Schubert polynomials and pipe dreams

Evgeny Smirnov

Higher School of Economics
Department of Mathematics
Laboratoire J.-V. Poncelet
Moscow, Russia

Topology of Torus Actions and Applications to Geometry and Combinatorics
Daejeon, August 7, 2014
Outline

1. General definitions
 - Flag varieties
 - Schubert varieties and Schubert polynomials
 - Pipe dreams and Fomin–Kirillov theorem

2. Numerology of Schubert polynomials
 - Permutations with many pipe dreams
 - Catalan numbers and Catalan–Hankel determinants

3. Combinatorics of Schubert polynomials
 - Pipe dream complexes
 - Generalizations for other Weyl groups

4. Open questions
Flag varieties

- $G = \text{GL}_n(\mathbb{C})$
- $B \subset G$ upper-triangular matrices
- $Fl(n) = \{ V_0 \subset V_1 \subset \cdots \subset V_n \mid \text{dim } V_i = i \} \cong G/B$

Theorem (Borel, 1953)

$$\mathbb{Z}[x_1, \ldots, x_n]/(x_1 + \cdots + x_n, \ldots, x_1 \ldots x_n) \cong H^*(G/B, \mathbb{Z}).$$

This isomorphism is constructed as follows:

- $\mathcal{V}_1, \ldots, \mathcal{V}_n$ tautological vector bundles over G/B;
- $\mathcal{L}_i = \mathcal{V}_i/\mathcal{V}_{i-1}$ ($1 \leq i \leq n$);
- $x_i \mapsto -c_1(\mathcal{L}_i)$;
- The kernel is generated by the symmetric polynomials without constant term.
Flag varieties

- $G = \text{GL}_n(\mathbb{C})$
- $B \subset G$ upper-triangular matrices
- $\text{Fl}(n) = \{ V_0 \subset V_1 \subset \cdots \subset V_n \mid \dim V_i = i \} \cong G/B$

Theorem (Borel, 1953)

$$\mathbb{Z}[x_1, \ldots, x_n]/(x_1 + \cdots + x_n, \ldots, x_1 \ldots x_n) \cong H^*(G/B, \mathbb{Z}).$$

This isomorphism is constructed as follows:

- $\mathcal{V}_1, \ldots, \mathcal{V}_n$ tautological vector bundles over G/B;
- $\mathcal{L}_i = \mathcal{V}_i/\mathcal{V}_{i-1}$ ($1 \leq i \leq n$);
- $x_i \mapsto -c_1(\mathcal{L}_i)$;
- The kernel is generated by the symmetric polynomials without constant term.
Flag varieties

- $G = \text{GL}_n(\mathbb{C})$
- $B \subset G$ upper-triangular matrices
- $\mathcal{F}l(n) = \{ V_0 \subset V_1 \subset \cdots \subset V_n \mid \dim V_i = i \} \cong G/B$

Theorem (Borel, 1953)

$$\mathbb{Z}[x_1, \ldots, x_n]/(x_1 + \cdots + x_n, \ldots, x_1 \cdots x_n) \cong H^*(G/B, \mathbb{Z}).$$

This isomorphism is constructed as follows:

- $\mathcal{V}_1, \ldots, \mathcal{V}_n$ tautological vector bundles over G/B;
- $\mathcal{L}_i = \mathcal{V}_i/\mathcal{V}_{i-1}$ ($1 \leq i \leq n$);
- $x_i \mapsto -c_1(\mathcal{L}_i)$;
- The kernel is generated by the symmetric polynomials without constant term.
Schubert varieties

- \(G/B = \bigsqcup_{w \in S_n} B^- wB/B \) — Schubert decomposition;
- \(X^w = B^- wB/B \), where \(B^- \) is the opposite Borel subgroup;
- \(H^*(G/B, \mathbb{Z}) \cong \bigoplus_{w \in S_n} \mathbb{Z} \cdot [X^w] \) as abelian groups.

Question

Are there any “nice” representatives of \([X^w]\) in \(\mathbb{Z}[x_1, \ldots, x_n]\)?

Answer: Schubert polynomials

- \(w \in S_n \leadsto \circ_{w}(x_1, \ldots, x_{n-1}) \in \mathbb{Z}[x_1, \ldots, x_n]; \)
- \(\circ_{w} \mapsto [X^w] \in H^*(G/B, \mathbb{Z}) \) under the Borel isomorphism;
- Defined by A. Lascoux and M.-P. Schützenberger, 1982;
Schubert varieties

- $G/B = \bigsqcup_{w \in S_n} B^- wB/B$ — Schubert decomposition;
- $X^w = B^- wB/B$, where B^- is the opposite Borel subgroup;
- $H^*(G/B, \mathbb{Z}) \cong \bigoplus_{w \in S_n} \mathbb{Z} \cdot [X^w]$ as abelian groups.

Question

Are there any “nice” representatives of $[X^w]$ in $\mathbb{Z}[x_1, \ldots, x_n]$?

Answer: Schubert polynomials

- $w \in S_n \mapsto \mathcal{S}_w(x_1, \ldots, x_{n-1}) \in \mathbb{Z}[x_1, \ldots, x_n]$;
- $\mathcal{S}_w \mapsto [X^w] \in H^*(G/B, \mathbb{Z})$ under the Borel isomorphism;
- Defined by A. Lascoux and M.-P. Schützenberger, 1982;
Schubert varieties

- \(G/B = \bigsqcup_{w \in S_n} B^- wB/B \) — Schubert decomposition;
- \(X^w = B^- wB/B \), where \(B^- \) is the opposite Borel subgroup;
- \(H^*(G/B, \mathbb{Z}) \cong \bigoplus_{w \in S_n} \mathbb{Z} \cdot [X^w] \) as abelian groups.

Question

Are there any “nice” representatives of \([X^w]\) in \(\mathbb{Z}[x_1, \ldots, x_n] \)?

Answer: Schubert polynomials

- \(w \in S_n \; \mapsto \; S_w(x_1, \ldots, x_{n-1}) \in \mathbb{Z}[x_1, \ldots, x_n] \);
- \(S_w \mapsto [X^w] \in H^*(G/B, \mathbb{Z}) \) under the Borel isomorphism;
- Defined by A. Lascoux and M.-P. Schützenberger, 1982;
Pipe dreams

Let \(w \in S_n \). Consider a triangular table filled by \(\uparrow \) and \(\nearrow \), such that:

- the strands intertwine as prescribed by \(w \);
- no two strands cross more than once (reduced pipe dream).

Pipe dreams for \(w = (1432) \)

Pipe dream \(P \) \(\mapsto \) monomial \(x^{d(P)} = x_1^{d_1} x_2^{d_2} \ldots x_{n-1}^{d_{n-1}} \),

\(d_i = \#\{\uparrow\}'s in the \(i \)-th row\)

\[x_2^2 x_3 \quad x_1 x_2 x_3 \quad x_1^2 x_3 \quad x_1 x_2^2 \quad x_1^2 x_2 \]
Pipe dreams

Let \(w \in S_n \). Consider a triangular table filled by \(\uparrow \) and \(\searrow \), such that:

- the strands intertwine as prescribed by \(w \);
- no two strands cross more than once (reduced pipe dream).

Pipe dreams for \(w = (1432) \)

<table>
<thead>
<tr>
<th>1</th>
<th>4</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pipe dream \(P \) \(\leadsto \) monomial \(x^{d(P)} = x_1^{d_1} x_2^{d_2} \cdots x_{n-1}^{d_{n-1}} \),

\(d_i = \#\{\uparrow's\ in\ the\ i\text{-th}\ row\} \)

\[x_2^2 x_3 \quad x_1 x_2 x_3 \quad x_1^2 x_3 \quad x_1 x_2^2 \quad x_1^2 x_2 \]
Pipe dreams

Let $w \in S_n$. Consider a triangular table filled by $+$ and \nearrow, such that:

- the strands intertwine as prescribed by w;
- no two strands cross more than once (reduced pipe dream).

Pipe dreams for $w = (1432)$

Pipe dream $P \leadsto$ monomial $x^{d(P)} = x_1^{d_1} x_2^{d_2} \cdots x_{n-1}^{d_{n-1}}$, $d_i = \#\{+\text{'s in the } i\text{-th row}\}$
Pipe dreams

Let \(w \in S_n \). Consider a triangular table filled by \(+ \) and \(\searrow \), such that:

- the strands intertwine as prescribed by \(w \);
- no two strands cross more than once (reduced pipe dream).

Pipe dreams for \(w = (1432) \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>4</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pipe dream \(P \) \(\rightsquigarrow \) monomial \(x^{d(P)} = x_1^{d_1} x_2^{d_2} \ldots x_{n-1}^{d_{n-1}} \),

\[d_i = \#\{+\text{'s in the } i\text{-th row}\} \]

\[
\begin{align*}
&x_2^2 x_3 \\
&x_1 x_2 x_3 \\
&x_1^2 x_3 \\
&x_1 x_2^2 \\
&x_1^2 x_2
\end{align*}
\]

Let \(w \in S_n \). Then

\[
\mathcal{G}_w(x_1, \ldots, x_{n-1}) = \sum_{w(P) = w} x^{d(P)},
\]

where the sum is taken over all reduced pipe dreams \(P \) corresponding to \(w \).

Example

\[
\mathcal{G}_{1432}(x_1, x_2, x_3) = x_2^2 x_3 + x_1 x_2 x_3 + x_1^2 x_3 + x_1 x_2^2 + x_1^2 x_2.
\]

Corollary

\[
\mathcal{G}_w(1, \ldots, 1) = \#\{P \mid \text{pipe dream } P \text{ corresponds to } w\}.
\]
Pipe dreams and Schubert polynomials

Let $w \in S_n$. Then

$$\mathcal{S}_w(x_1, \ldots, x_{n-1}) = \sum_{w(P)=w} x^{d(P)},$$

where the sum is taken over all reduced pipe dreams P corresponding to w.

Example

$$\mathcal{S}_{1432}(x_1, x_2, x_3) = x_2^2 x_3 + x_1 x_2 x_3 + x_1^2 x_3 + x_1 x_2^2 + x_1^2 x_2.$$

Corollary

$$\mathcal{S}_w(1, \ldots, 1) = \#\{P \mid \text{pipe dream } P \text{ corresponds to } w\}.$$

Let \(w \in S_n \). Then

\[
S_w(x_1, \ldots, x_{n-1}) = \sum_{w(P)=w} x^{d(P)},
\]

where the sum is taken over all reduced pipe dreams \(P \) corresponding to \(w \).

Example

\[
S_{1432}(x_1, x_2, x_3) = x_2^2 x_3 + x_1 x_2 x_3 + x_1^2 x_3 + x_1 x_2^2 + x_1^2 x_2.
\]

Corollary

\[
S_w(1, \ldots, 1) = \#\{ P \mid \text{pipe dream } P \text{ corresponds to } w \}.
\]
Pipe dreams and torus actions

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

\[Fl(n) \to \tilde{Fl}(n) \]

- \(\tilde{Fl}(n) \) is a \textit{singular} (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope \(GZ(n) \).

Degenerate Schubert varieties (A. Knutson, M. Kogan, E. Miller)

\[X^w \to \tilde{X}^w \subset \tilde{Fl}(n) \]

- \(\tilde{X}^w \) may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to \(w \).
- \(\mathcal{G}_w(1, \ldots, 1) \) “measures how singular \(X^w \) is”.

Evgeny Smirnov (HSE & Labo Poncelet)
Pipe dreams and torus actions

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

\[\text{Fl}(n) \rightarrow \tilde{\text{Fl}}(n) \]

- \(\tilde{\text{Fl}}(n) \) is a singular (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope \(GZ(n) \).

Degenerate Schubert varieties (A. Knutson, M. Kogan, E. Miller)

\[X^w \rightarrow \tilde{X}^w \subset \tilde{\text{Fl}}(n) \]

- \(\tilde{X}^w \) may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to \(w \).
- \(S_w(1, \ldots, 1) \) “measures how singular \(X^w \) is”.
Pipe dreams and torus actions

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

\[Fl(n) \to \tilde{Fl}(n) \]

- \(\tilde{Fl}(n) \) is a *singular* (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope \(GZ(n) \).

Degenerate Schubert varieties (A. Knutson, M. Kogan, E. Miller)

\[X^w \to \tilde{X}^w \subseteq \tilde{Fl}(n) \]

- \(\tilde{X}^w \) may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to \(w \).
- \(S_w(1, \ldots, 1) \) “measures how singular \(X^w \) is”.
Pipe dreams and torus actions

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

\[Fl(n) \to \tilde{Fl}(n) \]

- \(\tilde{Fl}(n) \) is a *singular* (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope \(GZ(n) \).

Degenerate Schubert varieties (A. Knutson, M. Kogan, E. Miller)

\[X^w \to \tilde{X}^w \subset \tilde{Fl}(n) \]

- \(\tilde{X}^w \) may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to \(w \).
- \(G_w(1, \ldots, 1) \) “measures how singular \(X^w \) is”.
Pipe dreams and torus actions

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

\[Fl(n) \rightarrow \tilde{F}l(n) \]

- \(\tilde{F}l(n) \) is a *singular* (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope \(GZ(n) \).

Degenerate Schubert varieties (A. Knutson, M. Kogan, E. Miller)

\[X^w \rightarrow \tilde{X}^w \subset \tilde{F}l(n) \]

- \(\tilde{X}^w \) may be reducible!
 - Its irreducible components are indexed by the pipe dreams corresponding to \(w \).
 - \(\mathcal{G}_w(1, \ldots, 1) \) “measures how singular \(X^w \) is”.
Pipe dreams and torus actions

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

\[Fl(n) \rightarrow \tilde{Fl}(n) \]

- \(\tilde{Fl}(n) \) is a singular (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope \(GZ(n) \).

Degenerate Schubert varieties (A. Knutson, M. Kogan, E. Miller)

\[X^w \rightarrow \tilde{X}^w \subset \tilde{Fl}(n) \]

- \(\tilde{X}^w \) may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to \(w \).
- \(\mathcal{G}_w(1, \ldots, 1) \) “measures how singular \(X^w \) is.”
Pipe dreams and torus actions

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

\[Fl(n) \rightarrow \tilde{Fl}(n) \]

- \(\tilde{Fl}(n) \) is a *singular* (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope \(GZ(n) \).

Degenerate Schubert varieties (A. Knutson, M. Kogan, E. Miller)

\[X^w \rightarrow \tilde{X}^w \subset \tilde{Fl}(n) \]

- \(\tilde{X}^w \) may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to \(w \).
- \(S_w(1, \ldots, 1) \) “measures how singular \(X^w \) is”.
Permutations with the maximal number of pipe dreams

How many pipe dreams can a permutation have?

Find \(w \in S_n \), such that \(G_w(1, \ldots, 1) \) is maximal.

Answers for small \(n \)

- \(n = 3 \): \(w = (132), G_w(1) = 2 \);
- \(n = 4 \): \(w = (1432), G_w(1) = 5 \);
- \(n = 5 \): \(w = (15432) \) and \(w = (12543), G_w(1) = 14 \);
- \(n = 6 \): \(w = (126543), G_w(1) = 84 \);
- \(n = 7 \): \(w = (1327654), G_w(1) = 660 \).

Definition

\(w \in S_n \) is a Richardson permutation, if for \((k_1, \ldots, k_r), \sum k_i = n\),

\[
 w = \begin{pmatrix}
 1 & 2 & \ldots & k_1 & k_1 + 1 & \ldots & k_1 + k_2 & k_1 + k_2 + 1 & \ldots \\
 k_1 & k_1 - 1 & \ldots & 1 & k_1 + k_2 & \ldots & k_1 + 1 & k_1 + k_2 + k_3 & \ldots
 \end{pmatrix}.
\]
Permutations with the maximal number of pipe dreams

How many pipe dreams can a permutation have?

Find \(w \in S_n \), such that \(\mathcal{G}_w(1, \ldots, 1) \) is maximal.

Answers for small \(n \)

- \(n = 3 \): \(w = (132), \mathcal{G}_w(1) = 2; \)
- \(n = 4 \): \(w = (1432), \mathcal{G}_w(1) = 5; \)
- \(n = 5 \): \(w = (15432) \) and \(w = (12543), \mathcal{G}_w(1) = 14; \)
- \(n = 6 \): \(w = (126543), \mathcal{G}_w(1) = 84; \)
- \(n = 7 \): \(w = (1327654), \mathcal{G}_w(1) = 660. \)

Definition

\(w \in S_n \) is a Richardson permutation, if for \((k_1, \ldots, k_r) \), \(\sum k_i = n, \)

\[
\begin{pmatrix}
1 & 2 & \ldots & k_1 & k_1 + 1 & \ldots & k_1 + k_2 & k_1 + k_2 + 1 & \ldots \\
\end{pmatrix}
\]
How many pipe dreams can a permutation have?

Find \(w \in S_n \), such that \(S_w(1, \ldots, 1) \) is maximal.

Answers for small \(n \)
- \(n = 3 \): \(w = (132), S_w(1) = 2; \)
- \(n = 4 \): \(w = (1432), S_w(1) = 5; \)
- \(n = 5 \): \(w = (15432) \) and \(w = (12543), S_w(1) = 14; \)
- \(n = 6 \): \(w = (126543), S_w(1) = 84; \)
- \(n = 7 \): \(w = (1327654), S_w(1) = 660. \)

Definition

\(w \in S_n \) is a Richardson permutation, if for \((k_1, \ldots, k_r) \), \(\sum k_i = n, \)

\[
 w = \begin{pmatrix}
 1 & 2 & \cdots & k_1 & k_1 + 1 & \cdots & k_1 + k_2 & k_1 + k_2 + 1 & \cdots \\
 k_1 & k_1 - 1 & \cdots & 1 & k_1 + k_2 & \cdots & k_1 + 1 & k_1 + k_2 + k_3 & \cdots
 \end{pmatrix}.
\]
Permutations with the maximal number of pipe dreams

How many pipe dreams can a permutation have?

Find \(w \in S_n \), such that \(\mathcal{G}_w(1, \ldots, 1) \) is maximal.

Answers for small \(n \)

- \(n = 3 \): \(w = (132) \), \(\mathcal{G}_w(1) = 2 \);
- \(n = 4 \): \(w = (1432) \), \(\mathcal{G}_w(1) = 5 \);
- \(n = 5 \): \(w = (15432) \) and \(w = (12543) \), \(\mathcal{G}_w(1) = 14 \);
- \(n = 6 \): \(w = (126543) \), \(\mathcal{G}_w(1) = 84 \);
- \(n = 7 \): \(w = (1327654) \), \(\mathcal{G}_w(1) = 660 \).

Definition

\(w \in S_n \) is a Richardson permutation, if for \((k_1, \ldots, k_r) \), \(\sum k_i = n \),

\[
w = \begin{pmatrix}
1 & 2 & \ldots & k_1 & k_1 + 1 & \ldots & k_1 + k_2 & k_1 + k_2 + 1 & \ldots \\
k_1 & k_1 - 1 & \ldots & 1 & k_1 + k_2 & \ldots & k_1 + 1 & k_1 + k_2 + k_3 & \ldots
\end{pmatrix}.
\]
How many pipe dreams can a permutation have?

Find \(w \in S_n \), such that \(S_w(1, \ldots, 1) \) is maximal.

Answers for small \(n \)

- \(n = 3 \): \(w = (132), \ S_w(1) = 2 \);
- \(n = 4 \): \(w = (1432), \ S_w(1) = 5 \);
- \(n = 5 \): \(w = (15432) \) and \(w = (12543), \ S_w(1) = 14 \);
- \(n = 6 \): \(w = (126543), \ S_w(1) = 84 \);
- \(n = 7 \): \(w = (1327654), \ S_w(1) = 660 \).

Definition

\(w \in S_n \) is a **Richardson permutation**, if for \((k_1, \ldots, k_r)\), \(\sum k_i = n \),

\[
\begin{pmatrix}
1 & 2 & \ldots & k_1 & k_1 + 1 & \ldots & k_1 + k_2 & k_1 + k_2 + 1 & \ldots \\
k_1 & k_1 - 1 & \ldots & 1 & k_1 + k_2 & \ldots & k_1 + 1 & k_1 + k_2 + k_3 & \ldots \\
\end{pmatrix}
\]
How many pipe dreams can a permutation have?

Find \(w \in S_n \), such that \(\mathcal{S}_w(1, \ldots, 1) \) is maximal.

Answers for small \(n \)

- \(n = 3: \ w = (132), \mathcal{S}_w(1) = 2; \)
- \(n = 4: \ w = (1432), \mathcal{S}_w(1) = 5; \)
- \(n = 5: \ w = (15432) \) and \(w = (12543), \mathcal{S}_w(1) = 14; \)
- \(n = 6: \ w = (126543), \mathcal{S}_w(1) = 84; \)
- \(n = 7: \ w = (1327654), \mathcal{S}_w(1) = 660. \)

Definition

\(w \in S_n \) is a **Richardson permutation**, if for \((k_1, \ldots, k_r)\), \(\sum k_i = n \),

\[
\begin{pmatrix}
1 & 2 & \ldots & k_1 & k_1 + 1 & \ldots & k_1 + k_2 & k_1 + k_2 + 1 & \ldots \\
k_1 & k_1 - 1 & \ldots & 1 & k_1 + k_2 & \ldots & k_1 + 1 & k_1 + k_2 + k_3 & \ldots \\
\end{pmatrix}
\]
Permutations with the maximal number of pipe dreams

How many pipe dreams can a permutation have?

Find \(w \in S_n \), such that \(\mathcal{G}_w(1, \ldots, 1) \) is maximal.

Answers for small \(n \)

- \(n = 3 \): \(w = (132), \mathcal{G}_w(1) = 2 \);
- \(n = 4 \): \(w = (1432), \mathcal{G}_w(1) = 5 \);
- \(n = 5 \): \(w = (15432) \) and \(w = (12543), \mathcal{G}_w(1) = 14 \);
- \(n = 6 \): \(w = (126543), \mathcal{G}_w(1) = 84 \);
- \(n = 7 \): \(w = (1327654), \mathcal{G}_w(1) = 660 \).

Definition

\(w \in S_n \) is a Richardson permutation, if for \((k_1, \ldots, k_r) \), \(\sum k_i = n \),

\[
\begin{pmatrix}
1 & 2 & \ldots & k_1 & k_1 + 1 & \ldots & k_1 + k_2 & k_1 + k_2 + 1 & \ldots \\
k_1 & k_1 - 1 & \ldots & 1 & k_1 + k_2 & \ldots & k_1 + 1 & k_1 + k_2 + k_3 & \ldots \\
\end{pmatrix}
\]
Counting pipe dreams of Richardson permutations

Let $w_{k,m}^0 = \begin{pmatrix} 1 & 2 & \ldots & k & k+1 & \ldots & k+m \\ 1 & 2 & \ldots & k & k+m & \ldots & k+1 \end{pmatrix}$.

Theorem (A. Woo)

Let $w = w_{1,m}^0$. Then $G_w(1) = Cat(m)$.

Theorem (S. Fomin, An. Kirillov)

Let $w = w_{k,m}^0$. Then $G_w(1)$ is equal to the number of “Dyck plane partitions of height k”, i.e., subdiagrams of the prism of height k and side length m.
Let \(w_{k,m}^0 = (1 \ 2 \ \cdots \ k \ k+1 \ \cdots \ k+m) \).

Theorem (A. Woo)

Let \(w = w_{1,m}^0 \). Then \(\mathcal{S}_w(1) = \text{Cat}(m) \).

Theorem (S. Fomin, An. Kirillov)

Let \(w = w_{k,m}^0 \). Then \(\mathcal{S}_w(1) \) is equal to the number of "Dyck plane partitions of height \(k \)", i.e., subdiagrams of the prism of height \(k \) and side length \(m \).
Counting pipe dreams of Richardson permutations

Let $w^0_{k,m} = \begin{pmatrix} 1 & 2 & \ldots & k & k+1 & \ldots & k+m \\ 1 & 2 & \ldots & k & k+m & \ldots & k+1 \end{pmatrix}$.

Theorem (A. Woo)

Let $w = w^0_{1,m}$. Then $\mathcal{G}_w(1) = \text{Cat}(m)$.

Theorem (S. Fomin, An. Kirillov)

Let $w = w^0_{k,m}$. Then $\mathcal{G}_w(1)$ is equal to the number of “Dyck plane partitions of height k”, i.e., subdiagrams of the prism of height k and side length m.
Determinantal formulas for Schubert polynomials

Theorem (G. Merzon, E. S.)

Let $w = w_{k,m}^0$. Then the following “Jacobi–Trudi type” formula holds:

$$
\frac{\mathcal{S}_w(x_1, \ldots, x_{m+k-1})}{x_1^m \cdots x_k^m x_{k+1}^{m-1} \cdots x_{m+k-1}} = \det \left(\frac{\mathcal{S}_{w_1, m+i+j}^0(x_{i+1}, \ldots, x_{m+i+j-1})}{x_i^{m+j-1} x_{i+1}^{m+j-2} \cdots x_{m+i+j-1}} \right)_{i,j=0}^{k-1}
$$

Corollary

$\mathcal{S}_w(1)$ is equal to a $(k \times k)$ Catalan–Hankel determinant:

$$
\mathcal{S}_w(1) = \det \begin{pmatrix}
\text{Cat}(m) & \text{Cat}(m+1) & \cdots & \text{Cat}(m+k-1) \\
\text{Cat}(m+1) & \text{Cat}(m+2) & \cdots & \text{Cat}(m+k) \\
\vdots & \vdots & \ddots & \vdots \\
\text{Cat}(m+k-1) & \text{Cat}(m+k) & \cdots & \text{Cat}(m+2k-2)
\end{pmatrix}.
$$
Theorem (G. Merzon, E. S.)

Let $w = w_{k,m}^0$. Then the following “Jacobi–Trudi type” formula holds:

$$\mathcal{S}_w(x_1, \ldots, x_{m+k-1}) = \frac{\prod_{1 \leq i \leq k} x_i^m \cdots \prod_{1 \leq i < j \leq k} x_i^m x_{k+1}^{m-1} \cdots x_{m+k-1}}{\det \left(\left(\mathcal{S}_{w_{1,m+i+j}}^0(x_{i+1}, \ldots, x_{m+i+j-1}) \right)_{i,j=0}^{k-1} \right)}.$$

Corollary

$\mathcal{S}_w(1)$ is equal to a $(k \times k)$ Catalan–Hankel determinant:

$$\mathcal{S}_w(1) = \det \begin{pmatrix} \text{Cat}(m) & \text{Cat}(m+1) & \ldots & \text{Cat}(m+k-1) \\ \text{Cat}(m+1) & \text{Cat}(m+2) & \ldots & \text{Cat}(m+k) \\ \vdots & \vdots & \ddots & \vdots \\ \text{Cat}(m+k-1) & \text{Cat}(m+k) & \ldots & \text{Cat}(m+2k-2) \end{pmatrix}.$$
To each permutation $w \in S_n$ one can associate a shellable CW-complex $PD(w)$;

- 0-dimensional cells \leftrightarrow reduced pipe dreams for w;
- higher-dimensional cells \leftrightarrow non-reduced pipe dreams for w;
- $PD(w) \cong B^\ell$ or S^ℓ, where $\ell = \ell(w)$.
To each permutation \(w \in S_n \) one can associate a shellable CW-complex \(PD(w) \);
- 0-dimensional cells \(\leftrightarrow \) reduced pipe dreams for \(w \);
- higher-dimensional cells \(\leftrightarrow \) non-reduced pipe dreams for \(w \);
- \(PD(w) \cong B^\ell \) or \(S^\ell \), where \(\ell = \ell(w) \).
To each permutation $w \in S_n$ one can associate a shellable CW-complex $PD(w)$;

- 0-dimensional cells \leftrightarrow reduced pipe dreams for w;
- higher-dimensional cells \leftrightarrow non-reduced pipe dreams for w;
- $PD(w) \cong B^\ell$ or S^ℓ, where $\ell = \ell(w)$.

To each permutation $w \in S_n$ one can associate a shellable CW-complex $PD(w)$;
0-dimensional cells \leftrightarrow reduced pipe dreams for w;
higher-dimensional cells \leftrightarrow non-reduced pipe dreams for w;
$PD(w) \cong B^\ell$ or S^ℓ, where $\ell = \ell(w)$.
Pipe dream complex for $w = (1432)$
Pipe dream complex for $w = (1432)$
Associahedra are PD-complexes

Theorem (probably folklore? also cf. V. Pilaud)

Let $w = w_{1,n}^0 = (1, n+1, n, \ldots, 3, 2) \in S_{n+1}$ be as in Woo’s theorem. Then $PD(w)$ is the Stasheff associahedron.
Associahedra are PD-complexes

Theorem (probably folklore? also cf. V. Pilaud)

Let $w = w_{1,n}^0 = (1, n+1, n, \ldots, 3, 2) \in S_{n+1}$ be as in Woo’s theorem. Then $PD(w)$ is the Stasheff associahedron.
What about $PD(w)$ for other Richardson elements w?

- $w = w_{1,n}^0 = (1, n + 1, n, \ldots, 3, 2)$ associahedron;
- $w = w_{n,2}^0 = (1, 2, \ldots, n, n + 2, n + 1)$ $(n + 1)$-dimensional simplex;
- $w = w_{n,3}^0 = (1, 2, \ldots, n, n + 3, n + 2, n + 1)$ dual cyclic polytope $(C(2n + 3, 2n))^\vee$.
- $w = w_{k,n}^0$???
 (we don’t even know if this is a polytope)
Zoo of pipe dream complexes

What about $PD(w)$ for other Richardson elements w?

- $w = w_{1,n}^0 = (1, n+1, n, \ldots, 3, 2)$ associahedron;
- $w = w_{n,2}^0 = (1, 2, \ldots, n, n+2, n+1)$ $(n+1)$-dimensional simplex;
- $w = w_{n,3}^0 = (1, 2, \ldots, n, n+3, n+2, n+1)$ dual cyclic polytope $(C(2n+3, 2n))^{\vee}$.
- $w = w_{k,n}^0$

 (we don’t even know if this is a polytope)

Cyclic polytopes

$C(n, d) = \text{Conv}((t_i, t_i^2, \ldots, t_i^d))_{i=1}^n \subset \mathbb{R}^d$.
What about $PD(w)$ for other Richardson elements w?

- $w = w^0_{1,n} = (1, n+1, n, \ldots, 3, 2)$ associahedron;
- $w = w^0_{n,2} = (1, 2, \ldots, n, n+2, n+1)$ $(n+1)$-dimensional simplex;
- $w = w^0_{n,3} = (1, 2, \ldots, n, n+3, n+2, n+1)$ dual cyclic polytope $(C(2n+3, 2n))^\vee$.
- $w = w^0_{k,n}$

(we don’t even know if this is a polytope)

Cyclic polytopes

$$C(n, d) = \text{Conv}((t_i, t_i^2, \ldots, t_i^d))_{i=1}^n \subset \mathbb{R}^d.$$
What about $PD(w)$ for other Richardson elements w?

- $w = w_{1,n}^0 = (1, n+1, n, \ldots, 3, 2)$ associahedron;
- $w = w_{n,2}^0 = (1, 2, \ldots, n, n+2, n+1)$ $(n+1)$-dimensional simplex;
- $w = w_{n,3}^0 = (1, 2, \ldots, n, n+3, n+2, n+1)$ dual cyclic polytope $(C(2n+3, 2n))^{\vee}$.
- $w = w_{k,n}^0$

 (we don’t even know if this is a polytope)
Zoo of pipe dream complexes

What about $PD(w)$ for other Richardson elements w?

- $w = w_{1,n}^0 = (1, n + 1, n, \ldots, 3, 2)$ associahedron;
- $w = w_{n,2}^0 = (1, 2, \ldots, n, n + 2, n + 1)$ $(n + 1)$-dimensional simplex;
- $w = w_{n,3}^0 = (1, 2, \ldots, n, n + 3, n + 2, n + 1)$ dual cyclic polytope $(C(2n + 3, 2n))^\vee$.
- $w = w_{k,n}^0$
 ???
 (we don’t even know if this is a polytope)

Cyclic polytopes

$C(n, d) = \text{Conv}((t_i, t_i^2, \ldots, t_i^d))_{i=1}^n \subset \mathbb{R}^d$.
Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^0;
- $P \subset G$ parabolic subgroup, $P = L \rtimes U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a Richardson element.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w^0 of the longest element $w^0 \in W$.
- Can define a subword complex $PD(w) = PD(w, w^0)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.
Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- *The longest element* in W is denoted by w^0;
- $P \subset G$ parabolic subgroup, $P = L \ltimes U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w^0 of the longest element $w^0 \in W$.
- Can define a *subword complex* $PD(w) = PD(w, w^0)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.
Generalization: other Weyl groups

- G semisimple group, W its Weyl group;

- *The longest element* in W is denoted by w^0;

- $P \subset G$ parabolic subgroup, $P = L \rtimes U$ its Levi decomposition.

- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.

- For $W = S_n$, that is exactly our previous definition of Richardson elements.

- Fix a reduced decomposition w^0 of the longest element $w^0 \in W$.

- Can define a *subword complex* $PD(w) = PD(w, w^0)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);

- Consider decompositions of Richardson elements in W and look at their subword complexes.
Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- *The longest element* in W is denoted by w^0;
- $P \subset G$ parabolic subgroup, $P = L \rtimes U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w^0 of the longest element $w^0 \in W$.
- Can define a *subword complex* $PD(w) = PD(w, w^0)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.
Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- *The longest element* in W is denoted by w^0;
- $P \subset G$ parabolic subgroup, $P = L \times U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.

- Fix a reduced decomposition ω^0 of the longest element $w^0 \in W$.
- Can define a *subword complex* $PD(w) = PD(w, \omega^0)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.
Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- *The longest element* in W is denoted by w^0;
- $P \subset G$ parabolic subgroup, $P = L \ltimes U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w^0 of the longest element $w^0 \in W$.
 - Can define a *subword complex* $PD(w) = PD(w, w^0)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
 - Consider decompositions of Richardson elements in W and look at their subword complexes.
Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- *The longest element* in W is denoted by w^0;
- $P \subset G$ parabolic subgroup, $P = L \rtimes U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w^0 of the longest element $w^0 \in W$.
- Can define a *subword complex* $PD(w) = PD(w, w^0)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.
Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^0;
- $P \subset G$ parabolic subgroup, $P = L \times U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a Richardson element.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w^0 of the longest element $w^0 \in W$.
- Can define a subword complex $PD(w) = PD(w, w^0)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.
Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- *The longest element* in W is denoted by w^0;
- $P \subset G$ parabolic subgroup, $P = L \ltimes U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition ε^0 of the longest element $w^0 \in W$.
- Can define a *subword complex* $PD(w) = PD(w, \varepsilon^0)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.
Theorem

Let W be of type C_n, generated by s_1, \ldots, s_n, where s_1 corresponds to the longest root α_1. Consider a Richardson element $w = (s_1 s_2 \ldots s_{n-1})^{n-1}$. Then $PD(w)$ is a cyclohedron.
Questions about $PD(w)$

- Is it true that $PD(w)$ is always a polytope?
- At least, is it true when w is a Richardson element?
- If yes, what is the combinatorial meaning of this polytope?
- Possible answer: associahedra, cyclohedra etc. are examples of 2-truncated cubes (cf. V. Buchstaber’s works). Is it true that $PD(w)$ are 2-truncated cubes?
Questions about $PD(w)$

- Is it true that $PD(w)$ is always a polytope?
- At least, is it true when w is a Richardson element?
- If yes, what is the combinatorial meaning of this polytope?
- Possible answer: associahedra, cyclohedra etc. are examples of 2-truncated cubes (cf. V. Buchstaber’s works). Is it true that $PD(w)$ are 2-truncated cubes?
Questions about \(PD(w) \)

- Is it true that \(PD(w) \) is always a polytope?
- At least, is it true when \(w \) is a Richardson element?
- If yes, what is the combinatorial meaning of this polytope?

Possible answer: associahedra, cyclohedra etc. are examples of 2-truncated cubes (cf. V. Buchstaber’s works). Is it true that \(PD(w) \) are 2-truncated cubes?
Questions about $PD(w)$

- Is it true that $PD(w)$ is always a polytope?
- At least, is it true when w is a Richardson element?
- If yes, what is the combinatorial meaning of this polytope?
- Possible answer: associahedra, cyclohedra etc. are examples of 2-truncated cubes (cf. V. Buchstaber’s works). Is it true that $PD(w)$ are 2-truncated cubes?