
Desingularizations of Shubert varieties indouble GrassmanniansEvgeny SmirnovAugust 21, 2006AbstratLet X = Gr(k; V ) × Gr(l; V ) be the diret produt of two Grass-mann varieties of k- and l-planes in a �nite-dimensional vetor spaeV , and let B ⊂ GL(V ) be the isotropy group of a omplete ag inV . One an onsider B-orbits in X in analogy with Shubert ellsin Grassmannians. We desribe this set of orbits ombinatorially andonstrut desingularizations for the losures of these orbits, analogousto the Bott{Samelson desingularizations for Shubert varieties.1 IntrodutionLet V be a �nite-dimensional vetor spae. We are interested in de-sribing pairs of subspaes in V of �xed dimensions k and l up toa hange of oordinates given by the group B ⊂ GL(V ) of non-degenerate upper-triangular matries. So, what we desribe is thedeomposition into B-orbits of the diret produt of two Grassmannvarieties X = Gr(k; V )×Gr(l; V ). This deomposition is analogous tothe Shubert deomposition for Grassmannians, or to the Ehresmann{Bruhat deomposition for omplete ags.The ombinatorial desription of orbits in X was given (as a par-tiular ase of some very general problem) in the paper by Magyar,Weyman and Zelevinsky [MWZ℄. The desription given below doesnot refer to these results | in this ase everything an be done usingonly some elementary linear algebra. This is a generalization of thedesription of orbits in the symmetri spae GLk+l=(GLk×GLl), thatwas obtained by St�ephane Pin in his thesis [P℄.1



We also regard the losures of these B-orbits. They an be onsid-ered as analogues of Shubert varieties in Grassmannians. We areinterested in their singularities. The singularities of Shubert va-rieties are well-known objets. They admit nie desingularizations,onstruted by Bott and Samelson. They are normal, rational, theirsingular loi an be desribed expliitly. Good referenes on this topiare, for instane, [B2℄ and [M℄. So, it is natural to ask the same ques-tions (resolutions of singularities, normality, rationality) for the aseof B-orbit losures in X. In this paper we onstrut desingularizationsof these varieties.Our interest in this problem is motivated by the reent paper [BZ℄by G. Bobinski and G. Zwara, when they prove that the singularitiesof orbit losures in representations of quivers of type D are equivalentto the singularities of Shubert varieties in double Grassmannians.The author is grateful to Mihel Brion for onstant attention tothis work, and to Ernest Vinberg and Dmitri Timashev for usefulremarks and omments.2 Desription of orbits2.1 NotationLet V be an n-dimensional vetor spae over a �eld K. The results ofSetion 2 are valid over an arbitrary ground �eld; however, in Setions3 and 4 we assume K be algebraially losed. Let k; l < n positiveintegers. The diret produt Gr(k; V ) × Gr(l; V ) is denoted by X.Usually we do not make any di�erene between points of X and theorresponding on�gurations of subspaes (U;W ), where U;W ⊂ V ,dimU = k, dimW = l.We �x a Borel subgroup B in GL(V ). Let V• = (V1; : : : ; Vn = V )be the omplete ag in V stabilized by B.2.2 Combinatorial desriptionIn this setion we will introdue some ombinatorial objets thatparametrize pairs of subspaes up to B-ation. Namely, orbits will beparametrized by triples onsisting of two Young diagrams ontainedin the retangles of size k × (n− k) and l × (n− l), respetively, andan involutive permutation of Sn. 2



Together with onstruting these data we will also onstrut some\anonial" bases in subspaes U , W , and V , respetively.Proposition 1. (i). There exist ordered bases (u1; : : : ; uk), (w1; : : : ; wl),and (v1; : : : ; vn) of U , W , and V , respetively, suh that:
• Vi = 〈v1; : : : ; vi〉 for eah i ∈ {1; : : : ; n} (angle brakets stand forthe linear span of vetors);
• ui = v�i , where i ∈ {1; : : : ; k}, and {�1; : : : ; �k} ⊂ {1; : : : ; n};
• The wi are either basi vetors of V or vetors with two-elementary\support": wi = v�i or wi = vi + vÆi , where i > Æi; moreover,in the latter ase vi ∈ U (that is, {1; : : : ; r} ⊂ {�1; : : : ; �k}).
• All the �i, i and Æi are distint; moreover, all the Æi are distintfrom the �i.(ii). With the notation of (i), de�ne a permutation � ∈ Sn asthe produt of all the transpositions (i; Æi). Their supports do notinterset, so this produt does not depend of their order.Then for the given pair (U;W ) the subsets �� = {�1; : : : ; �k}, �� =

{�1; : : : ; �l−r}, � = {1; : : : ; r} of {1; : : : ; n}, and the permutation �are independent of the hoie of bases in U , W , and V .Proof. (i) We will prove this by indution over n.If n = 1, there is nothing to prove.For arbitrary n, take a nonzero vetor v1 ∈ V1, and onsider thefollowing ases:
• v1 =∈ U , v1 =∈ W . Take the quotient �V = V=〈v1〉 with the ag�V• = �V2 ⊂ · · · ⊂ �Vn, onsider the image of our on�guration,that onsists of the subspaes �U ∼= U and �W ∼= W , and applythe indution hypothesis to this on�guration. Let us hooseordered bases {�u1; : : : ; �uk}, { �w1; : : : ; �wl}, and {�v1; : : : ; �vn−1} in�U , �W , and �V . Then we hoose a lift { : �V ,→ V . Now takethe pre-images of these basis vetors in V in the following way:ui = {(�ui), wi = {( �wi), vi = {(�vi−1). We get the required tripleof bases.
• v1 ∈ U , v1 =∈ W . Set u1 = v1 and again apply the indutionhypothesis to the quotient �V = V=〈v1〉 with the ag �V• and theon�guration ( �U; �W ). The only di�erene is that in this asedim �U = dimU − 1. After that we take the pre-images of thebases of �U , �W , and �V in V in a similar way.3



• The ase when v1 =∈ U , v1 ∈ W , is analogous to the previous one(we set w1 = v1).
• If v1 ∈ U ∩ W , let us set u1 = w1 = v1 and again apply theindution.
• The most interesting ase is the last one: v1 ∈ U+W , but it doesnot belong to any of these two subspaes. Consider then the setof vetors S = {v | v ∈ U; v1 + v ∈ W}. Sine v1 belongs tothe sum U +W , this set is nonempty. Now let j be the minimalnumber suh that Vj ontains vetors from S, and vj ∈ Vj ∩ S.Let us set u1 = vj, w1 = v1 + vj. Now apply the indutionhypothesis to the (n− 2)-dimensional spae �V = V=〈v1; vj〉 andto the on�guration of two subspaes �U , �W , and the ag�V• = V2=V1 ⊂ · · · ⊂ Vj−1=V1 == Vj=〈v1; vj〉 ⊂ Vj+1=〈v1; vj〉 ⊂ · · · ⊂ Vn=〈v1; vj〉:We take the pre-images of vetors from �V to V as follows:vi = {(�vi−1); if i ∈ [2; j − 1℄; vi = {(�vi−2) if i ∈ [j + 1; n℄;where, as above, { is an embedding of �V into V . We have alreadyde�ned the vetors v1 and vj .(ii) Take a on�guration (U;W ) and assume that there exist twotriples of ordered bases ((u1; : : : ; uk); (w1; : : : ; wl); (v1; : : : ; vn)) and((u′1; : : : ; u′k); (w′1; : : : ; w′l); (v′1; : : : ; v′n)), satisfying the onditions of(i), suh that either the triples of sets (��; ��; �) and (��′; ��′; �′), or thepermutations � and �′, orresponding to the �rst and the seond tripleof bases, respetively, are not equal.The set �� an be desribed as follows. i ∈ �� i� dimU ∩ Vi >dimU ∩ Vi−1. This means that �� = ��′.By the same argument we an prove that �� ∪ � = ��′ ∪ �′.Now let us prove that � = �′. This will omplete the proof, sine�� = {j ∈ �� ∪ � | �(j) = j}.Let j be the minimal number from � ∪ , suh that �(j) 6= �′(j).Suppose that �(j) < �′(j). Two ases may our:a) i := �′(j) 6= j. First observe that i =∈ ��. Consider the subspae~V = (U ∩ Vj) + Vi−1 = 〈vs; v�i | s ≤ i− 1; �i ∈ �� ∪ [i; j℄〉 == 〈v′s; v′�i | s ≤ i− 1; �i ∈ ��′ ∪ [i; j℄〉:4



Let R and R′ denote respetively the sets {r ∈ �� ∪ � | r; �(r) ∈[1; i− 1℄∪ (��∩ [i; j℄)} and {r ∈ �� ∪ � | r; �′(r) ∈ [1; i− 1℄∪ (��∩ [i; j℄)}.One an easily see thatdim ~V ∩W = #R = #R′:But �(r) = �′(r) for all r ∈ [1; j−1℄, and j belongs to R and does notbelong to R′. That means that the ardinalities of these two sets aredi�erent, that gives us the desired ontradition.b) If �′(j) = j, set i = �(j), and proeed as in a).Let us now introdue a ombinatorial onstrution that parametrizeson�guration types. Namely, having a on�guration, we will onstruta pair of Young diagrams with some boxes distinguished.Suppose we have a on�guration (U;W ) with bases (u1; : : : ; uk),(w1; : : : ; wl), and (v1; : : : ; vn), hosen as in Prop. 1, the sets ��, ��, �,and the involution � orresponding to this on�guration. Consider aretangle of size k× (n− k) and onstrut a path from its bottom-leftto upper-right orner, suh that its j-th step is vertial if j belongsto �� (that is, vj is equal to some ui), and horizontal otherwise. Thispath bounds (from below) the �rst Young diagram.The seond diagram will be ontained in the retangle of size l ×(n− l). Again, we will onstrut a path bounding it. Let the j-th stepof this path be vertial if j ∈ �� ∪ �, and horizontal otherwise.If j ∈ �, then the �(j)-th step of this path is horizontal. Thisalso means that the j-th and �(j)-th steps of the path bounding the�rst diagram are also vertial and horizontal, respetively. In eahdiagram, take the box loated above the �(j)-th step and to the leftof the j-th step, and put a dot into this box.Let us all this pair of diagrams with dots a marked pair.Example. Let n = 9, k = 4, l = 3. Suppose that �� = {3; 5; 6; 9},�� = {2; 5}, � = {9}, � = (7; 9). Then the orresponding marked pairof diagrams is the following:
•

•Remark. Note that the onstruted diagrams (without dots) are thesame as the diagrams that orrespond to the Shubert ells ontainingthe points U ∈ Gr(k; V ) and W ∈ Gr(l; V ). (The orrespondene5



between Shubert ells and Young diagrams is desribed, for example,in [F℄, [M℄, or any other textbook on this subjet).2.3 Stabilizers and dimensions of orbitsNow let us �nd the stabilizer GL(V )(U;W ) for a given on�guration.Proposition 2. With the notation of Prop. 1, the stabilizer of aon�guration (U;W ) written w.r.t. basis (v1; : : : ; vn), onsists of theupper-triangular matries A = (aij) ∈ GL(n) satisfying the followingonditions:1. a = a�()�() for eah  ∈ �;2. ai� = 0 for eah � ∈ ��, i =∈ ��;3. aj� = 0 for eah � ∈ �� and j =∈ �� ∪ � ∪ �(�);4. a� = a�()� for eah � ∈ �� and  ∈ �,  < �;5. aj = −aj�() for eah j =∈ �� ∪ � ∪ �(�) and  ∈ �;6. for eah 1; 2 ∈ �, 1 < 2, one of the following ases ours:
• �(2) < �(1) < 1 < 2: then a12 = a�(1)2 = a�(2)1 =a�(1)�(2) = 0;
• �(1) < �(2) < 1 < 2: then a�(2)1 = a�(1)2 = 0,a12 = a�(1)�(2);
• �(1) < 1 < �(2) < 2: then a�(1)2 = 0, a12 +a1�(2) = a�(1)�(2).Corollary 3. The stabilizer of a on�guration (U;W ) is a semidiretprodut of a tori and a unipotent part:GL(V )(U;W ) = T(U;W ) ⋉ U(U;W );where T(U;W ) is the subgroup in the group of diagonal matries de-�ned by the equations 1., so that dimT(U;W ) = n − #�, and U(U;W )is the subgroup in the group of unitriangular matries, de�ned by theequations 2.{6.De�nition. The odimension of the tori part of the stabilizer is saidto be the rank of a on�guration (or its orresponding orbit):rk (U;W ) := n− dimT(U;W ) = #�:6



Proof of the proposition. First of all, the stabilizer B(U;W ) is formedby upper-triangular matries, as a subgroup of B.Next, it preserves the subspae U = 〈v�1 ; : : : ; v�k〉. This meansthat a transformation A ∈ B(U;W ) maps eah v�i into a linear om-bination of v�j , so all the elements ai�, where � ∈ ��, i =∈ ��, vanish.(Note that the zeros in A obtained in this way also form a Youngdiagram orresponding to the subspae U , rotated 90◦ lokwise |this proves, in partiular, that the dimension of a Shubert ell in aGrassmannian is equal to the number of boxes in the orrespondingdiagram).So, the boxes of the �rst Young diagram are in a one-to-one or-respondene with the linear equations de�ning BU as a subgroup ofthe group of upper-triangular matries: the box loated above the i-th(horizontal) step and to the left of the j-th (vertial) step of the orre-sponding path (denote this box by (i; j)) orresponds to the equationaij = 0.Similarly, the stabilizer of our on�guration preserves the subspaeW . This gives us a set of linear equations on the elements aij, andthe number of them is equal to the number of boxes in the seonddiagram of the orresponding marked pair. Again, we establish a one-to-one orrespondene between the boxes of this diagram and theseequations, denoting boxes as in the previous paragraph. Here theyare:
• aj� = 0 for eah � ∈ �� and j =∈ �� ∩ � ∩ �(�), j < �. Theorresponding box is (j; �);
• aj = −aj�() for eah j =∈ �� ∪ � ∪ �(�) and  ∈ �, j < . Theorresponding box is (j; );
• a�()) + a − a�()�() = 0 for eah  ∈ �. The orrespondingbox is (�(); );
• a� = a�()� for eah � ∈ �� and  ∈ �,  < �. The orrespondingbox is (�(); �);
• a�(1)�(2) + a�(1)2 = a1�(2) + a12 for eah 1 < 2. Thisequation orresponds to the box (�(1); 2).Bringing all these equations together ompletes the proof of theproposition.One we know the stabilizer of a on�guration, we an alulateits dimension (and hene the dimension of the orbit B(U;W ) ⊂ X).7



Analyzing the equations above, one an dedue a ombinatorial inter-pretation of dimension in terms of Young diagrams with dots.To do this, we have to introdue one more ombinatorial notion.Suppose we have two retangles of size k × (n − k) and l × (n − l),respetively, and a path in eah of these retangles bounding a Youngdiagram (so both paths are of the length n). Consider the set ofall numbers i, suh that the i-th steps in the paths bounding bothdiagrams are horizontal, and take the olumns in the diagrams lyingabove these steps. After that let us do the same for those pairs ofsteps that are \simultaneously vertial", and take the rows to the leftof these steps.The intersetion of olumns and rows we have taken also forms aYoung diagram. Let us all it a ommon diagram orresponding tothe given pair of diagrams.Example. The pair of Young diagrams
has the following ommon diagram:By our onstrution of marked pairs, dots an only be situated inthe boxes of the ommon diagram of a marked pair.Corollary 4. Let (U;W ) be a on�guration of subspaes, and let(Y1; Y2) be the orresponding marked pair of Young diagrams, withdots in some boxes of its ommon diagram Yom.Now take the diagram Yom. Take all its boxes with dots and on-sider all the hooks with spikes in these boxes. Let H be the set of boxesthat belong to at least one of these hooks. Then the dimension of theB-orbit of (U;W ) equalsdimB(U;W ) = #Y1 +#Y2 −#Yom +#H;where #Y denotes the number of boxes in Y .Remark. #H equals the total number of boxes ontained in all thehooks, not the sum of all the hooks' lengths. That means that a boxinluded into two hooks must be ounted one, not twie!8



Proof. In the proof of Prop. 2 we deal with two systems of linearequations on the matrix entries (aij), that orrespond to stabilizingthe subspaes U and W and onsist of #Y1 and #Y2 equations, re-spetively. One an easily see that the equations orresponding to thebox (i; j) oinide in both systems i� the box (i; j) of the ommon dia-gram does not belong to any hook, and also that the system obtainedby eliminating these \double" equations is linearly independent. So,the odimension of B(U;W ) in B (that is, the dimension of B(U;W ))equals #Y1 +#Y2 −#Yom +#H.Example. Let the ommon diagram for a marked pair be as follows:
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ •
• ∗
∗ ∗ ∗ •Then #Yom = 26, #H = 15 (boxes belonging to H are the non-emptyones).In partiular, the dimension formula allows us to desribe the min-imal, or the most speial, and the maximal (open) orbit. The mostspeial orbit is zero-dimensional and orresponds to Y1 = Y2 = ∅. Itis the point (〈v1; : : : ; vk〉; 〈v1; : : : ; vl〉) ∈ X. Both Young diagrams or-responding to the most generi orbit are retangular, of size k×(n−k)and l×(n−l), respetively. So, their ommon diagram is also a retan-gle of size min{k; l}×(n−max{k; l}), with dots situated on a diagonalstarting from the bottom-right orner.Example. For n = 8, k = 3, and l = 4, the ombinatorial dataorresponding to the maximal orbit are as follows:

•
•

•Y1 Y2 Yom2.4 Deomposition of X into the union of GL(V )-orbitsGL(V )-orbits in X have a muh simpler desription: the GL(V )-orbitis given only by one natural number, namely, the dimension of the9



intersetion of a k-plane and an l-plane. For this number (denote itby i) we have the inequalitymax{0; k + l − n} ≤ i ≤ min{k; l}:Denote the orresponding GL(V )-orbit by Xi:X = ⊔i∈{max(0;k+l−n);:::;min(k;l)}Xi:For eah B-orbit the dimension of the intersetion of the orrespondingsubspaes is equal to #(�� ∩ ��). This follows from our onstrution ofthe ombinatorial data orresponding to an orbit.3 The weak order on the set of orbitsStarting from this point, we work over an algebraially losed ground�eld K.In the previous setion we desribed the set of B-orbits in Gr(k; V )×Gr(l; V ). There exist several partial order strutures on this set. The�rst, and the most natural one, is de�ned as follows:De�nition. Let O and O′ be two B-orbits in Gr(k; V )×Gr(l; V ). Wesay that O is less or equal than O′ w.r.t. the strong (or topologial)order, i� O ⊂ �O′. (Saying \topologial", we speak about the Zariskitopology). Notation: O ≤ O′.There exists another order on this set, usually alled the weakorder. Here notation and terminology is taken from [B1℄.Let W be the Weyl group for GL(n), and let � be the orrespond-ing root system. Denote the simple reetions by s1; : : : ; sn−1, andthe orresponding simple roots by �1; : : : ; �n−1. Let Pi = B ∪ BsiBbe the minimal paraboli subgroup in GL(V ) orresponding to thesimple root �i.We say that �i raises an orbit O to O′, if �O′ = Pi �O 6= �O. In thisase, dimO′ = dimO + 1. This notion allows us to de�ne the weakorder.De�nition. An orbit O is said to be less or equal than O′ w.r.t. theweak order (notation: O � O′), if �O′ an be obtained as the result ofseveral onseutive raisings of �O by minimal paraboli subgroups:
O � O′ ⇔ ∃(i1; : : : ; ir) : �O′ = Pir : : : Pi1 �O:10



Let us represent this relation of order by an oriented graph. Con-sider a graph �(X) with verties indexed by B-orbits in X. Join Oand O′ with an edge of label i, leading to O′, if Pi raises O to O′.It is lear that the onneted omponents of �(X) onsist of theB-orbits ontained in the same GL(V )-orbit Xi, and that every on-neted omponent has a unique maximal element (the B-orbit that isopen in Xd).Our next aim will be to desribe minimal elements w.r.t. the weakorder in eah onneted omponent.3.1 Combinatorial desription of minimal parabolisubgroup ationConsider an orbit O and the orresponding ombinatorial data: thesets ��, ��, �, and the involution � ∈ Sn. Let the minimal parabolisubgroup Pi = B ∪BsiB raise the orbit O to the orbit O′ 6= O. Nowwe will desribe the ombinatorial data (��′, ��′, �′, �′) of O′.Denote the transposition (i; i+ 1) ∈ Sn by �i.The following ases may our:1. Suppose thati ∈ ��; i =∈ ��; i+ 1 =∈ ��; i+ 1 ∈ ��;or, vie versa,i =∈ ��; i ∈ ��; i+ 1 ∈ ��; i+ 1 =∈ ��:These two variants orrespond to two orbits that ould be risento O′. In this ase, the new ombinatorial data is given as follows:��′ = �� ∪ {i+ 1} \ {i};��′ = �� \ {i; i+ 1};�′ = � ∪ {i+ 1}�′ = � · �i:Note that rk ~O = rk O + 1, dim ~O = dimO + 1.In the language of marked pairs of diagrams, this is representedas follows. If the i-th and the i+1-th steps of the path boundingthe �rst diagram form a ravine, and the orresponding intervalsof the seond diagram form a spike (or, vie versa, we have a11



spike in the �rst diagram and a ravine in the seond), both thesepairs of steps an be replaed by spikes bounding a marked box.Example. Apply the minimal paraboli subgroup P2 to theorbit O ⊂ Gr(3; 7) × Gr(4; 7) de�ned by the following markedpair:
•

• :The orbit O′ obtained as the result of this raising is de�ned bythe marked pair
•

•

•

• :2. In all the other ases ��′ = �i(��), ��′ = �i( ��), �′ = �i(�), and thepermutation ~� is the result of the onjugation of � by �i:~� = �i��i:The ranks of these orbits are equal: rk O′ = rk O.3.2 Minimal orbitsLemma 5. All minimal B-orbits w.r.t. the weak order in a givenGL(V )-orbit have rank 0.Proof. Assume the onverse. Let O be a minimal orbit with a nonzerorank, and let (��; ��; �; �) the orresponding ombinatorial data, suhthat � 6= Id. Let p ∈ �, p′ = �(p). Without loss of generality we ansuppose that there is no other q ∈ �, suh that p < q < �(q′) < p′.Let C1 denote the set of ravines in the �rst diagram, situatedbetween p and p′ | that is, the set of indies i, suh that the i-th stepin the �rst diagram is horizontal, and the i+ 1-th is vertial:C1 = H1 ∩ (V1 − 1) ∩ {p; : : : ; p′}:Similarly, let D1 denote the set of spikes, | that is, the set of i, suhthat the i-th step is vertial, and the i+ 1-st is horizontal:D1 = V1 ∩ (H1 − 1) ∩ {p; : : : ; p′}:12



Denote the same sets for the seond diagram by C2 and D2. Note that#C1 = #D1 + 1, and #C2 = #D2 + 1 | sine p ∈ H1;2, p′ ∈ V1;2.Now take a j, suh that j ∈ (C1 \ D2) ∪ (C2 \ D1). Let us showthat there exists an orbit O′, suh that �O = Pj �O′. We desribe theombinatorial data for this orbit.If the permutation � ontains the transposition (j; j+1), then theombinatorial data for O′ is as follows:��′ = �� ∪ {j} \ {j + 1};��′ = �� ∪ {j};�′ = � \ {j + 1}�′ = � · �j:Otherwise ��′ = �j(��), ��′ = �j( ��), �′ = �j(�), �′ = �j��j .The alulation of the dimensions shows that dimO′ = dimO− 1.To omplete the proof, we have to show that the set (C1 \ D2) ∪(C2 \D1) is nonempty:#((C1 \D2) ∪ (C2 \D1)) ≥ max(#(C1 \D2);#(C2 \D1)) ≥
≥ max(#C1 −#C2 + 1;#C2 −#C1 + 1) ≥ 1:After that we an �nd all the minimal orbits in Xd. One an easilysee that eah minimal orbit has the following ombinatorial data:�� ∪ �� = {1; : : : ; k + l − d};�� ∩ �� = {1; : : : ; d};� = ∅;� = Id:The dimension of all minimal orbits in Xd equals (k − d)(l − d). Inpartiular, that means that they all are losed inXd. They orrespondto deompositions of the set {d+1; : : : ; k+ l−d} into two parts, �� \ ��and �� \ ��, so their number is equal to (k+l−2dk−d ).Also note that the pair of Young diagrams that orresponds toa minimal orbit is omplementary: one an put these two diagramstogether so that they will �ll a retangle of size (k − d)× (l − d).It is also lear that no other B-orbit orresponds to suh pair ofYoung diagrams. That means that all the minimal orbits are stableunder the (B × B)-ation, that is, they are diret produts of twoShubert ells in two Grassmannians.These results an be summarized as the following theorem.13



Theorem 6. Eah Xd, where d ∈ {max(k + l − n; 0); : : : ;min(k; l)},ontains (k+l−2dk−d ) minimal orbits. All these orbits are losed in Xd andhave dimension (k − d)(l − d). They are diret produts of Shubertells.4 Desingularizations of the orbit lo-suresIn this setion we onstrut desingularizations for the B-orbit losuresin X. Given a minimal paraboli subgroup Pi and an orbit losure �O,onsider the morphism Fi : Pi × B �O → Pi �O;(p; x) 7→ px:Knop [K℄ and Rihardson{Springer [RS℄ showed that the followingthree ases may our:
• Type U: PiO = O′ ⊔ O, and Fi is birational;
• Type N: PiO = O′ ⊔ O, and Fi is of degree 2;
• Type T: PiO = O′ ⊔ O ⊔ O′′, and Fi is birational. In this asedimO′′ = dimO.It turns out that in our situation the ase N never ours.Proposition 7. Let O be a B-orbit in X and let Pi be a minimalparaboli subgroup raising this orbit. Then the map Fi : Pi×BO → PiOis birational.Proof. Choose the anonial representative x ∈ O as in Prop. 1. Adiret alulation shows that the isotropy group of x in Pi equalsthe isotropy group of x in B, desribed in Prop. 2. This implies thebirationality of Fi.Remark. The two remaining ases orrespond to the two possible\raisings" desribed in the subsetion 3.1: (T) orresponds to (1),and (U) orresponds to (2). In the �rst ase, the rank of the orbitis inreased by one, and in the seond ase, it does not hange. So,the weak order is ompatible with the rank funtion: if O � O′, thenrk O ≤ rk O′. This is true in general for spherial varieties (f., for14



instane, [B1℄). Note that the strong order is not ompatible with therank funtion.Proposition 7 together with Theorem 6 allows us to onstrutdesingularizations for �O's similar to Bott{Samelson desingularizationsof Shubert varieties in Grassmannians.Given an orbit O, onsider a minimal orbit Omin that is less that
O w.r.t. the weak order. That means that there exists a sequene ofminimal paraboli subgroups (Pi1 ; : : : ; Pir), suh that�O = Pir : : : Pi1 �Omin:So, we an onsider the mapF : Pir ×B · · · ×B Pi1 ×B �Omin → �O;F : (pir ; : : : ; pi1 ; x) 7→ pir : : : pi1x:Aording to Proposition 7, it is birational. But this is not yet adesingularization, beause �Omin an be singular.The seond step of the desingularization onsists in onstruting aB-equivariant desingularization for �Omin. We have already proved inTheorem 6 that �Omin an be presented as the diret produt�Omin = Xw ×Xvfor some Shubert varieties Xw ⊂ Gr(k; V ) and Xv ⊂ Gr(l; V ).For Xw and Xv one an take Bott{Samelson desingularizationsFw : Zw → Xw and Fv : Zv → Xv:(Details an be found, for instane, in [B2℄). So, we get a desingular-ization Fw × Fv : Zw × Zw → Xw ×Xv = �Omin:Having this, we an ombine this map with the map F and get themain result of this paper:Theorem 8. The map~F = F ◦ (Fw × Fv) : Pir ×B · · · ×B Pi1 ×B (Zw × Zv) → �Ois a desingularization of �O.Proof. We have already seen that both maps F and Fw×Fv are properbirational morphisms. The spae Pir ×B · · · ×B Pi1 ×B (Zw × Zv)is a homogeneous B-bundle over a nonsingular variety, hene it isnonsingular itself. 15
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