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Abstract. This is a survey of results on multiple flag varieties,
i.e. varieties of the form G/P1 × · · · ×G/Pr. We provide a classi-
fication of multiple flag varieties of complexity 0 and 1 and results
on the combinatorics and geometry of B-orbits and their closures
in double cominuscule flag varieties. We also discuss questions
of finiteness for the number of G-orbits and existence of an open
G-orbits on a multiple flag variety.

1. Introduction

1.1. Multiple flag varieties. Grassmann varieties and flag varieties
first appeared at the end of the 19th century in the papers of Her-
mann Günter Grassmann, Julius Plücker, Hermann Schubert and other
mathematicians. These varieties are homogeneous spaces of the group
G = GL(V ), with a parabolic subgroup P as the stabilizer of a point.
One can also consider homogeneous spaces G/P not only for GL(V ),
but also for other connected reductive group.

In this survey we consider multiple flag varieties : these are direct
products of several flag varieties, i.e. varieties of the form G/P1×· · ·×
G/Pr (for r = 2 they are called double flag varieties). Each multiple
flag variety can be viewed as a G-variety for the diagonal action of the
group G.

Among these, spherical multiple flag varieties are of particular inter-
est. They are given by the following property: the algebra of regular
functions on them as a G-module is decomposed into the sum of ir-
reducible G-modules with multiplicity zero or one. In other words,
spherical varieties are G-varieties with an open orbit of a Borel sub-
group B ⊂ G. It is not hard to see that if a multiple flag variety is
spherical, then the number of its factors G/P does not exceed two.

1.2. Double flag varieties, unipotent invariants of Cox rings,
and representation theory. Multiple (in particular double) flag va-
rieties appear in one of the fundamental problems of representation
theory: in the problem of decomposition of the tensor product of two
irreducible representations of a group G into irreducible summands.

The description of irreducible representations of a connected reduc-
tive algebraic group G dates back to Hermann Weyl. They are indexed

The study was carried out at the Steklov Institute of Mathematics and supported
by the Russian Science Foundation grant no. 14-11-00414.

1



2 Evgeny Smirnov

by the dominant weights. There are many formulas for decomposing
the tensor product of two irreducible G-modules into the direct sum of
irreducible modules. In the general case (for an arbitrary group G) this
problem can be solved by means of the Weyl character formula (see,
for instance, [20]), but this approach has a serious disadvantage: it re-
quires lengthy computations. For various concrete situations there are
simpler and more explicit approaches which work in given particular
cases: Steinberg’s formula, Parthasarathy–Ranga Rao–Varadarajan’s
formula [39] etc.

Moreover, there are formulas using properties of concrete groups.
The first and the most important of these results concerns represen-
tations of groups of type A, that is, GL(n). This is the Littlewood–
Richardson rule, stated in 1934 [32] and proven by M.-P. Schützenberger [49]
three decades later (since then a number of simpler proofs appeared:
see, for example, [28], [14], to name just a few). Its main frature is
an explicit, although quite involved, combinatorial description of irre-
ducible components appearing in the decomposition of the product of
two representations. An important (and the simplest) particular case
of the Littlewood–Richardson rule is the Pieri rule: it describes the
situation when one of the representations is a symmetric or an exterior
power of the tautological representation. There is also a generalization
of the Littlewood–Richardson rule for the case of other groups, due to
P. Littelmann [30].

Double flag varieties appear in yet another approach to the problem
of the decomposition of tensor products. This approach is based on
a geometric realization of irreducible representations in the spaces of
sections of line bundles on flag varieties.

According to the Borel–Weil theorem, every irreducible G-module
can be realized as the space of global sections H0(G/P,L) of a line
bundle L on G/P . The tensor product of the spaces of global sections
H0(G/P,L) ⊗ H0(G/Q,M) can be viewed as the space of sections
H0(G/P×G/Q,L�M) of the line bundle L�M on the direct product
G/P × G/Q. Here L �M is the line bundle whose fibers are the
tensor products of fibers over the corresponding points: (L�M)(x,y) =
Lx ⊗My, where x ∈ G/P , y ∈ G/Q.

If the variety X = G/P × G/Q has complexity 0 (i.e., is spherical)
or 1, there is an efficient way of decomposing the space of sections into
the direct sum of irreducible G-modules. It will be described below in
Subsection 3.3. This motivates the question of classifying all double
flag varieties of complexity 0 and 1.

The relation between spherical double flag varieties and the problem
of tensor product decomposition was first observed by Peter Littelmann
in [31]. He classified all spherical varieties of the form G/P × G/Q,
where P,Q are maximal parabolic subgroups in G. Dmitry Panyu-
shev in [38] computed the complexity of all varieties G/P ×G/Q with
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P,Q being maximal. The classification of spherical double flag vari-
eties (with P,Q not necessarily maximal) was obtained by John Stem-
bridge [55]. Finally, Elizaveta Ponomareva [41] obtained a full classifi-
cation of all double flag varieties of complexity 0 and 1 by a uniform
method, thus generalizing all the previous results. In Section 3.1 we
give this classification.

A convenient tool for solving the tensor product decomposition prob-
lem is the notion of the Cox ring of a double flag variety. Consider the
direct sum R(X) =

⊕
H0(X,L) of the spaces of global sections of line

bundles on X; if X satisfies some mild restrictions, this space can be
equipped with a ring structure, called the Cox ring of X (this ring can
be viewed as an analogue of the ring of regular functions C[X] on X).
The problem of decomposition of the spaces H0(X,L) into irreducible
G-modules is reduced to the description of the unipotent invariant al-
gebra RU of the Cox ring, where U ⊂ B is the maximal unipotent
subgroup.

Thus we need to describe the unipotent invariant algebras R(X)U

in the Cox rings of double flag varieties X. Littelmann [31] showed
that for X spherical this algebra is free. If X is of complexity 1, this
algebra is either free or isomorphic to the quotient of a free algebra
modulo a single relation (i.e. a hypersurface). Panyushev showed this
for X = G/P ×G/Q with P and Q maximal parabolic subgroups; the
general case was considered by Ponomareva in [42] and [43]. We discuss
these results in Subsection 3.4.

1.3. Geometry of B-orbits on spherical double flag varieties.
Section 4 is devoted to the study of geometric and combinatorial prop-
erties of orbits of a Borel subgroup acting on a spherical flag varieties,
and their closures. These orbits and their closures are direct analogues
of Schubert cells and Schubert varieties in flag varieties G/P .

A combinatorial description of the set of these orbits for the case
when G is of type A (i.e. G = GL(n)) and a multiple flag variety is the
direct product of two Grassmannians Gr(k, V )×Gr(l, V ), was obtained
by Evgeny Smirnov in [52]. In this case the orbits are indexed by triples
consisting of two Young diagrams and an involutive permutation of
a special form. We also construct resolutions of singularities of B-
orbit closures, analogous to the Bott–Samelson resolutions of Schubert
varieties.

The geometry of B-orbit closures of double cominuscule flag varieties
was studied by Piotr Achinger and Nicolas Perrin in [1]; generalizing
the results of [52], they have shown that for G simply laced the B-orbit
closures in these varieties are normal and have rational singularities
(for the ground field of characteristic 0).
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1.4. Multiple flag varieties with finitely many G-orbits. The
property of X being spherical, i.e. the finiteness of the number of B-
orbits on X, is equivalent to the finiteness of the number of G-orbits
on the direct product X × G/B (there is a natural bijection between
the B-orbits on the former variety and the G-orbits on the latter one).
So each spherical double flag variety G/P1×G/P2 gives us a triple flag
variety G/P1×G/P2×G/B with finitely many G-orbits. We can state
a natural question: what are the multiple flag varieties with finitely
many G-orbits on them? This question is discussed in Section 5. The
classification of such flag varieties was obtained by Peter Magyar, Jerzy
Weyman, and Andrei Zelevinsky by methods of representation theory,
for the case of G being equal to GL(V ) or Sp(V ); they also obtained a
description of G-orbits and some results on the inclusion order on their
closures.

1.5. Multiple flag varieties with an open orbit. The finiteness of
the number of G-orbits on a multiple flag variety X implies that one of
the orbits is open in X. The converse is, in general, not true. Thus we
get a question of describing all multiple flag varieties with an open G-
orbit. We are dealing with this question in Section 6. Vladimir Popov
obtained a classification of all multiple flag varieties of the form (G/P )r

(i.e. the products of several copies of the same flag variety), where P
is a maximal parabolic subgroup. The existence of an open G-orbit on
such a variety means that G acts on generic r-tuples of points in G/P
transitively. These results were geenralized by Rostislav Devyatov for
the case of P being not necessarily maximal, if G is not of the type A.
Finally, in a recent paper by Izzet Coskun, Majid Hadian, and Dmitry
Zakharov the authors provided a description of multiple flag varieties
of the form G/P1 × · · · ×G/Pr with an open G-orbit, provided that G
is of type A, and all the parabolic subgroups Pi are maximal (i.e., the
variety is the product of Grassmannians).

Notation and conventions. The ground field is the field C of com-
plex numbers.

Let G be a connected reductive algebraic subgroup over C. We fix a
Borel subgroup B ⊂ G (i.e. a maximal connected solvable group) and
a maximal torus T ⊂ B. The unipotent radical of B will be denoted
by U ; thus, B ∼= U n T .

The root system associated to the triple T ⊂ B ⊂ G will be denoted
by R. We denote the positive and negative root systems by R+ and
R− respectively. The Weyl group of R is denoted by W ∼= N(T )/T .
The simple root system corresponding to the triple (T,B,G) is called
∆ ⊂ R+. The simple roots of simple algebraic groups are denoted
by α1, . . . , αr, where r = |∆|. The fundamental weights dual to these
roots are called ω1, . . . , ωn. The roots are numbered as in [7].
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The weight lattice of the group G is denoted by Λ, the set of dom-
inant weights is called Λ+. For a dominant weight λ the irreducible
representation of G with the highest weight λ is denoted by Vλ.

Structure of the paper. This text is organized as follows. In Sec-
tion 2 we give preliminaries on flag varieties: we define the Schubert
decomposition, the Bruhat order, we state the Borel–Weil theorem and
give several equivalent definitions of a spherical variety. In Section 3
we give the classification of spherical double flag varieties, double flag
varieties of complexity 1, and discuss the relation between these prob-
lems and the problem of decomposition of tensor products of irreducible
G-modules. Section 4 is devoted to the study of combinatorial and geo-
metric properties of orbits of a Borel subgroup in a spherical double
flag variety and their closures. In Section 5 we discuss a generalization
of the previous question: we study the situations when the number of
G-orbits of a multiple flag variety is finite. Finally, in Section 6 we are
dealing with results on multiple flag varieties with an open G-orbit.

2. Preliminaries

2.1. Flag varieties. Let G be a connected reductive algebraic group,
let B be its Borel subgroup.

Definition 2.1. Let P be a connected algebraic subgroup in G con-
taining B. Then P is called a parabolic subgroup, and the homogeneous
space G/P is called a (generalized) flag variety.

Example 2.2. Let G = GL(n), and let B be the subgroup of non-
degenerate upper-triangular matrices. Then each parabolic subgroup
P is the stabilizer of a partial flag V• = 〈e1, . . . , ed1〉 ⊂ 〈e1, . . . , ed2〉 ⊂
· · · ⊂ 〈e1, . . . , edk〉 ⊂ Cn, where 1 ≤ d1 < · · · < dk ≤ n is a strictly
increasing sequence of integers. Such a parabolic subgroup is called
standard. In this case P is formed by block-triangular matrices with
blocks of size di − di−1 on the diagonal, and the homogeneous space
G/P is a variety of partial flags

Fl(d1, . . . , dk) = {(U1 ⊂ · · · ⊂ Uk ⊂ Cn | dimUi = di}.

Example 2.3. The previous example has two important particular
cases, in a sense “opposite” to each other. If k = 1, subgroup P is
a maximal parabolilc subgroup; in this case G/P = Gr(d, n) is the
Grassmannian of d-dimensional subspaces in an n-dimensional space.
On the contrary, if P = B, i.e. (d1, . . . , dn−1) = (1, . . . , n − 1), then
G/P = G/B is a variety of complete flags, or a full flag variety. Some-
times we will use the term “full flag variety” for G/B also in the case
of the group G not equal to GL(n).

The parabolic subgroups P ⊂ G containing B bijectively correspond
to subsets in the system of simple roots ∆ of the group G. We shall say
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that a parabolic subgroup corresponds to a set of simple roots I ⊆ ∆,
and denote it by PI , if for its tangent algebra we have the following
decomposition:

pI = t⊕
⊕

{α∈R+∪Z(∆\I)}

gα,

where t is the tangent algebra of the torus T and gα are the root spaces
in g corresponding to the roots α.

In other words, the set of simple roots of the standard Levi subgroup
in PI equals ∆ \ I. So for “larger” subgroups we get “smaller” sets of
simple roots: say, for the Borel subgroup B = P∆. On the contrary,
maximal parabolic subgroups correspond to subsets consisting of one
simple root. In the case G = GL(n) for a flag variety Fl(d1, . . . , dk) =
G/PI we have I = {αd1 , . . . , αdk}. In particular, the Grassmannian
Gr(d, n) corresponds to the set I = {αd}.

2.2. Schubert decomposition. For the group G we can consider its
Bruhat decomposition (sometimes also called Ehresmann–Bruhat de-
composition):

G =
⊔
w∈W

BwB.

The group G is presented as a disjoint union of double cosets of the
Borel subgroup; these cosets are indexed by the elements of the Weyl
group.

This decomposition gives us a decomposition of the full flag variety
G/B into the union of orbits of B acting on G/B on the left:

G/B =
⊔
w∈W

BwB/B.

Let w ∈ W be a Weyl group element, and let `(w) ∈ Z+ denote its
length, i.e. the smallest number m such that w can be presented as
the product of m simple reflections. (In the case G = GL(n) the Weyl
group is the symmetric group: W ∼= Sn, and the length of an element
is just the length of a permutation, i.e. the number of its inversions:
`(w) = #{(i, j) | i < j, w(i) > w(j)}.) It is not hard to see that each
B-orbit BwB/B is isomorphic to an affine space A`(w) of dimension
`(w) equal to the length of w. Thus we get a cellular decomposition of
the variety G/B.

Definition 2.4. The B-orbits on G/B are called Schubert cells. Their
closures are called Schubert varieties ; they will be denoted by Xw =
BwB/B. The cellular decomposition of G/B obtained in this way is
called the Schubert decomposition.

The structure of the Schubert decomposition of G/B implies that
the cohomology classes [Xw] ∈ H∗(G/B,Q) which are Poincaré dual to
the fundamental classes of Schubert varieties generate the cohomology
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ring H∗(G/B,Q) as a Q-vector space. This observation can be used for
solving many problems of enumerative geometry: these problems can
be restated in terms of computations in the ring H∗(G/B,Q). This
approach is called Schubert calculus ; historically it appeared as the
original motivation to introducing the Schubert decomposition of flag
varieties. More on Schubert calculus can be found in the preface to the
reprint of the original Schubert’s book [48]; see also [25], [24], and [54].

2.3. The Bruhat order. The Schubert decomposition is a cellular
decomposition, i.e. the closure of each cell is a union of cells. So the
inclusion relation on the Schubert cell closures induces a partial order
on the Weyl group. This order is called the Bruhat order.

Definition 2.5. We shall say that two Weyl group elements v, w ∈ W
are comparable with respect to the Bruhat order : v ≤ w, if Xv ⊂ Xw.

The Bruhat order admits the following combinatorial description
(see, for instance, [23]):

Proposition 2.6. Two elements v and w are comparable with respect
to the Bruhat order: v ≤ w, if and only if there exists a sequence
of reflections (not necessarily simple) si1 , . . . , sir ∈ W such that w =
sir . . . si1v and `(sit . . . si1v) > `(sit−1 . . . si1v) for each t ≤ r.

We also can define the weak Bruhat order :

Definition 2.7. The elements v and w are comparable with respect to
the weak Bruhat order: v ≤w w if and only if there exists a sequence
of simple reflections si1 , . . . , sir ∈ W such that w = sir . . . si1v, with
`(sit . . . si1v) > `(sit−1 . . . si1v) for each t ≤ r.

It is clear that the relation v ≤w w implies that v ≤ w; the converse
is in general not true. Below we give the Hasse graph of the usual and
weak Bruhat orders on the permutation group S3 (for G = GL(3)). We
use the one-line notation for permutations: so, for instance, 321 is the
permutation 1 7→ 3, 2 7→ 2, 3 7→ 1.

321

231 312

132 213

123

321
s2 s1

231

s1

312

s2

132

s2

213

s1

123

The edges of the second graph are marked with simple transpositions:
two vertices w and v are joined by an edge with si on it, if w = siv. We
shall use the weak Bruhat order below for constructing Bott–Samelson
resolutions of Schubert varieties, see Subsection 4.4.
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2.4. Parabolic subgroups in Weyl groups. Let W be a Weyl group
with generators s1, . . . , sr and relations s2

i = e, (sisj)
mij = e. Consider

an arbitrary set of simple roots I ⊂ ∆ and take the subgroup WI ⊂ W
generated by all sαi such that αi ∈ I. (For example, if I = ∅, then
WI = {e}). This subgroup itself is a group generated by reflections;
such subgroups are called standard parabolic subgroups in the Weyl
group W .

Proposition 2.8 ([23, Proposition 1.10]). Let RI be the intersection
of the root system R with the linear span VI = 〈αi〉, αi ∈ I.

• RI is a root system having I as its simple roots system. The
group WI is the reflection group associated with this root system.
• The length function on WI (as on the reflection group) coin-

cides with the restriction of the length function on W : namely,
`I(w) = `(w) for each w ∈ WI ;
• Define W I = {w ∈ W | `(wsα) > `(w) for eachα ∈ ∆I}.

Then each element w can be uniquely decomposed as the product
w = vu, with v ∈ W I , u ∈ WI , such that `(v) + `(u) = `(w).
Moreover, v is a unique element of the minimal length in the
left coset wWI .

The standard parabolic subgroups WI ⊂ W bijectively correspond
to parabolic subgroups PI ⊂ G containing B. The set W I parametrizes
the B-orbits (Schubert cells) in the flag variety G/PI :

G/P =
⊔

w∈W I

BwP/P.

The embedding W I ↪→ W induces on W I the strong and the weak
Bruhat orders; the strong order describes the inclusion order on the
closures of Schubert cells, while the weak order is given by the action
of minimal parabolic subgroups (see Subsection 4.3 below).

2.5. Borel–Weil theorem. This theorem states that all irreducible
finite-dimensional representations of a reductive group G can be real-
ized as the spaces of global sections of line bundles on G/B.

Let λ be an integer weight. It defines the character χλ : B → C∗ of
the Borel subgroup B, or, equivalently, a one-dimensional representa-
tion Cλ of the group B, with the action defined as follows: b.z = λ(b)z.

We can consider a homogeneous line bundle G×B Cλ = Lλ; this is a
G-equivariant line bundle on G/B. All the G-equivariant line bundles
on G/B can be obtained in such a way. Holomorphic global sections
Lλ correspond to holomorphic maps

f : G→ Cλ : f(gb) = χλ(b)f(g) ∀b ∈ B, g ∈ G.
They form a vector space H0(G/B,Lλ). This space carries a natural
structure of G-module:

g · f(h) = f(g−1h) ∀g, h ∈ G.
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Theorem 2.9 (A. Borel, A. Weil). For a dominant weight λ, the
space H0(G/B,Lλ) is isomorphic (as a G-module) to the irreducible
G-module Vλ∗ with the highest weight λ∗. Otherwise H0(G/B,Lλ) = 0.

(The proof can be found, for instance, in [50] or [19]).
Note that the module Vλ∗ can be viewed as the G-module induced

from the one-dimensional B-module Cλ∗ .
Similarly, the spaces of global sections of G-equivariant line bundles

over partial flag varieties H0(G/P,Lλ) can be viewed as irreducible
G-modules Vλ∗ = IndGP Cλ∗ . We will use this geometric realization of
irreducible representations of G in the next section.

The generalization of this theorem, usually called the Borel–Weil–
Bott theorem, gives a description of higher cohomology spacesH i(G/B,Lλ)
as G-modules; see, for instance, [16].

2.6. Spherical varieties. In the previous subsections we described
the Schubert decomposition for flag varieties G/P . It can be viewed
as a decomposition of the variety into the union of orbits of a Borel
subgroup B ⊂ G. The number of these orbits is finite, so among them
there is an open orbit. The property of existence of an open orbit of a
Borel subgroup on a G-variety defines a class of G-varieties which are
called spherical varieties.

In this subsection we only give several definitions of a spherical va-
riety, which we shall need later. A detailed exposition of the theory
of spherical varieties can be found in many sources, in particular, in
Dmitry Timashev’s book [56] or in the recent survey [40] by Nicolas
Perrin.

Definition 2.10. LetX be a normalG-variety. The complexity cG(X) =
c(X) of X is the minimal codimension of a B-orbit in X. The variety
X is said to be spherical if c(X) = 0.

Let us give several equivalent definitions of a spherical variety.

Theorem 2.11 (see, for instance, [40, Thm 2.1.2]). The following are
equivalent:

(1) X is spherical;
(2) C(X)B = C;
(3) X consists of finitely many B-orbits.

For X quasiprojective these properties are equivalent to the fol-
lowing one:

(4) If L is a G-equivariant line bundle, the G-module H0(X,L) is
multiplicity-free (i.e. for any G-module W we have dim HomG(W,H0(X,L)) ≤
1).

Apart of flag varieties, there are other important classes of spherical
varieties, in particular, toric varieties (in this case G = B = T ) and
symmetric spaces.
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3. Multiple flag varieties and tensor product
decompositions

3.1. Double flag varieties of complexity 0 and 1. In this section
we give a classification of double flag varieties of complexity 0 and 1.
First note that we can restrict ourselves to the case when G is a simple
algebraic group. Indeed, each semisimple group can be decomposed
into an almost direct product of simple groups G = G1 . . . Gs, and
parabolic subgroups P,Q ⊂ G are decomposed into an almost direct
product of parabolic subgroups Pi, Qi ⊂ Gi. Then the complexity of a
double flag variety G/P ×G/Q equals

cG(G/P ×G/Q) = cG1(G/P1 ×G/Q1) + · · ·+ cGs(Gs/Ps ×Gs/Qs).

So our question is reduced to the case of simple groups.
If G is a classical group, let us take B to be the subgroup of upper-

triangular matrices (in the orthogonal and symplectic cases we can
suppose that G preserves a bilinear form with an antidiagonal matrix).
Then the parabolic subgroups containing B have a block-diagonal form,
so they can be described by the sizes of the blocks on the diagonal. The
only exception is the group SO(n) for n even: not all of its parabolic
subgroups have such a form. The remaining subgroups can be brought
to this form by conjugating with a permutation of the two middle basis
vectors; such parabolic subgroups will be denoted by the prime sign.

For the exceptional groups we describe parabolic subgroups PI ⊇ B
by subsets of simple roots I ⊆ ∆, as in 2.1.

In the cases of classical and exceptional groups, the following classi-
fication theorems hold.

Theorem 3.1 ([41, Theorem 1]). Let G be a classical group (i.e.
SL(n), SO(n), or Sp(n)). Then all double flag varieties of complexity
0 and 1 correspond to the pairs of parabolic subgroups (up to a permu-
tation, for SL(n) also up to a simultaneous transposition with respect
to the antidiagonal, and in the case of SO(2n) also up to the diagram
automorphism of G), given in Tables 1, 2, 3.

Theorem 3.2 ([41, Theorem 2]). (1) For the groups of type E8, F4

and G2 there are no double flag varieties of complexity 0 and 1.
(2) For the group of type E6 double flag varieties of complexity 0

correspond to the following pairs of parabolic subgroups:

({α1}, {α1}), ({α1}, {α2}), ({α1}, {α4}), ({α1}, {α5}), ({α1}, {α6}), ({α2}, {α5}),
({α4}, {α5}), ({α5}, {α5}), ({α5}, {α6}), ({α1}, {α1, α5}), ({α5}, {α1, α5});
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Table 1. Pairs of parabolic subgroups corresponding to
double flag varieties in the groups SL(n)

Number of blocks Complexity 0 Complexity 1
in P and Q P Q P Q

(2, 2) (p1, p2) (q1, q2)
(2, 3) (p1, p2) (1, q1, q2) (3, p2), p2 ≥ 3 (q1, q2, q3), q1, q2, q3 ≥ 2

(p1, p2) (q1, 1, q3) (p1, p2), p1, p2 ≥ 3 (2, 2, q3), q3 ≥ 2
(2, p2) (q1, q2, q3) (p1, p2), p1, p2 ≥ 3 (2, q2, 2), q2 ≥ 2

(2, 4) (2, p2) (q1, q2, q3, q4)
(p1, p2), p1, p2 ≥ 2 (1, 1, 1, q4)
(p1, p2), p1, p2 ≥ 2 (1, 1, q3, 1)

(2, s) (1, p2) (q1, . . . , qs)
(3, 3) (1, 1, p3) (q1, q2, q3)

(1, p2, 1) (q1, q2, q3)

Table 2. Pairs of parabolic subgroups corresponding to
double flag varieties in the groups SO(n)

Number of blocks Complexity 0 Complexity 1
in P and Q P Q P Q

(2, 2) (p, p) (p, p)
(2, 2) (p, p) (p, p)′

(2, 3) (p, p) (q1, q2, q1), q1 ≤ 3 (6, 6) (4, 4, 4)
(p, p) (q, 2, q)

(2, 4) (p, p) (1, q, q, 1) (4, 4) (2, 2, 2, 2)
(p, p) (1, q, q, 1)’ (5, 5) (2, 3, 3, 2)
(4, 4) (2, 2, 2, 2)′ (5, 5) (3, 2, 2, 3)

(5, 5) (2, 3, 3, 2)′

(5, 5) (3, 2, 2, 3)′

(2, 5) (4, 4) (2, 1, 2, 1, 2)
(2, 6) (4, 4) (1, 1, 2, 2, 1, 1)
(2, 6) (4, 4) (1, 1, 2, 2, 1, 1)′

(3, 3) (1, p, 1) (q1, q2, q1) (2, 2, 2) (2, 2, 2)
(p, 1, p) (p, 1, p) (2, p, 2), p > 1 (q, 1, q)

(3, 4) (1, p, 1) (q1, q2, q2, q1) (2, 2, 2) (1, 2, 2, 1)
(3, 5) (1, p, 1) (q1, q2, q3, q2, q1)

(2, 1, 2) (1, 1, 1, 1, 1)
(3, 6) (1, p, 1) (q1, q2, q3, q3, q2, q1)
(4, 4) (1, 2, 2, 1) (1, 2, 2, 1)

(1, 2, 2, 1) (1, 2, 2, 1)′

varieties of complexity 0 correspond to the following pairs of
parabolic subgroups:

({α1}, {α1, α2}), ({α1}, {α1, α6}), ({α1}, {α4, α5}), ({α1}, {α5, α6}),
({α5}, {α1, α2}), ({α5}, {α1, α6}), ({α5}, {α4, α5}), ({α5}, {α5, α6});
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Table 3. Pairs of parabolic subgroups corresponding to
double flag varieties in the groups Sp(n)

Number of blocks Complexity 0 Complexity 1
in P and Q P Q P Q

(2, 2) (p, p) (p, p)
(2, 3) (p, p) (1, q, 1) (p, p) (2, q, 2)
(2, 4) (2, 2) (1, 1, 1, 1)
(3, 3) (1, p, 1) (q1, q2, q1)
(3, 4) (1, p, 1) (q1, q2, q2, q1)
(3, 5) (1, p, 1) (q1, q2, q3, q2, q1)

(3) For the group of type E7 double flag varieties of complexity 0
correspond to the following pairs of parabolic subgroups:

({α1}, {α1}), ({α1}, {α6}), ({α1}, {α7});
variety of complexity 1 corresponds to the following pairs of
parabolic subgroups: ({α1}, {α2}).

3.2. Cox rings of double flag varieties. Let us give the definition
of the Cox ring for a projective variety X in the case when the Picard
group Pic(X) is a free abelian group of finite rank. Let Pic(X) be
freely generated by the classes of line bundles L1, . . . ,Ls. Then each
line bundle over X is isomorphic to Lk11 ⊗· · ·⊗Lkss , where k1, . . . , ks ∈ Z.

Definition 3.3. The Cox ring of X is the space

R(X) =
⊕
ki∈Z

H0(X,Lk11 ⊗ · · · ⊗ Lkss ).

The multiplication on R(X) is given by the tensor product of sections.

Remark 3.4. The ring R(X) is multigraded by the group Pic(X). The
sections of line bundles are exactly the multihomogeneous elements of
R(X).

A more general definition of Cox rings can be found, for example, in
[2, Sec. 1.4]

Further we shall need the structure of Cox rings of flag varieties. It
will be convenient to present flag varieties as the quotient spaces G/P−,
where P− is a parabolic subgroup containing the Borel subgroub B−

which is opposite to B; in other words, the tangent algebra p− contains
all the root spaces corresponding to the negative roots.

Let I = {αi1 , . . . , αir} ⊂ ∆ be a nonempty subset of the simple
root system, let P = PI be the corresponding parabolic subgroup, and
let P− = P−I be the opposite to PI parabolic subgroup. It is well
known (see, for example, [11]) that the Picard group Pic(G/P−) ∼=
Zr is freely generated by the classes of Schubert divisors, i.e. by the
classes of Schubert varieties of codimension one. These divisors form
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the set of all B-invariant prime divisors on G/P−; they have the form

Dik = BsikP
−/P−, where αik ∈ I and sik is the simple reflection

corresponding to root αik .
Let D =

∑
mikDik ∈ Pic(G/P−I ), let λ =

∑
mikωik be the weight of

the canonical section of the bundle O(D). Then H0(G/P−I ,O(D)) ∼=
Vλ, if mi1 , . . . ,mir ≥ 0, and zero otherwise. Hence,

R(G/P−) '
⊕

λ=mi1ωi1+...+mirωir
mi1 ,...,mir>0

Vλ.

Now consider the double flag variety X = G/P− × G/Q−, where
P = PI , Q = PJ , I = {αi1 , . . . , αir}, J = {αj1 , . . . , αjt}. Its Picard
group is freely generated by the preimages of the Schubert divisors on
G/P− and G/Q− under the canonical projections X → G/P− and
X → G/Q− respectively. The Cox ring of the double flag variety X
can be presented as follows:

R(X) = R(G/P−)⊗R(G/Q−) '
⊕

λ=mi1ωi1+...+mirωir , mi1 ,...,mir>0
µ=nj1ωj1+...+njtωjt , nj1 ,...,njt>0

Vλ⊗Vµ.

It is multigraded with the multidegree given by an integer (r+t)-vector.

3.3. Decomposition of tensor products of irreducible represen-
tations. In this section we show how the algebras of U -invariants in
the Cox rings of double flag varieties allow us to decompose tensor
products of irreducible G-modules. We follow the exposition from the
papers [42] and [43].

Let a ring A be graded by an abelian group E; then by Aρ we denote
the homogeneous component of A corresponding to an element ρ ∈ E.

Let X = G/P− × G/Q−, with P = PI , Q = PJ , I = {αi1 , . . . , αir},
J = {αj1 , . . . , αjt}. Let λ =

∑
mikωik , µ =

∑
njlωjl . Then the sub-

module Vλ ⊗ Vµ ⊂ R(X) consists of the multihomogeneous elements
of multidegree (mi1 , . . . ,mir , nj1 , . . . , njt) =: (m̄, n̄), so it coicides with
R(X)(m̄,n̄).

The multiplicity of occurence of Vν in Vλ⊗Vµ is equal to the dimen-

sion of the space (Vλ ⊗ Vµ)Uν of U -invariants that have the weight ν
with respect to the action of the torus T . This space can be identified
with the subspace. So,

Vλ ⊗ Vµ ' R(X)(m̄,n̄) '
⊕
ν

V ⊕d(m̄,n̄,ν)
ν ,

where d(m̄, n̄, ν) = dimR(X)U(m̄,n̄),ν .

In the following cases the dimensions d(m̄, n̄, ν) and d(m̄, ν) occur-
ing in the tensor product decomposition rules can be easily computed.
Theorem 3.7 below implies that these cases include the cases of com-
plexity 0 and 1.
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Theorem 3.5. Let X = G/P− ×G/Q−, where P = PI , Q = PJ , I =
{αi1 , . . . , αir}, J = {αj1 , . . . , αjt}. Let λ =

∑
mikωik , µ =

∑
njlωjl

and (m̄, n̄) := (mi1 , . . . ,mir , nj1 , . . . , njt).
Suppose that the algebra R(X)U is free, with elements of its minimal

system of generators of weights ν1, . . . , νd and multidegrees (m̄1, n̄1), . . . , (m̄d, n̄d).
Then the following decomposition holds:

Vλ ⊗ Vµ '
⊕

k1(m̄1,n̄1)+...+kd(m̄d,n̄d)=(m̄,n̄)

Vk1ν1+...+kdνd

Proof. This is obviously implied by the statements above. �

Theorem 3.6. Let X, λ, µ, (m̄, n̄) be as in Theorem 3.5, and the
algebra R(X)U is a hypersurface (i.e. its generators satisfy a unique
relation), with the weights and the multidegrees of its minimal system of
homogeneous generators equal to ν1, . . . , νd and (m̄1, n̄1), . . . , (m̄d, n̄d)
respectively, and let the defining relation be of the weight ν0 and the
multidegree (m̄0, n̄0). Then the following decomposition holds:

(3.1) Vλ ⊗ Vµ '
⊕

k1(m̄1,n̄1)+...+kd(m̄d,n̄d)=(m̄,n̄)

Vk1ν1+...+kdνd −

−
⊕

l1(m̄1,n̄1)+...+ld(m̄d,n̄d)=(m̄,n̄)−(m̄0,n̄0)

Vν0+l1ν1+...+ldνd

By the “difference” of two representations we mean a representation
such that the multiplicity of the occurence of each irreducible Vν is equal
to the difference of the multiplicities of occurence of Vν in these two
representations.

Proof. Consider the following exact sequence:

0→ (F1)
ϕ1→ C[t1, . . . , td]

ϕ2→ R(X)U → 0,

where F1 is the defining relation, ϕ1 is a natural embedding, ϕ2(ti) = fi.
We introduce the following Zr+t+l-grading on the polynomial algebra
C[t1, . . . , td], where l = rkG: assign to each variable ti multidegree
(m̄i, n̄i) and weight νi. Then the maps ϕ1 and ϕ2 preserve the grading.
The multiplicity of occurence of Vν in Vλ ⊗ Vµ equals dimR(X)U(m̄,n̄),ν ,
the multiplicity of its occurence in the first factor of the right-hand side
of the isomorphism (3.1) equals dimC[t1, . . . , td](m̄,n̄),ν , while its mul-
tiplicity of occurence in its second factor (3.1) equals dim (F1)(m̄,n̄),ν .

Since the sequence is exact, we have dimR(X)U(m̄,n̄),ν = dimC[t1, . . . , td](m̄,n̄),ν−
dim (F1)(m̄,n̄),ν . The theorem is proven. �

3.4. U-invariants in the Cox rings of double flag varieties.

Theorem 3.7 ([42], [43]). Let X = G/P− × G/Q− be of complex-
ity 0 or 1, with P− and Q− parabolic subgroups of a simple group G,
containing the Borel subgroup B− and opposite to P and Q. Let P
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and Q correspond to subsets I = {αi1 , . . . , αir}, J = {αj1 , . . . , αjt} of
simple roots. Then the algebra R(X)U is generated by the elements of
weights and multidegrees listed in Tables 4 and 5 and by elements of
the corresponding fundamental weights ωi1 , . . . , ωir , ωj1 , . . . , ωjt of mul-
tidegrees (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) respectively. If
X is of complexity 0, these elements freely generate R(X)U . If X is of
complexity 1, in Table 5 we list the number of relations on these ele-
ments (there is either one or none), the weight and the multidegree of
the relation. If the relation occurs, it is of the following form: the sum
of all monomials oft the given weight and multidegree in the generators
equals 0.

This classification theorem implies the following corollary

Corollary 3.8. (1) Let X be a spherical double flag variety. Then
the algebra R(X)U is free.

(2) Let X be a double flag variety of complexity 1. Then R(X)U is
either free or a hypersurface.

Remark 3.9. Some particular cases of this corollary were known ear-
lier: part (1) was obtained by Littelmann in [31]). The algebra of
U -invariants of R(X) for X of complexity one, corresponding to the
product of two flag varieties for maximal parabolic subgroups, was
computed by Panyushev [38].

Table 4: Weights and multidegrees of generators for the
U -invariant subalgebra in the Cox ring for complexity 0

I J degree weight
SLn

αi αj (1, 1) ωi−k + ωj+k, k = 1, . . . ,min{i, n− j}
i 6 j

αi α1, αj (1, 1, 0) ωi+1

i 6 j (1, 0, 1) ωi−k + ωj+k, k = 1, . . . ,min{i, n− j}
(1, 1, 1) ωi−k+1 + ωj+k

k = max{1, 2− (j − i)}, . . . ,min{i− 1, n− j}
αi α1, αj (1, 1, 0) ωi+1

i > j (1, 0, 1) ωi+k + ωj−k, k = 1, . . . ,min{j, n− i}
(1, 1, 1) ωi+k + ωj−k+1, k = 2, . . . ,min{j − 1, n− i}

αi αj, αj+1 (1, 1, 0) ωi+k + ωj−k, k = 1, . . . ,min{j, n− i}
i > j + 1 (1, 0, 1) ωi+k + ωj−k+1, k = 1, . . . ,min{j + 1, n− i}

α2 αi, αj (1, 1, 0) ω1 + ωi+1, ωi+2

i > j (1, 0, 1) ω1 + ωj+1, ωj+2

i, j − i, n− j > 2 (1, 1, 1) ωi+1 + ωj+1
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α1 αi1 , . . . , αis (1, 1, 0, 0, . . . , 0) ωi1+1

(1, 0, 1, 0, . . . , 0) ωi2+1

. . . . . .
(1, 0, 0, 0, . . . , 1) ωis+1

Sp2l, (l > 2)
α1 αi (1, 1) ωi−1, ωi+1

i 6 l − 1 (2, 1) ωi for i > 1
α1 αl (1, 1) ωl−1

(2, 1) ωl
αl αl (1, 1) 2ωk, k = 0, . . . , l − 1

SO2l, (l > 4)
α1 αi (1, 1) ωi−1, ωi+1

i 6 l − 3 (2, 1) ωi for i > 1
α1 αl−2 (1, 1) ωl−3, ωl−1 + ωl

(2, 1) ωl−2

α1 αl−1 (1, 1) ωl
α2 αl (1, 1) ω1 + ωl−1, ωl

(1, 2) ωl−2

α3 αl (1, 1) ω1 + ωl, ω2 + ωl−1, ωl−1

l > 6 (1, 2) ω1 + ωl−2, ωl−3

(2, 2) ω2 + ωl−2

αl−1 αl (1, 1) ωl−2k−1, k = 1, . . . , [ l−1
2

]
αl αl (1, 1) ωl−2k, k = 1, . . . , [ l

2
]

α1 αi, αl (1, 1, 0) ωi−1, ωi+1

i 6 l − 3 (2, 1, 0) ωi for i > 1
(1, 0, 1) ωl−1

α1 αl−2, αl (1, 1, 0) ωl−3, ωl−1 + ωl
(2, 1, 0) ωl−2

(1, 0, 1) ωl−1

α1 αl−1, αl (1, 1, 0) ωl
(1, 0, 1) ωl−1

(1, 1, 1) ωl−2

αl α1, α2 (1, 1, 0) ωl−1

(1, 0, 1) ω1 + ωl−1, ωl
(2, 0, 1) ωl−2

αl α1,αl−1 (1, 1, 0) ωl−1

(1, 0, 1) ωl−2k−1, k = 1, . . . , [ l−1
2

]
(1, 1, 1) ωl−2k, k = 1, . . . , [ l−2

2
]

αl α1,αl (1, 1, 0) ωl−1

(1, 0, 1) ωl−2k, k = 1, . . . , [ l
2
]

(1, 1, 1) ωl−2k+1, k = 2, . . . , [ l−1
2

]
αl αl−1,αl (1, 1, 0) ωl−2k−1, k = 1, . . . , [ l−1

2
]

(1, 0, 1) ωl−2k, k = 1, . . . , [ l
2
]
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SO8

α4 α2,α3 (1, 1, 0) ω1 + ω3, ω4

(2, 1, 0) ω2

(1, 0, 1) ω1

SO10

α3 α5 (1, 1) ω1 + ω5, ω2 + ω4, ω4

(1, 2) ω1 + ω3, ω2

SO2l+1, (l > 3)
α1 αi (1, 1) ωi−1, ωi+1

i 6 l − 2 (2, 1) ωi for i > 1
α1 αl−1 (1, 1) ωl−2, 2ωl

(2, 1) ωl−1

α1 αl (1, 1) ωl
(1, 2) ωl−1

αl αl (1, 1) ωk, k = 0, . . . , l − 1
E6

α1 α1 (1, 1) ω2, ω5

α1 α2 (1, 1) ω1 + ω5, ω3, ω6

(2, 1) ω2 + ω5, ω4

α1 α4 (1, 1) ω2, ω5, ω5 + ω6

(2, 1) ω3, ω6

α1 α5 (1, 1) 0, ω6

α1 α6 (1, 1) ω1, ω4

(2, 1) ω2

α1 α1, α5 (1, 1, 0) ω2, ω5

(1, 0, 1) 0, ω6

(1, 1, 1) ω4

E7

α1 α1 (1, 1) 0, ω2, ω6

α1 α6 (1, 1) ω1, ω7

(2, 1) ω2

α1 α7 (1, 1) ω2, ω5, ω6

(2, 1) ω3, ω7

(2, 2) ω4

Table 5: Weights and multidegrees of generators for the
U -invariant subalgebra in the Cox ring for complexity 1

I J degree weight relations
SLn
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α2 αi, αj, αm (1, 1, 0, 0) ω2−k + ωi+k, k = max{1, 3− i}, . . . , 2 (2, 1, 1, 1)
i < j < m (1, 0, 1, 0) ω1 + ωj+1, ωj+2 ω1 + ωi+1 + ωj+1+

(1, 0, 0, 1) ω2−k + ωm+k, k = 1, . . . ,min{2, n−m} +ωm+1

(1, 1, 1, 0) ωi+1 + ωj+1 for j − i > 1 1 relation
(1, 1, 0, 1) ωi+1 + ωm+1

(1, 0, 1, 1) ωj+1 + ωm+1 for m− j > 1
αi α1,α2,α3 (1, 1, 0, 0) ωi+1 (2, 1, 1, 1)
i, n− i > 3 (1, 0, 1, 0) ω1 + ωi+1, ωi+2 ω1 + ω2 + ωi+1+

(1, 0, 0, 1) ω1 + ωi+2, ω2 + ωi+1, ωi+3 +ωi+2

(1, 1, 0, 1) ω2 + ωi+2 1 relation
αi α1,α2,αn−1 (1, 1, 0, 0) ωi+1 (2, 1, 1, 1)
i, n− i > 3 (1, 0, 1, 0) ω1 + ωi+1, ωi+2 ω1 + ωi + ωi+1

(1, 0, 0, 1) ωi−1 1 relation
(1, 1, 0, 1) ωi
(1, 0, 1, 1) ω1 + ωi, ωi+1

α3 αi, αj (1, 1, 0) ω3−k + ωi+k, k = max{1, 4− i}, . . . , 3 (3, 2, 2)
i, j − i, n− j > 2 (1, 0, 1) ω3−k + ωj+k ω1 + ω2 + ωi+1+

k = 1, . . . ,min{3, j − i} +ωi+2 + ωj+1 + ωj+2

(1, 1, 1) ω1 + ωi+1 + ωj+1, ωi+k + ωj+3−k 1 relation
k = 1, . . . ,min{2, j − i− 1}

(2, 1, 1) ω2 + ωi+2 + ωj+2

αi α2,α4 (1, 1, 0) ω1 + ωi+1, ωi+2 (3, 2, 2)
i, n− i > 4 (1, 0, 1) ω1 + ωi+3, ω2 + ωi+2, ω3 + ωi+1, ωi+4 ω1 + ω2 + ω3+

(1, 1, 1) ω1 + ω3 + ωi+2, ω3 + ωi+3 +ωi+1 + ωi+2 + ωi+3

(2, 1, 1) ω2 + ωi+1 + ωi+3 1 relation
αi α2,αn−2 (1, 1, 0) ω1 + ωi+1, ωi+2 (3, 2, 2)
i, n− i > 4 (1, 0, 1) ωi−1 + ωn−1, ωi−2 ω1 + ωi−1 + ωi+

(1, 1, 1) ω1 + ωi−1, ω1 + ωi + ωn−1 +ωi+1 + ωn−1

ωi+1 + ωn−1, ωi 1 relation
(2, 1, 1) ωi−1 + ωi+1

αi,αj α1,α2 (1, 0, 1, 0) ωi+1 (1, 1, 1, 1)
(1, 0, 0, 1) ω2−k + ωi+k, k = max{1, 3− i}, . . . , 2 ω1 + ωi+1 + ωj+1

(0, 1, 1, 0) ωj+1 1 relation
(0, 1, 0, 1) ω2−k + ωj+k

k = 1, . . . ,min{2, n− j}
(1, 1, 0, 1) ωi+1 + ωj+1 for j − i > 1

αi,αj α1,αn−1 (1, 0, 1, 0) ωi+1 (1, 1, 1, 1)
(1, 0, 0, 1) ωi−1 ωi + ωj
(0, 1, 1, 0) ωj+1 for j − i > 1
(0, 1, 0, 1) ωj−1 no relations;
(1, 0, 1, 1) ωi for i > 1 for j − i = 1
(0, 1, 1, 1) ωj for n− j > 1 1 relation

Sp2l, (l > 2)
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αl α2 (1, 1) ω1 + ωl−1, ωl−2 (3, 4)
l > 4 (1, 2) ω1 + ωl−1, 2ω1 + ωl, ωl 2ω1 + 2ωl−1 + ωl

(2, 2) 2ωl−1 1 relation
α1 αi, αl (1, 1, 0) ωi−1, ωi+1 (2, 1, 1)

(2, 1, 0) ωi for i > 1 ωi + ωl
(1, 0, 1) ωl−1 for l − i > 1
(2, 0, 1) ωl no relations;

for l − i = 1
1 relation

α1 αi, αj (1, 1, 0) ωi−1, ωi+1 (2, 1, 1)
i < j < l (2, 1, 0) ωi for i > 1 ωi + ωj

(1, 0, 1) ωj−1, ωj+1 for j − i > 1
(2, 0, 1) ωj no relations;

for j − i = 1
1 relation

Sp4

α2 α1 (1, 1, 0) ω1 (2, 1, 1)
(1, 2, 0) ω2 2ω1 + ω2

(1, 0, 1) 0, 2ω1 1 relation
Sp6

α3 α2 (1, 1) ω1, ω1 + ω2 (3, 4)
(1, 2) 2ω1 + ω3, ω3 2ω1 + 2ω2 + ω3

(2, 2) 2ω2 1 relation
SO2l, (l > 4)

α1 αi,αj (1, 1, 0) ωi−1, ωi+1 (2, 1, 1)
i < j < l − 2 (2, 1, 0) ωi for i > 1 ωi + ωj

(1, 0, 1) ωj−1, ωj+1 for j − i > 1
(2, 0, 1) ωj no relations;

for j − i = 1
1 relation

α1 αi,αl−2 (1, 1, 0) ωi−1, ωi+1 (2, 1, 1)
i < l − 2 (2, 1, 0) ωi for i > 1 ωi + ωl−2

(1, 0, 1) ωl−3, ωl−1+ωl for l − 2− i > 1
(2, 0, 1) ωl−2 no relations;

for l − 2− i = 1
1 relation

α1 αi,αj,αl (1, 1, 0, 0) ωi−1, ωi+1 (2, 1, 1, 0)
i < j < l − 2 (2, 1, 0, 0) ωi for i > 1 ωi + ωj

(1, 0, 1, 0) ωj−1, ωj+1 for j − i > 1
(2, 0, 1, 0) ωj no relations;
(1, 0, 0, 1) ωl−1 for j − i = 1

1 relation
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α1 αi,αl−2,αl (1, 1, 0, 0) ωi−1, ωi+1 (2, 1, 1, 0)
i < l − 2 (2, 1, 0, 0) ωi for i > 1 ωi + ωl−2

(1, 0, 1, 0) ωl−3, ωl−1+ωl for l − 2− i > 1
(2, 0, 1, 0) ωl−2 no relations;
(1, 0, 0, 1) ωl−1 for l − 2− i = 1

1 relation
α1 αi,αl−1,αl (1, 1, 0, 0) ωi−1, ωi+1 (2, 1, 1, 1)

i < l − 1 (2, 1, 0, 0) ωi for i > 1 ωi + ωl−1 + ωl
(1, 0, 1, 0) ωl for l − 1− i > 1
(1, 0, 0, 1) ωl−1 no relations;
(1, 0, 1, 1) ωl−2 for l − 1− i = 1

1 relation
SO8

α4 α2,α4 (1, 1, 0) ω1 + ω3, ω4 (2, 1, 1)
(2, 1, 0) ω2 ω2 + ω4

(1, 0, 1) 0, ω2 1 relation
α4 α1,α3,α4 (1, 1, 0, 0) ω3 (2, 1, 1, 1)

(1, 0, 1, 0) ω1 ω1 + ω3 + ω4

(1, 0, 0, 1) 0, ω2 no relations
(1, 1, 1, 0) ω2

α4 α2,α3,α4 (1, 1, 0, 0) ω1 + ω3, ω4 (2, 1, 0, 1)
(2, 1, 0, 0) ω2 ω2 + ω4

(1, 0, 1, 0) ω1 1 relation
(1, 0, 0, 1) 0, ω2

α4 α1,α2,α4 (1, 1, 0, 0) ω3 (2, 0, 1, 1)
(1, 0, 1, 0) ω1 + ω3, ω4 ω2 + ω4

(2, 0, 1, 0) ω2 1 relation
(1, 0, 0, 1) 0, ω2

α4 α1,α2,α3 (1, 1, 0, 0) ω3 (2, 1, 1, 1)
(1, 0, 1, 0) ω1 + ω3, ω4 ω1 + ω2 + ω3

(2, 0, 1, 0) ω2 1 relation
(1, 0, 0, 1) ω1

(1, 1, 0, 1) ω2

SO10

α5 α2,α5 (1, 1, 0) ω1 + ω4, ω5 (2, 1, 1)
(2, 1, 0) ω3 ω3 + ω5

(1, 0, 1) ω1, ω3 1 relation
(1, 1, 1) ω3

(2, 1, 1) ω2 + ω4

α5 α2,α4 (1, 1, 0) ω1 + ω4, ω5 (2, 1, 1)
(2, 1, 0) ω3 ω2 + ω5

(1, 0, 1) 0, ω2 no relations
(1, 1, 1) ω1 + ω3
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α5 α3,α5 (1, 1, 0) ω1 + ω5, ω2 + ω4, ω4 (2, 1, 1)
(2, 1, 0) ω1 + ω3, ω2 ω1 + ω3 + ω5

(1, 0, 1) ω1, ω3 1 relation
α5 α3,α4 (1, 1, 0) ω1 + ω5, ω2 + ω4, ω4 (2, 1, 1)

(2, 1, 0) ω1 + ω3, ω2 ω2 + ω4

(1, 0, 1) 0, ω2 1 relation
SO12

α4 α6 (1, 1) ω1 + ω5, ω2 + ω6, ω3 + ω5, ω6 (2, 3)
(1, 2) ω1 + ω3, ω2, ω2 + ω4, ω4 ω2 + ω4 + ω6

1 relation
SO2l+1, (l > 3)

α2 αl (1, 1) ω1+ωl, ωl (2, 3)
l > 4 (1, 2) ω1+ωl−1, ωl−2, ωl−1 ω1 + ωl−1 + ωl

(2, 2) ω1+ωl−1 1 relation
α1 αi,αj (1, 1, 0) ωi−1, ωi+1 (2, 1, 1)
i < j < l − 1 (2, 1, 0) ωi for i > 1 ωi + ωj

(1, 0, 1) ωj−1, ωj+1 for j − i > 1
(2, 0, 1) ωj no relations;

for j − i = 1
1 relation

α1 αi,αl−1 (1, 1, 0) ωi−1, ωi+1 (2, 1, 1)
i < l − 1 (2, 1, 0) ωi for i > 1 ωi + ωl−1

(1, 0, 1) ωl−2, 2ωl for l − 1− i > 1
(2, 0, 1) ωl−1 no relations;

for l − 1− i = 1
1 relation

α1 αi,αl (1, 1, 0) ωi−1, ωi+1 (2, 1, 2)
(2, 1, 0) ωi for i > 1 ωi + 2ωl
(1, 0, 1) ωl for l − i > 1
(1, 0, 2) ωl−1 no relations;

for l − i = 1
1 relation

SO7

α2 α3 (1, 1) ω1+ω3, ω3 (2, 3)
(1, 2) ω1+ω2, ω1, ω2 ω1 + ω2 + ω3

1 relation
E6

α1 α1, α2 (1, 1, 0) ω2, ω5 (2, 1, 1)
(1, 0, 1) ω1 + ω5, ω3, ω6 ω1 + ω2 + ω5

(2, 0, 1) ω2 + ω5, ω4 1 relation
α1 α1, α6 (1, 1, 0) ω2, ω5 (2, 1, 1)

(1, 0, 1) ω1, ω4 ω1 + ω2

(2, 0, 1) ω2 no relations
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(2, 1, 1) ω3

α1 α4, α5 (1, 1, 0) ω2, ω5, ω5 + ω6 (2, 1, 1)
(2, 1, 0) ω3, ω6 ω5 + ω6

(1, 0, 1) 0, ω6 1 relation
α1 α5, α6 (1, 1, 0) 0, ω6 (2, 1, 1)

(1, 0, 1) ω1, ω4 ω1 + ω6

(2, 0, 1) ω2 no relations
(1, 1, 1) ω3

E7

α1 α2 (1, 1) ω1, ω1 + ω6, ω3, ω7 (3, 2)
(2, 1) ω2, ω2 + ω6, ω5, ω6 ω1 + ω2 + ω6

1 relation

4. Orbits of a Borel subgroup on a multiple flag variety

As we discussed earlier in Subsection 2.1, the orbits of a Borel sub-
group B on a flag variety G/P are nothing but Schubert cells. They
are indexed by the cosets in the Weyl group W/W I ; one Schubert cell
lies in the closure of another one if and only if the corresponding Weyl
group elements are comparable with respect to the Bruhat order. More-
over, the closures of these orbits (they are called Schubert varieties) are
normal, Cohen–Macaulay and have rational singularities.

Now consider the set of B-orbits on an arbitrary spherical multiple
flag variety. One can ask similar questions: how to describe this set
combinatorially? When does one orbit belong to the closure of another
orbit? What can be said about the geometry of these closures, in
particular, on their singular loci?

The answers for these questions are known only for several spherical
multiple flag varieties. We present these results in this section.

4.1. The direct product of two Grassmannians. Let the group
G = GL(n) act on the direct product of two Grassmannians X =
Gr(k, n) × Gr(l, n). We already know that the variety X is spherical
(see Theorem 3.1). Our next goal is to get a combinatorial description
of B-orbits on X.

The group G is diagonally embedded into the direct product G×G,
with each copy of G acting on the corresponding Grassmannian. The
orbits of a Borel subgroupB×B ⊂ G×G are easy to describe: each such
orbit is the direct product of two Schubert cells Cα ×Cβ ⊂ Gr(k, n)×
Gr(l, n), where (α, β) is a pair of Young diagrams dominated by the
rectangles of size k × n− k and l × n− l, respectively.

Further we will describe how is a (B×B)-orbit Cα×Cβ decomposed
into B-orbits.

Let α = (α1, . . . , αk) be a Young diagram, with n− k ≥ α1 ≥ · · · ≥
αk ≥ 0. It corresponds to a “bit string”: a sequence of zeroes and ones
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a = (a1, . . . , an) in the following way:

ai =

{
1, i = αk + 1, αk−1 + αk + 2, . . . , α1 + · · ·+ αk + k,

0 otherwise.

This sequence can be interpreted in the following way: the (lower)
boundary of a Young diagram located inside a rectangle of size k×n−k
is a broken line going from the lower-left into the upper-right corner of
the rectangle. The i-th segment of this broken line is vertical if ai = 1
and horizontal otherwise. So the bit string consists of k ones and n−k
zeroes.

Similarly we can consider the bit string b = (b1, . . . , bn) correspond-
ing to the diagram β ⊂ l × n − l. It consists of l ones and m − l
zeroes.

Definition 4.1. Let a,b be two bit strings of length n. We shall say
that an involutive permutation w ∈ Sn, w2 = Id, is consistent with the
pair (a,b) if for each i < n such that w(i) > i we have ai = bi = 0 and
aw(i) = bw(i) = 1.

Theorem 4.2 ([52], cf. also [34]). There is a bijection between the B-
orbits O ⊂ Cα × Cβ and involutive permutations w ∈ Sn, consistent
with the pair (a,b).

Let us introduce the notion of the common part of the pair (a,b).
It is a bit string c(a,b) = (ai1 , . . . , air), such that i1, . . . , ir are the
indices corresponding to the equal entries of the sequences a and b:
ai1 = bi1 , . . . , air = bir . The length of c can be arbitrary, not exceeding
n (in particular, c can be empty).

Definition 4.3. The common diagram for the Young diagrams α and
β corresponding to bit strings a and b is the diagram c(λ, µ) which
corresponds to the bit string c(a,b).

Example 4.4. Let n = 9, k = 4, l = 3. Consider α = (5, 3, 3, 2), β =
(6, 3, 1). Then a = (0, 0, 1, 0, 1, 1, 0, 0, 1), b = (0, 1, 0, 0, 1, 0, 0, 0, 1).
The bit strings a and b coincide in the positions 1, 2, 4, 5, 7, 8, 9; hence
c(a,b) = (0, 0, 1, 0, 0, 1) and c(α, β) = (4, 2).

Let w = (i1, j1) . . . (is, js) be an involutive permutation presented as
the product of independent transpositions, with it < jt, and consistent
with the pair (a,b). The latter condition means that ai1 = bi1 = · · · =
ais = bis = 0, aj1 = bj1 = · · · = ajs = bjs = 1.

Involutive permutations that are consistent with a given pair (a,b)
can be represented in the following way. Let us put marks (say, dots)
into the boxes of the common Young diagram c(α, β) which correspond
to the pairs (i1, j1), . . . , (is, js). It turns out that no two marked boxes
appear in the same row or in the same column. So we get a rook
placement : each marked box of the Young diagram can be interpreted
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as a chess field occupied by a rook in such a way that no two rooks
attack each other.

Example 4.5. The figure shows the Young diagrams α, β from Exam-
ple 4.4 and their common diagram c(α, β) with marked boxes corre-
sponding to the permutation w = (2, 4)(7, 9).

•
•

4.2. Order on B-orbits in a given (B × B)-orbit. Let (a,b) be a
pair of bit strings. It defines a (B × B)-orbit in Gr(k, V ) × Gr(l, V ),
i.e. the product of two Schubert cells Cα × Cβ. This (B × B)-orbit
is decomposed into B-orbits; these are indexed by the involutive per-
mutations consistent with the pair (a,b). Let w, v ∈ Sn be two such
permutations, and letOw,Ov ⊂ Cα×Cβ be the corresponding B-orbits.
We give a criterion of inclusion of their closures: Ow ⊂ Ov.

Consider the set of involutive permutations from Sn (not necessarily
consistent with (a,b). To each such permutation w ∈ Sn we can assign
its rank matrix R(w) = (rij(w)). This is a strictly upper-triangular
(n×n)-matrix with nonnegative integer entries defined by the following
rule:

rij(w) =

{
#{k ≤ n | i ≤ w(k) < k ≤ j}, i < j;

0 otherwise.

The identity permutation corresponds to the zero rank matrix.

Example 4.6. Let w = (13)(26)(47) ∈ S7; then

R(w) =



0 0 1 1 1 2 3
0 0 0 0 0 1 2
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


Let us introduce a partial order � on the involutive permutation

(this order has nothing to do with the Bruhat order) by the following
rule: w � v if and only if rij(w) ≤ rij(v) for each 1 ≤ i < j ≤ n. This
order has a unique minimal element, namely, the identity permutation;
for n ≤ 3 there is more than one maximal element.

Theorem 4.7. [53] Let Ow, Ov be two B-orbits belonging to the same
(B×B)-orbit in the product of two Grassmannians. Then Ow ⊂ Ov if
and only if w � v.
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The same order on involutive permutations appears in the works by
Anna Melnikov on nilpotent upper-triangular matrices with the zero
square. Namely, let X = {x ∈ n ⊂ gln(C) | x2 = 0} be the variety
of such matrices. Then the group of upper-triangular matrices Bn ⊂
GLn(C) acts on X by conjugations. This action has finitely many
orbits. As it is shown in [36], [37], these orbits are indexed by the
involutive permutations in Sn. The inclusion order on these orbits is
the same: one orbit lies in the closure of another one if and only if the
corresponding permutations are comparable with respect to the order
�. An equivalent description of this order was obtained independently
by Allen Knutson and Paul Zinn-Justin, see [27, Sec. 2].

4.3. Weak order on B-orbit closures. Our next goal is to construct
resolutions of singularities for B-orbit closures in double Grassmanni-
ans. For this we shall use our explicit combinatorial description of these
orbits.

First let us state some general facts on spherical varieties. Let X
be a spherical G-variety, let Y be a B-orbit closure. Take a simple
root α ∈ ∆ and consider the corresponding minimal parabolic group
Pα = B ∪ BsαB. The codimension of B in Pα is equal to 1, and
Pα/B ∼= P1. We distinguish between the two cases: either PαY = Y or
PαY = Y ′, where dimY ′ = dimY + 1. Suppose the second alternative
holds. In this case we shall say that the simple root α raises the orbit
closure Y to the orbit closure Y ′. This relation can be extended to a
partial order relation on the set of B-orbit closures (or, equivalently,
B-orbits) on X. We will refer to this order as to the weak order.

Definition 4.8. We shall say that an orbit closure Y is less than or
equal to Y ′ in the sense of the weak order (notation: Y � Y ′), if there
exists a sequence of minimal parabolic subgroups Pα1 , . . . , Pαr such that
Y ′ = Pαr . . . Pα1Y .

Remark 4.9. If X = G/B is a full flag variety, the weak order on X
coincides with the weak order on the Weyl group W , defined in Sub-
section 2.3: if w = siv, then for the corresponding Schubert varieties
Xw = PαiXv.

It is clear that Y � Y ′ implies Y ⊆ Y ′. The converse is false: for
example, if two B-orbit closures are compatible with respect to the
weak order, the corresponding B-orbits must belong to the same G-
orbit, while for the usual inclusion (or degeneration) order this is not
necessarily true. This explains the term “weak order”.

4.4. Parabolic induction and Bott–Samelson resolutions. Take
two B-orbit closures Y and Y ′ such that Y ′ = PαY , i.e. Y raises to
Y ′ by minimal parabolic subgroup Pα. Consider a B-equivariant fiber
bundle

Pα ×B Y = {(p, y) | p ∈ Pα, y ∈ Y }/(p, y) ∼ (pb−1, by), b ∈ B.
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This is a fiber bundle over P1 with the fiber Y ; the projection to the
base map is just the projection onto the first factor: (p, x) 7→ pB.

Further, there is a map from Pα ×B Y to Y ′:

πα,Y : Pα ×B Y → Y ′, (p, y) 7→ py.

Obviously,this map is a B-equivariant morphism of algebraic varieties.
The following statement is a standard fact from the theory of spher-

ical varieties (see [46], [26, Lemma 3.2], [9]).

Theorem 4.10. The map πα,Y : Pα ×B Y → Y ′ is either birational or
generically two-to-one (the preimage of a general point consists of two
points).

It turns out that for certain classes of spherical varieties the map
πα,Y is always birational. Sometimes it allows us to construct reso-
lutions of singularities for the orbit closures. First this approach was
applied to Schubert varieties in flag varieties in the paper [6] by Raoul
Bott and Hans Samelson; an algebraic reformulation is due to Michel
Demazure [15] and H. C. Hansen [22]. Namely, the following statement
holds.

Proposition 4.11 (see, for example, [12][Sec. 2.1]). Let X = G/P be
a flag variety. Then

(1) Ymin = eP ⊂ G/P is a unique minimal orbit for the weak order
on X;

(2) For each two Schubert varieties Y, Y ′ satisfying Y ′ = PαY the
map πα,Y is birational.

This proposition allows us to construct resolutions of singularities
for all orbit closures. Namely, let Y ⊂ X be a B-orbit closure. Since
Ymin � Y (the minimal orbit is unique, so it is less than any other
orbit), there exists a sequence of minimal parabolic subgroups such
that Y = Pαr . . . Pα1Ymin. According to the second part of the previous
proposition the following map from the iterated P1-bundle, denoted by
Z, into Y :

πα1,...,αr : Z = Pαr ×B Pαr−1 ×B · · · ×B Pα1 ×B Ymin → Y,

is birational. But Ymin consists of one point, so, in particular, it is a
smooth variety. So the iterated P1-bundle Z is smooth as well. We get
the following result.

Theorem 4.12. The map πα1,...,αr : Z → Y is a resolution of singular-
ities.

Remark 4.13. Generally speaking, the sequence of parabolic subgroups
raising Ymin to Y can be chosen in more than one way; so in such a
way we can get different resolutions of singularities. Moreover, we can
proceed in a more economic way by constructing fiber bundles having a
Grassmannian instead of P1 as their base. As it was shown by Andrei



Multiple flag varieties 27

Zelevinsky, if X = Gr(k, n), among these resolutions we can always
find so-called small resolutions of singularities. This allowed him to
give a geometric description of the Kazhdan–Lusztig polynomials, in
particular, to show their positivity. Details can be found in [58].

4.5. Double cominuscule flag varieties.

Definition 4.14. The minimal parabolic subgroup Pα associated to
the root α ∈ ∆ is said to be cominuscule if the root α appears in the
decomposition of the highest root with multiplicity 1. The fundamental
weight ω dual to α is called a cominuscule weight. In this case the flag
variety G/Pα is also said to be a cominuscule flag variety.

Here is the list of cominuscule weights and the corresponding flag
varieties for the simple algebraic groups:

An: All fundamental weights are cominuscule; G/Pk ∼= Gr(k, n+ 1).
Bn: ω1; the variety G/P1

∼= Q2n−1 is an odd-dimensional quadric;
Cn: ωn; the variety G/Pn ∼= LGr(n) is a Lagrangian Grassman-

nian;
Dn: ω1, ωn−1, ωn; the corresponding varieties are an even-dimensional

quadricG/P1 = Q2n−2 and orthogonal GrassmanniansG/Pn−1
∼=

G/Pn ∼= OGr(n).
E6: ω1, ω6; the corresponding variety is the Cayley (octonionic)

projective plane OP2;
E7: ω7; the variety is G/P7

∼= Gω(O3,O6) (see [45], [29]).

For the groups of type E8, F4, and G2 there are no cominuscule
weights.

Cominuscule flag varieties are remarkable due to several algebraic
and geometric properties. In particular:

• The unipotent radical of the subgroup Pα is abelian;
• The Bruhat order on the B-orbits on G/Pα is a distributive

lattice;
• The Levi subgroup in Pα acts in the tangent space to G/Pα at

the point ePα with finitely many orbits.

The classification theorem due to Peter Littelmann [31] (see also
Section 3 above) implies the following theorem.

Theorem 4.15. Each double cominuscule flag variety (i.e., the direct
product of two cominuscule flag varieties) is spherical with respect to
the diagonal action of G.

The paper [1] by Piotr Achinger and Nicolas Perrin is devoted to the
study of the geometry of B-orbit closures on double cominuscule flag
varieties. The main result of this paper is the following theorem.

Theorem 4.16 ([1, Theorem 1]). Let G be a simply laced reductive
algebraic group (i.e., with the prime factors of types A, D, or E). Let
P,Q ⊂ G be two cominuscule parabolic subgroups containing a fixed
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Borel subgroup B ⊂ G, and X = G/P × G/Q. Then the closures
of B-orbits in X are normal Cohen–Macaulay varieties with rational
singularities.

If the group G has type A, a double cominuscule flag variety is the
direct product of two Grassmannians. In this case normality and ratio-
nality of singularities for its B-orbit closures was proven by Grzegorz
Bobiński and Grzegorz Zwara [3] by methods of the representation the-
ory of quivers.

To prove this result in the general case the authors study in detail the
structure of B-orbits on double cominuscule flag varieties and observe
the following two facts, which are of independent interest. For double
Grassmannians (of type A) they were observed in [52].

Proposition 4.17. The B-orbits on X that are minimal with respect to
the weak order are (B×B)-invariant, i.e., they are products of Schubert
varieties in G/P and G/Q.

Proposition 4.18. Let G be simply laced, i.e., let it have only the
prime factors of type A, D, E. Let Y and Y ′ be two B-orbit closures
in X = G/P × G/Q, comparable with respect to the weak order, with
dimY ′ = dimY + 1 (i.e. Y ′ = PαY for a minimal parabolic subgroup
Pα). Then the map P ×B Y → Y ′ is birational.

This proposition allows us to construct a resolution of singularities
for the B-orbit closures on X that is similar to the Bott–Samelson
resolution (Theorem 4.12).

Namely, let Y be the closure of some B-orbit. Consider the orbit
closure Ymin that is minimal with respect to the weak order, such that
Ymin � Y . In other words, there exists a sequence of minimal parabolic
subgroups such that Y = Pαr . . . Pα1Ymin. According to the previous
proposition, the map

πα1,...,αr : Pαr ×B Pαr−1 ×B · · · ×B Pα1 ×B Ymin → Y

is birational.
The difference with the case of flag varieties is as follows. First,

a minimal orbit that precedes a given one with respect to the weak
order, is not necessarily unique; second, the orbit closure Ymin may
be singular. However, according to Proposition 4.17, all the minimal
B-orbit closures Ymin are (B × B)-invariant, i.e., they are products
of Schubert varieties in G/P and G/Q. Taking the direct product
of Bott–Samelson resolutions for these varieties, we get a birational
isomorphism πmin : Zmin → Ymin with Zmin smooth. So the composition
map

Pαr ×B Pαr−1 ×B · · · ×B Pα1 ×B Zmin
Id×πmin→

Id×πmin→ Pαr ×B Pαr−1 ×B · · · ×B Pα1 ×B Ymin

πα1,...,αr→ Y
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is a birational isomorphism of a smooth variety and Y , i.e., a resolution
of singularities.

The construction of this resolution of singularities is a key step for the
proof of Theorem 4.16. The proof of normality, Cohen–Macaulayness
and rationality of singularities for the B-orbit closures is based on the
facts on spherical varieties given in the papers [9] and [10] and in general
is similar to the original proof of normality of the Schubert varieties in
G/P due to Seshadri (see [51] or, for instance, [12]).

The requirement for G to be simply laced is essential for Theo-
rem 4.16. Let G = Sp(3) act in the standard way on the space C6

with a nondegenerate skew-symmetric bilinear form, and let P be the
stabilizer of a maximal (three-dimensional) isotropic subspace in C6.
Then the variety G/P is a Lagrangian Grassmannian LGr(3, 6). In [1,
Prop. 5.1] the authors give an example of a B-orbit in G/P×G/P with
a nonnormal closure. For this variety Proposition 4.18 is also violated:
some of the maps P ×B Y → Y ′ have a two-point generic fibes, hence
they are not birational.

5. G-orbits on multiple flag varieties

5.1. Multiple flag varieties with finitely many G-orbits. In the
previous sections we were considering orbits of a Borel subgroup B ⊂ G
acting diagonally on the direct product of two flag varieties X =
G/P1 × G/P2. These orbits bijectively correspond to the orbits of
the group G acting diagonally on the direct product of three flag vari-
eties G/P1×G/P2×G/B; this correspondence preserves the inclusion
relation between the orbit closures. In other words, the variety X is
spherical if and only if the group G acts on X × G/B with finitely
many orbits.

This situation can be generalized: we can consider an arbitrary set of
flag varieties G/Pi instead of X×G/B. We get the following question:

Problem 5.1. For which tuples of parabolic subgroups (P1, . . . , Pr) does
the group G act on G/P1 × · · · ×G/Pr with finitely many orbits? How
to describe the orbits of this action in combinatorial terms?

The answer to this question was given for the groups GL(n) and
Sp(2n) by P. Magyar, J. Weyman, and A. Zelevinsky in [34], [35].
For an arbitrary reductive group, in particular for orthogonal groups,
classification of such tuples of parabolic subgroups is yet unknown.

The criterion of finiteness for the number of orbits on a multiple flag
variety of type A provided by Magyar, Weyman, and Zelevinsky uses
ideas and results from the quiver theory; this result is very similar to
the description of finite-type quivers due to P. Gabriel [21]. Let us
state it.

Definition 5.2. Denote by a composition of a nonnegative integer
n an ordered collection of nonnegative integers a = (a1, . . . , ap) such
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that their sum is equal to n. These numbers are called the parts of
the composition a. The smallest number of a1, . . . , ap is called the
minimum of a and denoted by min(a).

To each composition a corresponds a partial flag variety Fla of GL(n),
consisting of flags V1 ⊂ · · · ⊂ Vp ∼= Cn such that dimVi/Vi−1 = ai. We
shall say that a tuple of compositions (a1, . . . , ak) of a given number n
is of finite type if the group GL(n) acts diagonally on Fla1 × · · · × Flak
with finitely many orbits. Moreover, we shall refer to a one-component
composition as to a trivial one; it corresponds to a one-point flag vari-
ety. So we can suppose that all the compositions in a given tuple are
nontrivial.

Theorem 5.3. If a tuple of nontrivial compositions (a1, . . . , ak) is of
finite type, then k ≤ 3.

Sketch of the proof. Let us show that a quadruple of nontrivial com-
positions cannot have finite type. We shall do this for “the smallest”
quadruple, i.e., for four compositions (1, 1) of the number 2. In this
case the corresponding multiple flag variety is the product of four pro-
jective lines P1. Quadruples of points on P1 up to the action of GL(2)
are indexed by their cross-ratio, and it takes infinitely many values. �

So each finite-type tuple of compositions consists of at most three
components. Adding, if necessary, trivial ones, we can suppose that
there are exactly three of them. Denote them by (a,b, c). Let p, q,
r denote the number of parts in these compositions; without loss of
generality suppose that p ≤ q ≤ r.

Theorem 5.4. A triple of compositions (a,b, c) is of finite type if and
only if it belongs to one of the following classes:

Ap,q: (p, q, r) = (1, q, r), 1 ≤ q ≤ r;
Dr+2: (p, q, r) = (2, 2, r), 2 ≤ r;
E6: (p, q, r) = (2, 3, 3);
E7: (p, q, r) = (2, 3, 4);
E8: (p, q, r) = (2, 3, 5);

E
(a)
r+3: (p, q, r) = (2, 3, r), 3 ≤ r, min(a) = 2;

E
(b)
r+3: (p, q, r) = (2, 3, r), 3 ≤ r, min(b) = 1;

Sp,q: (p, q, r) = (2, q, r), 2 ≤ q ≤ r, min(a) = 1.

5.2. Description of orbits. In this subsection we give a combinato-
rial description of the set of GL(V )-orbits on Fla(V )×Flb(V )×Flc(V )
for each finite-type triple of compositions. For a compoition a =
(a1, . . . , ap) (possibly with zero parts) let us write

|a| = a1 + · · ·+ ap, ‖a‖2 = a2
1 + · · ·+ a2

p.

The number of parts p will be called the length of a composition and
denoted by `(a).
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For a given triple (p, q, r) denote by Λp,q,r an additive subgroup
formed by all triples of compositions (a,b, c), such that |a| = |b| =
|c| = n, (`(a), `(b), `(c)) = (p, q, r). Denote the Tits quadratic form by

Q(a,b, c) = dim GL(V )− dim Fla(V )− dim Flb(V )− dim Flc(V ),

where dimV = |a| = |b| = |c| = n. A simple computation shows that

Q(a,b, c) =
1

2
(‖a‖2 + ‖b‖2 + ‖c‖2 − n2).

Denote the set of “simple roots” Πp,q,r as the set of d = (a,b, c) satis-
fying Q(d) = 1.

The following theorem allows us to reduce the description of orbits
to a purely combinatorial problem.

Theorem 5.5. Let (a,b, c) ∈ Λp,q,r be a finite-type triple of compo-
sitions. Then GL(V )-orbits in Fla(V ) × Flb(V ) × Flc(V ) bijectively
correspond to tuples of nonnegative integers (md), such that d ∈ Πp,q,r,
satisfying the following identity in the semigroup Λp,q,r:

(a,b, c) =
∑

mdd.

The set Πp,q,r also has an explicit description. Let a be a composi-
tion. Denote by a+ the composition obtained from a by removing its
zero parts and rearranging the remaining parts in the decreasing order.
Denote (a, . . . , a︸ ︷︷ ︸

p times

) = (ap).

Theorem 5.6. A triple (a,b, c) ∈ Λp,q,r belongs to Πp,q,r if and only
if the triple (a+,b+, c+), considered up to a reordering, belongs to the
following list:

• {(1, 1, 1)};
• {(32), (23), (2, 1, 1, 1, 1)};
• {(4, 2), (23), (16)};
• {(m+ 1,m), (m,m, 1), (12m+1}, m ≥ 2;
• {(m,m), (m− 1,m, 1), (12m}, m ≥ 2;
• {(m− 1, 1), (1m), (1m)}, m ≥ 2.

Bijection in Theorem 5.5 has the following combinatorial interpre-
tation. Condider the following additive category Fp,q,r. Its objects are
families (V ;A,B,C), where V is a vector space, (A,B,C) is a triple
of flags in V belonging to the multiple flag variety Fla(V )× Flb(V )×
Flc(V ) for a certain (a,b, c) ∈ Λp,q,r. The collection (a,b, c) is called
the dimension vector of the corresponding object. A morphism from
(V ;A,B,C) to (V ′;A′, B′, C ′) is a linear map f : V → V ′ such that
f(Ai) ⊂ A′i, f(Bi) ⊂ B′i, f(Ci) ⊂ C ′i for each i; direct sums are defined
componentwise.

The category Fp,q,r can be considered as a subcategory in the cat-
egory of representations of a quiver Qp,q,r. This is a quiver with p +
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q+ r− 2 vertices formed into three branches of length p, q and r, with
all arrows oriented towards the central vertex. This category is defined
by the following condition: all the “arrows”, i.e., linear maps between
spaces in the vertices of the quiver, are embeddings. This is an additive
subcategory, closed under taking extensions, but not quotients (so it
is not abelian): if I, J ∈ Fp,q,r are two objects with I ⊂ J , then the
quotient J/I does not necessarily belong to Fp,q,r.

Isomorphism classes of objects from Fp,q,r with a given dimension
vector (a,b, c) coincide with the orbits of the GL(V )-action on Fla(V )×
Flb(V )×Flc(V ). Hence the finiteness of the number of orbits is equiv-
alent to the finiteness of the isomorphism classes of objects with a
given dimension vector from Fp,q,r. Each object in this category can
be presented as a direct sum of indecomposable objects; according to
Krull–Remak–Schmidt theorem, such a decomposition is unique up to
an isomorphism of (V ;A,B,C). Thus each isomorphism class of an ob-
ject is given by the multiplicities of indecomposable objects occuring
as its direct summands. Moreover, it turns out that an indecompos-
able object is uniquely determined by its dimension vector. So if we
know the list of indecomposable objects for a given category, then the
problem of clsasification of GL(V )-orbits on Fla(V )×Flb(V )×Flc(V )
is reduced to a purely combinatorial problem of presentation of the
dimension vector (a,b, c) as a nonnegative integer linear combination
of the dimension vectors of indecomposable objects. Also note that if
the quiver Qp,q,r is of finite type (i.e., its graph is a Dynkin diagram
of type A, D, or E), this automatically implies the finiteness of the
number of orbits; these are the first five cases in Theorem 5.4.

Theorem 5.7. For each d ∈ Πp,q,r there exists a unique isomorphism
class Id ∈ Fp,q,r with the dimension vector d. For each finite-type triple
(a,b, c) ∈ Λp,q,r each object with the dimension vector (a,b, c) can be
uniquely decomposed into the direct sum of objects of the form Id.

Moreover, this method allows us not only to classify the GL(V )-
orbits on a multiple flag variety, but also to indicate an explicit repre-
sentative in each orbit; see [34, Theorem 2.9].

Example 5.8. Consider a variety of type Aq,r, i.e. the direct product of
two flag varieties Flb(V )× Flc(V ). Let b = (b1, . . . , bq), c = c1, . . . , cr.
A pair of flags (B,C) corresponds to an object (V ;A,B,C) in the
category F1,q,r, where A is a trivial flag: 0 = A0 ⊂ A1 = V . Ac-
cording to Theorem 5.5, the indecomposable objects in this category
have the reduced dimension vector (1, 1, 1), i.e. they are of the form
Iij = (V ′;A′, B′, C ′) with i ≤ q, j ≤ r; this means that dimV ′ = 1,
B′ = (0 = B′0 = · · · = B′i−1 ⊂ Bi = · · · = Bq = V ′, C ′ = (0 = C ′0 =
· · · = C ′j−1 ⊂ Cj = · · · = Cr = V ′ (i.e. the dimension jumps in each
flag are unique and occur on i-th and j-th places respectively).
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This means that the GL(V )-orbits in Flb(V )×Flc(V ) are parametrized
by matrices (mij) of size q × r with integer nonnegative entries. The
sum of elements in each row of such a matrix is equal to b1, . . . , bq,
and the column sums equal c1, . . . , cr. Such an orbit corresponds to
the direct sum of indecomposable objects

⊕
i,jmijIij. In particular,

if b = c = (1n), we are dealing with the direct product of two com-
plete flags, with GL(V )-orbits given by permutations (they bijectively
correspond to Schubert cells in G/B).

5.3. Orbit closures on multiple flag varieties. Another natural
question is to give the description of the generalized Bruhat order on
a multiple flag variety: what are the conditions for one G-orbit on
X = Fla(V )×Flb(V )×Flc(V ) to be inside the closure of another one?
This question also can be answered in terms of the category Fp,q,r.

Let ΩF and ΩF ′ be two G-orbits on X corresponding to the isomor-
phism classes of objects M and M ′ in the category Fp,q,r (in terms of

Theorem 5.5). We shall say that F
deg
< F ′ if ΩF ⊂ ΩF ′ . This partial

order will be called degeneration order.
The following result is due to Christine Riedtmann [47].

Proposition 5.9. If F
deg
< F ′, then for each indecomposable object Id,

where d ∈ Πp,q,r, we have the following inequality:

dim Hom(Id, F ) ≥ dim Hom(Id, F
′).

One can ask whether this necessary condition is also sufficient, i.e., do
these inequalities (for each indecomposable object) imply the inclusion
of the orbit closures. The results of Klaus Bongartz [4, §2], [5, §4]
imply that this is true if the graph of the quiver Qp,q,r is a simply-
laced Dynkin diagram, i.e. has the type An, Dn, E6, E7, E8. In
the cases of An and Dn this can also be checked directly (see [53]).
Moreover, Peter Magyar [33] showed that these inequalities imply the
degeneration order on orbits for the quiver of type Sp,q.

5.4. The case Sp,q. This is an interesting “non-Dynkin” case corre-
sponds to GL(V )-varieties of the form G/P1 ×G/P2 × P(V ). In other
words, the group GL(V ) acts with finitely many orbits on triples con-
sisting of a two flags of a given type and a line in V . In particular,
setting P1 = B, P2 = P , we get that the variety G/P × P(V ) is spher-
ical. To the best of our knowledge, this was first observed by Michel
Brion in [8].

In [33] Magyar gives a description of G-orbits on G/B×G/B×P(V )
(they are given by “decorated” permutations, i.e. permutations from
Sn, with n = dimV , with a certain distinguished subset in {1, . . . , n})
and proves a simple criterion, stated in linear-algebraic terms. It allows
to find out whether one G-orbit is inside the closure of another one.
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He also describes the covering relations, i.e. pairs of orbits such that
the first one is contained inside the second one and has codimension 1.

This spherical variety also plays an important role in the description
of the mirabolic Robinson–Schensted–Knuth correspondence, see [57],
[18].

5.5. Symplectic multiple flag varieties of finite type. In the pa-
per [35] Problem 5.1 was solved for the group G = Sp2n. Moreover,
similarly to the case of G = GL(V ) the authors reduced the problem
of combinatorial description of orbits on a multiple flag variety to a
purely combinatorial one and indicated a representative in each orbit.

The main tool for this is the following (rather unexpected) observa-
tion: two multiple flags in a symplectic 2n-dimensional space V belong
to the same Sp2n-orbit if and only if they belong to the same GL2n-
orbit. Thus the problem is essentially reduced to the case of GL(V ).

Let us give a classification of multiple flag varieties of finite type for
the group Sp2n. Let V be a 2n-dimensional symplectic vector space
with a nondegenerate skew-symmetric bilinear form 〈 , 〉. The group of
automorphisms of V preserving this form is Sp(V ) = Sp2n. A subspace
U ⊂ V is called isotropic if 〈U,U〉 = 0.

Let a = (a1, . . . , ap) be a symmetric composition of the number 2n,
i.e. let ai = ap−i+1 for each i. Consider the space of flags 0 = A0 ⊂
A1 ⊂ A2 ⊂ · · · ⊂ Ap = V satisfying the condition dimAi/Ai−1 = ai.
Such a flag is called isotropic if it is formed by isotropic subspaces and
their orthogonals; the space of isotropic flags will be denoted by Sp Fla:

Sp Fla = {A ∈ Fla(V ) | 〈Ai, Ap−i〉 = 0 for each i}.
We have obtained a realization of a partial flag manifold Sp2n /P . The
variety of complete symplectic flags Sp2n /B corresponds to the dimen-
sion vector (12n).

A tuple of symmetric compositions (a1, . . . , ak) is called a Sp2n-finite
type tuple if the group Sp2n acts on Sp Fla1 × · · ·×Sp Flak with finitely
many orbits.

Similarly to the case GL(V ) we get an analogue of Theorem 5.3: a
k-tuple is of finite type only if k ≤ 3. Here we list all the triples of
compositions (a,b, c) of Sp2n-finite type. We suppose that the compo-
sitions do not contain zeroes and the number of nonzero parts is equal
to (p, q, r) respectively, with p ≤ q ≤ r.

Theorem 5.10. A triple of compositions (a,b, c) is of Sp2n-finite type
if and only if it belongs to one of the following classes:

SpAp,q: (p, q, r) = (1, q, r), 1 ≤ q ≤ r;
SpDr+2: (p, q, r) = (2, 2, r), 2 ≤ r;
SpE6: (p, q, r) = (2, 3, 3);
SpE7: (p, q, r) = (2, 3, 4);
SpE8: (p, q, r) = (2, 3, 5);
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SpE
(b)
r+3: (p, q, r) = (2, 3, r), 3 ≤ r, the nonzero parts of b equal

(1, 2n− 2, 1);
SpYr+4: (p, q, r) = (3, 3, r), 3 ≤ r, the nonzero parts of one of the

compositions equal (1, 2n− 2, 1).

6. Multiple flag varieties with an open G-orbit

As we mentioned in Subsection 2.6, finiteness of the number of B-
orbits on a G-variety X is equivalent to the existence of an open B-orbit
on X. This, in turn, is equivalent to the existence of an open G-orbit
on X ×G/B. Note that for an arbitrary parabolic subgroup P this is
not true in general: the existence of an open P -orbit on X does not
imply the finiteness of the number of P -orbits.

So we can ask the following question:

Problem 6.1. For which multiple flag varieties X = G/P1×· · ·×G/Pd
there is an open G-orbit for the diagonal action of G on X?

6.1. Locally n-transitive actions on flag varieties. Vladimir Popov [44]
obtained an answer for this question in the following important partic-
ular case:

Question 6.2. Let G be a connected simple linear algebraic group, let
P be its maximal parabolic subgroup. For which pairs (G,P ) does the
group G act on G/P ×G/P ×G/P with an open orbit?

This question motivates the following definition.

Definition 6.3. Let n be a positive integer, and let G be an algebraic
group acting algebraically on an irreducible variety X. Denote this
action by α : G×X → X. We shall say that α is locally n-transitive if
the diagonal action αn : G y Xn is locally transitive, i.e. has an open
orbit. (If the initial action itself is not locally transitive, we shall say
that it is locally 0-transitive).

Informally, local n-transitivity means that “almost any” n-tuple of
points of X can be taken by the group action into “almost any other”
n-tuple. It is clear that local n-transitivity of an action implies its local
m-transitivity for each 0 < m ≤ n. An upper estimate is also obvious:
α cannot be locally n-transitive for n dimX > dimG.

Definition 6.4. The local transitivity degree of an action α is the num-
ber

gtd(α) := supn,

where the supremum is being taken over all n such that α is locally n-
transitive. Maximal transitivity degree of a connected algebraic group
is the number

gtd(G) := sup gtd(α),

where the supremum is being taken over all nontrivial actions α of G
on all possible irreducible varieties.
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In the paper [44] the following results on the maximal transitivity
degree of connected algebraic groups were obtained.

Theorem 6.5. Let G be a nontrivial connected algebraic group. Then,

(1) if G is solvable, gtd(G) ≤ 2;
(2) if G is nilpotent, gtd(G) = 1;

(3) if G is a reductive group and G̃ → G is an isogeny, then

gtd(G̃) = gtd(G);
(4) if G = Z × S1 × · · · × Sd, where Z is an algebraic torus and

S1, . . . , Sd are connected simple algebraic groups, then

gtd(G) = max
i

gtd(Si);

(5) maximal transitivity degree of simple groups G is given in the
following table:

type of G Al Bl Cl Dl E6 E7 E8 F4 G2

gtd(G) l + 2 3 3 3 4 3 2 2 2

We get a natural question: on which varieties does a simple algebraic
group (or, more generally, a reductive group) act in “the most transitive
way”, i.e. for which G-varieties the given maximum is attained? It
turns out that among these varieties there always is a flag manifold
corresponding to a certain maximal parabolic subgroup.

Theorem 6.6. Let G be a connected nonabelian reductive group. Then
there exists a maximal parabolic subgroup P ⊂ G such that the local
transitivity degree of the standard action of G on G/P equals the max-
imal transitivity degree gtd(G) of the group G.

The following theorem lists the local transitivity degrees of G acting
on all G/P with P maximal parabolic. It is clear that the G-action on
G/P is always 2-transitive. For certain parabolic groups listed in the
table below this transitivity degree is larger.

Theorem 6.7. Let G be an arbitrary group, d ≥ 3, let Pi be a maximal
parabolic subgroup in G corresponding to the root αi. Then the diagonal
action of G on the multiple flag variety (G/Pi)

n has an open orbit if
and only if n ≤ 2 or the triple (G, n, i) appears in the following table:

Type of G (n, i)

Al n < (l+1)2

i(l+1−i)
Bl, l ≥ 3 n = 3, i = 1, l
Cl, l ≥ 2 n = 3, i = 1, l
Dl, l ≥ 4 n = 3, i = 1, l − 1, l

E6 n = 3, 4, i = 1, 6
E7 n = 3, i = 7

It is interesting that the action of the group SLl+1 on Grassmannians
is “the most transitive”: its local transitivity degree can be greater than
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or equal to 5, while for all the remaining groups it can only be equal
to two, three, and (only in the case E6) four. Namely:

Corollary 6.8. Let G be a connected simple algebraic group of type
Al. Then

gtd(G : G/Pi)

{
= 3, if 2i = l + 1;

≥ 4 otherwise.

This provides the answer for Question 6.2:

Corollary 6.9. Let G be a connected simple linear algebraic group, P
its maximal parabolic subgroup. G acts on (G/P )3 with an open orbit
if and only if P is conjugate to a standard minuscule or cominuscule
parabolic subgroup.

6.2. The case of non-maximal parabolic subgroups. Popov’s re-
sults were generalized by Rostislav Devyatov [17] for the case of vari-
eties G/P where G is a simple algebraic group not locally isomorphic
to SLl and P is an arbitrary (not necessarily maximal) parabolic sub-
group.

Denote the intersection of several standard maximal parabolic sub-
groups by Pi1,...,is = Pi1 ∩ · · · ∩ Pis . Then the following result holds.

Theorem 6.10 ([17]). Let G be a simple algebraic group of type differ-
ent from Al, and let P = Pi1,...,is be a non-maximal standard parabolic
subgroup in G. The local transitivity degree of the standard action of
G on G/P is equal to 3 for the cases listed in the following table and
to 2 otherwise.

Type of G P

Dl, l ≥ 5 odd P1,l−1, P1,l

Dl, l ≥ 4 even P1,l−1, P1,l, Pl−1,l

Moreover, Devyatov shows directly that for these varieties the num-
ber of G-orbits on (G/P )3 is infinite. Thus we get the following result.

Theorem 6.11. Let G be a simple algebraic group, let P ⊂ G be a
parabolic subgroup, n ≥ 3. The following are equivalent:

• G acts on (G/P )n with finitely many orbits;
• n = 3, P is maximal, and (G/P )n has an open G-orbit;
• n = 3 and G/P ×G/P is spherical.

6.3. Products of Grassmannians with an open GL(n)-orbit.
Popov and Devyatov consider the action of a group G on the prod-
uct of several copies of the same flag manifold G/P . Izzet Coskun,
Majid Hadian, and Dmitry Zakharov in [13] consider the group GL(n)
acting on the product of several not necessarily isomorphic Grassman-
nians X = Gr(d1, n)× · · · ×Gr(dk, n) and give a partial answer to the
following question, which is a particular case of Problem 6.1.
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Question 6.12. For which tuples of dimensions (d1, . . . , dk;n) does
the group GL(n) act on Gr(d1, n)× · · · ×Gr(dk, n) with an open orbit?
(Such a dimension vector is said to be dense).

Dimension reasons allow us to formulate the following immediate
necessary condition on the existence of such an orbit:

k∑
i=1

di(n− di) ≤ n2 − 1. (∗)

The summand −1 in the right-hand side appears due to the fact that
the center of GL(n) acts on X trivially. So we will further speak about
the action of PGL(n) rather than GL(n).

The following example shows that this necessary condition is not
sufficient.

Example 6.13. Consider the dimension vector (1, 1, 2, 2; 3). For this
vector X = P2 × P2 × P2∗ × P2∗, dimX = 8 = dim PGL(3), so the
necessary condition holds.

An element of X can be treated as a configuration (p1, p2, `1, `2)
of two points and two lines in P2. Let us show that the action of
PGL(3) does not have an open orbit. Let ` be a line containing both
p1 and p2, and let q1 and q2 be the intersection points of ` with `1 and
`2, respectively. Then the cross-ratio of p1, p2, q1, q2 on ` is PGL(3)-
invariant; moreover, if we fix p1 and p2 and vary `1 and `2, we can get
an arbitrary value of this cross-ratio. This means that the codimension
of PGL(3)-orbits on X is at least 1.

The same example can be generalized for the case of arbitrary di-
mension. Consider the following dimension vector: (1, 1, n−1, n−1;n),
where n ≥ 3. In this case dimX = 4(n − 1) ≤ n2 − 1; the elements
of X correspond to quadruples (p1, p2, H1, H2) consisting of two points
and two hyperplanes in Pn−1. Such quadruples also have a continuous
invariant: let ` = 〈p1, p2〉, qi = ` ∩Hi, i = 1, 2. Then the cross-ratio of
the four points p1, p2, q1, q2 on ` is preserved by the action of PGL(n).

In both examples we were able to find a smaller configuration of
subspaces, obtained from the initial one by taking sums and intersec-
tions, such that for this configuration the inequality (∗) does not hold
anymore. Indeed, four points on a line (p1, p2, q1, q2) define an element
of the 4-dimensional variety (P1)4, so that the three-dimensional group
PGL(2) acting on this variety cannot have an open orbit. Conjecturally,
for each product of Grassmannians such that the action of PGL(n) on
it does not have an open orbit, we can point out an “obstruction” to
its existence: a configuration of subspaces obtained from the initial one
by sums and intersections of subspaces, such that for this configuration
the inequality (∗) is not satisfied.

The question of density or nondensity of certain dimension vectors
often can be reduced to the question of density or nondensity of vectors
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in a smaller space. The following obvious statement is often used as
the “induction base”:

Lemma 6.14. A dimension vector (d1, . . . , dk;n) is dense if

k∑
i=1

di ≤ n.

Further Coskun, Hadian, and Zakharov classify all the dimension
vectors with a small number of components. As we have already seen,
the group GL(n) always acts on the direct product of at most three
Grassmannians with an open orbit (in fact, even with finitely many
of them, see Subsection 5). It turns out that for the four components
“almost all” dimension vectors are dense.

Theorem 6.15. Let d be a dimension vector of length k ≤ 4. It is not
dense if and only if k = 4 and d = (a, b, c, d;n) with a+ b+ c+d = 2n.

Proof. Let us give the proof of the “if” statement. First, if a = b =
c = d = n/2, there is no open orbit because of the dimension reasons:
4(n/2)(n− n/2) = n2 > n2 − 1 = dim PGL(n).

If not all a, b, c, d are equal, let us prove the statement by induction
over a+ b+ c+ d = 2n. We will need the following lemma.

Lemma 6.16 ([13, Lemma 4.2]). Let d = (a1, . . . , ar, b1, . . . , bs;n) be
a dimension vector such that

∑r
i=1 ai = n− k < n and

∑s
j=1(n− bj) ≤

n − k. Then d is dense if and only if the vector d′ = (a1, . . . , ar, b1 −
k, . . . , bs − k;n− k) is dense.

Without loss of generality (by changing the order of subspaces and,
if necessary, taking their duals) we can suppose that a + b < n. Now
apply the previous lemma. Let (V1, V2, V3, V4;V ) be a configuration of
vector spaces corresponding to the vector (a, b, c, d;n). Consider the
subspace W := V1 +V2; it has dimension a+ b. Then the configuration
of subspaces (V1, V2,W ∩V3,W ∩V4;W ) has the dimension vector d′ =
(a, b, a+ b+ c− n, a+ b+ d− n; a+ b). The sum of its components is
equal to 2(a+ b) < 2n. Hence d′ is nondense by induction hypothesis.
So d is also nondense. �

Reasoning in a similar way, we can give an algorithm that allows
to get a full list of dense dimension vectors such that their maximal
component max di does not exceed a given number l. Let us give the
answer for l ≤ 3. Introduce the following notation: if a component a
occurs d times, denote it by ad.

Let l = 1. This case is trivial: the vector (1r;n) is dense for r ≤ n+1
and nondense otherwise (the group PGL(n) acts transitively on tuples
of at most n+ 1 points in general position).

Further, consider the case l = 2, d = (1a, 2b;n) (i.e. configurations
of a points and b lines in Pn−1).
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Theorem 6.17. All the dense vectors with the maximal component not
exceeding 2 are listed below.

• (1a, 2b;n), where a+ 2b ≤ n+ 1;
• (1a, 2b;n), where a+ 2b = n+ 2 and a ≤ 3;
• Finitely many “exceptional” vectors with a+2b ≥ n+3: (23; 3),

(1, 23; 3), (24; 3), (1, 23; 4), and (24; 5).

Theorem 6.18. All the dense vectors with the maximal component not
exceeding 3 are listed below.

• (1a, 2b, 3c;n), where a+ 2b+ 3c ≤ n+ 1;
• (1a, 2b, 3c;n), where a+ 2b+ 3c = n+ 2 and a ≤ 3;
• (1a, 2b, 3c;n), where a+ 2b+ 3c = n+ 3, a+ b ≤ 4 and (a, b) 6=

(2, 2);
• Finitely many “exceptional” vectors with a + 2b + 3c ≥ n +

4: (2, 32; 4), (23, 3, 4), (1, 2, 32; 4), (33; 4), (1, 33; 4), (2, 33; 4),
(34; 4), (1, 34; 4), (23, 3; 5), (1, 2, 32; 5), (33; 5), (1, 33; 5), (2, 33; 5),
(34; 5), (1, 33; 6), (22, 32; 6), (2, 33; 6), (2, 33; 7), (34; 8), (2, 34; 9),
and (35; 11).

Further the situation is similar: for the vector d = (1e1 , 2e2 , . . . , kek ;n)
with e1 + 2e2 + · · ·+ kek = n+ l + 1, l < k the criterion of its density
can be written down explicitly: it is reduced to the density of a vector
in a smaller ambient space and with a smaller maximal component.
Namely, the following theorem holds.

Theorem 6.19. (1) Let d = (1e1 , 2e2 , . . . , kek ;n) with e1 + 2e2 +
· · ·+ kek = n+ l + 1 and l < k. Then d is dense if and only if
the vector (1e1 , 2e2 , . . . , lel ; l + 1) is dense.

(2) For a given k the number of dense vectors with e1 + 2e2 + · · ·+
kek ≥ n+ k + 1 is finite.
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