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Abstract

Let G be a semisimple algebraic group. Kostant’s theorem de-
scribes the ideal defining the G-orbit closure of the sum of highest-
weight vectors in a (reducible) G-module, such that the corresponding
highest weights are linearly independent. This ideal is generated by
quadratic polynomials.

In this paper we generalize this result, assuming that the highest
weights can be linearly dependent. In this case the equations defining
these varieties are not necessary quadratic.

1 Introduction

Let G be a semisimple algebraic group. We consider a (possibly re-
ducible) finite-dimensional G-module, fix a highest weight vector in
each of its irreducible submodules and consider their sum. The clo-
sure of the G-orbit of such a vector is said to be an S-variety. A
classical example of an S-variety is provided by a Grassmann cone
Gr(m,n), obtained as the closure of the highest weight vector orbit in
the representation of SLn acting on

∧m kn. The Grassmann cone can
be defined by a set of equations, known as Plücker relations; more-
over, there equations generate its ideal. In the present paper, we
obtain analogous relations for an arbitrary S-variety. Earlier it was
done in the case of linearly independent highest weights (see [1]).

The author is grateful to Ernest B. Vinberg for the attention to
this work, and to Dmitry Timashev for many useful remarks.
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Notation

k ground field, algebraically closed and of zero characteristics;
G simply connected semisimple algebraic group;
B a fixed Borel subgroup in G;

X(T ) the character group for a fixed maximal torus T ⊂ B;
X+(T ) semigroup formed by the dominant characters for T ;

Vλ -the irreducible G-module with a highest weight λ ∈ X+(T )
v+
λ highest weight vector in Vλ.

2 HV -varieties

First consider a particular case: the closures of the highest weight
vector orbits. Such varieties are often called HV -varieties. In [2] it
is proved that the closure X of the highest weight vector orbit in an
irreducible module Vλ is defined by the following system of equations:

Ω(v ⊗ v) = (2λ + 2ρ, 2λ)(v ⊗ v), (1)

where Ω stands for the Casimir operator, and ρ is equal to the half-sum
of the positive roots.

(1) is an equality of elements from S2Vλ, so it can be considered as
a system of dλ(dλ + 1)/2 quadratic equations on the coordinates of v,
where dλ = dim Vλ. If G = SLn, and λ = πk is the k-th fundamental
weight, what we get is exactly the set of Plücker relations.

Here is a streghtening of the main result from [2]:

Proposition 1. The relations (1) generate the ideal of X.

Proof. This follows from the Kostant theorem (Theorem 3 of this pa-
per). Its proof will be given in the next section. �

3 S-varieties: Linearly independent weight

case

Consider the S-variety which corresponds to dominant weights λ1, . . . , λk ∈
X+(T ), that is, the closure of the G-orbit of the sum of highest vectors
v+
λ1

+ · · ·+v+
λk
∈ Vλ1⊕· · ·⊕Vλk

= V . Denote it by X = X(λ1, . . . , λk).
Also denote the set λ1, . . . , λk by E0, and let E be the semigroup in
X+(T ) generated by the weights
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From [3], one knows that the coordinate ring k[X] considered as a
G-module is equal to

k[X] =
⊕
λ∈E

Sλ ↪→
⊕

λ∈X+(T )

Sλ = k[G/U ], (2)

where

Sλ
∼= {f ∈ k[G] : f(gb) = λ(b)f(g) ∀g ∈ G, b ∈ B},

(so, Sλ equals V ∗
λ as a G-module), and the embedding k[X] ↪→ k[G/U ]

is G-equivariant. From the definition of Sλ we see that the rings k[X]
and k[G/U ] are graded by the elements of E, e.g., SλSµ = Sλ+µ.

In [1], the following theorem, due to Kostant, is stated. It is a
generalization of Prop. 1. Since our main result is based on its proof,
we give this theorem with a sketch of the proof.

Theorem 2 (Kostant). Let the semigroup E ⊂ X+(T ) be freely gener-
ated by a finite set of weights E0 = {λ1, . . . , λk} ⊂ E. Let I be an ideal
in k[V ] = k[Vλ1 ⊕ · · · ⊕ Vλk

], generated by the coordinates of tensors

Ω(vλ ⊗ vµ)− (λ + µ + 2ρ, λ + µ)(vλ ⊗ vµ), (3)

where vλ ∈ Vλ, vµ ∈ Vµ, and λ and µ run over the set E0. Then the
coordinate algebra of the S-variety X(λ1, . . . , λk) is equal to k[V ]/I.

Proof. The relations Ω(vλ⊗vµ)− (λ+µ+2ρ, λ+µ)(vλ⊗vµ) = 0 hold
for the sum of highest vectors v+

λ1
+ · · ·+v+

λk
, because v+

λ ⊗v+
µ = v+

λ+µ.
Further, they are G-invariant. This means that they hold along the
whole orbit. This proves the inclusion I ⊆ I(X).

Now let us prove the reverse inclusion. Let n = dim G, and
{x1, . . . , xn} and {x∗

1, . . . , x
∗
n} be two bases of the Lie algebra g =

Lie(G), dual with respect to the Cartan-Killing form. Consider the
Casimir operator

Ω =
n∑

i=1

xix
∗
i ∈ U(g).

Ω acts on Vλ as a scalar (λ + 2ρ, λ). Denote this scalar by λ[Ω]. If
λ′ is a dominant weight, such that λ′ = λ −

∑
kiαi, where αi are

simple roots, and ki ≥ 0, with a strictly positive ki among them, then
Ω[λ] > Ω[λ′]. Indeed,

(λ + 2ρ, λ) = (λ + 2ρ, λ′) +
∑

ki(λ + 2ρ, αi) = (λ′ + 2ρ, λ′)+∑
ki((αi, λ

′) + (λ + 2ρ, αi)) > (λ′ + 2ρ, λ′). (4)
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Take λ, µ ∈ E0. Now let us rewrite the operator Ω− (λ + µ)[Ω]Id
acting on the tensor product Vλ ⊗ Vµ, in a slightly different form.

(Ω−(λ+µ)[Ω]Id)(vλ⊗vµ) =

(
n∑

i=1

(xi ⊗ x∗
i + x∗

i ⊗ xi)− 2(λ, µ)

)
(vλ⊗vµ).

(5)
By assumption, the coordinates of all these expressions belong to I.

From the presentation (2) of the coordinate algebra k[X] it follows
that the ideal I is linearly generated by the kernels of projections onto
the highest components

Sn1V ∗
λ1
⊗ · · · ⊗ SnkV ∗

λk
→ V ∗

n1λ1+···+nkλk

for n1, . . . , nm ∈ Z+. Each such kernel is the image of a projection P =
Ω−λ[Ω]Id ∈ EndSn1Vλ1 ⊗ · · ·⊗SnkVλk

, where λ = n1λ1 + · · ·+nkλk.
Let v ∈ V , and let vj denote the projection of v onto Vλj

. Then
the coordinates of the tensor P (vn1

1 ⊗ · · · ⊗ vnk
k ) can be considered as

elements of k[V ].
A simple calculation shows that

P (vn1
1 ⊗· · ·⊗vnk

k ) =
∑

1≤r<s≤k

(Trs − 2 nrns(λr, λs)Id) (vn1
1 ⊗· · ·⊗vnk

k ),

(6)
where

Trs(vn1
1 ⊗· · ·⊗ vnk

k ) =
n∑

i=1

(vn1
1 ⊗· · ·⊗xiv

nr
r ⊗· · ·⊗x∗

i v
ns
s ⊗· · ·⊗ vk+

+ vn1
1 ⊗ · · · ⊗ x∗

i v
nr
r ⊗ · · · ⊗ xiv

ns
s ⊗ · · · ⊗ vk). (7)

According to (5), the coordinates of each summand from (6) belong
to I. So, the coordinates of P (vn1

1 ⊗· · ·⊗ vnk
k ) belong to I as well.

From the proof, we get the following corollary, also stated in [1].

Corollary 3. Let E0 be arbitrary (probably without the linear inde-
pendency condition). Then the ideal I contains the coordinates of all
the expressions of the form (Ω− (λi1 + · · ·+ λim)[Ω])(vi1 ⊗ · · · ⊗ vim),
where vip ∈ Vλip

, λip ∈ E0.

4



4 S-varieties: Linearly dependent weight

case

Now let us find equations defining an S-variety in the case when the
highest vectors λi are linearly dependent, i.e., when the semigroup E

admits relations on elements of E0. It is clear that in this case the
relations analogous to (3) hold. But the quotient of k[V ] over these
relations is larger than the coordinate ring k[X]. The former ring
may include more that one G-invariant components of the form V ∗

λ ;
their number equals to the number of presentations of λ as Z+-linear
combinations of elements from E0. In this case we add an additional
set of relations to the Kostant’s one. To do this, let us scale the highest
vectors of Vλi

in the following way.
Considet the algebra k[G/U ] =

⊕
Sλ

∼=
⊕

V ∗
λ . Let fλ be the

highest vector of Sλ satisfying the condition fλ(w0) = 1, where w0 is
the longest element of the Weyl group of G. So, the vectors fλ form
a multiplicative semigroup, that is isomorphic to X+(T ).

Now consider a G-module embegging V = Vλ1 ⊕ · · · ⊕ Vλk
↪→

k[G/U ] mapping each v+
λi

to fλ∗i
. Each such embedding will be called

a canonical one.
Now we state the main result of this paper.

Theorem 4. Let E ⊂ X+ be a semigroup generated by a finite set of
weights E0 = {λ1, . . . , λk} ⊂ E with defining relations of the form

n1λi1 + · · ·+ nrλir = m1λj1 + · · ·+ msλjs ,

where λi1 , . . . , λir , µj1 , . . . , µjr ∈ E0, {i1, . . . , ir} ∩ {j1, . . . , js} = ∅,
ni,mj ∈ Z+. Also suppose that the G-module V = Vλ1 ⊕ · · · ⊕ Vλk

is
embedded into k[G/U ] canonically.

Then the ideal I(X) ⊂ k[V ] of X = X(λ1, . . . , λk) is generated by
the coordinates of tensors

Ω(vλ ⊗ vµ)− (λ + µ + 2ρ, λ + µ)(vλ ⊗ vµ), (8)

where vλ ∈ Vλ, vµ ∈ Vµ, λ, µ ∈ E0, and

π1(vn1
λi1

⊗ · · · ⊗ vnr
λir

)− π2(vm1
λm1

⊗ · · · ⊗ vms
λjs

), (9)

where vn1
λi1

⊗ · · · ⊗ vnr
λir

∈ Sn1Vλi1
⊗ · · · ⊗ SnrVλir

, vm1
λm1

⊗ · · · ⊗ vms
λjs

∈
Sm1Vλj1

⊗ · · · ⊗ SmsVλjs
, and π1 π2 are the G-equivariant linear

maps from Sn1Vλi1
⊗ · · · ⊗ SnrVλir

Sm1Vλj1
⊗ · · · ⊗ SmsVλjs

to Vλ,
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λ = n1λi1 + · · ·+nrλir = m1λj1 + · · ·+msλjs, such that π1((v+
λi1

)n1 ⊗
· · · ⊗ (v+

λir
)nr) = π2((v+

λj1
)m1 ⊗ · · · ⊗ (v+

λjs
)ms).

Proof. Denote the ideal generated by the coordinates of (8) and (9),
by I. These coordinates vanish on the sum of the highest vectors (this
holds for (9), since the scaling of the highest vectors is canonical).
They generate a G-invariant ideal. This means that I ⊆ I(X).

The coordinate ring k[V ] = k[Vλ1 ⊕ · · · ⊕ Vλk
] is isomorphic to

S(V ∗) =
⊕

m∈Z+

Sm(V ∗), and

Sm(V ∗
λ1
⊕ · · · ⊕ V ∗

λk
) =

⊕
i1+···+ik=m

Si1V ∗
λ1
⊗ · · · ⊗ SikV ∗

λk
.

Each G-module Si1V ∗
λ1
⊗· · ·⊗SikV ∗

λk
equals to the direct sum of the

highest irreducible component V ∗
i1λ1+···+ikλk

and the remaining (lower)
components of the decomposition. According to Corollary 3, all the
lower components are contained in the ideal I for each (i1, . . . , ik).

Roughly speaking, the generators of I that come from the relations
(9), identify the highest components of the spaces Sn1V ∗

λi1
⊗ · · · ⊗

SnrV ∗
λir

and Sm1V ∗
λj1

⊗ · · · ⊗ SmsV ∗
λjs

. These relations vanish on the
kernel Ker F of the operator F ∈ End (Sn1Vλi1

⊗ · · · ⊗ SnrVλir
⊕

Sm1Vλj1
⊗ · · · ⊗ SmsVλjs

), F : v1 + v2 7→ π1(v1) − π2(v2), where v1 ∈
Sn1Vλi1

⊗ · · · ⊗ SnrVλir
, v2 ∈ Sm1Vλj1

⊗ · · · ⊗ SmsVλjs
).

The space Ann Ker F of the linear functions that vanish on Ker F
is G-invariant. As a G-module, it is isomorphic to the (indecom-
posable) representation V ∗

n1λi1
+···+nrλir

. So, since the intersection of
Ann Ker F with I is nontrivial, Ann Ker F ⊂ I.

Each relation in the semigroup E is obtained as the sum of certain
defining relations, i.e., can be presented in form

∑
k(nk1λki1 + · · · +

nkrλkir) =
∑

k(mk1λkj1 + · · · + mksλkjs). For each k, the highest
vectors vk = (v+

λ∗ki1

)nk1 ⊗ · · · ⊗ (v+
λ∗kir

)nkr and ṽk = (v+
µ∗kj1

)nkj ⊗ · · · ⊗
(v+

λ∗kjs
)nkr of the highest components of Snk1V ∗

λki1
⊗ · · · ⊗ SnkrV ∗

λkir

Smk1V ∗
λkj1

⊗ · · · ⊗ SmksV ∗
λkjs

are equal modulo I. This means that
the highest vectors

⊗
k vk and

⊗
k ṽk of the highest components of

the modules
⊗

k(S
nk1V ∗

λki1
⊗ · · · ⊗ SnkrV ∗

λkir
)
⊗

k(S
mk1V ∗

λkj1
⊗ · · · ⊗

SmksV ∗
λkjs

) are also equal modulo I.
Thus, the quotient of the ring k[V ] over the ideal I can be embed-

ded into
⊕
λ∈E

Sλ = k[X]. Since I ⊂ I(X), this ring equals k[X]. So,

I = I(X). �
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