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tLet X = Gr(k; V ) × Gr(l; V ) be the dire
t produ
t of two Grass-mann varieties of k- and l-planes in a �nite-dimensional ve
tor spa
eV , and let B ⊂ GL(V ) be the isotropy group of a 
omplete 
ag inV . One 
an 
onsider B-orbits in X in analogy with S
hubert 
ellsin Grassmannians. We des
ribe this set of orbits 
ombinatorially and
onstru
t desingularizations for the 
losures of these orbits, analogousto the Bott{Samelson desingularizations for S
hubert varieties.1 Introdu
tionLet V be a �nite-dimensional ve
tor spa
e. We are interested in de-s
ribing pairs of subspa
es in V of �xed dimensions k and l up toa 
hange of 
oordinates given by the group B ⊂ GL(V ) of non-degenerate upper-triangular matri
es. So, what we des
ribe is thede
omposition into B-orbits of the dire
t produ
t of two Grassmannvarieties X = Gr(k; V )×Gr(l; V ). This de
omposition is analogous tothe S
hubert de
omposition for Grassmannians, or to the Ehresmann{Bruhat de
omposition for 
omplete 
ags.The 
ombinatorial des
ription of orbits in X was given (as a par-ti
ular 
ase of some very general problem) in the paper by Magyar,Weyman and Zelevinsky [MWZ℄. The des
ription given below doesnot refer to these results | in this 
ase everything 
an be done usingonly some elementary linear algebra. This is a generalization of thedes
ription of orbits in the symmetri
 spa
e GLk+l=(GLk×GLl), thatwas obtained by St�ephane Pin in his thesis [P℄.1



We also regard the 
losures of these B-orbits. They 
an be 
onsid-ered as analogues of S
hubert varieties in Grassmannians. We areinterested in their singularities. The singularities of S
hubert va-rieties are well-known obje
ts. They admit ni
e desingularizations,
onstru
ted by Bott and Samelson. They are normal, rational, theirsingular lo
i 
an be des
ribed expli
itly. Good referen
es on this topi
are, for instan
e, [B2℄ and [M℄. So, it is natural to ask the same ques-tions (resolutions of singularities, normality, rationality) for the 
aseof B-orbit 
losures in X. In this paper we 
onstru
t desingularizationsof these varieties.Our interest in this problem is motivated by the re
ent paper [BZ℄by G. Bobinski and G. Zwara, when they prove that the singularitiesof orbit 
losures in representations of quivers of type D are equivalentto the singularities of S
hubert varieties in double Grassmannians.The author is grateful to Mi
hel Brion for 
onstant attention tothis work, and to Ernest Vinberg and Dmitri Timashev for usefulremarks and 
omments.2 Des
ription of orbits2.1 NotationLet V be an n-dimensional ve
tor spa
e over a �eld K. The results ofSe
tion 2 are valid over an arbitrary ground �eld; however, in Se
tions3 and 4 we assume K be algebrai
ally 
losed. Let k; l < n positiveintegers. The dire
t produ
t Gr(k; V ) × Gr(l; V ) is denoted by X.Usually we do not make any di�eren
e between points of X and the
orresponding 
on�gurations of subspa
es (U;W ), where U;W ⊂ V ,dimU = k, dimW = l.We �x a Borel subgroup B in GL(V ). Let V• = (V1; : : : ; Vn = V )be the 
omplete 
ag in V stabilized by B.2.2 Combinatorial des
riptionIn this se
tion we will introdu
e some 
ombinatorial obje
ts thatparametrize pairs of subspa
es up to B-a
tion. Namely, orbits will beparametrized by triples 
onsisting of two Young diagrams 
ontainedin the re
tangles of size k × (n− k) and l × (n− l), respe
tively, andan involutive permutation of Sn. 2



Together with 
onstru
ting these data we will also 
onstru
t some\
anoni
al" bases in subspa
es U , W , and V , respe
tively.Proposition 1. (i). There exist ordered bases (u1; : : : ; uk), (w1; : : : ; wl),and (v1; : : : ; vn) of U , W , and V , respe
tively, su
h that:
• Vi = 〈v1; : : : ; vi〉 for ea
h i ∈ {1; : : : ; n} (angle bra
kets stand forthe linear span of ve
tors);
• ui = v�i , where i ∈ {1; : : : ; k}, and {�1; : : : ; �k} ⊂ {1; : : : ; n};
• The wi are either basi
 ve
tors of V or ve
tors with two-elementary\support": wi = v�i or wi = v
i + vÆi , where 
i > Æi; moreover,in the latter 
ase v
i ∈ U (that is, {
1; : : : ; 
r} ⊂ {�1; : : : ; �k}).
• All the �i, 
i and Æi are distin
t; moreover, all the Æi are distin
tfrom the �i.(ii). With the notation of (i), de�ne a permutation � ∈ Sn asthe produ
t of all the transpositions (
i; Æi). Their supports do notinterse
t, so this produ
t does not depend of their order.Then for the given pair (U;W ) the subsets �� = {�1; : : : ; �k}, �� =

{�1; : : : ; �l−r}, �
 = {
1; : : : ; 
r} of {1; : : : ; n}, and the permutation �are independent of the 
hoi
e of bases in U , W , and V .Proof. (i) We will prove this by indu
tion over n.If n = 1, there is nothing to prove.For arbitrary n, take a nonzero ve
tor v1 ∈ V1, and 
onsider thefollowing 
ases:
• v1 =∈ U , v1 =∈ W . Take the quotient �V = V=〈v1〉 with the 
ag�V• = �V2 ⊂ · · · ⊂ �Vn, 
onsider the image of our 
on�guration,that 
onsists of the subspa
es �U ∼= U and �W ∼= W , and applythe indu
tion hypothesis to this 
on�guration. Let us 
hooseordered bases {�u1; : : : ; �uk}, { �w1; : : : ; �wl}, and {�v1; : : : ; �vn−1} in�U , �W , and �V . Then we 
hoose a lift { : �V ,→ V . Now takethe pre-images of these basis ve
tors in V in the following way:ui = {(�ui), wi = {( �wi), vi = {(�vi−1). We get the required tripleof bases.
• v1 ∈ U , v1 =∈ W . Set u1 = v1 and again apply the indu
tionhypothesis to the quotient �V = V=〈v1〉 with the 
ag �V• and the
on�guration ( �U; �W ). The only di�eren
e is that in this 
asedim �U = dimU − 1. After that we take the pre-images of thebases of �U , �W , and �V in V in a similar way.3



• The 
ase when v1 =∈ U , v1 ∈ W , is analogous to the previous one(we set w1 = v1).
• If v1 ∈ U ∩ W , let us set u1 = w1 = v1 and again apply theindu
tion.
• The most interesting 
ase is the last one: v1 ∈ U+W , but it doesnot belong to any of these two subspa
es. Consider then the setof ve
tors S = {v | v ∈ U; v1 + v ∈ W}. Sin
e v1 belongs tothe sum U +W , this set is nonempty. Now let j be the minimalnumber su
h that Vj 
ontains ve
tors from S, and vj ∈ Vj ∩ S.Let us set u1 = vj, w1 = v1 + vj. Now apply the indu
tionhypothesis to the (n− 2)-dimensional spa
e �V = V=〈v1; vj〉 andto the 
on�guration of two subspa
es �U , �W , and the 
ag�V• = V2=V1 ⊂ · · · ⊂ Vj−1=V1 == Vj=〈v1; vj〉 ⊂ Vj+1=〈v1; vj〉 ⊂ · · · ⊂ Vn=〈v1; vj〉:We take the pre-images of ve
tors from �V to V as follows:vi = {(�vi−1); if i ∈ [2; j − 1℄; vi = {(�vi−2) if i ∈ [j + 1; n℄;where, as above, { is an embedding of �V into V . We have alreadyde�ned the ve
tors v1 and vj .(ii) Take a 
on�guration (U;W ) and assume that there exist twotriples of ordered bases ((u1; : : : ; uk); (w1; : : : ; wl); (v1; : : : ; vn)) and((u′1; : : : ; u′k); (w′1; : : : ; w′l); (v′1; : : : ; v′n)), satisfying the 
onditions of(i), su
h that either the triples of sets (��; ��; �
) and (��′; ��′; �
′), or thepermutations � and �′, 
orresponding to the �rst and the se
ond tripleof bases, respe
tively, are not equal.The set �� 
an be des
ribed as follows. i ∈ �� i� dimU ∩ Vi >dimU ∩ Vi−1. This means that �� = ��′.By the same argument we 
an prove that �� ∪ �
 = ��′ ∪ �
′.Now let us prove that � = �′. This will 
omplete the proof, sin
e�� = {j ∈ �� ∪ �
 | �(j) = j}.Let j be the minimal number from � ∪ 
, su
h that �(j) 6= �′(j).Suppose that �(j) < �′(j). Two 
ases may o

ur:a) i := �′(j) 6= j. First observe that i =∈ ��. Consider the subspa
e~V = (U ∩ Vj) + Vi−1 = 〈vs; v�i | s ≤ i− 1; �i ∈ �� ∪ [i; j℄〉 == 〈v′s; v′�i | s ≤ i− 1; �i ∈ ��′ ∪ [i; j℄〉:4



Let R and R′ denote respe
tively the sets {r ∈ �� ∪ �
 | r; �(r) ∈[1; i− 1℄∪ (��∩ [i; j℄)} and {r ∈ �� ∪ �
 | r; �′(r) ∈ [1; i− 1℄∪ (��∩ [i; j℄)}.One 
an easily see thatdim ~V ∩W = #R = #R′:But �(r) = �′(r) for all r ∈ [1; j−1℄, and j belongs to R and does notbelong to R′. That means that the 
ardinalities of these two sets aredi�erent, that gives us the desired 
ontradi
tion.b) If �′(j) = j, set i = �(j), and pro
eed as in a).Let us now introdu
e a 
ombinatorial 
onstru
tion that parametrizes
on�guration types. Namely, having a 
on�guration, we will 
onstru
ta pair of Young diagrams with some boxes distinguished.Suppose we have a 
on�guration (U;W ) with bases (u1; : : : ; uk),(w1; : : : ; wl), and (v1; : : : ; vn), 
hosen as in Prop. 1, the sets ��, ��, �
,and the involution � 
orresponding to this 
on�guration. Consider are
tangle of size k× (n− k) and 
onstru
t a path from its bottom-leftto upper-right 
orner, su
h that its j-th step is verti
al if j belongsto �� (that is, vj is equal to some ui), and horizontal otherwise. Thispath bounds (from below) the �rst Young diagram.The se
ond diagram will be 
ontained in the re
tangle of size l ×(n− l). Again, we will 
onstru
t a path bounding it. Let the j-th stepof this path be verti
al if j ∈ �� ∪ �
, and horizontal otherwise.If j ∈ �
, then the �(j)-th step of this path is horizontal. Thisalso means that the j-th and �(j)-th steps of the path bounding the�rst diagram are also verti
al and horizontal, respe
tively. In ea
hdiagram, take the box lo
ated above the �(j)-th step and to the leftof the j-th step, and put a dot into this box.Let us 
all this pair of diagrams with dots a marked pair.Example. Let n = 9, k = 4, l = 3. Suppose that �� = {3; 5; 6; 9},�� = {2; 5}, �
 = {9}, � = (7; 9). Then the 
orresponding marked pairof diagrams is the following:
•

•Remark. Note that the 
onstru
ted diagrams (without dots) are thesame as the diagrams that 
orrespond to the S
hubert 
ells 
ontainingthe points U ∈ Gr(k; V ) and W ∈ Gr(l; V ). (The 
orresponden
e5



between S
hubert 
ells and Young diagrams is des
ribed, for example,in [F℄, [M℄, or any other textbook on this subje
t).2.3 Stabilizers and dimensions of orbitsNow let us �nd the stabilizer GL(V )(U;W ) for a given 
on�guration.Proposition 2. With the notation of Prop. 1, the stabilizer of a
on�guration (U;W ) written w.r.t. basis (v1; : : : ; vn), 
onsists of theupper-triangular matri
es A = (aij) ∈ GL(n) satisfying the following
onditions:1. a

 = a�(
)�(
) for ea
h 
 ∈ �
;2. ai� = 0 for ea
h � ∈ ��, i =∈ ��;3. aj� = 0 for ea
h � ∈ �� and j =∈ �� ∪ �
 ∪ �(�
);4. a
� = a�(
)� for ea
h � ∈ �� and 
 ∈ �
, 
 < �;5. aj
 = −aj�(
) for ea
h j =∈ �� ∪ �
 ∪ �(�
) and 
 ∈ �
;6. for ea
h 
1; 
2 ∈ �
, 
1 < 
2, one of the following 
ases o

urs:
• �(
2) < �(
1) < 
1 < 
2: then a
1
2 = a�(
1)
2 = a�(
2)
1 =a�(
1)�(
2) = 0;
• �(
1) < �(
2) < 
1 < 
2: then a�(
2)
1 = a�(
1)
2 = 0,a
1
2 = a�(
1)�(
2);
• �(
1) < 
1 < �(
2) < 
2: then a�(
1)
2 = 0, a
1
2 +a
1�(
2) = a�(
1)�(
2).Corollary 3. The stabilizer of a 
on�guration (U;W ) is a semidire
tprodu
t of a tori
 and a unipotent part:GL(V )(U;W ) = T(U;W ) ⋉ U(U;W );where T(U;W ) is the subgroup in the group of diagonal matri
es de-�ned by the equations 1., so that dimT(U;W ) = n − #�
, and U(U;W )is the subgroup in the group of unitriangular matri
es, de�ned by theequations 2.{6.De�nition. The 
odimension of the tori
 part of the stabilizer is saidto be the rank of a 
on�guration (or its 
orresponding orbit):rk (U;W ) := n− dimT(U;W ) = #�
:6



Proof of the proposition. First of all, the stabilizer B(U;W ) is formedby upper-triangular matri
es, as a subgroup of B.Next, it preserves the subspa
e U = 〈v�1 ; : : : ; v�k〉. This meansthat a transformation A ∈ B(U;W ) maps ea
h v�i into a linear 
om-bination of v�j , so all the elements ai�, where � ∈ ��, i =∈ ��, vanish.(Note that the zeros in A obtained in this way also form a Youngdiagram 
orresponding to the subspa
e U , rotated 90◦ 
lo
kwise |this proves, in parti
ular, that the dimension of a S
hubert 
ell in aGrassmannian is equal to the number of boxes in the 
orrespondingdiagram).So, the boxes of the �rst Young diagram are in a one-to-one 
or-responden
e with the linear equations de�ning BU as a subgroup ofthe group of upper-triangular matri
es: the box lo
ated above the i-th(horizontal) step and to the left of the j-th (verti
al) step of the 
orre-sponding path (denote this box by (i; j)) 
orresponds to the equationaij = 0.Similarly, the stabilizer of our 
on�guration preserves the subspa
eW . This gives us a set of linear equations on the elements aij, andthe number of them is equal to the number of boxes in the se
onddiagram of the 
orresponding marked pair. Again, we establish a one-to-one 
orresponden
e between the boxes of this diagram and theseequations, denoting boxes as in the previous paragraph. Here theyare:
• aj� = 0 for ea
h � ∈ �� and j =∈ �� ∩ �
 ∩ �(�
), j < �. The
orresponding box is (j; �);
• aj
 = −aj�(
) for ea
h j =∈ �� ∪ �
 ∪ �(�
) and 
 ∈ �
, j < 
. The
orresponding box is (j; 
);
• a�(
)
) + a

 − a�(
)�(
) = 0 for ea
h 
 ∈ �
. The 
orrespondingbox is (�(
); 
);
• a
� = a�(
)� for ea
h � ∈ �� and 
 ∈ �
, 
 < �. The 
orrespondingbox is (�(
); �);
• a�(
1)�(
2) + a�(
1)
2 = a
1�(
2) + a
1
2 for ea
h 
1 < 
2. Thisequation 
orresponds to the box (�(
1); 
2).Bringing all these equations together 
ompletes the proof of theproposition.On
e we know the stabilizer of a 
on�guration, we 
an 
al
ulateits dimension (and hen
e the dimension of the orbit B(U;W ) ⊂ X).7



Analyzing the equations above, one 
an dedu
e a 
ombinatorial inter-pretation of dimension in terms of Young diagrams with dots.To do this, we have to introdu
e one more 
ombinatorial notion.Suppose we have two re
tangles of size k × (n − k) and l × (n − l),respe
tively, and a path in ea
h of these re
tangles bounding a Youngdiagram (so both paths are of the length n). Consider the set ofall numbers i, su
h that the i-th steps in the paths bounding bothdiagrams are horizontal, and take the 
olumns in the diagrams lyingabove these steps. After that let us do the same for those pairs ofsteps that are \simultaneously verti
al", and take the rows to the leftof these steps.The interse
tion of 
olumns and rows we have taken also forms aYoung diagram. Let us 
all it a 
ommon diagram 
orresponding tothe given pair of diagrams.Example. The pair of Young diagrams
has the following 
ommon diagram:By our 
onstru
tion of marked pairs, dots 
an only be situated inthe boxes of the 
ommon diagram of a marked pair.Corollary 4. Let (U;W ) be a 
on�guration of subspa
es, and let(Y1; Y2) be the 
orresponding marked pair of Young diagrams, withdots in some boxes of its 
ommon diagram Y
om.Now take the diagram Y
om. Take all its boxes with dots and 
on-sider all the hooks with spikes in these boxes. Let H be the set of boxesthat belong to at least one of these hooks. Then the dimension of theB-orbit of (U;W ) equalsdimB(U;W ) = #Y1 +#Y2 −#Y
om +#H;where #Y denotes the number of boxes in Y .Remark. #H equals the total number of boxes 
ontained in all thehooks, not the sum of all the hooks' lengths. That means that a boxin
luded into two hooks must be 
ounted on
e, not twi
e!8



Proof. In the proof of Prop. 2 we deal with two systems of linearequations on the matrix entries (aij), that 
orrespond to stabilizingthe subspa
es U and W and 
onsist of #Y1 and #Y2 equations, re-spe
tively. One 
an easily see that the equations 
orresponding to thebox (i; j) 
oin
ide in both systems i� the box (i; j) of the 
ommon dia-gram does not belong to any hook, and also that the system obtainedby eliminating these \double" equations is linearly independent. So,the 
odimension of B(U;W ) in B (that is, the dimension of B(U;W ))equals #Y1 +#Y2 −#Y
om +#H.Example. Let the 
ommon diagram for a marked pair be as follows:
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ •
• ∗
∗ ∗ ∗ •Then #Y
om = 26, #H = 15 (boxes belonging to H are the non-emptyones).In parti
ular, the dimension formula allows us to des
ribe the min-imal, or the most spe
ial, and the maximal (open) orbit. The mostspe
ial orbit is zero-dimensional and 
orresponds to Y1 = Y2 = ∅. Itis the point (〈v1; : : : ; vk〉; 〈v1; : : : ; vl〉) ∈ X. Both Young diagrams 
or-responding to the most generi
 orbit are re
tangular, of size k×(n−k)and l×(n−l), respe
tively. So, their 
ommon diagram is also a re
tan-gle of size min{k; l}×(n−max{k; l}), with dots situated on a diagonalstarting from the bottom-right 
orner.Example. For n = 8, k = 3, and l = 4, the 
ombinatorial data
orresponding to the maximal orbit are as follows:

•
•

•Y1 Y2 Y
om2.4 De
omposition of X into the union of GL(V )-orbitsGL(V )-orbits in X have a mu
h simpler des
ription: the GL(V )-orbitis given only by one natural number, namely, the dimension of the9



interse
tion of a k-plane and an l-plane. For this number (denote itby i) we have the inequalitymax{0; k + l − n} ≤ i ≤ min{k; l}:Denote the 
orresponding GL(V )-orbit by Xi:X = ⊔i∈{max(0;k+l−n);:::;min(k;l)}Xi:For ea
h B-orbit the dimension of the interse
tion of the 
orrespondingsubspa
es is equal to #(�� ∩ ��). This follows from our 
onstru
tion ofthe 
ombinatorial data 
orresponding to an orbit.3 The weak order on the set of orbitsStarting from this point, we work over an algebrai
ally 
losed ground�eld K.In the previous se
tion we des
ribed the set of B-orbits in Gr(k; V )×Gr(l; V ). There exist several partial order stru
tures on this set. The�rst, and the most natural one, is de�ned as follows:De�nition. Let O and O′ be two B-orbits in Gr(k; V )×Gr(l; V ). Wesay that O is less or equal than O′ w.r.t. the strong (or topologi
al)order, i� O ⊂ �O′. (Saying \topologi
al", we speak about the Zariskitopology). Notation: O ≤ O′.There exists another order on this set, usually 
alled the weakorder. Here notation and terminology is taken from [B1℄.Let W be the Weyl group for GL(n), and let � be the 
orrespond-ing root system. Denote the simple re
e
tions by s1; : : : ; sn−1, andthe 
orresponding simple roots by �1; : : : ; �n−1. Let Pi = B ∪ BsiBbe the minimal paraboli
 subgroup in GL(V ) 
orresponding to thesimple root �i.We say that �i raises an orbit O to O′, if �O′ = Pi �O 6= �O. In this
ase, dimO′ = dimO + 1. This notion allows us to de�ne the weakorder.De�nition. An orbit O is said to be less or equal than O′ w.r.t. theweak order (notation: O � O′), if �O′ 
an be obtained as the result ofseveral 
onse
utive raisings of �O by minimal paraboli
 subgroups:
O � O′ ⇔ ∃(i1; : : : ; ir) : �O′ = Pir : : : Pi1 �O:10



Let us represent this relation of order by an oriented graph. Con-sider a graph �(X) with verti
es indexed by B-orbits in X. Join Oand O′ with an edge of label i, leading to O′, if Pi raises O to O′.It is 
lear that the 
onne
ted 
omponents of �(X) 
onsist of theB-orbits 
ontained in the same GL(V )-orbit Xi, and that every 
on-ne
ted 
omponent has a unique maximal element (the B-orbit that isopen in Xd).Our next aim will be to des
ribe minimal elements w.r.t. the weakorder in ea
h 
onne
ted 
omponent.3.1 Combinatorial des
ription of minimal paraboli
subgroup a
tionConsider an orbit O and the 
orresponding 
ombinatorial data: thesets ��, ��, �
, and the involution � ∈ Sn. Let the minimal paraboli
subgroup Pi = B ∪BsiB raise the orbit O to the orbit O′ 6= O. Nowwe will des
ribe the 
ombinatorial data (��′, ��′, �
′, �′) of O′.Denote the transposition (i; i+ 1) ∈ Sn by �i.The following 
ases may o

ur:1. Suppose thati ∈ ��; i =∈ ��; i+ 1 =∈ ��; i+ 1 ∈ ��;or, vi
e versa,i =∈ ��; i ∈ ��; i+ 1 ∈ ��; i+ 1 =∈ ��:These two variants 
orrespond to two orbits that 
ould be risento O′. In this 
ase, the new 
ombinatorial data is given as follows:��′ = �� ∪ {i+ 1} \ {i};��′ = �� \ {i; i+ 1};�
′ = �
 ∪ {i+ 1}�′ = � · �i:Note that rk ~O = rk O + 1, dim ~O = dimO + 1.In the language of marked pairs of diagrams, this is representedas follows. If the i-th and the i+1-th steps of the path boundingthe �rst diagram form a ravine, and the 
orresponding intervalsof the se
ond diagram form a spike (or, vi
e versa, we have a11



spike in the �rst diagram and a ravine in the se
ond), both thesepairs of steps 
an be repla
ed by spikes bounding a marked box.Example. Apply the minimal paraboli
 subgroup P2 to theorbit O ⊂ Gr(3; 7) × Gr(4; 7) de�ned by the following markedpair:
•

• :The orbit O′ obtained as the result of this raising is de�ned bythe marked pair
•

•

•

• :2. In all the other 
ases ��′ = �i(��), ��′ = �i( ��), �
′ = �i(�
), and thepermutation ~� is the result of the 
onjugation of � by �i:~� = �i��i:The ranks of these orbits are equal: rk O′ = rk O.3.2 Minimal orbitsLemma 5. All minimal B-orbits w.r.t. the weak order in a givenGL(V )-orbit have rank 0.Proof. Assume the 
onverse. Let O be a minimal orbit with a nonzerorank, and let (��; ��; �
; �) the 
orresponding 
ombinatorial data, su
hthat � 6= Id. Let p ∈ �
, p′ = �(p). Without loss of generality we 
ansuppose that there is no other q ∈ �
, su
h that p < q < �(q′) < p′.Let C1 denote the set of ravines in the �rst diagram, situatedbetween p and p′ | that is, the set of indi
es i, su
h that the i-th stepin the �rst diagram is horizontal, and the i+ 1-th is verti
al:C1 = H1 ∩ (V1 − 1) ∩ {p; : : : ; p′}:Similarly, let D1 denote the set of spikes, | that is, the set of i, su
hthat the i-th step is verti
al, and the i+ 1-st is horizontal:D1 = V1 ∩ (H1 − 1) ∩ {p; : : : ; p′}:12



Denote the same sets for the se
ond diagram by C2 and D2. Note that#C1 = #D1 + 1, and #C2 = #D2 + 1 | sin
e p ∈ H1;2, p′ ∈ V1;2.Now take a j, su
h that j ∈ (C1 \ D2) ∪ (C2 \ D1). Let us showthat there exists an orbit O′, su
h that �O = Pj �O′. We des
ribe the
ombinatorial data for this orbit.If the permutation � 
ontains the transposition (j; j+1), then the
ombinatorial data for O′ is as follows:��′ = �� ∪ {j} \ {j + 1};��′ = �� ∪ {j};�
′ = �
 \ {j + 1}�′ = � · �j:Otherwise ��′ = �j(��), ��′ = �j( ��), �
′ = �j(�
), �′ = �j��j .The 
al
ulation of the dimensions shows that dimO′ = dimO− 1.To 
omplete the proof, we have to show that the set (C1 \ D2) ∪(C2 \D1) is nonempty:#((C1 \D2) ∪ (C2 \D1)) ≥ max(#(C1 \D2);#(C2 \D1)) ≥
≥ max(#C1 −#C2 + 1;#C2 −#C1 + 1) ≥ 1:After that we 
an �nd all the minimal orbits in Xd. One 
an easilysee that ea
h minimal orbit has the following 
ombinatorial data:�� ∪ �� = {1; : : : ; k + l − d};�� ∩ �� = {1; : : : ; d};�
 = ∅;� = Id:The dimension of all minimal orbits in Xd equals (k − d)(l − d). Inparti
ular, that means that they all are 
losed inXd. They 
orrespondto de
ompositions of the set {d+1; : : : ; k+ l−d} into two parts, �� \ ��and �� \ ��, so their number is equal to (k+l−2dk−d ).Also note that the pair of Young diagrams that 
orresponds toa minimal orbit is 
omplementary: one 
an put these two diagramstogether so that they will �ll a re
tangle of size (k − d)× (l − d).It is also 
lear that no other B-orbit 
orresponds to su
h pair ofYoung diagrams. That means that all the minimal orbits are stableunder the (B × B)-a
tion, that is, they are dire
t produ
ts of twoS
hubert 
ells in two Grassmannians.These results 
an be summarized as the following theorem.13



Theorem 6. Ea
h Xd, where d ∈ {max(k + l − n; 0); : : : ;min(k; l)},
ontains (k+l−2dk−d ) minimal orbits. All these orbits are 
losed in Xd andhave dimension (k − d)(l − d). They are dire
t produ
ts of S
hubert
ells.4 Desingularizations of the orbit 
lo-suresIn this se
tion we 
onstru
t desingularizations for the B-orbit 
losuresin X. Given a minimal paraboli
 subgroup Pi and an orbit 
losure �O,
onsider the morphism Fi : Pi × B �O → Pi �O;(p; x) 7→ px:Knop [K℄ and Ri
hardson{Springer [RS℄ showed that the followingthree 
ases may o

ur:
• Type U: PiO = O′ ⊔ O, and Fi is birational;
• Type N: PiO = O′ ⊔ O, and Fi is of degree 2;
• Type T: PiO = O′ ⊔ O ⊔ O′′, and Fi is birational. In this 
asedimO′′ = dimO.It turns out that in our situation the 
ase N never o

urs.Proposition 7. Let O be a B-orbit in X and let Pi be a minimalparaboli
 subgroup raising this orbit. Then the map Fi : Pi×BO → PiOis birational.Proof. Choose the 
anoni
al representative x ∈ O as in Prop. 1. Adire
t 
al
ulation shows that the isotropy group of x in Pi equalsthe isotropy group of x in B, des
ribed in Prop. 2. This implies thebirationality of Fi.Remark. The two remaining 
ases 
orrespond to the two possible\raisings" des
ribed in the subse
tion 3.1: (T) 
orresponds to (1),and (U) 
orresponds to (2). In the �rst 
ase, the rank of the orbitis in
reased by one, and in the se
ond 
ase, it does not 
hange. So,the weak order is 
ompatible with the rank fun
tion: if O � O′, thenrk O ≤ rk O′. This is true in general for spheri
al varieties (
f., for14



instan
e, [B1℄). Note that the strong order is not 
ompatible with therank fun
tion.Proposition 7 together with Theorem 6 allows us to 
onstru
tdesingularizations for �O's similar to Bott{Samelson desingularizationsof S
hubert varieties in Grassmannians.Given an orbit O, 
onsider a minimal orbit Omin that is less that
O w.r.t. the weak order. That means that there exists a sequen
e ofminimal paraboli
 subgroups (Pi1 ; : : : ; Pir), su
h that�O = Pir : : : Pi1 �Omin:So, we 
an 
onsider the mapF : Pir ×B · · · ×B Pi1 ×B �Omin → �O;F : (pir ; : : : ; pi1 ; x) 7→ pir : : : pi1x:A

ording to Proposition 7, it is birational. But this is not yet adesingularization, be
ause �Omin 
an be singular.The se
ond step of the desingularization 
onsists in 
onstru
ting aB-equivariant desingularization for �Omin. We have already proved inTheorem 6 that �Omin 
an be presented as the dire
t produ
t�Omin = Xw ×Xvfor some S
hubert varieties Xw ⊂ Gr(k; V ) and Xv ⊂ Gr(l; V ).For Xw and Xv one 
an take Bott{Samelson desingularizationsFw : Zw → Xw and Fv : Zv → Xv:(Details 
an be found, for instan
e, in [B2℄). So, we get a desingular-ization Fw × Fv : Zw × Zw → Xw ×Xv = �Omin:Having this, we 
an 
ombine this map with the map F and get themain result of this paper:Theorem 8. The map~F = F ◦ (Fw × Fv) : Pir ×B · · · ×B Pi1 ×B (Zw × Zv) → �Ois a desingularization of �O.Proof. We have already seen that both maps F and Fw×Fv are properbirational morphisms. The spa
e Pir ×B · · · ×B Pi1 ×B (Zw × Zv)is a homogeneous B-bundle over a nonsingular variety, hen
e it isnonsingular itself. 15
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