
PARTITIONS: FROM EULER TO RAMANUJAN

EVGENY SMIRNOV

Abstract. Notes from a course given at the Summer School “Modern Mathematics”,
Dubna, Russia, from July 21 to 25, 2023.

How many ways are there to partition a natural number into a sum of several terms,
if sums that differ only in the order of the terms are considered the same? It turns
out that there is no simple answer to this seemingly elementary question. However, the
theory that begins with this question is very interesting, and its results find applications
in various areas of mathematics and mathematical physics.

1. First Lecture, July 21, 2023

1.1. Partitions and Young Diagrams. A partition of a natural number is its repre-
sentation as a sum of natural terms. The order of the terms does not matter: for example,
2 + 3 and 3 + 2 are the same partition of the number 5. Therefore, these terms can be
considered non-strictly decreasing. Here is a formal definition:

Definition 1.1. A partition of a natural number n is a set of natural numbers λ =
(λ1, . . . ,λk), for which λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and λ1 + · · ·+ λk = n.

Sometimes it is convenient to consider a partition as a non-increasing sequence of non-
negative integers (λ1, . . . ,λk, . . . ), where all λi starting from some index are zero. In
other words, an infinite “tail” of zeros is appended to the finite set of λi.

A partition can be represented graphically using Young diagrams. A Young diagram
of a partition (λ1, . . . ,λk) is a subset of the fourth quadrant of the plane consisting of
unit squares. The squares are arranged in consecutive rows aligned to the left, with the
number of squares in the i-th row equal to λi (so the length of each subsequent row does
not exceed the length of the previous one).

Example 1.2. The diagram shows the Young diagram corresponding to the partition
(7, 5, 5, 5, 2, 1) of the number 25.

Let’s reflect the Young diagram λ across the diagonal (i.e., the line x+ y = 0). We get
a new Young diagram, which we will denote by λ′ = (λ′

1, . . . ,λ
′
m) and call the conjugate

of λ (sometimes it is also called transposed). It is clear that λ′
i is equal to the number of

components of the original partition λ that are greater than or equal to i.
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Example 1.3. The diagram (6, 5, 4, 4, 4, 1, 1) is the conjugate of the diagram from the
previous example.

We will denote the number of partitions of a number n by p(n). We also agree that
p(0) = 1.

It is easy to find p(n) for small values of n (say, for n ≤ 5). They are given in the
following table:

n 0 1 2 3 4 5 6
p(n) 1 1 2 3 5 7 11

Exercise 1.4. Verify this and draw all Young diagrams corresponding to the partitions
of the number n for each n ≤ 5.

A natural question arises: is there a formula to find p(n) for a given n? It turns out
that there is no simple closed formula for the number of partitions (like, for example, for
binomial coefficients). However, something can be said about this sequence: namely, its
generating function can be written. We will deal with this now.

1.2. Reminder about Generating Functions. At the beginning of this section, we
will briefly recall some information about generating functions and formal power series
and discuss a few simple examples of their use. A more detailed explanation can be found
in many textbooks on combinatorics, for example, in the books [?] and [?].

Let a0, a1, . . . , an, . . . be an arbitrary numerical sequence. Consider a formal power
series in the variable q:

a0 + a1q + a2q
2 + · · ·+ anq

n + . . . . (∗)
It is called the generating function for the original sequence.

Remark 1.5. We will work with generating functions exactly as formal power series —
expressions of the form (∗), which can be thought of as “polynomials of infinite degree”.
Such expressions can be added and multiplied with each other. Note that these opera-
tions are correctly defined: of course, to add or multiply two series, an infinite number
of operations must be performed, but the number of operations required to find each
coefficient in the sum or product is finite. At this point, we will not be interested in
questions of convergence of these series for certain numerical values of q.

Exercise 1.6. Let A(q) = a0 + a1q + a2q
2 + . . . be a formal power series, where a0 ∕= 0.

Prove that there exists a series B(q) inverse to A(q) — i.e., such a series that A(q)·B(q) =
1. What happens if a0 = 0?

Sometimes the generating function expressed as a formal power series can be written
in some other form (for example, as a rational function of q), which often allows us to
obtain some new information about the sequence (a0, . . . , an, . . . ).

1.3. Partitions into Distinct Terms. Let pD(n) be the number of partitions of n into
pairwise distinct terms. For example, pD(8) = 6: the corresponding partitions are (8),
(7, 1), (6, 2), (5, 3), (5, 2, 1), and (4, 3, 1).
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Proposition 1.7. The generating function PD(q) =


n≥0 pD(n)q
n is represented as an

infinite product

PD(q) = (1 + q)(1 + q2)(1 + q3) · · · =
∞

k=1

(1 + qk).

Proof. Expand the brackets in the previous expression and do not combine like terms.
Each term will then have the form qk1qk2 . . . qkr , where k1 > k2 > · · · > kr. However, to
calculate the next (say, k-th) term of this series, we need to take only a finite number
(in this case, k) of the first factors — the rest will not affect the coefficient at qk in any
way. □

Similarly, the famous Euler’s formula for the generating function of the number of
partitions is proven.

Theorem 1.8 (L. Euler). The generating function P (q) for the number of partitions of
a number n is given by the following infinite product:

P (q) =


p(n)qn =
1

(1− q)(1− q2)(1− q3) . . .
=

∞

k=1

(1− qk)−1.

Proof. The expression for P (q) can be rewritten as

P (q) = (1 + q + q2 + . . . )(1 + q2 + q4 + . . . )(1 + q3 + q6 + . . . ) . . .

Similarly to the previous case, if we expand the brackets in the right-hand side and
do not combine like terms, each term will have the form qk1m1qk2m2 . . . qkrmr , where k1 >
k2 > · · · > kr. □

1.4. Partition into odd and distinct summands. Here is another problem that can
be solved by means of generating functions. Let us look at the partitions of a number
into odd parts. The number of ways to do this will be denoted by pO(n).

For example, pO(8) = 6, since there are 6 such partitions for the number 8:

7+1 = 5+3 = 5+1+1+1 = 3+3+1+1 = 3+1+1+1+1+1 = 1+1+1+1+1+1+1+1.

We have seen that the number of partitions of the number 8 into distinct terms will be
the same. It turns out that this is true for any n.

Proposition 1.9. pD(n) = pO(n) for any n.

Proof. We will prove that the generating functions PO(q) =


pO(n)q
n and PD(q) =

pD(n)q
n are equal.

Reasoning exactly as we did for arbitrary partitions, we find that the generating func-
tion PO(q) =


pO(n)q

n equals

PO(q) =
1

1− q
· 1

1− q3
· 1

1− q5
. . . .

As we have just shown,

PD(q) = (1 + q)(1 + q2)(1 + q3) . . .
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The rest involves purely algebraic transformations. Multiply and divide the series
PO(q) by the infinite product (1− q2)(1− q4) . . . :

PO(q) =
1

1− q
· 1

1− q3
· 1

1− q5
· · · = 1

1− q
· 1− q2

1− q2
1

1− q3
· 1− q4

1− q4
· · · =

=
(1− q2)(1− q4)(1− q6) . . .

(1− q)(1− q2)(1− q3) . . .
= (1 + q)(1 + q2)(1 + q3) · · · = PD(q).

□
Another question can be posed: given that we already know there are as many parti-

tions into odd parts as into distinct parts, can we construct a “natural” bijective mapping
(bijection) between the sets of such partitions? In other words, how can we associate each
partition of a number n into odd parts with its corresponding partition into distinct parts?

Several such bijections can be constructed. Let’s describe one using an example.
Suppose we are given a partition of a number into odd parts, such as:

23 = 7 + 5 + 5 + 3 + 1 + 1 + 1

Consider a “centered Young diagram”: draw a diagram symmetric about the vertical axis
(see the figure on the left), with 7 boxes in the first row, 5 in the second and third, and
so on.

Figure 1.1. Partitioning Young diagrams into hooks

Now, partition this diagram into hooks as shown in the figure on the right. We obtain
a partition of the number 23 into distinct parts:

23 = 10 + 6 + 4 + 2 + 1.

Exercise 1.10. Verify that this correspondence is indeed a bijection (it is called Sylvester’s
bijection).

1.5. Pentagonal Numbers. Consider the infinite product inverse to P (q). This product
of an infinite number of binomials is:

P (q)−1 =
∞

k=1

(1− qk).

Exercise 1.11. Calculate the first 8 terms (up to q7 inclusive) of this infinite product.

Euler calculated the first few dozen terms of this product, obtaining:

P (q)−1 = 1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 − q35 − q40 + . . .

Here, several interesting observations can be made. First, it is clear that all coefficients of
this series are either 0 or ±1, with non-zero terms becoming rarer as the degree increases.
Second, all terms except the constant term come in pairs: two negative, two positive,
then two negative again, and so on. The difference between the degrees in each pair
equals the pair number: initially one (q and q2), then two (q5 and q7), then three (q12

and q15), and so forth.
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Finally, the sequence of degrees 1, 5, 12, 22, 35, etc., was well-known to Euler these
are the so-called pentagonal numbers, which equal the number of points in a pentagon
with sides of length 1, 2, 3, etc., respectively (see Figure 1.2).

Figure 1.2. Pentagonal numbers

It is easy to see that the m-th pentagonal number is m(3m− 1)/2.
It turns out that the following result holds. Its proof will be presented in the next

lecture.

Theorem 1.12 (Euler’s Pentagonal Theorem). The series inverse to P (q) =


p(n)qn

has the form

P (q)−1 = 1 +
∞

m=1

(−1)m

q

m(3m−1)
2 + q

m(3m+1)
2


.

We will prove this theorem in two ways. The first will be combinatorial; it belongs to
Sylvester’s student Franklin.

Proof. The expression (1 − q)(1 − q2) . . . can be viewed as the generating function for
partitions into distinct parts, where each partition is counted with a weight of 1 for par-
titions with an even number of parts and −1 for those with an odd number of parts. The
statement of the theorem then asserts that there are almost as many of these partitions:

their number differs by one if the weight of the partition is of the form n(3n±1)
2

, and is
equal otherwise.

Let’s try to construct a bijection between such partitions with an even and odd number
of parts. Consider a Young diagram with rows of varying lengths and introduce three
characteristics: ℓ the number of rows, b the length of the bottom row (marked green),
and d the length of the “diagonal,” i.e., the longest sequence of cells that can be reached
from the rightmost cell of the first row by moving like a knight (mark these cells yellow).

Now, if dd. Note that for the resulting diagram, b′ ≤ d′.
Similarly, we can construct a mapping that sends a diagram with b ≤ d to one with

b′ > d′: simply cut off the bottom row and attach it as a diagonal. Thus, the resulting
mapping will be an involution.

It will be defined for “almost all” diagrams. The diagrams for which it is not defined
correspond to cases where ℓ = d = b and ℓ = d = b − 1 (when ℓ = 4, they are shown in
the figure below).

Clearly, these diagrams consist of ℓ2 + ℓ(ℓ−1)
2

= ℓ(3ℓ−1)
2

and ℓ2 + ℓ(ℓ+1)
2

= ℓ(3ℓ+1)
2

cells,

respectively, and enter with a weight equal to (−1)ℓ. This proves Euler’s Pentagonal
Theorem. □
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The second method will be discussed in the next session. For it, we will need Jacobi’s
identity for the triple product.

2. Second Lecture, July 22, 2023

2.1. Counting the Number of Partitions Using Euler’s Pentagonal Theorem.
As a consequence of Euler’s Pentagonal Theorem, we will show how to derive a recursive
formula for the number of partitions.

By multiplying the series P (q) and P (q)−1, we obtain a unit. Therefore,


p(k)qk


1 +

∞

m=1

(−1)m

q

m(3m−1)
2 + q

m(3m+1)
2


= 1.

On one hand, the coefficient of qn for n > 0 in the product P (q)P (q)−1 is zero.
On the other hand, if


anq

n and


bmq
m are two power series, the coefficient of qk in

their product is given by akb0+ak−1b1+· · ·+a0bk =


ak−ibi. Let’s express the coefficient
of qn in the left-hand side and thereby find the relation for the number of partitions p(n):

p(n) +
∞

m=1

(−1)m (p(n−m(3m− 1)/2) + p(n−m(3m+ 1)/2)) = 0

(assuming p(k) = 0 for k < 0). Moving all terms except the first to the right-hand side,
we get:

p(n) =
∞

m=1

(−1)m+1 (p(n−m(3m− 1)/2) + p(n−m(3m+ 1)/2)) .

This is a recursive relation whose depth constantly increases. Let’s write it for 6 ≤ n ≤ 12
and use it to find the corresponding p(n).

p(6) = p(5) + p(4)− p(1) = 7 + 5− 1 = 11;

p(7) = p(6) + p(5)− p(2)− p(0) = 11 + 7− 2− 1 = 15;

p(8) = p(7) + p(6)− p(3)− p(1) = 15 + 11− 3− 1 = 22;

p(9) = p(8) + p(7)− p(4)− p(2) = 22 + 15− 5− 2 = 30;

p(10) = p(9) + p(8)− p(5)− p(3) = 30 + 22− 7− 3 = 42;

p(11) = p(10) + p(9)− p(6)− p(4) = 42 + 30− 11− 5 = 56;

p(12) = p(11) + p(10)− p(7)− p(5) + p(0) = 56 + 42− 15− 7 + 1 = 77.

2.2. Jacobi’s Identity for the Triple Product.

Theorem 2.1 (Jacobi’s Identity for the Triple Product).

∞

k=1

(1 + xqk)(1 + x−1qk−1)(1− qk) =
+∞

j=−∞

q
j(j+1)

2 xj.

Proof. Consider the infinite product

f(x) =
∞

k=1

(1 + xqk)(1 + x−1qk−1).

It can be viewed as a Laurent series in x:

f(x) =
∞

n=−∞
an(q)x

n,
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where the coefficients an(q) are formal power series in q.
It is easy to see that f(xq) = x−1q−1f(x) (this is a routine check).
From this, it follows that an(q)q

n+1 = an+1(q) for any n ∈ Z. Thus, all terms an(q)
can be expressed knowing a0(q): indeed,

a1(q) = qa0(q); a2(q) = q2a1(q) = q3a0(q), . . . , an(q) = qnan−1(q) = · · · = q1+2+···+na0(q)

for positive n; for negative n, the same equality is checked similarly. So, we have the
equality

f(x) = a0(q)


n∈Z

qn(n+1)/2xn.

Now, let’s compute a0(q). This coefficient is the constant term in the expression

(1 + xq)(1 + xq2)(1 + xq3) . . . (1 + x−1)(1 + x−1q)(1 + x−1q2) . . . .

Let a0(q) be

a0(q) =


n≥0

bnq
n.

Similarly to the reasoning from the previous session, the coefficient bn of this series is the
number of ways to represent the number n as a sum of several distinct elements from the
set {1, 2, 3, . . . } and the same number of distinct elements from the set {0, 1, 2, . . . }.

It remains to note that bn is nothing but the number of partitions p(n). Indeed, such
a representation of the number n can be associated with a Young diagram, where the
“arms” (fragments of rows from the diagonal to the right edge of the diagram, including
the diagonal) are elements from {1, 2, 3, . . . }, and the “legs” (fragments of columns from
the diagonal to the bottom edge, excluding the cell on the diagonal) are elements from
{0, 1, 2, . . . }. Therefore,

a0(q) =
∞

k=1

(1− qk)−1 = P (q),

and consequently,
∞

k=1

(1 + xqk)(1 + x−1qk−1) =
∞

k=1

(1− qk)−1

∞

n=−∞
xnq

n(n+1)
2 .

Dividing both sides of the equality by P (q) gives Jacobi’s identity for the triple product.
□

2.3. Second Proof of Euler’s Pentagonal Theorem. In this section, we will derive
Euler’s Pentagonal Theorem from Jacobi’s identity for the triple product. To do this, we
will substitute q3 for q in Jacobi’s identity:

∞

k=1

(1 + xq3k)(1 + x−1q3k−3)(1− q3k) =
+∞

j=−∞

q
3j2+3j

2 xj.

Now, let’s set x = −q−1. We get:

∞

k=1

(1− q3k−1)(1− q3k−2)(1− q3k) =
+∞

j=−∞

(−1)jq
3j2+j

2 .

And this is Euler’s Pentagonal Theorem:
∞

k=1

(1− qk) = 1 +
∞

j=1

(−1)j

q

j(3j−1)
2 + q

j(3j+1)
2


.
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2.4. Jacobi’s Identity. The following equality is another consequence of the identity
for the triple product. It also belongs to Jacobi.

Theorem 2.2. The following equality holds:

∞

k=1

(1− qk)3 =
∞

n=0

(−1)n(2n+ 1)q
n(n+1)

2

Proof. There is a temptation to substitute x = −1 into Jacobi’s identity. In the left-hand
side, we would get something very similar to the product


(1− qk), but not quite: there

would still be an additional factor (1− q0), which equals zero.
So, we will proceed slightly differently. Divide both sides of Jacobi’s identity by 1+x−1.

The left-hand side becomes

1

1 + x−1

∞

k=1

(1 + xqk)(1 + x−1qk−1)(1− qk) =
∞

k=1

(1 + xqk)(1 + x−1qk)(1− qk).

The right-hand side will be equal to

1

1 + x−1

∞

n=−∞
q

n(n+1)
2 xn =

1

1 + x−1

∞

n=0

q
n(n+1)

2 (xn + x−n−1) =

=
∞

n=0

q
n(n+1)

2
xn + x−n−1

1 + x−1
=

∞

n=0

q
n(n+1)

2 (xn − xn−1 + · · ·+ x−n).

Now, we can substitute x = −1. Since the last sum equals (−1)n(2n+ 1), we obtain the
desired equality. □

3. Third Lecture, July 24, 2023

3.1. Ramanujan’s Congruence Modulo 5. Using Euler’s and Jacobi’s theorems, we
will show that p(5k + 4) ≡ 0 mod 5 for any k. This was first observed by Ramanujan.

Theorem 3.1. For any k, the congruence p(5k + 4) ≡ 0 mod 5 holds.

Proof. Let’s introduce the following notation:

E(q) =


k≥1

(1− qk) =


n∈Z

(−1)nq
n(3n−1)

2

and

J(q) =


k≥1

(1− qk)3 =


n≥0

(−1)n(2n+ 1)q
n(n+1)

2 .

Note that n(3n±1)
2

gives remainders of 0, 1, or 2 modulo 5. Therefore,

E(q) = E0(q) + E1(q) + E2(q),

where Ek(q) is the sum of all monomials anq
n in E(q) for which n ≡ k mod 5.

Similarly, n(n+1)
2

gives remainders of 0, 1, and 2 modulo 5, and thus J(q) = J0+J1+J2.

However, when n(n+1)
2

≡ 2 mod 5, we have 2n + 1 ≡ 0 mod 5. Therefore, if we reduce
the coefficients of J(q) modulo 5, the term J2 becomes zero.

So, let’s express P (q) as follows:

P (q) =
1

E(q)
=

E(q)J(q)

E5(q)
.
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However, by the “lazy binomial theorem,” (1−q)5 = 1−q5 and similarly (1−qk)5 = 1−q5k.
Therefore, E5(q) = E(q5). This means,

P (q) =
(E0 + E1 + E2)(J0 + J1)

E(q5)
=

E0J0 + E0J1 + E1J0 + E1J1 + E2J0 + E2J1
E(q5)

.

Thus, the coefficients of q with degrees congruent to 4 modulo 5 are zero. □
Alternatively, we can start with P (q) = E9(q)/E10(q) = J3(q)/E2(q5) and note that

J3 = J3
0 + 3J2

0J2 + 3J0J
2
1 + J3

1 also contains only terms whose degrees are congruent to
0, 1, 2, and 3 modulo 5.

Problem 3.1. Prove Ramanujan’s second congruence: p(7k + 5) ≡ 0 mod 7.

Problem 3.2 (*). Prove Ramanujan’s third congruence: p(11k + 6) ≡ 0 mod 11.

The second problem requires significantly more computations, but both can be solved
using the same methods as for 5.

3.2. Asymptotic Behavior of p(n). The asymptotic behavior of the function p(n) is
described by the following theorem, proven in 1918 by G. Hardy and S. Ramanujan, and
independently in 1920 by the Russian-American mathematician Ya. V. Uspensky:

Theorem 3.2. There is an asymptotic equality

p(n) ∼ 1

4π
√
3
eπ
√

2n
3 as n → ∞.

This is a complex result requiring a subtle application of complex analysis methods.
Its “elementary” (i.e., not requiring complex-analytic methods) proof was proposed in
1942 by P. Erds; it is also quite involved. You can read it, for example, in the book by
Melvin B. Nathanson, Elementary methods in number theory (Springer, 2000).

We will prove a significantly weaker version of this theorem. Our proof follows the
review by Igor Pak: Igor Pak. Partition bijections: a survey (Section 9.6).

Theorem 3.3. There exist positive numbers 0 < a < c such that

ea
√
n < p(n) < ec

√
n.

Moreover, we can take c = π


2
3
.

Proof. The lower bound is easy: we can take rough estimate for p(n) by a binomial
coefficient. Let pk(n) be the number of partitions of n into at most k parts. We have the
following inequality:

k!pk(n) >


n+ k − 1

k − 1


.

Indeed, the right-hand side is the number of partitions of n into k ordered parts, which
are allowed to be zero (in combinatorics this formula is often referred to as “balls and
urns”). The left-hand side is all possible orderings of k parts of a partition of n.

Replace the binomial with the leading term of the corresponding polynomial in n, and
pk(n) with p(n):

k!p(n) >
nk−1

(k − 1)!
.

Take k = ⌊
√
n⌋. Show that p(n) > nk−1/(k!)2. To do this, use Stirling’s formula:

k! ≃
√
2πk

kk

ek
.
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We obtain that the inequality we need to prove is

p(n) >
k2k−2e2k

2πk2k+1
=

e2
√
n

n3/2
,

from which the required lower bound follows.
For the upper bound, start with the following equalities:

np(n) =
n

r=1

r


λ⊢n

mr(λ) =
n

r=1

r

⌊n/r⌋

m=1

p(n−mr).

Here, mr(λ) denotes the number of rows of length r in the partition λ.
The first equality is proven by counting the total number of cells in all diagrams

corresponding to partitions of n in two ways. These cells are np(n); on the other hand,
we can sum the lengths of rows of a given length over all diagrams and take the sum over
row lengths. The second equality is proven as follows:



λ⊢n

mr(λ) = |{λ ⊢ n : mr(λ) = 1}|+ 2 |{λ ⊢ n : mr(λ) = 2}|

+ 3 |{λ ⊢ n : mr(λ) = 3}|+ . . .

= |{λ ⊢ n : mr(λ) ≥ 1}|+ |{λ ⊢ n : mr(λ) ≥ 2}|
+ |{λ ⊢ n : mr(λ) ≥ 3}|+ . . .

=p(n− r) + p(n− 2r) + p(n− 3r) . . .

Having obtained this recursive relation, use induction on n. Assume that p(k) < ec
√
k

for all k < n, where c = π


2
3
. Use this relation to prove the inductive step:

np(n) <
n

r=1

⌊n/r⌋

m=1

rec
√
n−mr < ec

√
n

∞

r=1

∞

m=1

re(−cm/2
√
n)r

Here, we used the estimate for the square root:

c
√
n−mr = c

√
n


1− mr

n
< c

√
n

1− mr

2n


= c

√
n− cmr

2
√
n
.

Note that
∞

1 rtr = t/(1− t)2 and e−x/ (1− e−x)
2
< 1

x2 for all x ∈ R. From this, we get:

p(n) <
ec

√
n

n

∞

m=1

e−cm/2
√
n


1− e−cm/2

√
n
2 <

ec
√
n

n

∞

m=1

4n

c2m2
= ec

√
n 4

c2


π2

6


= ec

√
n.

Here, we used the known equality for ζ(2), namely:
∞

m=1
1
m2 = π2

6
. The upper bound is

proven. □

4. Fourth Lecture, July 25, 2023

4.1. Rogers–Ramanujan Identities. The goal of this lecture is to prove the following
two identities. They are called the Rogers–Ramanujan identities. They were first proved
by Rogers in the 19th century, later rediscovered by Ramanujan, and in 1919 they pub-
lished a joint paper with Rogers. Independently, these identities were proved by Issai
Schur in 1917; the combinatorial proof presented here is due to him. Essentially, it is a
modification of Franklin’s bijection (see the first lecture).

We will follow the aforementioned survey by Igor Pak. Rogers’ proof of the Rogers–
Ramanujan identities can be found, for example, in the book: David M. Bressoud, Proofs
and confirmations (AMS, 2000; a Russian translation will soon be published by MCCME).
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Theorem 4.1 (Rogers–Ramanujan, Schur). The following identities hold:

1 +
∞

k=1

qk
2

(1− q) (1− q2) · · · (1− qk)
=

∞

i=0

1

(1− q5i+1) (1− q5i+4)
, (∗)

1 +
∞

k=1

qk(k+1)

(1− q) (1− q2) · · · (1− qk)
=

∞

i=0

1

(1− q5i+2) (1− q5i+3)
. (∗∗)

These two identities are very similar, so we will prove the first one, leaving the second
as an exercise for the reader. But first, let us clarify what they mean.

The right-hand side of identity (∗) is the generating function for the number of par-
titions into parts congruent to ±1 modulo 5. Denote the set of such partitions of n by
An.

Next, let us introduce two more sets of partitions. Let Bn denote the set of partitions
of n into parts where any two parts differ by at least 2 (we will say that such a diagram
has significantly distinct rows). Finally, let Cn be the set of partitions λ of n for which
the last row b(λ) is at least as large as the number of rows ℓ(λ).

Clearly, the generating function for the cardinalities of the sets Cn is the left-hand side
of equality (∗).

Lemma 4.2. The number of partitions in the sets Bn and Cn is equal.

Proof. We will construct an explicit bijection between these sets. It is illustrated in the
figure below.

↔

□

Lemma 4.3. The following equality holds:

∞

r=0

1

(1− q5r+1) (1− q5r+4)
=

∞

m=−∞
(−1)mq

m(5m−1)
2

∞

i=1

1

(1− qi)
.

Proof. This is a consequence of Jacobi’s triple product identity. Indeed, make the sub-
stitution q → q5 and set x = −q−3. We obtain:

∞

r=1

(1− q5r−3)(1− q5r−2)(1− q5r) =
∞

m=−∞
(−q2)mq

5m(m+1)
2 .

Multiplying both sides by the Eulerian generating function

(1 − qk)−1, we obtain the

desired result. □

Thus, it turns out that identity (∗) is equivalent to the following equality:
 ∞

i=1

(1− qi)


1 +

∞

k=1

qk
2

(1− q) (1− q2) · · · (1− qk)


=

∞

m=−∞
(−1)mq

m(5m−1)
2 . (∗ ∗ ∗)

And this we will now prove combinatorially.
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4.2. Schur’s Bijection. First, let us introduce some notation. Let Dn be the set of
partitions of n into distinct parts, and let D = ∪∞

n=1Dn. Next, let B = ∪∞
n=1Bn. Finally,

let R = D×B be the set of pairs consisting of a Young diagram with distinct rows λ and
a diagram with significantly distinct rows µ, and let Rn = {(λ, µ) | |λ|+ |µ| = n} be the
set of such pairs of diagrams with total weight n.

The sign of a pair (λ, µ) is defined as (−1)ℓ(λ), i.e., the parity of the number of rows in
the diagram λ.

Our task is to construct a bijection α on the set Rn that changes the sign for all
pairs that are not fixed points. First, we define the set of fixed points of the bijection
as follows: these will be pairs of diagrams (λ, µ), where λ = (2m − 1, 2m − 2, . . . ,m)
and µ = (2m − 1, 2m − 3, . . . , 3, 1), as well as λ = (2m, 2m − 1, . . . ,m + 1) and µ =
(2m − 1, 2m − 3, . . . , 3, 1) (in the figure below, these pairs are shown for m = 4). Note
that λ in this bijection is precisely the fixed points of Franklin’s bijection.

Let us introduce the following notation. Denote by a(λ), ℓ(λ), b(λ), and d(λ) the
number of columns of the diagram λ, its number of rows, the length of the bottom row,
and the length of the diagonal (starting from the rightmost cell and moving down-left
like a bishop), respectively. Further, let u(µ) denote the “skew diagonal” of the diagram
µ, also starting from the rightmost cell of the first row and moving down-left, but like a
knight.

Now we will construct the bijection for the remaining pairs of diagrams (λ, µ). For
this, we consider several cases.

First, suppose a(λ) > a(µ) + 2. Then we take the first row λ1 of the diagram λ, cut it
off, and attach it to µ at the top. Clearly, this operation does not change the total area
of the diagrams, but the parity of the number of rows in λ changes, since the number of
rows decreases by 1. Conversely, if a(λ) < a(µ), we cut off the first row of the diagram µ
and attach it to λ.

The remaining cases are when a(λ) = a(µ) and a(λ) = a(µ) + 1. Denote these by
R0

n and R1
n, respectively, and we will construct a bijection between these sets (excluding

the fixed points defined above). We will construct a mapping from R1
n to R0

n. So, let
(λ, µ) ∈ R1

n. Our mapping will equalize the lengths of the first rows of these diagrams
and change the number of rows in λ by one. Consider three numbers: b(λ), d(λ), and
u(µ). Take the smallest of them; these three possibilities will determine three cases.

Case 1. Suppose d(λ) < b(λ) and d(λ) ≤ u(µ). Then we apply Franklin’s bijection to λ:
cut off the diagonal of λ and reattach it as the bottom row. The number of rows
in λ will increase by one, and the lengths of the first rows of λ and µ will become
equal.

Case 2. Suppose b(λ) ≤ d(λ) and b(λ) ≤ u(µ). Then the bottom row of λ can be cut off
and reattached as a skew diagonal in µ. The number of rows in λ will decrease
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by one, and the lengths of the first rows of λ and µ will become equal.

Case 3. Suppose u(µ) < d(λ) and u(µ) ≤ b(λ). Then we take the first row from λ and
the skew diagonal from µ. Then simultaneously reattach the first row from λ as
the first row in µ, and the skew diagonal from µ as the diagonal to λ (this will be
possible because after cutting off the first row, d(λ) will decrease by one, and the
inequality u(µ) < d(λ) is strict). The resulting pairs of diagrams will have the
following characteristics: a(λ′) = a(µ′) = a(λ), d(λ′) = u(µ), u(µ′) > u(µ).

This mapping is easy to invert, so it will be a bijection between R0
n and R1

n. Thus,
we have constructed an involution on R, whose fixed points are pairs of diagrams with

total weight m(5m−1)
2

and m(5m+1)
2

, taken with weight (−1)m. This proves equality (∗ ∗ ∗),
which, as we have seen, is equivalent to the first Rogers–Ramanujan identity (∗).

Problem 4.1. Following a similar approach, prove the second Rogers–Ramanujan iden-
tity (∗∗).

Email address: evgeny.smirnov@gmail.com


