is an isomorphism of vector spaces (Hp,q is the
(p, q)-cohomology space: closed (p, q)-forms modulo exact
(p, q)-forms)

• The Hodge–Riemann relations imply the Hard Lefschetz
theorem.

• There is a close relation between the Hodge–Riemann
relations and some inequalities from convex geometry.
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Minkowski addition

• Let A and B be convex sets in Rn. The Minkowsi sum A + B
is defined as

A + B := {a + b | a ∈ A, b ∈ B}.

• We can think of A + B as the union of copies of B attached
to every point of A.

• E.g. if B is the ball of radius ε, then A + B is the
ε-neighborhood of A.
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Minkowski addition

=+



The Brunn theorem

• Let A and B be convex bodies in Rn, then

Vol(A + B)
1
n ≥ Vol(A)

1
n + Vol(B)

1
n .

• (i.e. the function Vol
1
n is concave).

• If B is the unit ball, this is a variant of the isoperimetric
inequality: note that the surface area is the growth rate of
volume of the ε-neighborhood.

• In general: isoperimetric inequality in Minkowski geometry
(where B plays the role of the unit ball).
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Minkowski addition and the surface area

If we differentiate the volume of ε-neighborhood by ε at ε = 0,
then we obtain the surface area (surface volume):



Analogs in algebraic geometry

“Algebro-geometric” Brunn theorem (Khovanskii and Teissier,
70s):

V ⊂ P1 × P2 irreducible algebraic submanifold.

Then
Vol(V )

1
n ≥ Vol(V1)

1
n + Vol(V2)

1
n ,

where V1 and V2 are projections of V on P1 and P2, respectively.



Mixed volumes

The function of Volume is a homogeneous polynomial on convex
sets in Rn, i.e.

Vol(λ1A1 + · · ·+ λnAn)

is a homogeneous polynomial in λ1, . . . , λn of degree n, for
λ1, . . . , λn ≥ 0.
Mixed volume Vol(A1, . . . ,An) is the polarization of Vol
(symmetric n-linear form s.t. Vol(A, . . . ,A) = Vol(A)).



Polarization

• The main idea of polarization is:

ab =
(a + b)2 − a2 − b2

2

(product can be expressed through squares).

• Similarly, for the mixed area:

Vol2(A,B) =
Vol2(A + B)−Vol2(A)−Vol2(B)

2
.

• There are explicit formulas like that in any dimension.
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Minkowski theorem

The Brunn theorem is equivalent to the following inequality on
mixed volumes:

Vol(A,B,B, . . . ,B︸ ︷︷ ︸
n−2 times

)2 ≥ Vol(A,A,B, . . . ,B︸ ︷︷ ︸
n−2 times

) ·Vol(B).

In other words, the bilinear form

Vol(·, ·,B, . . . ,B︸ ︷︷ ︸
n−2 times

)

satisfies the reversed Cauchy-Schwartz inequality ⇔
it has positive index 1.



Hodge index theorem

This is related to the Hodge index theorem:
the intersection form for divisors on a smooth compact projective
surface has positive index 1, i.e.

(D1 · D2)
2 ≥ (D1 · D1)(D2 · D2), D1 > 0

More generally, for positive divisors D1, . . . ,Dn on a compact
projective manifold,

(D1 · D2 · D3 · · ·Dn)
2 ≥ (D1 · D1 · D3 · · ·Dn)(D2 · D2 · D3 · · ·Dn).

(mixed Hodge index theorem — A. Khovanskii, B. Teissier)



Aleksandrov–Fenchel inequalities

Let A1, . . . ,An be convex bodies. Then

Vol(A1,A2,A3, . . . ,An)
2 ≥

Vol(A1,A1,A3, . . . ,An)Vol(A2,A2,A3, . . . ,An)

[A. Aleksandrov, 1937] Aleksandrov gave two proofs of this
theorem:

1. through convex polytopes (“intersection theory on toric
varieties”),

2. through elliptic differential operators (“Hodge theory”)
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Inequalities from Linear Algebra

Mixed discriminant det(A1, . . . ,An) of symmetric matrices
A1, . . . ,An is the polarization of the discriminant (=determinant).
The Aleksandrov inequality for mixed discriminants:

det(A1,A2,A3, . . . ,An)
2 ≥

det(A1,A1,A3, . . . ,An) det(A2,A2,A3, . . . ,An)

for positive definite matrices A1, . . . ,An.
This is an infinitesimal version of both Aleksandrov–Fenchel
inequality and the mixed Hodge index theorem.



Van der Waerden problem

The Aleksandrov inequality for mixed discriminants was used in a
proof of the Van der Waerden conjecture on permanents of doubly
stochastic matrices (Falikman, Egorychev).
(an inequality for the probability of a random self-map of a finite
set to be a permutation).



Inequalities from Linear Algebra

Let ω1, . . . , ωn−p−q+1 be positive (1, 1)-forms on Cn. Set
Ω = ω1 ∧ · · · ∧ ωn−p−q. For any (p, q)-form α 6= 0 such that
α ∧ Ω ∧ ωn−p−q+1 = 0,

C ∗ (α ∧ α ∧ Ω) > 0

(V.T., 1998). This is a generalization of the Aleksandrov inequality
for mixed discriminants.



Mixed Hodge–Riemann relations

Let ω1, . . . , ωn−p−q+1 be Kähler forms on a compact complex
n-manifold X . Set Ω = ω1 ∧ · · · ∧ ωn−p−q. For any closed (but not
exact) (p, q)-form α such that [α ∧ Ω ∧ ωn−p−q+1] = 0,

C

∫
X

α ∧ α ∧ Ω > 0

(T. Dinh and V. Nguyên, 2005).
This result was motivated by dynamics of holomorphic
automorphisms.



Analogs of Hodge–Riemann relations for simple convex
polytopes

• A convex polytope ∆ ∈ Rn is said to be simple if exactly n
facets meet at each vertex. Simple polytopes are stable under
small perturbations of facets.

• A polytope analogous to ∆ is any polytope obtained from ∆
by parallel translations of facets, without changing the
combinatorial type.
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Analogous polytopes



Support numbers

• The set of polytopes analogous to a given one, is stable under
Minkowski addition and multiplication by positive numbers.
This is a convex cone, which can be extended to a finite
dimensional vector space.

• Coordinates in this space are support numbers (signed
distances from the origin to support hyperplanes containing
the facets).

• The space of all “virtual” polytopes analogous to a given one
has the dimension N = the number of all facets.
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Volume polynomial

The restriction of the volume polynomial to the space of polytopes
analogous to a simple polytope ∆ can be expressed as a polynomial

Vol∆(h1, . . . , hN)

in support numbers h1, . . . , hN . Let H1, . . . ,HN be the support
numbers of ∆. Introduce the operator

L∆ =
N∑

k=1

Hk
∂

∂hk

of differentiation along ∆. Then

Vol∆ =
1

n!
Ln

∆(Vol∆).



Description of the “cohomology ring”

With each simple polytope ∆, one associates a “cohomology
algebra”. For lattice polytopes, it is isomorphic to the cohomology
algebra of the corresponding toric variety:

A∆ =
Diff. operators with const. coefficients α

αVol∆ = 0
.

(A. Khovanskii and A. Pukhlikov, unpublished)
Poincaré duality and the Lefschetz operator look especially simple
in this description.



“Hodge–Riemann relations” for simple polytopes

Consider a differential operator α of order k with constant
coefficients. The operator α is said to be primitive, if

Ln−2k+1
∆ α(Vol∆) = 0.

Equivalently, the polynomial αVol∆ has zero of order ≥ k at point
(H1, . . . ,HN). If α 6= 0 is primitive, then

(−1)kα2Ln−2k
∆ (Vol∆) > 0.

(P. McMullen 1993; in this form V.T. 1999)



The g -theorem

• “Hodge–Riemann relations” for convex simple polytopes imply
an analog of Hard Lefschetz theorem, which can be expressed
as certain inequalities on combinatorial parameters of the
polytope.

• For a simple convex n-polytope ∆, let fk(∆) be the number of
all k-faces in ∆. The vector (f0(∆), . . . , fn(∆)) is called the
f -vector of ∆.

• The g-theorem: An integer vector (f0, . . . , fn) is the f -vector
of a simple n-polytope if and only if it satisfies certain explicit
inequalities.

• An algebro-geometric proof: R. Stanley, 1980 (intersection
cohomology for toric varieties), a convex-geometric proof: P.
McMullen, 1993.
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“Mixed Hodge–Riemann relations” for simple polytopes

Consider a differential operator α of order k with constant
coefficients. The operator α is said to be primitive with respect to
simple analogous polytopes ∆1, . . . ,∆n−2k+1, if

ΛLn−2k+1α(Vol∆) = 0,

where Λ = L∆1 · · · L∆n−2k
. If α 6= 0 is primitive, then

(−1)kα2Λ(Vol∆) > 0.

(P. McMullen 1993; in this form V.T. 1999)
This is a generalization of the Aleksandrov–Fenchel inequality.
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“Hodge–Riemann relations” for non-simple polytopes

• Combinatorial intersection cohomology (P. Bressler and V.
Lunts; G. Barthel, J.-P. Brasselet, K.-H. Fiesler and L. Kaup):
for rational polytopes, isomorphic to intersection cohomology
of the corresponding toric varieties.

• First, one defines a sheaf on the dual fan (regarded as a finite
topological space), which is an analog of the equivariant
intersection cohomology sheaf (in the sense of J. Bernstein
and V. Lunts).

• The combinatorial intersection cohomology is a certain
quotient of the space of global sections.

• K. Karu (2003) proved Hodge–Riemann relations in
combinatorial intersection cohomology of arbitrary polytopes.
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