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Koebe’s theorem

Theorem (Koebe, 1907)
Up to isomorphism, there are exactly three possibilities for the
universal cover of a compact Riemann surface:

I the projective line;
I the affine line;
I the open unit disc.

What happens in the p-adic setting?
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Elliptic curves

J. Tate’s idea: use a partial uniformization

Over C,
E (C) ' C/(Z + Zτ)

exp(2πi ·)−−−−−→
∼

C∗/qZ

with Im(τ) > 0.

Over Qp, lattices are not discrete, but

Q∗p/q
Z

still makes sense for q ∈ Q∗p with |q|p < 1 and it is then (the set of
Qp-points of an) elliptic curve.

Remark
Over Qp, not all elliptic curves arise this way: only those with split
multiplicative reduction (Tate curves).
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Schottky uniformization: setting
Let g > 1. Let D±1, . . . ,D±g be disjoint open discs in P1(C).
Let γ1, . . . , γg ∈ PGL2(C) such that, setting γ−i := γ−1

i , we have

∀i , γi (P1(C)− D−i ) = Di .

P1(C)

D−2

D−1

D1

D2

γ1
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Schottky uniformization: properties

Set Γ := 〈γ1, . . . , γg 〉. It is a free group of rank g , called

Schottky group.

There exists a compact subset L of P1(C) such that
1 the action of Γ on P1(C)− L is properly discontinuous;
2 (P1(C)− L)/Γ is a compact Riemann surface of genus g .

I Every compact Riemann surface of genus g may be obtained
this way, possibly replacing the discs by domains bounded by
Jordan curves.

I D. Mumford (1972) adapted the theory to the
non-archimedean setting. The resulting curves are called
Mumford curves.
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The Berkovich analytic space An,an
Z : definition

Definition
The analytic space An,an

Z is the set of multiplicative seminorms

| · |x : Z[T1, . . . ,Tn]→ R>0.

It is endowed with the topology generated by the subsets of the
form

{x ∈ An,an
Z : r < |P|x < s},

for P ∈ Z[T1, . . . ,Tn] and r , s ∈ R.
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The Berkovich analytic space An,an
Z : structure sheaf

To each x ∈ An,an
Z , we associate a complete residue field

H(x) := completion of the fraction field of Z[T1, . . . ,Tn]/Ker(| · |x)

and an evaluation map

χx : Z[T1, . . . ,Tn]→ H(x).

For every open subset U of An,an
Z , O(U) is the set of maps

f : U →
⊔
x∈U
H(x)

such that
I ∀x ∈ U, f (x) ∈ H(x);
I f is locally a uniform limit of rational functions without poles.
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The Berkovich analytic space An,an
Z : examples of points

An,an
Z = {| · |x : Z[T1, . . . ,Tn]→ R>0}

1 For t ∈ Cn,
P(T) ∈ Z[T] 7→ |P(t)|∞.

Note that t and t̄ give rise to the same seminorm.
2 For u ∈ Qn

p,
P(T) ∈ Z[T] 7→ |P(u)|p.

Also: supremum norms on closed polydiscs in Qn
p.

3 For v ∈ Fn
p,

P(T) ∈ Z[T] 7→ |P(v)|0.
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The Berkovich analytic space An,an
Z : the Qp-points

A1,an
Qp

ηGauss

∞

η2,|p|
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2
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p

0
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η
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p− 1



The Berkovich analytic space An,an
Z : picture

M(Z) := A0,an
Z = {| · |x : Z→ R>0}

| · |∞

| · |ε∞

| · |0
| · |2,0

| · |ε2

| · |3,0 . . .

| · |p,0
| · |εp

. . .

We have a projection morphism π : An,an
Z → A0,an

Z .

I π−1(| · |∞) = Cn/Gal(C/R)

I π−1(| · |p) = An,an
Qp

usual Berkovich analytic space
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The Berkovich analytic space An,an
Z : functions

Let D be the open unit disk in An,an
Z . Then H0(D,O) is a ring of

convergent arithmetic power series (D. Harbater):

H0(D,O) = Z[[T1, . . . ,Tn]]1−

= {f ∈ Z[[T ]] with complex radius of convergence > 1}.

The local ring at the point 0 over | · |0 is the subring of
Q[[T1, . . . ,Tn]] consisting of the power series f such that
i) ∃N ∈ N∗, f ∈ Z[ 1

N ][[T1, . . . ,Tn]];
ii) the complex radius of convergence of f is > 0;
iii) for each p|N, the p-adic radius of convergence of f is > 0.
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Properties of An,an
Z

Theorem (V. Berkovich)

The space An,an
Z is Hausdorff and locally compact.

Theorem (T. Lemanissier - J. P.)

The space An,an
Z is locally path-connected.

Theorem (J. P.)
I For every x in An,an

Z , the local ring Ox is Henselian,
Noetherian, regular, excellent.

I The structure sheaf of An,an
Z is coherent.

Theorem (T. Lemanissier - J. P.)
Relative closed and open discs over Z are Stein.



Properties of An,an
Z

Theorem (V. Berkovich)

The space An,an
Z is Hausdorff and locally compact.

Theorem (T. Lemanissier - J. P.)

The space An,an
Z is locally path-connected.

Theorem (J. P.)
I For every x in An,an

Z , the local ring Ox is Henselian,
Noetherian, regular, excellent.

I The structure sheaf of An,an
Z is coherent.

Theorem (T. Lemanissier - J. P.)
Relative closed and open discs over Z are Stein.



Properties of An,an
Z

Theorem (V. Berkovich)

The space An,an
Z is Hausdorff and locally compact.

Theorem (T. Lemanissier - J. P.)

The space An,an
Z is locally path-connected.

Theorem (J. P.)
I For every x in An,an

Z , the local ring Ox is Henselian,
Noetherian, regular, excellent.

I The structure sheaf of An,an
Z is coherent.

Theorem (T. Lemanissier - J. P.)
Relative closed and open discs over Z are Stein.



Properties of An,an
Z

Theorem (V. Berkovich)

The space An,an
Z is Hausdorff and locally compact.

Theorem (T. Lemanissier - J. P.)

The space An,an
Z is locally path-connected.

Theorem (J. P.)
I For every x in An,an

Z , the local ring Ox is Henselian,
Noetherian, regular, excellent.

I The structure sheaf of An,an
Z is coherent.

Theorem (T. Lemanissier - J. P.)
Relative closed and open discs over Z are Stein.



Outline

1 Uniformization of curves

2 Berkovich spaces over Z

3 Schottky spaces over Z

4 Applications



Koebe coordinates

Let (k , | · |) be a complete valued field, Archimedean or not.

To γ ∈ PGL2(k) hyperbolic, we associate
I α ∈ P1(k) its attracting fixed point;
I α′ ∈ P1(k) its repelling fixed point;
I β ∈ k the quotient of its eigenvalues with absolute value < 1.

For α, α′, β ∈ k with |β| ∈ (0, 1), we have

M(α, α′, β) =

(
α− βα′ (β − 1)αα′

1− β βα− α′
)
.
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Schottky space

Definition

For g > 2, the Schottky space Sg is the subset of A3g−3,an
Z

consisting of the points

z = (x3, . . . , xg , x
′
2, . . . , x

′
g , y1, . . . , yg )

such that the subgroup of PGL2(H(z)) defined by

Γz := 〈M(0,∞, y1),M(1, x ′2, y2),M(x3, x
′
3, y3), . . . ,M(xg , x

′
g , yg )〉

is a Schottky group.

Theorem (J. P. - D. Turchetti)

The Schottky space Sg is a connected open subset of A3g−3,an
Z .
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Universal Mumford curve

Denote by (X3, . . . ,Xg ,X
′
2, . . . ,X

′
g ,Y1, . . . ,Yg ) the coordinates

on A3g−3,an
Z and consider the subgroup of PGL2(O(Sg )):

Γ = 〈M(0,∞,Y1),M(1,X ′2,Y2),M(X3,X
′
3,Y3), . . . ,M(Xg ,X

′
g ,Yg )〉.

There exists a closed subset L of Sg ×M(Z) P1,an
Z such that

1 for each z ∈ Sg , L ∩ pr−1
1 (z) is the limit set of Γz ;

2 we have a commutative diagram of analytic morphisms
Sg ×M(Z) P1,an

Z − L

**

��

(Sg ×M(Z) P1,an
Z − L)/Γ .

ttSg
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Teichmüller modular forms

Mg moduli space of smooth and proper curves of genus g
π : Cg → Mg universal curve over Mg

λ :=
∧g π∗Ω

1
Cg/Mg

Definition
A Teichmüller modular form of genus g and weight h over a ring R
is an element of

Tg ,h(R) := Γ(Mg ⊗ R, λ⊗h).

The Torelli map τ gives rise to

τ∗ : Sg ,h(R)→ Tg ,h(R),

where Sg ,h(R) denotes Siegel modular forms.
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Expansions

T. Ichikawa (1994) defined an expansion map

κR : Tg ,h(R)→ R
[
x±1, . . . , x±g ,

1
xi − xj

]
[[y1, . . . , yg ]].

I could be upgraded to

κR : Tg ,h(R)→ R ⊗̂O(Sg )

providing additional convergence conditions
I related to the Fourier expansions of Siegel modular forms

(using Yu. Manin - V. Drinfeld “Periods of p-adic Schottky
groups”, 1972)

I may be helpful for the Schottky problem
(characterizing Jacobian varieties among Abelian varieties)
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Genus 3

χ18 ∈ S3,18(Z) product of Thetanullwerte with even characteristics

Theorem (S. Tsuyumine, 1991 + T. Ichikawa, 2000)
There exists µ9 ∈ T3,9(Z) such that

τ∗(χ18) = µ2
9.

Theorem (G. Lachaud - C. Ritzenthaler - A. Zykin, 2010)
Let k ⊂ C. Let A/k be a principally polarized indecomposable
Abelian threefold that is isomorphic to a Jacobian over C.
Then, A is isomorphic to a Jacobian over k if, and only if,

χ18(A) ∈ k2.
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Schottky groups

Let (k , | · |) be a complete valued field. We denote by P1,an
k

I the Berkovich projective line if k is non-archimedean;
I P1(C) if k = C;
I P1(C)/Gal(C/R) if k = R.

Let Γ be a subgroup of PGL2(k). It acts on P1,an
k .

We say that Γ acts discontinuously at x ∈ P1,an
k if there exists a

neighborhood Ux of x such that

{γ ∈ Γ | γ(Ux) ∩ Ux 6= ∅} is finite.

A Schottky group over k is a finitely generated free subgroup of
PGL2(k) containing only hyperbolic elements and with a nonempty
discontinuity locus.
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Action of Out(Fg)
Let σ ∈ Aut(Fg ) act on the generators of Γz as on those of Fg .

The action factors through Out(Fg ).

Lemma
For each z ∈ Sg , we have

Stab(z) ' Γz\N(Γz) ↪→ Aut(Cz)

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)
The action of Out(Fg ) on Sg is analytic and properly discontinuous.

The quotient Out(Fg )\Sg is
I the space of Mumford curves (inside Mg ) on the

non-Archimedean part;
I the whole Mg on the Archimedean part.
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Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)
The Outer Space CVg is a space of metric graphs X of genus g
endowed with a marking (isomorphism Fg

∼−→ π1(X )).

Applications:

I CVg is contractible
I vcd(Fg ) = 2g − 3

Let (k, | · |) be a complete non-Archimedean valued field. Each
Mumford curve of genus g over k retracts onto a canonical
“skeleton” that is a metric graph of genus g .
We have a continuous surjective map

Sg ,k → CVg ×Mtrop
g

Mumfg ,k .

See also M. Ulirsch “Non-Archimedean Schottky Space and its
Tropicalization”, 2020
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