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Introduction

Friezes are tables filled with positive numbers according to certain simple rules. They were
first defined in the 1970s in works by H. S.M.Coxeter and John Conway. Despite the simplicity
of their definition, friezes possess many surprising properties. They are connected with numerous
other mathematical concepts including polygon triangulations, Catalan and Fibonacci numbers,
continued fractions, Farey sequences... Moreover, it turns out that friezes (though not called
by this name at the time) were already considered in works by Carl Friedrich Gauss and John
Napier.

In the 2000s, interest in friezes among mathematicians grew significantly due to the emergence
of cluster algebra theory, introduced by Andrei Zelevinsky and Sergei Fomin. It turns out that
friezes appear in connection with quiver representations, Grassmannians, elliptic functions,
generalized associahedra, and many other topics from modern mathematics.

In these notes, we begin with classical questions about friezes considered by Coxeter and
Conway. The first three chapters are devoted to this. In Chapter 1, we present basic definitions,
make several observations about friezes (which will be proved later), and discuss the early history
of the subject: how friezes appeared in works by Gauss and his predecessors.

In Chapter 2 we explain the phenomenon of integrality of friezes. We show that the elements
of a frieze are computed as integer-coefficient polynomials, known as continuants, from the ele-
ments of the initial row. In Chapter 3, we continue studying friezes and derive relations between
elements in their rows and diagonals. The main result of Chapter 4 is the classification of all
integer friezes. As we will show, integer friezes of order n are in bijection with triangulations of
a convex n-gon; moreover, all elements of the frieze can be reconstructed from this triangulation
using a simple algorithm.

Date: May 18, 2025.

1



2 EVGENY SMIRNOV

Chapters 5 and 6 are devoted to expansions of rational numbers into two types of continued
fractions: “ordinary” or positive, and negative (where the integer part is taken with excess
rather than deficit). We formulate properties of continued fractions in terms of 2× 2 matrices
and in Chapter 6 establish connections between the two types of expansions. We also show
that the continued fraction expansion of a rational number corresponds to a triangulation of a
polygon of a special form. It turns out that various characteristics of this continued fraction
can be reconstructed from the triangulation: convergents, length of the continued fraction, etc.
Thus continued fractions turn out to be connected with friezes: each rational number determines
an integer frieze with the same triangulation.

In Chapters 7 and 8, we study the relation of these topics to the action of the modular group
PSL2(Z) on the hyperbolic plane. Namely, any triangulation of the described form can be ob-
tained as a subgraph in the so-called Farey graph: an infinite graph whose vertices are rational
points on the absolute of the hyperbolic plane, and whose edges are lines connecting points
p/q and r/s for which ps − qr = ±1. This graph is preserved by the modular group PSL2(Z).
We describe a construction that assigns to each rational number (or the corresponding polygon
triangulation) an element of the modular group with an explicit expression in terms of its stan-
dard generators. Finally, we examine how triangulations of polygons and their generalizations,
3D-dissections, are connected to relations on the generators of the modular group.

The dependency diagram of chapters looks as follows:

1 // 2 // 3 // 4

��
7 // 8

5 // 6

@@

Readers more interested in continued fractions may skip the first four chapters and start with
Chapters 5 and 6, that are almost independent of the previous part.

These notes are based on a mini-course of three lectures I gave at the 19th Summer School
“Modern Mathematics” in Dubna in July 2019. I decided to speak about friezes after attending
the talks by Valentin Ovsienko and Sophie Morier-Genoud at the Summer School “Representa-
tion Theory of Lie Groups, Mathematical Physics and Combinatorics” (Reims, France) in June
of the same year. I also used materials from my mini-course on continued fractions and their
connection with the modular group, given at the online school “Combinatorics and Algorithms”
in February 2021. I am grateful to the organizers and participants of these schools.

Needless to say, these notes make no claim to completeness in covering the literature on friezes;
for this I recommend the reader to turn to surveys and specialized articles on the subject. For
example, one might start with a wonderful survey by Morier-Genoud [5]. Moreover, a collection
of references on friezes and their connections with other areas of mathematics can be found on
the homepage of Anna Felikson:

http://www.maths.dur.ac.uk/users/anna.felikson/Projects/frieze/frieze-res.html

I am grateful to the colleagues who read preliminary versions of this booklet and provided
feedback: Anna Felikson, Victor Kleptsyn, Grigory Merzon, Valentin Ovsienko, Sergei Tabach-
nikov, and others. I received particularly valuable feedback from Alexei Ustinov; from him I also
learned about representing continuants using Morse codes. Finally, I want to thank Svetlana
Bochaver for her constant support and encouragement; without her, this text would likely never
have been completed.

On April 11, 2020, as I was finishing the initial version of these notes, John Horton Conway,
one of the most remarkable and extraordinary mathematicians of our time, passed away at the
age of 83. I dedicate this text to his memory.
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1. Friezes

1.1. Definition and first properties.

Definition 1.1. A frieze of order n is a table (tij) consisting of n − 1 infinite (to both left
and right) rows of positive numbers arranged in a checkerboard pattern, satisfying the following
properties:

• The first and last rows consist of ones: t1j = tn−1,j = 1;

• Unimodularity: for any four numbers
b

a d
c

at the vertices of a unit rhombus, we

have ad − bc = 1. That is, tilting this rhombus 45◦ clockwise gives us a 2 × 2 matrix;
we require its determinant to be equal to 1.

A frieze is called integer if all numbers tij are integers.

Example 1.2. Here is an example of an integer frieze of order 7: such a frieze, by definition,
consists of 6 rows. Extending it to the left and to the right, from the unimodularity property
we can see that its rows are periodic with period 7.

. . . 1 1 1 1 1 1 1 1 1 . . .
. . . 2 1 4 2 1 3 2 2 1 . . .

. . . 3 1 3 7 1 2 5 3 1 . . .
. . . 1 2 5 3 1 3 7 1 3 . . .

. . . 2 1 3 2 2 1 4 2 2 . . .
. . . 1 1 1 1 1 1 1 1 1 . . .

Looking at this and other examples, we can observe several remarkable properties. First,
such a frieze turns out to be periodic with period n, that is, it can be considered as drawn on
a cylinder. Second, this frieze possesses glide symmetry: after being flipped upside down and
shifted sideways by three and a half positions, it coincides with the original.

Finally, a frieze is obviously determined by its first two rows (the trivial one and the first
nontrivial one)—and yet it turns out that if all elements of the second row are integers, then all
other elements of the frieze are also integers. This is absolutely not obvious from the definition:

from the unimodularity condition for a rhombus
b

a d
c

it follows that c = ad−1
b , meaning

we have to use division to compute elements; and yet the result of this division always turns
out to be an integer. Our immediate goal is to understand these phenomena.

Interestingly, if we take a “frieze” whose first row consists of ones and second row consists of
arbitrary positive integers, and continue filling it according to the unimodularity rule, then all
subsequent numbers in the table will be integers (we invite the reader to experiment with this
themselves). This means that the integrality phenomenon holds even for infinite “friezes”.

Example 1.3. Consider a table whose entire second row is filled with twos. Then the third row
will contain threes, since (2·2−1)/1 = 3, the fourth row will contain fours, since (3·3−1)/2 = 4,
and so on: by induction we see that all values in the n-th row will equal n. Indeed, from the
unimodularity law we get (n · n− 1)/(n− 1) = (n2 − 1)/(n− 1) = n+ 1. Clearly, this “frieze”
will be infinite, as elements in its rows will grow, meaning they will never equal 1 except in the
first row.

Remark 1.4. It is sometimes useful to formally complement the frieze with rows of zeros at the
top and bottom: t0j = tnj = 0. This way elements of the first two and last two rows will also
be included in rhombi for which the unimodularity condition holds automatically.

1.2. Friezes of small orders. Let us examine the structure of friezes of small orders. For
n = 3, such a frieze consists of two rows, meaning the order three frieze is unique:

. . . 1 1 1 1 1 1 1 1 1 . . .
. . . 1 1 1 1 1 1 1 1 1 . . .
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Next, an order 4 frieze is of the following form:

. . . 1 1 1 1 1 . . .
. . . a b c d . . .

. . . 1 1 1 1 1 . . .

The unimodularity condition is equivalent to the product of any two elements in the second row
equaling 2. Therefore such a frieze looks like

. . . 1 1 1 1 1 . . .
. . . a b a b . . .

. . . 1 1 1 1 1 . . .
,

where ab = 2. In particular, there are two integer friezes of order 4: one corresponding to a = 2
and b = 1, and the other to a = 1 and b = 2. And here is one of non-integer friezes:

. . . 1 1 1 1 1 . . .

. . .
√
2

√
2

√
2

√
2 . . .

. . . 1 1 1 1 1 . . .

Remark 1.5. Note that order 4 friezes are periodic with period 2, not 4 (and the period of the
last frieze is just 1). This is related to the glide symmetry: if an order 4 frieze is flipped upside
down and shifted by half a period, that is, by two, it should coincide with the original.

1.3. Order 5 friezes. It is more convenient to construct such friezes from the diagonal rather
than from the top row. Consider a frieze of the form:

. . . 1 1 1 1 . . .
. . . x z v t . . .

. . . y u w . . .
. . . 1 1 1 1 . . .

Let us express all its values consequently in terms of x and y. We get:

z =
1 + y

x
; u =

1 + z

y
=

1 + x+ y

xy
; v =

1 + u

z
=

1 + x+ y + xy

xy
· x

1 + y
=

1 + x

y
;

w =
1 + v

u
=

1 + x+ y

y
· xy

1 + x+ y
= x; t =

1 + w

v
= (1 + x) · y

1 + x
= y.

We obtain x and y again, but on a different diagonal. We see that this frieze again turns out
to be periodic with period 5 and possesses glide symmetry.

Exercise 1.6. List all integer friezes of order 5. How many are there?

Remark 1.7. If we consider the elements of a frieze as rational functions of variables x and y, then
the denominator of these rational functions always turns out to be a monomial. In other words, the
frieze elements are not just rational functions, but Laurent polynomials: polynomials where negative
integer powers of variables are also allowed. Since we often divide by non-monomials, we can note that
“mysteriously” the division always turns out to be exact, though now in the ring of Laurent polynomials.
This observation, known as the Laurent phenomenon, has far-reaching generalizations in cluster algebra
theory.

Exercise 1.8. Express the elements of an order 6 frieze through the values on the diagonal.
Will the Laurent phenomenon hold in this case?

Exercise 1.9. Consider an order 5 frieze where x = y = τ . Show that τ = 1+
√
5

2 , and find the
remaining elements of this frieze.

The last frieze can be obtained from a regular pentagon as follows. Consider a regular
pentagon with all sides equal to 1 (Fig. 1.1). Denote its diagonal by τ . Ptolemy’s theorem from
plane geometry states that for an inscribed quadrilateral ABCD, the equality AB ·CD+AD ·
BC = AC · BD holds. We can write Ptolemy’s theorem for an isosceles trapezoid ABCD: in
it AB = BC = CD = 1, and AD = AC = BD = τ . We get the equation

1 · τ + 1 · 1 = τ · τ, i.e. τ2 − τ − 1 = 0.
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B C

D

E

A

Figure 1.1. Regular pentagon

The positive root of this equation is exactly 1+
√
5

2 ; this is the famous golden ratio.

Exercise 1.10. Consider a regular n-gon with side length 1 and repeatedly apply Ptolemy’s
theorem to it. What order n frieze will we obtain? What are the elements in its k-th row?

1.4. Pentagramma mirificum. Friezes of order 5 first appeared in connection with spherical
trigonometry in the works of Nathaniel Torporley1 and John Napier2. They were further devel-
oped in the works of Carl Friedrich Gauss. Their appearance is related to the following problem
in spherical geometry.

Consider a five-pointed star on the unit sphere where all angles are right angles (see Fig. 1.2).
In particular, this means that point A′ is one of the poles for the great circle CD, while B′ is a
pole for the great circle DE, etc.

Figure 1.2. Pentagramma mirificum. Right: illustration from Napier’s work, 1614.

Denote the squares of tangents of the side lengths of pentagon A′B′C ′D′E′ by α, . . . , ϵ:

α = tan2B′E′, β = tan2E′C ′, γ = tan2A′C ′, δ = tan2A′D′, ϵ = tan2D′B′.

It turns out that these five quantities are related by the following equations, which allow ob-
taining the other three from any two of them:

(1.1) 1 + α = γδ; 1 + β = δϵ; 1 + γ = ϵα; 1 + δ = αβ; 1 + ϵ = βγ.

1Nathaniel Tarporley, also Torporley (1564–1632). English mathematician, astronomer and astrologer. He
worked for some time in France as a secretary of François Viète.

2John Napier (1550–1617). Scottish mathematician, inventor of logarithms and the decimal point.
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Exercise 1.11 (optional, for spherical geometry enthusiasts). Verify these formulas.

Thus, these quantities are elements of the following order 5 frieze:

. . . 1 1 1 1 1 1 . . .
. . . α β γ δ ϵ . . .

. . . δ ϵ α β γ . . .
. . . 1 1 1 1 1 1 . . .

Exercise 1.12. Using relations (1.1), prove the following equality (also due to Gauss):

αβγδϵ = 3 + α+ β + γ + δ + ϵ =
√

(1 + α)(1 + β)(1 + γ)(1 + δ)(1 + ϵ).

Gauss referred to this equality as to schöne Gleichung, “a beautiful equation”.

In more modern terms, we can say that friezes describe the moduli space M0,5 of five points on a
projective line P1. Specifically, consider five distinct points z1, . . . , z5 on P1, up to the action of PGL(2).
For any four of them we can write their cross-ratio. Let

u1 = [z1 : z2 : z3 : z4] =
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)
, u2 = [z2 : z3 : z4 : z5], . . .

and so on. Thus we obtain five cross-ratios u1, . . . , u5. It can be shown that they satisfy relations similar

to (1.1). Therefore, such quintuples (and, consequently, order 5 friezes) parameterize five points on P1

up to a projective coordinate change. The details are left as an exercise for the interested reader.

2. Continuants

2.1. Recurrence relation. Now let us consider friezes of arbitrary order. Our immediate goal
is to obtain an expression for elements of the third and subsequent rows of a frieze in terms of
elements of the second row.

Consider a frieze with second row . . . , a1, a2, a3, . . . . Clearly, each element of the third row
can be expressed through two elements of the second row that are directly above it (left and
right). Furthermore, each element of the fourth row can be found by the unimodularity rule
through three elements of the second row above it, and so on. Let us denote elements of the
third row by a12, a23, . . . , the fourth row by a13, a24, etc., as shown below:

. . . 1 1 1 1 1 . . .
. . . a1 a2 a3 a4 . . .

. . . a12 a23 a34 . . .
. . . a13 a24 . . .

. . . a14 . . .

It is easy to express elements of the third row:

a12 = a1a2 − 1, a23 = a2a3 − 1.

From them we can express elements of the fourth row:

a13 = (a12a23 − 1)/a2 = a1a2a3 − a1 − a3,

the fifth row:

a14 = (a13a24 − 1)/a23 = · · · = a1a2a3a4 − a1a2 − a1a4 − a3a4 + 1,

the sixth row:

a15 = a1a2a3a4a5 − a1a2a3 − a1a2a5 − a1a4a5 − a3a4a5 + a1 + a3 + a5,

and so on (do these calculations yourself!).
Looking carefully at these expressions, we can notice a pattern they follow.
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n = 1 ◦ a1
n = 2 ◦ ◦ a1a2

◦ − ◦ −1
n = 3 ◦ ◦ ◦ a1a2a3

◦ ◦ − ◦ −a1
◦ − ◦ ◦ −a3

n = 4 ◦ ◦ ◦ ◦ a1a2a3a4
◦ ◦ ◦ − ◦ −a1a2
◦ ◦ − ◦ ◦ −a1a4
◦ − ◦ ◦ ◦ −a3a4
◦ − ◦ ◦ −◦ 1

n = 5 ◦ ◦ ◦ ◦ ◦ a1a2a3a4a5
◦ ◦ ◦ ◦ −◦ −a1a2a3
◦ ◦ ◦ − ◦ ◦ −a1a2a5
◦ ◦ − ◦ ◦ ◦ −a1a4a5
◦ − ◦ ◦ ◦ ◦ −a3a4a5
◦ ◦ − ◦ ◦ − ◦ a1
◦ − ◦ ◦ ◦ − ◦ a3
◦ − ◦ ◦ − ◦ ◦ a5

Table 1. Morse codes for n ≤ 5

2.2. Morse codes. Consider n points in a row, labeled by variables a1, . . . , an. Now connect
some pairs of adjacent points with the condition that each point can be connected to at most
one neighbor. We obtain a “Morse code” of dots and dashes: a configuration like the following
one.

a1◦ − a2◦ a3◦ a4◦ a5◦ − a6◦ a7◦
To such a configuration we can associate a monomial: the product of variables corresponding

to dots, taken with a “+” or “−” sign depending on the parity of the number of dashes. We
will call this monomial the weight of the Morse code M and denote it by w(M). Thus, the
configuration in the previous figure corresponds to the expression w(M) = (−1)2a3a4a7 =
a3a4a7.

Example 2.1. All Morse codes and their corresponding monomials for n from 1 to 5 are shown
in Table 1.

Definition 2.2 (Euler’s rule). The continuant Vn(a1, . . . , an) of order n is defined as the sum
of monomials corresponding to all possible Morse codes on n vertices.

Remark 2.3. We set the zero order continuant (that does not depend upon any arguments) to
be V0 = 1. Moreover, it is sometimes convenient to consider Vn = 0 when n is negative.

Table 1 allows us to compute continuants of orders up to 5. We see that we get exactly the
same expressions as for the frieze elements computed in the previous section. We will soon
prove this claim, but first let us establish some more properties of continuants. We start with
a recurrence relation.

Proposition 2.4. Continuants satisfy the recurrence relation

(2.2) Vn(a1, . . . , an) = anVn−1(a1, . . . , an−1)− Vn−2(a1, . . . , an−2).

Proof. Take any Morse code on n vertices. Look at its last vertex. There are two possibilities.
Either it corresponds to a dot, in which case this configuration M corresponds to a Morse
code M ′ on vertices 1, . . . , n− 1; here w(M) = anw(M

′), since in code M the last vertex is
counted while in configuration M ′ it isn’t. Or, conversely, the last vertex is connected to the
penultimate one by a dash; in this case we remove these two vertices and denote the resulting
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Morse code on vertices 1, . . . , n− 2 by M ′′. Then the weights of codes M and M ′′ will differ by
sign: w(M) = −w(M ′′).

Thus, all codes starting with a dot will contribute anVn−1(a1, . . . , an−1) to the continuant
Vn(a1, . . . , an), while those starting with a dash will contribute −Vn−2(a1, . . . , an−2). This gives
us the desired relation (2.2). □

We leave further properties of continuants as exercises for the reader.

Exercise 2.5. Prove the following identities:

(1) Vn(a1, . . . , an) = Vn(an, . . . , a1);
(2) Vn(a1, . . . , an−1, 0) = −Vn−2(a1, . . . , an−2);
(3) Vn(a1, . . . , an) = a1Vn−1(a2, . . . , an)− Vn−2(a3, . . . , an).

2.3. Unimodularity relation for continuants.

Theorem 2.6. For any a1, . . . , an+1, the following relation holds:

Vn(a1, . . . , an)Vn(a2, . . . , an+1) = Vn−1(a2, . . . , an)Vn+1(a1, . . . , an+1) + 1.

We provide two proofs of this theorem: an algebraic and a combinatorial one.

Algebraic proof. We prove the theorem by induction on n. The base case for n = 1 is obvious.
To prove the induction step, write the required relation for n and rewrite all terms involving

an+1 using relation (2.2):

Vn+1(a1, . . . , an+1) = an+1Vn(a1, . . . , an)− Vn−1(a1, . . . , an−1);

Vn(a2, . . . , an+1) = an+1Vn−1(a2, . . . , an)− Vn−2(a2, . . . , an−1).

Then the equality becomes:

Vn(a1, . . . , an)(an+1Vn−1(a2, . . . , an)− Vn−2(a2, . . . , an−1)) =

= Vn−1(a2, . . . , an)(an+1Vn(a1, . . . , an)− Vn−1(a1, . . . , an−1)) + 1.

Both sides of the equality contain the term an+1Vn−1(a2, . . . , an)Vn(a1, . . . , an); canceling it
out, we obtain:

−Vn(a1, . . . , an)Vn−2(a2, . . . , an−1) = −Vn−1(a1, . . . , an−1))Vn−1(a2, . . . , an) + 1,

which holds by the induction hypothesis. The theorem is proved. □

Combinatorial proof. Consider each continuant on the left-hand side as a sum of monomials
corresponding to Morse codes on the sets {1, . . . , n} and {2, . . . , n+1}, respectively. We repre-
sent these Morse codes on a single diagram, using dashed lines for the first code and solid lines
for the second, as shown below. Thus, dashed lines may appear in all positions except the last
one, while solid lines may appear in all positions except the first one. Therefore, the left-hand
side equals the sum of monomials obtained from all possible pairs of Morse codes under these
conditions.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Figure 2.3. A pair of Morse codes

Do the same for the product of continuants on the right-hand side: each product of monomials
from Vn−1(a2, . . . , an) and Vn+1(a1, . . . , an+1) can be interpreted as a pair of Morse codes on
{1, . . . , n+1}—where the first code (dashed lines) cannot have lines in the first or last positions,
while the second (solid lines) has no such restrictions.

Consider any configuration (M1,M2), where M1 and M2 are Morse codes on {1, . . . , n} and
{2, . . . , n + 1}, respectively. It corresponds to the monomial w(M1)w(M2) from the left-hand
side. From it, construct a new configuration (M ′

1,M
′
2), where M

′
1 is a Morse code on {1, . . . , n+

1} and M ′
2 is a code on {2, . . . , n}.
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If there is no (dashed) line between 1 and 2 inM1, thenM1 can be viewed as a code on vertices
2, . . . , n. Meanwhile, the solid-line code M2 can be viewed as a code on vertices 1, . . . , n + 1
with no line in the first position. In this case, set (M ′

1,M
′
2) = (M1,M2).

Now suppose vertices 1 and 2 are connected by a dashed line inM1. SinceM2 includes vertices
starting from the 2nd, there is no solid line between vertices 1 and 2. Construct (M ′

1,M
′
2)

from (M1,M2) as follows: consider the longest path starting from vertex 1 and consisting of
alternating dashed and solid lines. Replace each dashed line with a solid one and each solid line
with a dashed one. This yields a new pair (M ′

1,M
′
2), where the first position has a solid line

and no dashed line. This pair has the same weight as (M1,M2).
Figure 2.4 shows the pair of codes obtained by this operation from those in Figure 2.3.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Figure 2.4. Result of applying the involution to the pair of Morse codes

The pair (M ′
1,M

′
2) will “almost always” correspond to a monomial from the right-hand side.

Moreover, this procedure can “almost always” be reversed: from “almost” every (M ′
1,M

′
2), we

can uniquely reconstruct (M1,M2), with equal weights.
It remains to clarify what does “almost always” mean. We distinguish between the two cases:

when n is even and when it is odd.
If n is even, the only configuration (M1,M2) for which this procedure fails (i.e., no corre-

sponding right-hand monomial exists) is:

◦ ◦ ◦ ◦ ◦ ◦

Here, all vertices are connected by alternating dashed and solid lines, with both first and last
lines dashed (the number of vertices is even, so the number of lines between them is odd),
and the weight of (M1,M2) is (−1)n−1 = −1. Thus, the left-hand product is 1 less than the
right-hand product.

If n is odd, each (M1,M2) has a unique image (M ′
1,M

′
2), and exactly one right-hand config-

uration has no preimage:

◦ ◦ ◦ ◦ ◦
In this case, the right-hand product is again 1 greater than the left-hand product. □

2.4. Integer friezes. The results of the previous section immediately yield the following the-
orem.

Theorem 2.7. An element a1n in the (n + 1)-th row of a frieze having numbers a1, . . . , an in
the second row above it is equal to the continuant Vn(a1, . . . , an).

This theorem explains the aforementioned “integrality phenomenon”: all elements of a frieze
with an integer second row (a1, a2, . . . ) turn out to be integers, even though their computation
would seemingly require division.

Corollary 2.8. A frieze whose second row elements are positive integers is entirely integer-
valued.

Indeed, a continuant is a polynomial in (a1, a2, . . . ) with integer coefficients.

2.5. Euler’s identity. The theorem from the previous section admits a generalization known
as Euler’s identity for continuants.

Theorem 2.9. For any m, ℓ, n, the following identity holds:

Vm+n(a1, . . . , am+n)Vℓ(am+1, . . . , am+l)− Vm+ℓ(a1, . . . , am+ℓ)Vn(am+1, . . . , am+n)+

+ Vm−1(a1, . . . , am−1)Vn−ℓ−1(am+ℓ+2, . . . , am+n) = 0.
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When m = 1 and n = ℓ− 1, this precisely gives the unimodularity relation for continuants.
We will not use Euler’s identity further and present it here without proof. It can be proved

using double induction on two of its three parameters (this is left to the reader as an optional
exercise). A short and elegant proof of this identity, due to A.Ustinov, can be found in his
paper [10].

In the remaining part of this chapter we discuss the connection between continuants and determinants
and explain alternative methods for obtaining the results mentioned above. Readers may skip this part
without loss of continuity.

2.6. Determinantal Expression for Continuants. Continuants admit another useful expression: an
n-th order continuant can be represented as the determinant of a tridiagonal matrix of the same order.

Proposition 2.10. Continuants admit the following determinant expression:

Vn(a1, . . . , an) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 . . . 0 0
1 a2 1 . . . 0 0
0 1 a3 . . . 0 0
...

...
...

...
...

0 0 0 . . . an−1 1
0 0 0 . . . 1 an

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof. We prove this equality by induction. The base cases for n = 0 and n = 1 are obvious. Expanding
the determinant in the right-hand side along the last row yields exactly the recurrence relation (2.2). □

This representation of continuants also leads to the unimodularity condition. For this, we need a
matrix identity known as the Lewis Carroll identity3.

2.7. Lewis Carroll’s Identity. Let A = (aij) be an arbitrary n×n matrix. Denote its determinant by

M ; furthermore, let M j1,...,jk
i1,...,ik

denote its (n− k)-th order minor obtained by deleting rows i1, . . . , ik and
columns j1, . . . , jk. The Lewis Carroll identity establishes a relation between M and minors of orders
n− 1 and n− 2:

Theorem 2.11 (The Lewis Carroll identity). The following equality holds:

M ·M1,n
1,n = M1

1 ·Mn
n −M1

n ·Mn
1 .

We omit the proof here; the reader may devise it themself or look up in the literature. Note the
combinatorial proof by D. Zeilberger [11]; it is conceptually similar to the proof of Theorem 2.6 given
above.

2.8. Computing continuants. Let us compute the determinant M = Vn(a1, . . . , an) using the Lewis
Carroll identity. A remarkable property of continuants is that the minors appearing in this identity are
either ones or lower-order continuants:

M1
1 = Vn−1(a2, . . . , an); Mn

n = Vn−1(a1, . . . , an−1); M1,n
1,n = Vn−2(a2, . . . , an−1);

while Mn
1 and M1

n are equal to 1 as the determinants of upper- and lower-triangular matrices with ones
on the diagonal, respectively. Thus, the Lewis Carroll identity can be rewritten as follows:

Vn(a1, . . . , an) · Vn−2(a2, . . . , an−1) = Vn−1(a1, . . . , an−1) · Vn−1(a2, . . . , an)− 1.

In other words,

(2.3) 1 = Vn(a1, . . . , an) · Vn−2(a2, . . . , an−1)− Vn−1(a1, . . . , an−1) · Vn−1(a2, . . . , an) =

=

∣∣∣∣Vn−1(a1, . . . , an−1) Vn−2(a2, . . . , an−1)
Vn(a1, . . . , an) Vn−1(a2, . . . , an)

∣∣∣∣ .
This is exactly the unimodularity condition. Thus we obtain another proof of Theorem 2.6.

3Lewis Carroll is a penname of Charles Lutwidge Dodgson (1832–1898), English mathematician, writer and
photographer, author of “Alice’s Adventures in Wonderland” and “Through the Looking-Glass”. The identity
bearing his name was used in his 1865 work, though it had appeared earlier in works by Desnanot and Jacobi.



FRIEZES AND CONTINUED FRACTIONS 11

3. Relations between frieze elements

3.1. Relations between the second row and the Diagonal. Like in the previous chapter,
we start with a frieze of the form:

. . . 1 1 1 1 1 . . .
. . . a1 a2 a3 a4 . . .

. . . a12 a23 a34 . . .
. . . a13 a24 . . .

. . . a14 . . .
. . . a15 . . .

We would like to establish relations between the elements of its second row a1, a2, . . . and
the diagonal elements 1, a1, a12, a13, . . . . We already know the relation expressing a1k through
a1, . . . , ak: this is the continuant. However, continuants satisfy the recurrence relation given
in Proposition 2.4. This allows us to find the diagonal elements of the frieze one by one if its
second row is known.

Theorem 3.1. The diagonal and top row elements of a frieze satisfy the relation:

a1,k = aka1,k−1 − a1,k−2.

Remark 3.2. Sometimes it is said that the frieze diagonal a1, a12, a13, . . . is a solution to the
Sturm–Liouville difference equation:

Vk = akVk−1 − Vk−2,

where a1, a2, . . . are coefficients and V1, V2, . . . are unknowns.

Furthermore, the previous theorem can be reformulated in the following way, expressing the
second row elements through the diagonal elements.

Theorem 3.3. The following equalities hold:

ak =
a1,k−2 + a1k

a1,k−1
.

3.2. Symmetries of finite friezes. Now suppose our frieze is finite: there exists an n such
that for all i, the equalities ai,n+i−2 = 1 and ai,n+i−1 = 0 hold. In other words, the (n−1)-th row
consists entirely of ones, and the n-th row consists entirely of zeros. Let us write Theorem 3.1
for the element a1n = 0:

0 = a1n = ana1,n−1 − a1,n−2 = an − a1,n−2

(recall that a1,n−1 = 1 since the (n− 1)-th row consists entirely of ones), from which we obtain:

a1,n−2 = an.

But the same relation holds for any diagonal, not just the first one. This gives us a set of
equalities:

ak,n−3+k = an+k−1.

Thus, the second row of the frieze coincides with the penultimate row, shifted right by n/2
positions. In this case, the frieze has the form:

(3.4)

. . . 1 1 1 1 1 1 . . .
. . . a1 a2 a3 a4 . . . an−1 an . . .

. . . a12 . . . . . .
. . . a13 . . . . . .

. . . . . . . . . . . .
. . . an an+1 an+2 . . .

. . . 1 1 1 . . .

From this we obtain the following result.
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Theorem 3.4. A frieze of order n possesses a glide symmetry: its k-th row, shifted by n/2
positions, coincides with the (n− k)-th row.

Proof. From the unimodularity condition, it follows that the frieze can be constructed not only
from the second row downward but also from the penultimate row upward, with the same
result. □

Corollary 3.5. A frieze of order n is periodic with period n.

Proof. Shifting the frieze by n is the same as applying two glide symmetries with shift n/2. □

Exercise 3.6. What identities on continuants are equivalent to the symmetry of the frieze?

3.3. Infinite extension of finite friezes. By definition, a frieze of order n terminates with a
row of ones and a row of zeros. That is, for the elements of its (say, first) diagonal, the following
equalities hold:

a1,n−1 = 1, a1,n = 0.

But what happens if we extend this sequence further? Using the equality from Theorem 3.1,
we can define a1,i for i > n. We see that

a1,n+1 = ana1,n − a1,n−1 = an · 0− 1 = −1.

Extending this diagonal further, we get

a1,n+2 = an+1a1,n+1 − a1,n = −an+1 = −a1

(here we used the periodicity of the second row with period n). We find that the (n+1)-th and
(n+2)-th diagonal elements differ from the first and second only by sign! It is easy to see that
this pattern continues: a1,n+k = −a1,k for k ≤ n. Thus, each frieze diagonal can be extended
downward, and the next n elements will differ from the first n by multiplication by −1. Of
course, this holds for any other diagonal as well. Similarly, we can say that for arbitrary k we
have

ai,rn+k = (−1)raik.

Thus, we can extend our frieze below the row of zeros. Clearly, this extension will satisfy
the unimodularity rule. The possibility to extend friezes downward will be useful in the next
section.

3.4. Transition to adjacent diagonals. In this section, we will examine how elements of
three adjacent frieze diagonals are related. It turns out that knowing two of them allows us to
recover the third one through a simple matrix transformation.

As before, we consider the frieze:

(3.5)

. . . 1 1 1 1 1 . . .
. . . a1 a2 a3 a4 . . .

. . . a12 a23 a34 . . .
. . . a13 a24 a35 . . .

. . . a14
. . .

. . .
. . .

. . .
. . .

. . . a1,n−2 a2,n−1 a3,n . . .
. . . 1 1 1 . . .

To simplify the notation, we formally set akk := ak.

Theorem 3.7. For any k, the following equality holds:(
a1 −1
1 0

)(
a2k
a3k

)
=

(
a1k
a2k

)
.

Informally speaking, applying such a matrix shifts the frieze diagonal running from southwest
to northeast one position downward.
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Proof. We prove this equality by induction on k. For the base case, take k = 2:(
a1 −1
1 0

)(
a2
1

)
=

(
a1a2 − 1

a2

)
=

(
a12
a2

)
.

Note that we could also take k = 1 as the base case, assuming the frieze is extended upward

with zeros; this would give the correct equality

(
a1 −1
1 0

)(
1
0

)
=

(
a1
1

)
.

To prove the inductive step, write the recurrence relations for the diagonal elements:

a1,k+1 = ak+1a1,k − a1,k−1,

a2,k+1 = ak+1a2,k − a2,k−1,

a3,k+1 = ak+1a3,k − a3,k−1.

Note that all these equalities contain the same coefficient ak+1.
Furthermore, the induction hypothesis states that

a1,k = a1a2,k − a3,k,

a1,k−1 = a1a2,k−1 − a3,k−1.

From this it follows that
a1,k+1 = a1a2,k+1 − a3,k+1,

as required. □

Exercise 3.8. Derive these equalities from Proposition 2.10 by expanding the continuant de-
terminant along the first row.

Here we only used recurrence relations for diagonal elements, so these matrix equalities will
also hold for elements of the frieze extended downward according to the rule from the previous
section. From this we obtain a corollary that will be useful later when studying the connection

between friezes and continued fractions. Let I =

(
1 0
0 1

)
be the 2× 2 identity matrix.

Corollary 3.9. Let a1, . . . , an be the second row of a frieze of order n. Then the following
matrix equality holds: (

a1 −1
1 0

)(
a2 −1
1 0

)
. . .

(
an −1
1 0

)
= −I.

Proof. This follows from Theorem 3.7 and the periodicity of the frieze. Indeed, shifting the frieze
diagonal by n positions yields the same diagonal but with a minus sign. Hence the composition
of matrices on the left side of the equality acts as multiplication by minus identity. □

4. Integer friezes and triangulations

4.1. The quiddity of an integer frieze. In this chapter, we will describe all friezes consisting
only of integer elements.

We will call the second row (a1, . . . , an) of an order n frieze its quiddity. Obviously, it cannot
contain two consecutive 1’s: this would contradict unimodularity. However, it turns out that
at least one 1 must necessarily appear in this row.

Proposition 4.1. The second row of an integer frieze must contain at least one entry equal to
1.

Proof. Suppose this is not the case, and there exists a frieze with all elements in the second row
differ from 1: ak ≥ 2. Denote the elements of its first diagonal by vk = a1k. Then for them we
have the inequality

vk = akvk−1 − vk−2 ≥ 2vk−1 − vk−2,

which implies that
vk − vk−1 ≥ vk−1 − vk−2.
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But this holds for all k. Therefore,

vk − vk−1 ≥ vk−1 − vk−2 ≥ · · · ≥ v2 − v1 = a2 − 1 ≥ 1,

meaning that the sequence vk is strictly increasing. This contradicts the assumption that at
some point, due to the finite number of rows in the frieze, it must take the values 1 and 0.

This statement can also be proved geometrically. Suppose we found a frieze with all ak ≥ 2.

Consider the cone x ≥ y ≥ 0 generated by vectors

(
1
0

)
and

(
1
1

)
. A matrix of the form(

ak −1
1 0

)
transforms these vectors into

(
ak
1

)
and

(
ak − 1

1

)
respectively. For ak ≥ 2, both

these vectors lie in the interior of the cone x ≥ y ≥ 0. Therefore, the composition of such

matrices

(
a1 −1
1 0

)
. . .

(
an −1
1 0

)
also maps this cone into some subset of itself. But this

contradicts Corollary 3.9, which states that this composition equals −I. □

The following lemma allows us to construct a new frieze of order n+ 1 from a given integer
frieze of order n.

Lemma 4.2 (The Van Gogh Lemma). Let (a1, . . . , an) be the quiddity of an integer order n
frieze, and let 1 ≤ k ≤ n. Then:

(1) The tuple (b1, . . . , bn+1) = (a1, . . . , ak−1 +1, 1, ak +1, ak+1, . . . , an) is the quiddity of an
integer order n+ 1 frieze;

(2) If 1, v1, v2, . . . , vn−2 is the first diagonal of the original frieze starting with element v1 =
a1, then the corresponding diagonal of the new frieze has the form

1, v1, v2, . . . , vk−1, vk−1 + vk, vk, . . . , vn−2.

Proof. We begin with part (2). Let us write down the first diagonal of the new frieze: denote
it by 1, w1, . . . , wn−1.

Clearly, for i ≤ k − 2, the diagonals of these two friezes coincide: wi = vi. At the (k − 1)-th
position of the new frieze we will have

wk−1 = (ak−1 + 1)vk−2 − vk−3 = vk−1 + vk−2.

Next,
wk = wk−1 − wk−2 = vk−1 + vk−2 − vk−2 = vk−1.

The next diagonal element will be

wk+1 = (ak + 1)wk − wk−1 = (ak + 1)vk−1 − vk−1 − vk−2 = akvk−1 − vk−2 = vk.

For all j > k + 1, the equality wj = vj−1 holds. In particular, the (n − 2)-th and (n − 1)-th
terms of this sequence are equal to 1 and 0 respectively, meaning the frieze terminates, and the
diagonal contains n positive elements. The same argument applies to any other diagonal. Thus,
such an insertion yields an integer frieze of order one greater. Part (1) is also proved. □

Remark 4.3. This construction is obviously reversible: if a sequence (. . . , bk−1, 1, bk+1, . . . ) is
the quiddity of an integer frieze, then (. . . , bk−1−1, bk+1−1, . . . ) will be the quiddity of a frieze
of order one less (note that due to the absence of consecutive 1’s, both numbers bk−1 − 1 and
bk+1 − 1 are positive).

4.2. Friezes and triangulations. Consider a convex n-gon with numbered vertices. Its tri-
angulation is its partition into triangles using diagonals that do not intersect except at vertices.

Remark 4.4. The number of triangulations of an n-gon is called the (n− 2)-th Catalan number

(this is one of their numerous equivalent definitions). For them, the formula C(n) = 1
n−1

(
2n−4
n−2

)
holds (for an excellent survey on Catalan numbers, see [9]).

Consider an arbitrary triangulation of an n-gon. We can associate to it a tuple of numbers
(c1, . . . , cn), where ci is the number of triangles incident to the i-th vertex. We will call such a
tuple the quiddity of the triangulation. The triangulation is uniquely determined by its quiddity
(why?).
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Theorem 4.5 (J. Conway, H. S.M.Coxeter). The tuple (c1, . . . , cn) constructed from a trian-
gulation of an n-gon is the quiddity of an integer frieze of order n; this mapping establishes a
bijection between triangulations of an n-gon and integer friezes of order n.

Proof. We will prove this theorem by induction on n. The base case n = 3 is obvious: there is
only one triangulation of a triangle and only one order 3 frieze with quiddity (1, 1, 1). (Readers
not convinced by this argument may start with n = 4).

Consider a triangulation of an n-gon. Choose a vertex belonging to only one triangle. Such
a vertex exists by the pigeonhole principle: if n exterior sides belong to n − 2 triangles of the
triangulation, then there must be at least one triangle (in fact, at least two) to which two
exterior sides belong. We will call such a triangle an “ear”.

Let the vertex belonging to only one triangle have number k, and let vertices k − 1 and
k + 1 belong to bk−1 and bk+1 triangles respectively. Thus, the quiddity of this triangulation
has the form (. . . , bk−1, 1, bk+1, . . . ). Remove the triangle adjacent to the k-th vertex from this
triangulation to obtain a triangulation of an (n−1)-gon with quiddity (. . . , bk−1−1, bk+1−1, . . . ).
By the induction hypothesis, this triangulation determines a frieze with the same quiddity. But
by Lemma 4.2, then the tuple (. . . , bk−1, 1, bk+1, . . . ) also determines an integer frieze.

The bijectivity of this correspondence follows from Remark 4.3: from the quiddity of each
frieze of order n, we can remove a 1, reducing the problem to a frieze of order one less. □

4.3. Reconstructing friezes from triangulations. Our next goal is to describe the combi-
natorial meaning of frieze elements obtained from a given triangulation. The Conway–Coxeter
theorem states that each element of the frieze’s second row is the number of triangles incident
to the corresponding vertex of the triangulation. But how can we reconstruct the remaining
frieze elements?

Consider an integer frieze, which we denote as in the formula (3.5) on p. 12: its second
row is (a1, a2, . . . , an), and the elements of the diagonal starting at a1 are denoted by v0 =
1, v1, v2, . . . , vn−2, i.e., v1 = a1. It is also convenient to set v−1 = 0.

Consider a triangulation of an n-gon whose vertices are numbered from 0 to n − 1, with
quiddity (a1, . . . , an). We can reconstruct (v0, v1, v2, . . . ) using the following algorithm:

• write the numbers 0 and 1 in vertices 0 and 1 respectively;
• then place numerical labels in all other vertices of the polygon according to the following
rule: for each triangle where two vertices already have numbers a and b, write a+ b in
its third vertex. Repeat this procedure until all vertices are filled.

Exercise 4.6. Show that all vertices connected to vertex 0 by a diagonal or side will have 1
written in them.

Proposition 4.7. The label obtained by this algorithm in the i-th vertex is equal to the diagonal
element vi−1 of the frieze.

Proof. To this triangulation of the n-gon, associate a dual graph with n−2 vertices: its vertices
correspond to triangles in the triangulation, with two vertices connected by an edge if the
corresponding triangles share a side. Such a graph is a tree, with all vertex degrees at most
three. The leaves (degree 1 vertices) of this tree correspond to the “ears” of the triangulation.

Next, writing numbers in triangle vertices according to our algorithm can be viewed as visiting
the vertices of the corresponding tree: in the first step of the algorithm, we take the triangle
containing vertices 0 and 1, and write a number in its third vertex (for the first step, this number
will be 1). Having done this, we mark the tree vertex corresponding to this triangle as visited.

At each subsequent step, we consider some vertex adjacent to already visited ones; it corre-
sponds to a triangle where two vertices already have some numbers. Writing their sum in the
triangle’s third vertex, we mark the tree vertex corresponding to this triangle as visited.

We prove our proposition by induction on n. The base case n = 3 is obvious: we obtain a
triangle with 0, 1, and 1 written in its vertices. It corresponds to the unique order 3 frieze.

Inductive step: suppose our proposition is proved for all possible triangulations of an n-gon,
and we want to prove it for an (n + 1)-gon. Consider the last step of the algorithm; in its
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Figure 4.5. A triangulation and its corresponding tree

course, we must visit some pendant vertex of the triangulation tree, i.e., add an “ear” to the
triangulation of the n-gon. Let this n-gon have quiddity (a1, . . . , an), and the “ear” at the
last step is attached to side (k − 1, k). By the induction hypothesis, the resulting set of labels
(v0, . . . , vn−1) in the vertices lie on the diagonal of the frieze with quiddity (a1, . . . , an). Next,
at the last step, a vertex with label vk−1 + vk is be added between vertices k − 1 and k. The
triangulation of the (n + 1)-gon then has quiddity (. . . , ak−1 + 1, 1, ak + 1, . . . ), which agrees
with the result of Lemma 4.2 about frieze elements. The proposition is proved. □

Exercise 4.8. Consider a triangulation of an n-gon where all diagonals form a zigzag, as in
Fig. 4.6 (in other words, all elements of this triangulation’s quiddity are at most 3). Prove that
all elements of the corresponding frieze will be Fibonacci numbers.
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Figure 4.6. A zigzag triangulation

Exercise 4.9. Consider a triangulation containing a vertex where at least 4 triangles meet.
Prove that the corresponding frieze contains the number 4.

4.4. Admissible paths. Another method for computing frieze elements, presented in [1], is
based on counting so-called admissible paths.

Definition 4.10. An admissible path from vertex i− 1 to vertex j + 1 is an ordered sequence
of distinct triangles τi, . . . , τj , where triangle τℓ is incident to vertex ℓ.

Proposition 4.11. The frieze element aij equals the number of admissible paths from i− 1 to
j + 1.

We will not prove this proposition; readers may try to reconstruct the proof themselves or
read it in [1].
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Remark 4.12. Note that by definition, a path from vertex (i−1) to vertex (i+1) consists of one
triangle passing through vertex i. Then the number of admissible paths between these vertices
is simply ai. Furthermore, the path from vertex (i− 1) to vertex i is unique: it consists of zero
triangles, so all elements of the frieze’s first row equal 1.

Example 4.13. Consider the following triangulation of a heptagon.
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Let α, β, γ, δ, ϵ be the triangles in it. Enumerate all admissible paths (τ1, τ2) between vertices
7 and 3. These will be

(ϵ, β), (ϵ, α), (δ, β), (δ, α), (γ, β), (γ, α), (β, α).

This gives a12 = 7. (Note that in this example a1 = 4, a2 = 2).

Exercise 4.14 (non-trivial). a) Show that an admissible path as a sequence is uniquely deter-
mined by its set of triangles.

b) Verify that the complement to a path from vertex i to vertex j determines a path from
vertex j to vertex i. For instance, in the above example if (τ1, τ2) is an admissible path from 7
to 3, then {α, β, γ, δ, ϵ} \ {τ1, τ2} determines an admissible path from 3 to 7. Derive from this
statement another proof of the glide symmetry of friezes.

Remark 4.15. Most results from this section can be found in two papers by J.Conway and
H. S.M.Coxeter [2], [3]. These papers, published in two consecutive issues of the educational
journal The Mathematical Gazette, are structured as problem sets: the first article presents
a series of statements about friezes as a sequence of about thirty problems, while the second
provides their solutions or sufficiently detailed hints.

5. Continued fractions

In the next few chapters, we will see how continuants, polygon triangulations, and friezes
arise in connection with the classical problem of expanding a number into a continued fraction.

5.1. Convergents. Let p/q > 1 be an irreducible fraction. It can be expanded into a continued
fraction as follows: take the integer part of p/q by dividing p by q with remainder. Let a1 be
the quotient and r the remainder; then

p

q
= a1 +

r

q
.

The fraction q/r, reciprocal to r/q, will now be greater than 1, so we can again extract its
integer part, invert the fractional part, and so on. At each step, the denominators of the
fractions decrease, so the process will eventually terminate (at some point the next fraction will
be an integer). Thus we obtain the representation

p

q
= a1 +

1

a2 +
1

a3 +
1

· · ·+
1

an

.

For brevity, we will denote the right-hand side by [a1, a2, a3 . . . , an].
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This representation is almost unique; the only ambiguity is that the last number can be

represented either as an or as (an − 1) +
1

1
. We will get rid of this ambiguity by requiring that

the expansion of a rational number into a continued fraction must always have an even number
of components.

Example 5.1. The expansion of 7/5 into a continued fraction is:

7

5
= 1 +

1

2 +
1

1 +
1

1

= [1, 2, 1, 1].

Suppose we are given the continued fraction expansion of a number: p/q = [a1, . . . , an]. We
can consider not the entire expansion, but only the part formed by its first i terms: pi/qi =
[a1, . . . , ai]. The result is called the i-th convergent to p/q. For example, the convergents to 7/5
from the previous example are 1, 3/2, and 4/3.

By the way, note that the procedure of expanding a number into a continued fraction is
exactly the Euclidean algorithm applied to the numerator and denominator of the original
fraction.

5.2. Matrices of continued fractions. Consider a rational number written as an irreducible
fraction p/q > 1. When we expand it into a continued fraction, at each step we extract its
integer part (denoted by a1) and invert the fractional part, thereby obtaining a new irreducible
fraction p′/q′. Let us see how these numbers are related:

p

q
= a1 +

1

p′/q′
;

p

q
=

a1p
′ + q′

p1
.

From this we can write the equalities

p = a1p
′ + q′;

q = p′.

Note that here we used the irreducibility of the fractions p/q and p′/q′.
Thus, the numbers p and q are obtained from p′ and q′ by a linear transformation, whose

matrix is easy to write: (
p
q

)
=

(
a1 1
1 0

)(
p′

q′

)
.

We can repeat the same procedure by extracting the integer part a2 from the fraction p′/q′; we
obtain a new fraction p′′/q′′, which gives us the equality(

p
q

)
=

(
a1 1
1 0

)(
a2 1
1 0

)(
p′′

q′′

)
.

This process terminates when the next fraction p(n−1)/q(n−1) becomes an integer an, which is

equivalent to p(n−1) = an and q(n−1) = 1. We obtain the equality(
p
q

)
=

(
a1 1
1 0

)
. . .

(
an−1 1
1 0

)(
an
1

)
.

We can also “extract the fractional part” from the integer an, obtaining the “fraction”
p(n)/q(n) = 1/0. Of course, the rational number 1/0 does not exist, but at the matrix level
everything works fine: (

p
q

)
=

(
a1 1
1 0

)
. . .

(
an−1 1
1 0

)(
an 1
1 0

)(
1
0

)
.
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What happens if we apply the same product of matrices not to the vector

(
1
0

)
, but to the

other basis vector

(
0
1

)
? We obtain the equality(

r
s

)
=

(
a1 1
1 0

)
. . .

(
an−1 1
1 0

)(
an 1
1 0

)(
0
1

)
=

(
a1 1
1 0

)
. . .

(
an−1 1
1 0

)(
1
0

)
.

We have represented the vector with components r and s as a product of matrices of the form(
ai 1
1 0

)
, but for the tuple (a1, . . . , an−1) rather than (a1, . . . , an). It follows that r/s equals

the last convergent pn−1/qn−1 to p/q:

p/q = [a1, . . . , an]; r/s = [a1, . . . , an−1].

Definition 5.2. The continued fraction matrix for the number p/q = [a1, . . . , an], p/q > 1, is
the matrix

M+(a1, . . . , an) =

(
a1 1
1 0

)
. . .

(
an 1
1 0

)
.

We obtain the following proposition.

Proposition 5.3. Let M+(a1, . . . , a2m) be the continued fraction matrix for p/q, and let r/s =
p2m−1/q2m−1 be the last convergent to p/q. Then

M+(a1, . . . , a2m) =

(
p r
q s

)
.

The same can be said for any pair of adjacent convergents, not necessarily the last.

Corollary 5.4. Let pi−1/qi−1 and pi/qi be the (i−1)-th and i-th convergents to p/q = [a1, . . . , an],
respectively. Then

(5.6)

(
pi pi−1

qi qi−1

)
=

(
a1 1
1 0

)
. . .

(
ai 1
1 0

)
.

From this statement, the following properties of convergents immediately follow.

Proposition 5.5. The numerators and denominators of the convergents pi/qi = [a1, . . . , ai] to
p/q = [a1, . . . , an] satisfy the following equalities:

(1) piqi−1 − pi−1qi = (−1)i;
(2) pi and qi are coprime;
(3) For pi and qi, the recurrence relations pk = aipi−1 + pi−2 and qi = aiqi−1 + qi−2 hold,

with initial conditions p0 = 1, p1 = a1, q0 = 0, q1 = 1;
(4) The sequences of numerators and denominators of the convergents are increasing: pi−1 < pi

and qi−1 < qi for any i.

Proof. (1) Note that the determinant of a matrix of the form

(
a 1
1 0

)
is −1. Therefore,

det

(
pi pi−1

qi qi−1

)
= (−1)i.

In particular, if we consider the number of components in the expansion to be even, we obtain
the equality detM+(a1, . . . , a2m) = 1.

(2) This follows directly from (1).
(3) Consider the last factor in the product on the right-hand side of equality (5.6):(

pi pi−1

qi qi−1

)
=

(
pi−1 pi−2

qi−1 qi−2

)(
ai 1
1 0

)
.

For i = 1, we obtain the equality (
p1 p0
q1 q0

)
=

(
a1 1
1 0

)
,
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which gives us the initial conditions. For arbitrary k, the equality of the first columns of these
matrices exactly corresponds to the recurrence relations.

Statement (4) follows from (3), since all ai are strictly positive. □

Remark 5.6. Of course, all the listed properties of convergents can be proved without resorting
to matrix language. The reader can do this themselves or read about it, for example, in the
classic book by A.Ya. Khinchin “Continued Fractions” [4].

5.3. Continuants again. We see that relation (3) from Proposition 5.5 is very similar to the
recurrence relation for continuants (Proposition 2.4): they differ only in sign. Therefore, we
can define positive continuants using the relation K0(·) = 1, K1(a1) = a1, Ki(a1, . . . , ai) =
aiKi−1(a1, . . . , ai−1) +Ki−2(a1, . . . , ai−2).

Exercise 5.7. Formulate and prove analogs of Euler’s rule (Definition 2.2) and the properties
from Exercise 2.5 for positive continuants and interpret them similarly to Proposition 2.10 in
terms of expanding determinants by row or column.

Then Proposition 5.5 (3) takes the following form:

Corollary 5.8. The i-th convergent to the fraction p/q = [a1, . . . , a2m] equals the ratio of
continuants

pi
qi

=
Ki(a1, . . . , ai)

Ki−1(a1, . . . , ai−1)
,

and the fraction in the right-hand side is irreducible.

5.4. Negative continued fractions. When defining a continued fraction, we took the “floor”
integer part of a number, that is, the largest integer not exceeding this fraction. What happens
if we the integer part with an excess: the “ceiling” function, and then apply the same procedure
to the difference between it and the original number? We obtain an expansion of the number
into a negative continued fraction; sometimes it is also called a Hirzebruch continued fraction4.
To avoid confusion, we will call the “usual” continued fraction a positive continued fraction.

In this case, all components of the negative continued fraction for a number greater than
1 are natural numbers not less than 2; such an expansion is unique. We denote it by double
square brackets.

p

q
= c1 −

1

c2 −
1

c3 −
1

. . .

= [[c1, c2, c3 . . . ]].

Example 5.9. The number 7/5 expands into a negative continued fraction as:

7

5
= 2−

1

2−
1

3

= [[2, 2, 3]]

For negative continued fractions, convergents are defined similarly. We will denote them
by p̃i/q̃i. They are obtained by limiting the continued fraction expansion to the first i terms:
p̃i/q̃i = [[c1, . . . , ci]]. For example, the convergents to 7/5 are 2/1 and 3/2.

Similarly, we can define negative continued fraction matrices. Let p/q be the original fraction,
and suppose that the fraction p̃/q̃ is obtained from it by subtracting the ceiling integer part,
changing the sign, and taking the reciprocal. Since

p

q
= c1 −

1

p̃/q̃
=

c1p̃− q̃

p̃
,

4Friedrich Hirzebruch (1927–2012): German mathematician, one of the founders of the Max Planck Institute
for Mathematics in Bonn.
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the transition between the previous and the next continued fractions is given by the matrix
relation (

p
q

)
=

(
c1 −1
1 0

)(
p̃
q̃

)
.

Now we can give the definition of the negative continued fraction matrix and prove the
following proposition, analogous to Proposition 5.3.

Definition 5.10. The negative continued fraction matrix for the number p/q = [[c1, . . . , ck]],
p/q > 1, is the matrix

M(c1, . . . , ck) =

(
c1 −1
1 0

)
. . .

(
ck −1
1 0

)
.

Remark 5.11. One of the advantages of working with matrices is that the matrices M(c1, . . . , ck)
turn out to be more “universal” than continued fractions: they are defined for any sequence of
coefficients, whereas for continued fractions this is not the case, since some denominators may
become zero. As an example, consider the following “continued fraction”:

[[3, 1, 2, 1]] = 3−
1

1−
1

2−
1

1

.

It does not correspond to any rational number, while the matrix M(3, 1, 2, 1) is well-defined
(compute it!).

Proposition 5.12. Let M(c1, . . . , ck) be the negative continued fraction matrix for p/q, and let
r̃/s̃ = p̃k−1/q̃k−1 be the last negative convergent to p/q. Then

M(c1, . . . , ck) =

(
p −r̃
q −s̃

)
.

From this, the expression for the matrices of convergents immediately follows.

Corollary 5.13. Let p̃i−1/q̃i−1 and p̃i/q̃i be the (i − 1)-th and i-th negative convergents to
p/q = [[c1, . . . , ck]], respectively. Then

(5.7)

(
p̃i p̃i−1

q̃i q̃i−1

)
=

(
c1 −1
1 0

)
. . .

(
ci −1
1 0

)
.

Thus, for negative convergents, there is an analog of Proposition 5.5.

Proposition 5.14. The numerators and denominators of the negative convergents p̃i/q̃i =
[[c1, . . . , ci]] to p/q = [[c1, . . . , ck]] satisfy the following equalities:

(1) p̃iq̃i−1 − p̃i−1q̃i = 1;
(2) p̃i and q̃i are coprime;
(3) For p̃i and q̃i, the recurrence relations p̃i = cip̃i−1 − p̃i−2 and q̃i = ciq̃i−1 − q̃i−2 hold,

with initial conditions p̃0 = 1, p̃1 = c1, q̃0 = 0, q̃1 = 1;
(4) The sequences of numerators and denominators of the negative convergents are increas-

ing: p̃i−1 < p̃i and q̃i−1 < q̃i for any i.

Proof. These statements are proved similarly to the positive case. Moreover, the situation here

is even simpler: matrices of the form

(
c −1
1 0

)
always have determinant 1.

The only slight difference is in the proof of part (4). This statement will again follow from
the recurrence relation (3). We prove it by induction. The base case is obvious. Induction
hypothesis: suppose we know that p̃i−1 > p̃i−2. Write the expression for p̃i and use the inequality
ci ≥ 2. Then we have

p̃i = cip̃i−1 − p̃i−2 ≥ 2p̃i−1 − p̃i−2 = p̃i−1 + (p̃i−1 − p̃i−2) ≥ p̃i−1,

as required. Similarly for q̃i. □
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Here we see the connection between continued fraction expansions and friezes: the numera-
tors and denominators of convergents transform according to the same recurrence rules as the
elements of friezes. For example, they are obtained as ratios of continuants.

Proposition 5.15. Let p/q = [[c1, . . . , ck]] be the expansion of a rational number into a negative
continued fraction. Then the i-th convergent p̃i/q̃i = [[c1, . . . , ci]] to p/q equals the ratio of
continuants

p̃i
q̃i

=
Vi(c1, . . . , ci)

Vi−1(c1, . . . , ci−1)
,

and the fraction in the right-hand side is irreducible.

This is proved in exactly the same way as for positive continued fractions.

5.5. Relation between positive and negative continued fraction expansion matrices.
We have described two ways to expand a rational number p/q into a continued fraction: the
positive p/q = [a1, . . . , a2m] and the negative p/q = [[c1, . . . , ck]]. For each of these expansions,
we constructed a matrix: M+ = M+(a1, . . . , a2m) and M = M(c1, . . . , ck), respectively.

Example 5.16. For p/q = 7/5, we obtain:

M+(1, 2, 1, 1) =

(
7 4
5 3

)
, M(2, 2, 3) =

(
7 −3
5 −2

)
.

A natural question arises: how are these matrices related? The connection turns out to be
very simple: their first columns are identical and equal to the difference between the second
columns of M+ and M . In the matrix language, this is formulated as follows.

Proposition 5.17. Let M+ and M be the positive and negative continued fraction matrices for
p/q, respectively. Then

M+ = M ·
(
1 1
0 1

)
.

Proof. By Proposition 5.5, the matrix M+ equals

(
p r
q s

)
, where r/s is the last positive con-

vergent to p/q. Similarly, Proposition 5.14 states that M =

(
p −r̃
q −s̃

)
, where r̃/s̃ is the last

negative convergent. Thus, the first columns of M+ and M are equal, and the required equality
is equivalent to the statement that r + r̃ = p and s+ s̃ = q.

Let us prove these equalities. We use the unimodularity property for convergents. We know
that

r̃q − s̃p = 1.

On the other hand,

rq − sp = −1.

The minus sign arises because the index of the last convergent is odd: by our definition, the
number of components in the expansion of a number into a positive continued fraction is even.
Thus,

(r + r̃)q − (s+ s̃)p = 0.

But from the inequalities on the numerators and denominators of convergents, we know that
r < p and r̃ < p, as well as s < q and s̃ < q. Therefore, 0 < r + r̃ < 2p and 0 < s + s̃ < 2q.
Hence, r + r̃ = p and s+ s̃ = q, as required. □
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6. Continued fraction matrices and the group SL2(Z)

6.1. Relation between positive and negative continued fractions. In the previous sec-
tion, we established how the matrices of positive and negative continued fractions are related.
This chapter answers a different question: suppose a fraction p/q has both a “positive” expan-
sion [a1, . . . , a2m] and a “negative” expansion [[c1, . . . , ck]]. How are these sequences of numbers
related? In other words, how can we reconstruct one sequence knowing the other? While the
simplest approach would be to compute the fraction from one expansion and then expand it
using the other method, is there a more direct connection? The following theorem provides the
answer.

Theorem 6.1. Let a rational number p/q > 1 have positive and negative continued fraction
expansions [a1, . . . , a2m] and [[c1, . . . , ck]] respectively. Then

(c1, . . . , ck) = (a1 + 1, 2, . . . , 2︸ ︷︷ ︸
a2−1

, a3 + 2, 2, . . . , 2︸ ︷︷ ︸
a4−1

, . . . , a2m−1 + 2, 2, . . . , 2︸ ︷︷ ︸
a2m−1

).

We will prove this theorem in two ways. The first method, covered in this chapter, uses
matrix computations. The second, more geometric approach is discussed in the next chapter.
It is relates to the action of the modular group on the hyperbolic plane.

6.2. The group SL2(Z) and its generators. Before proceeding with the first proof, we need to
introduce some notation. Recall that SL2(Z) denotes the group of 2×2 integer matrices with de-
terminant 1. We have seen that continued fraction matrices M(c1, . . . , ck) and M+(a1, . . . , a2m)
belong to this group.

Let R, L, and S denote the following elements of SL2(Z):

R =

(
1 1
0 1

)
, L =

(
1 0
1 1

)
, S =

(
0 −1
1 0

)
.

It can be shown (try this yourself or read in Chapter VII of J.-P. Serre’s “A Course in
Arithmetic” [8]) that these three matrices generate SL2(Z). In fact, any two of them suffice:
each matrix can be expressed in terms of the other two.

Exercise 6.2. Show that L = S−1R−1S. Find expressions for R in terms of S and L, and for
S in terms of R and L.

The element S has order 4 (i.e., S4 = I), while R and L have infinite order. Indeed, their

powers can be computed explicitly: Ra =

(
1 a
0 1

)
and La =

(
1 0
a 1

)
for any a ∈ Z.

Continued fraction matrices can be expressed through these generators.

Proposition 6.3. The matrices M(c1, . . . , ck) and M+(a1, . . . , a2m) admit the following de-
compositions:

(6.8) M+(a1, . . . , a2m) = Ra1La2Ra3La4 . . . Ra2m−1La2m

and

(6.9) M(c1, . . . , ck) = Rc1SRc2S . . . RckS.

Proof. It is easy to see that(
ai 1
1 0

)
= Rai

(
0 1
1 0

)
and

(
ai+1 1
1 0

)
=

(
0 1
1 0

)
Lai+1 .

Therefore, (
ai 1
1 0

)(
ai+1 1
1 0

)
= RaiLai+1 ,

which yields formula (6.8). Formula (6.9) is even simpler, it follows from the equality(
ci −1
1 0

)
= RciS.

□
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This leads to the following proposition.

Proposition 6.4. The following equality holds:

(6.10) M+(a1, . . . , a2m) = −M(a1 + 1, 2, . . . , 2︸ ︷︷ ︸
a2−1

, a3 + 2, 2, . . . , 2︸ ︷︷ ︸
a4−1

, . . . , a2m−1 + 2, 2, . . . , 2︸ ︷︷ ︸
a2m

, 1, 1).

Note that if we had already proved Theorem 6.1, equality (6.10) could be derived from
Proposition 5.17, which states that M+ = MR. However, we will proceed differently: first
prove (6.10), then derive Theorem 6.1 from it.

We will need the following lemma.

Lemma 6.5. The equalities Ra = −M(a+ 1, 1, 1) and La = −M(1, 2, . . . , 2︸ ︷︷ ︸
a

, 1, 1) hold.

Proof. The first equality is easy to verify directly.

For the second equality, first note that M(1, 1, 1) = −I, i.e.,

(
1 −1
1 0

)−1

= −
(
1 −1
1 0

)2

.

Next, it is easy to verify directly that L =

(
1 −1
1 0

)(
2 −1
1 0

)(
1 −1
1 0

)−1

. Thus, La is obtained

from M(2)a = M(2, . . . , 2) by conjugation by the same matrix, as required. □

Proof of Proposition 6.4. Since M(1, 1, 1) = −I, Lemma 6.5 implies that

RaiLai+1 = −M(ai + 1, 2, . . . , 2︸ ︷︷ ︸
ai+1

, 1, 1).

Thus, the proposition follows from relation (6.8) and the simple equality M(2, 1, 1, a + 1) =
−M(a+ 2) (we leave its verification as an exercise). The proposition is proved. □

Finally, note that the last three coefficients in (6.10) are (2, 1, 1), so they can be eliminated
using the relation M(2, 1, 1) = −R. Thus we obtain:

(6.11) M+(a1, . . . , a2m) = M(a1 + 1, 2, . . . , 2︸ ︷︷ ︸
a2−1

, a3 + 2, 2, . . . , 2︸ ︷︷ ︸
a4−1

, . . . , a2m−1 + 2, 2, . . . , 2︸ ︷︷ ︸
a2m−1

)R.

This equality shows that the first columns of matrices M+(a1, . . . , a2m) in the left-hand side
and M(a1 + 1, . . . ) in the right-hand side are equal. Therefore, they correspond to expansions
of the same number. This proves Theorem 6.1.

6.3. Continued fractions and triangulations. At first glance the connection between coef-
ficients of positive and negative continued fraction expansions described in Theorem 6.1 appears
complex. However, it has a natural interpretation in terms of polygon triangulations. In this
section, we present the construction itself, and in the next chapter, we describe its relation to
friezes and the matrices from SL2(Z) considered encountered earlier.

Start with an arbitrary sequence of positive integers (a1, . . . , a2m). Consider two horizontal
parallel lines. Draw a triangulation of a polygon whose vertices lie on these lines, with two
types of triangles: those pointing upward (with two vertices on the lower line and one on the
upper) and pointing downward (with two vertices above and one below). Begin with a segment
connecting the lines; let its upper endpoint be the first vertex of our polygon and the lower
endpoint the last one. Attach a1 upward-pointing triangles sharing a common vertex to the right
of this segment. Then attach a2 downward-pointing triangles to their right, with their shared
vertex coinciding with the right vertex of the last triangle from the previous step. Continue
adding a3 upward, a4 downward, and so on. Since the total number of such groups is 2m, that
is, even, the last triangle will point downward (see Fig. 6.7). This marks a2+ a4+ · · ·+ a2m+1
points on the upper line and a1 + a3 + · · ·+ a2m−1 + 1 on the lower line.

Let n = a1 + a2 + · · ·+ a2m + 2. We obtain a triangulation of an n-gon of a special kind: it
has exactly two “ears,” meaning its dual tree (see the proof of Proposition 4.7) has no vertices
of degree three. Such a tree (without branching) is called a bamboo.
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Figure 6.7. Triangulation corresponding to the sequence (a1, . . . , a2m).

Let k be the number of downward-pointing triangles, i.e., k = a2+a4+ · · ·+a2m. The “ears”
of our triangulation will be at vertices k + 1 and n.

The quiddity (c1, . . . , cn) of this triangulation can be easily written. Here, c1 = a1 + 1: the
first vertex meets a1 upward and one downward triangle. Next come a2 − 1 twos: a vertex
between two downward triangles meets two triangles. The next vertex has quiddity a3 + 2
(meeting two downward and a3 upward triangles), and so on until vertex k + 1 with quiddity
1. The pattern then mirrors: ck+2 = a2m + 1, followed by a2m−1 − 1 twos, until cn = 1.

Example 6.6. The sequence [1, 2, 1, 1] corresponds to this triangulation of a heptagon:

• • • •

• • •
Its quiddity is (2, 2, 3, 1, 2, 4, 1).

Thus, the expression in Theorem 6.1 gives the quiddities of such a triangulation’s vertices, but
only a “half” of them: it includes quiddities of vertices between the two “ears.” The following
exercise shows that this sequence uniquely determines the triangulation.

Exercise 6.7. Given a triangulation of an n-gon with two “ears” and quiddity (c1, . . . , cn),
where ck+1 = cn = 1, show that it is possible to reconstruct c1, . . . , ck from ck+2, . . . , cn−1, and
vice versa.

Moreover, such a triangulation can be used to reconstruct both the continued fraction and
all its convergents, both positive and negative. For this, we define the Farey sum operation on
fractions.

Definition 6.8. For two non-negative irreducible fractions p/q and r/s, their Farey sum or
mediant is

p

q
⊕ r

s
=

p+ r

q + s
.

The Farey sum can be seen as the result of “adding fractions incorrectly”: numerator to
numerator and denominator to denominator.

Exercise 6.9. Verify that the Farey sum of two fractions lies between them: if p/q < r/s, then
p/q < (p+ r)/(q + s) < r/s.
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Additionally, we extend the set of non-negative rational numbers with ∞ = 1/0. Clearly,
this element can be added in the sense of Farey to others: p/q ⊕∞ = (p+ 1)/q.

Now we describe a construction that computes the continued fraction from the triangulation
described above (i.e., from the sequence (a1, . . . , a2m)). Place 0 = 0/1 at the bottom-left vertex
and ∞ = 1/0 at the top-left. Then fill the remaining vertices left to right as follows: if there are
fractions in two vertices of a triangle, place their Farey sum in the third vertex. In Example 6.6,
this gives:

1/0 2/1 3/2 7/5

0/1 1/1 4/3

Theorem 6.10. Consider the triangulation of an n-gon constructed from sequence (a1, . . . , a2m).
Let (c1, . . . , cn) be its quiddity, where ck = cn = 1. Fill its vertices with fractions pi/qi as stated
above. Then we have

(1) pk+1/qk+1 = [a1, . . . , a2m] = [[c1, . . . , ck]];
(2) pi/qi = [[c1, . . . , ci−1]]; i.e., the upper side contains negative convergents to pk+1/qk+1;
(3) Consider the “zigzag” path connecting the bottom-left to top-right vertex via segments

between upper and lower sides (Fig. 6.7). The sequence of positive convergents lies along
this zigzag.

We will prove this theorem in the next section using an embedding of the triangulation into
the hyperbolic plane and studying the action of continued fraction matrices. Note that part (1)
essentially constitutes Theorem 6.1, providing an alternative proof of it.

Example 6.11. In Example 6.6, the positive convergents to 7/5 are 1/1, 3/2, 4/3, and 7/5.
The negative convergents are 2/1, 3/2, and 7/5.

7. Triangulations and the Farey graph

In this section, we will establish a connection between friezes and the group PSL2(Z). Our
exposition closely follows the paper [6], which we recommend to interested readers. We are also
grateful to its authors for permission to use the figures below.

7.1. The Farey graph. Consider the set of rational numbers Q, each represented as an irre-
ducible fraction a/b, and add the element 1/0 (“infinity”). We obtain the set Q = Q ∪ {∞}.

Define the Farey graph as an infinite graph whose vertices are elements of Q. Suppose that
two vertices a/b and c/d are connected by an edge if and only if ad−bc = ±1. This is equivalent

to det

(
a c
b d

)
= ±1.

If such vertices are connected by an edge, then the matrices

(
a a+ c
b b+ d

)
and

(
c a+ c
d b+ d

)
also

have determinant ±1, which means that both vertices a/b and c/d are connected to the fraction
(a+ c)/(b+ d), i.e., to their Farey sum.

Exercise 7.1. Verify that this fully describes all triangles: every triangle (a triple of pairwise
connected vertices) in the Farey graph has the form (a/b, c/d, (a+ c)/(b+ d)).

Exercise 7.2. Verify that if a/b and c/d are irreducible fractions with ad− bc = 1, then their
mediant (a+ c)/(b+ d) is also irreducible.

It is convenient to draw the Farey graph on the hyperbolic plane. We will use the upper
half-plane model for this; let us briefly recall the main notions related to it.
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Let H = {z ∈ C | Im z > 0} be the set of complex numbers with positive imaginary part. We
call it the hyperbolic plane. The real line, extended with the point ∞, is called the absolute: it
can be thought of as the set of “points at infinity” (or “asymptotic directions”) of the hyperbolic
plane. The lines in H are semicircles with centers on the absolute (i.e., perpendicular to the
real line), and vertical half-lines starting on the absolute.

We place the vertices of the Farey graph on the absolute and draw each edge as a line (not
a segment!) in H. As we will show in Corollary 7.9, the graph drawn this way on the upper
half-plane is “planar”: its edges intersect only at vertices.

We will focus not on the entire Farey graph but on its subgraph whose vertices are non-
negative rational numbers and ∞ = 1/0. Additionally, we will depict the hyperbolic plane in
the upper half-plane in an unusual way: place the point ∞ in the finite part of the absolute
and send some negative number to infinity. For example, we can apply the transformation
z 7→ z

z+1 to the standard upper half-plane model. This maps 0 to 0, 1 to 1/2, and infinity to 1.

Thus, the positive half-axis is mapped to the interval (0, 1) on the real axis, and the half-plane
Re z > 0 maps to the interior of a semicircle with this interval as its diameter. All edges of the
Farey graph connecting positive points on the absolute will be drawn as semicircles inside this
semicircle. The subgraph formed by all positive vertices (and 0 and ∞) and their connecting
edges is called the positive Farey graph. A fragment of it is shown in Fig. 7.8.
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Figure 7.8. A fragment of the positive Farey graph

For completeness, note that the entire Farey graph can also be nicely depicted in a finite
region by applying the transformation z 7→ i z−i

z+i . This maps the absolute (the real line) to the
unit circle and the upper half-plane to the unit disk. Here, ∞ is mapped to i, 0 to −i, and the
points −1 and 1 remain fixed. The arcs perpendicular to the absolute (generalized circles) map
to arcs perpendicular to the absolute, resulting in the picture shown in Fig. 7.9.

7.2. Embedding triangulations into the positive Farey graph. Triangulations of poly-
gons can be embedded into the Farey graph drawn on the plane with the vertices of the polygon
lying on the absolute. Consider a triangulation of an n-gon and mark one of its sides; assume
this side connects the n-th and first vertices. Write 0 = 0/1 and ∞ = 1/0 at its endpoints.
Then assign to each vertex a positive rational number using an algorithm similar to that in § 4.3:
for each triangle where two vertices already have numbers, write their Farey sum in the third
vertex.

Now mark all n resulting rational numbers on the absolute of the hyperbolic plane and
draw all possible edges of the Farey graph between them; this will reconstruct the original
triangulation.

This method of assigning numbers to triangulation vertices already appeared in § 6.3 for
the special case of “bamboo” triangulations: here, the marked side was the left side of the
triangulation.
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Figure 7.9. The Farey graph in the disk

Example 7.3. Consider the triangulation of a heptagon shown on p. 26. Its embedding into
the Farey graph is shown below.
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Figure 7.10. Triangulation corresponding to the fraction 7/5

Proposition 7.4. Suppose the vertices of the n-gon are labeled with irreducible fractions u1/v1 =
1/0, u2/v2, . . . , un/vn = 0/1. Then the frieze corresponding to this triangulation has adjacent
diagonals v2, . . . , vn and u1, u2, . . . , un−1.

Proof. By computing Farey sums of fractions, we essentially apply the algorithm from § 4.3
twice: separately to numerators and denominators. Thus, the sequence of numerators will be
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a diagonal of the frieze corresponding to the initial data u1 = 1, un = 0, and the sequence of
denominators will correspond to the initial data v1 = 0, vn = 1. □

Example 7.5. The triangulation from the previous example corresponds to the frieze diagonals:

Thus, the numerator and denominator of each fraction at the vertices appear along the
antidiagonal. In particular, the negative convergents to 7/5, namely 1/1, 4/3, and 7/5 itself,
can be read along the antidiagonals.

7.3. The action of the group PSL2(Z). Consider the group of real 2 × 2 matrices with

determinant 1, denoted by SL2(R). This group acts on H as follows: the element

(
a b
c d

)
maps

the point z ∈ H to
az + b

cz + d
.

Exercise 7.6. Verify that this is indeed an action, i.e., the upper half-plane is mapped to itself,
and matrix multiplication corresponds to composition of mappings.

Additionally, SL2(R) contains a non-trivial element acting as the identity on H: the matrix
−I. Thus, we can consider the quotient group SL2(R)/{±I}, denoted PSL2(R), that also acts

on H. Its elements can be viewed as 2× 2 matrices taken up to sign:

(
a b
c d

)
and

(
−a −b
−c −d

)
correspond to the same element in the quotient group.

Finally, we consider not the entire group PSL2(R) but rather its subgroup PSL2(Z), consisting
of all integer matrices in PSL2(R). Clearly, it maps rational points on the absolute to rational
points. Moreover, it preserves the Farey graph: two points p/q and r/s are connected by an

edge if and only if the matrix

(
p r
q s

)
has determinant ±1; this means that for any matrix(

a b
c d

)
∈ PSL2(Z), the product

(
a b
c d

)(
p r
q s

)
has the same determinant. This is equivalent

to saying the images of these points,
ap+ bq

cp+ dq
and

ar + bs

cr + ds
, are also connected by an edge. Thus,

the group PSL2(Z) preserves the Farey graph.

Remark 7.7. This action can be viewed as follows: the group SL2(R) naturally acts on C2. By
associating to a non-zero vector (z1, z2) ∈ C2 its “slope” z = z1/z2 ∈ C ∪ {∞} (in other words,
considering the action of SL2(R) on lines through the origin), we obtain the described action.
In these terms, the absolute corresponds to the real subset R2 ⊂ C2 preserved by SL2(R). Here,
a pair of vertices (p/q) and (r/s) connected by an edge in the Farey graph corresponds to the
pair of vectors (p, q) and (r, s) ∈ Z2 with det ( p r

q s ) = 1. Of course, a matrix A ∈ SL(2,Z) maps
such a pair of vectors to another such pair.

Proposition 7.8. The group PSL2(Z) acts transitively and faithfully on the oriented edges of
the Farey graph: any edge (with marked start and end) can be mapped to any other by a unique
transformation.

Proof. We show that the pair (∞, 0) can be mapped to the pair (p/q, r/s), where ps− qr = 1,
by a linear-fractional transformation with integer coefficients. Indeed, this transformation is



30 EVGENY SMIRNOV

given by the matrix

(
p r
q s

)
. The faithfulness of the action is also clear: it suffices to check

that the stabilizer of the pair (∞, 0) is trivial. Obviously, it consists only of ±I. □

From this, we easily derive the previously mentioned result about the planarity of the Farey
graph.

Corollary 7.9. The edges of the Farey graph do not intersect.

Proof. Due to the transitivity of the action, it suffices to show that the edge connecting 0 and ∞
does not intersect any other edge. Indeed, such another edge would have to connect a positive
and a negative point a/b > 0 > −c/d (where a, b, c, d are positive integers). But then the
determinant ad− b(−c) = ad+ cb ≥ 2 cannot equal 1. □

Corollary 7.10. Consider two triangulations of an n-gon with identical quiddities and a marked
side in each of them, embedded into the Farey graph. Then there exists a unique element of
PSL2(Z) that maps one triangulation to the other and preserves the marked side.

Proof. By Proposition 7.8, there is a unique element of PSL2(Z) that maps the marked sides
into each other, and such that the half-plane containing the first polygon maps to the half-
plane containing the second polygon. The remaining vertices of the triangulation are uniquely
determined by traversing the triangulation tree: the third vertex of each triangle is obtained as
the Farey sum of the first two. □

7.4. Generators of the group PSL2(Z). In Section 6.2, we saw that any two of the following
three matrices

R =

(
1 1
0 1

)
, L =

(
1 0
1 1

)
, S =

(
0 −1
1 0

)
generate SL2(Z). Thus, their images generate PSL2(Z). With some abuse of notation, we will
use the same symbols for elements of PSL2(Z) as in SL2(Z), i.e., before factorization.

Let us see how these transformations act on H. The operator R maps z to z + 1. It fixes

∞ and shifts the absolute by one to the right. The transformation Ra =

(
1 a
0 1

)
shifts the

absolute by a units, where a can be any integer (possibly negative).
The operator S = −1/z is the composition of inversion and reflection across the imaginary

axis. This transformation is involutive: S2 = I. Note that in SL2(Z), the matrix

(
0 −1
1 0

)
has

order 4, not 2.
The operator L fixes 0 and maps z = 1/n to 1/(n+ 1). It is easy to compute (do this) that

LS = SR−1.

7.5. Stern–Brocot Sequences. Now consider the line C connecting ∞ and 0 (as before, we
consider oriented lines; in the figure below, the arrow points from the start to the end of the
line). Applying R to it, we get the line RC starting at ∞ and ending at 1; similarly, LC
connects 1 and 0 on the absolute. We obtain a triangle bounded by the lines C, LC, and RC.
Call this triangle T . The coordinate of its middle vertex is the Farey sum of the two extreme
vertices.

Next, apply L to T . We obtain the triangle LT with vertices at 0, 1/2, and 1. The sides of
this triangle are LC, L2C, and LRC. Similarly, the triangle RT has sides RC, RLC, and R2C
(see Fig. 7.11). This gives the following set of vertices on the absolute: 0, 1/2, 1, 2, ∞.

This procedure can be continued: apply L and R to LT and RT . The result is a set of nine
vertices: 0 = 0/1, 1/3, 1/2, 2/3, 1, 3/2, 2/1, 3/1, ∞ = 1/0, where each pair of consecutive
vertices is connected by one of the lines obtained from C by applying L and R in all possible
orders. Note that each new vertex on the absolute is the Farey sum of its neighbors.

This motivates the following definition.

Definition 7.11. The zeroth Stern–Brocot sequence is the sequence of fractions (0/1, 1/1, 1/0).
The k-th Stern–Brocot sequence is obtained from the (k−1)-th sequence by inserting the mediant
between each pair of consecutive terms.
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Figure 7.11. Stern–Brocot triangulation

Thus, the first Stern–Brocot sequence is equal to (0/1, 1/2, 1/1, 2/1, 1/0), the second sequence
is (0/1, 1/3, 1/2, 2/3, 1/1, 3/2, 2/1, 3/1, 1/0), and so on.

Remark 7.12. Here, as before, we treat infinity as an admissible “number,” expressed as the
irreducible “fraction” 1/0. This will not cause any issues since we will only compare fractions
(considering infinity greater than any number) and take their Farey sums. We will not further
elaborate on this point.

Clearly, each Stern–Brocot sequence is increasing: this follows from the fact that the mediant
of two fractions lies between them. In particular, all terms in each sequence are distinct.

Theorem 7.13. (1) Any two fractions p/q < r/s that are neighbors in some Stern–Brocot
sequence satisfy the relation qr − ps = 1, i.e., the corresponding numbers are connected
by an edge in the Farey graph;

(2) all fractions appearing in Stern–Brocot sequences are irreducible;
(3) every irreducible fraction a/b > 0 appears in some Stern–Brocot sequence.

Proof. (1) We prove this by induction. For the zeroth sequence, the claim is obvious. When we
insert the mediant (p + r)/(q + s) between two neighbors p/q and r/s, the required relations
hold for it as well:

(p+ r)q − (q + s)p = qr − ps = 1; r(q + s)− s(p+ r) = qr − ps = 1.

(2) This follows from (1): if qr − ps = 1, then p and q are coprime.
(3) We show that every irreducible fraction a/b eventually appears in some Stern–Brocot

sequence. Suppose it does not appear in a certain sequence. Find the closest neighbors p/q and
r/s in this sequence between which a/b lies:

p/q < a/b < r/s.

Proceed to the next sequence by replacing one endpoint of [p/q; r/s] with the mediant of its
endpoints and choosing the half containing a/b. This process cannot continue indefinitely
because the conditions

a/b− p/q > 0 and r/s− a/b > 0

imply that
aq − bp ≥ 1 and br − as ≥ 1.

Thus, we have

(7.12) (r + s)(aq − bp) + (p+ q)(br − as) ≥ p+ q + r + s.

On the other hand, the left-hand side of (7.12) equals

(r + s)(aq − bp) + (p+ q)(br − as) = a((r + s)q − (p+ q)s) + b((p+ q)r − (r + s)p) = a+ b.

Thus, (7.12) is equivalent to
a+ b ≥ p+ q + r + s.
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But at each step, either p, q, r, or s increases, so this inequality will fail after at most a + b
steps. □

Returning to Fig. 7.11, Theorem 7.13 implies that every positive rational number appears as
a vertex of some triangle in the Stern–Brocot triangulation.

This picture can also be interpreted as follows. Consider the infinite graph dual to the Stern–
Brocot triangulation: assign to each triangle a vertex labeled by the “middle” vertex of the
triangle. Connect vertices corresponding to adjacent triangles. We obtain a binary tree, the
beginning of which is shown in Fig. 7.12; it is also called the Stern–Brocot tree.

Figure 7.12. Stern–Brocot tree

Theorem 7.13 states that every positive rational number appears in the Stern–Brocot tree
exactly once. Thus, each number can be encoded by a path from the root (i.e., from 1/1) to
the corresponding vertex: each number corresponds to a unique word in the letters R and L.
For example, 2/1 corresponds to R, 4/3 to RLL, and so on. This yields the following corollary.

Corollary 7.14. For every positive irreducible fraction p
q > 1, there exists a sequence of expo-

nents (a1, . . . , a2m) such that(
p
q

)
= Ra1La2 . . . Ra2m−1La2m

(
1
0

)
= M+(a1, . . . , a2m)

(
1
0

)
,

with all ai > 0.

Proof. Note that

(
1
1

)
= L

(
1
0

)
corresponds to the point 1 on the absolute. Theorem 7.13

states that any positive rational number on the absolute can be obtained from 1 by applying a
word in R and L. Since p/q > 1, this number lies in the right half of the Stern–Brocot graph,
so the first letter of the corresponding word is R, not L. □

To summarize: we have figured out the geometric meaning of the operators R and L. They
map the entire Stern–Brocot tree to its right and left halves, respectively. Thus, the sequence
(a1, . . . , a2m) defines the transformation M+(a1, . . . , a2m), which maps the line (∞, 0) to (pq ,

r
s),

where r/s is the last convergent to p
q . The resulting triangles define a “bamboo” triangulation of

a polygon with the marked side (∞, 0), consisting of a1 upward-pointing triangles, a2 downward-
pointing triangles, a3 upward-pointing triangles, and so on.

7.6. Rotating a triangulation. Consider a triangulation of an n-gon embedded in the Farey
graph. Let c1 be the quiddity of the first vertex, i.e., the number of triangles meeting at the
vertex labeled 0. This means the second vertex is labeled by 1/c1 (why?). Consider the operator
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c1 −1
1 0

)
and apply it to H. Let us see where our n-gon is mapped. First, consider the images

of the first two vertices, 0 and 1/c1:(
c1 −1
1 0

)(
0
1

)
=

(
−1
0

)
= ∞;

(
c1 −1
1 0

)(
1
c1

)
=

(
0
1

)
= 0.

Thus, they are mapped to the last and first vertices, respectively, and the line connecting them
is mapped to (∞, 0).

The remaining vertices are also mapped to some vertices with positive coordinates (check:
why positive?). Generally, they will not coincide with the vertices of the original n-gon. How-
ever, their relative positions on the line are preserved since the absolute is preserved by this
transformation.

Let α1 = 0, α2 = 1/c1, . . . , αn = ∞ be the vertices of the original polygon, where pi ∈

Q≥0 ∪ {∞}. Let βi be the image of αi under the action of

(
c1 −1
1 0

)
. Our n-gon is mapped to

an n-gon with vertices β1 = ∞, β2 = 0, . . . , βn = c.
This operation corresponds to rotating the n-gon. We have proved the following proposition.

Proposition 7.15. The transformation

(
c1 −1
1 0

)
maps an n-gon with side (∞, 0) and quiddity

(c1, . . . , cn) (where the first vertex is 0) to an n-gon with side (∞, 0) and quiddity (cn, c1, . . . , cn−1).

This implies the following corollary.

Corollary 7.16. Let (c1, . . . , cn) be the quiddity of an n-gon. Then(
c1 −1
1 0

)
. . .

(
cn −1
1 0

)
= ±I.

Proof. Consider an n-gon with marked side (∞, 0) and quiddity (c1, . . . , cn). By the previous
proposition, the composition of such transformations maps it to an n-gon with the same marked
side and quiddity. According to Corollary 7.10, this composition is the identity element in
PSL2(Z), i.e., ±I. □

Another corollary of Proposition 7.15 can be obtained by considering a “bamboo” triangula-
tion with quiddity (c1, . . . , ck, 1, ck+2, . . . , 1). Let p/q be the coordinate of the (k+1)-th vertex.
Consider the operator that rotates our triangulation k times. This operator is equal to(

c1 −1
1 0

)
. . .

(
ck −1
1 0

)
= M(c1, . . . , ck).

It maps the first vertex of the triangulation, ∞, to the (k + 1)-th vertex, p/q = [[c1, . . . , ck]].
The last vertex is mapped to the k-th vertex, r̃/s̃ = [[c1, . . . , ck−1]].

Thus, we have shown that if the sequences (a1, . . . , a2m) and (c1, . . . , ck) are constructed from
the same “bamboo” triangulation, then the operators M+(a1, . . . , a2m) and M(c1, . . . , ck) map
∞ to the same point. Hence, the first columns of the corresponding matrices coincide (up to
sign), which again proves Theorem 6.1.

Exercise 7.17. Prove Proposition 6.4 similarly.

8. Summary and further steps

8.1. Continued fractions and friezes as solutions to equations in SL2(Z). In the previous
chapters, we discussed friezes, the expansions of rational numbers into continued fractions, and
the related identities in the groups PSL2(Z) and SL2(Z).

We saw that for a positive rational number p/q, we can construct its positive and negative
continued fraction expansions; these expansions correspond to a “bamboo” triangulation of some
n-gon. If the quiddity of this n-gon is (c1, . . . , ck, 1, ck+2, . . . , cn−1, 1), then p/q = [[c1, . . . , ck]].
Moreover, the quiddity of a triangulation of the n-gon provides a solution to the matrix equation

M(c1, . . . , cn) = −I.
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More generally, such a solution holds for the quiddity of an arbitrary triangulation of an n-
gon, not necessarily a “bamboo”. Such triangulations define friezes of order n. The elements of
friezes are constructed based on the quiddity of the triangulation as continuants. In particular,
if the triangulation was a “bamboo” and corresponded to the number p/q, then the numerators
and denominators of the convergents to p/q can be read on the adjacent diagonals of the frieze.

8.2. Triangulations and 3d-dissections. A question arises: for which sets (c1, . . . , cn) is
the matrix M(c1, . . . , cn) equal to ±I, i.e., defines the identity transformation in PSL2(Z)?
Do all such sets arise from triangulations? Obviously not: for example, one can insert three
consecutive ones anywhere in an existing solution and obtain a new solution by using the relation
M(1, 1, 1) = −I. So how can we describe all solutions?

A complete answer to this question was obtained very recently, only in 2018. It is due to
ValentinOvsienko [7]. To formulate it, let us first define the concept of a 3d-dissection of a
convex polygon.

Definition 8.1. A 3d-dissection of a convex n-gon (with numbered vertices) is its partition
by a set of non-intersecting diagonals into polygons, such that has the number of sides of each
of these polygons is divisible by 3. The quiddity of a 3d-dissection of an n-gon is the set of
numbers (c1, . . . , cn), where ci is the number of polygons incident to the i-th vertex.

Thus, instead of triangulations, we will consider dissections of an n-gon into triangles,
hexagons, nonagons, etc. Unlike the case of triangulations, a 3d-dissection of an n-gon can-
not be reconstructed from its quiddity.

Exercise 8.2. Give an example of two distinct 3d-dissections of an n-gon with identical quid-
dities.

Hint. It suffices to take n = 8.

It turns out that, in addition to triangulations, solutions to the equation M(c1, . . . , cn) = ±I
can also arise from other 3d-dissections of the n-gon. Namely, the following theorem holds.

Theorem 8.3 ([7]). The equality M(c1, . . . , cn) = ±I holds if and only if (c1, . . . , cn) is the
quiddity of some 3d-dissection of an n-gon. Moreover, M(c1, . . . , cn) = −I if the number
of polygons in the dissection with an even number of sides is even, and M(c1, . . . , cn) = I
otherwise.
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