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1. Introduction
1.1. Flag varieties and Schubert polynomials

Let G be a reductive group over C. Let us fix a Borel subgroup B in G and the corresponding
maximal torus T C B. A classical result of Borel [1] states that the cohomology ring H*(G/B, Z) is
isomorphic as a graded ring to the coinvariant ring of the Weyl group W of G, i.e. to the quotient
of the polynomial ring in dim T variables modulo the ideal generated by W-invariants of positive
degree.

The cohomology ring of G/B has a nice additive basis formed by Schubert classes o,,: the classes
of Schubert varieties, i.e. of the closures of B-orbits in G/B. It is indexed by the elements of the Wey]l
group w € W. A natural question is to construct a system of polynomial representatives of Schubert
classes.

This question was answered in the case G = GL,; by L N.Bernstein, I.M.Gelfand and
S.1.Gelfand [2] who showed that the polynomials representing classes of Schubert varieties can be
obtained from a polynomial representing the top class (the class of a point) by a sequence of divided
difference operators. A.Lascoux and M.-P. Schiitzenberger [3] considered one particularly nice choice
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of the top class and defined a system of polynomials &,, € Z[z1, ..., z,], the Schubert polynomials,
with many good combinatorial and geometric properties. Here w € S, runs over the group of
permutations in n letters, i.e. the Weyl group of GL,,

This system of polynomials is stable in the following sense: for the embedding S, — Spi1,
the representative &,, of a given permutation w € S, C S;4+1 does not depend upon n. So the
polynomials &,, can be viewed as elements of the ring Z[z1, z5, ... ] in countably many variables,
indexed by the finitary permutations w € Sy, = li_n)]S,,. In [3], it is shown that these polynomials
form a Z-basis of this ring (also cf. [4]).

Geometrically this can be interpreted as follows. The standard embedding GL, <> GL;;1
together with the embedding of Borel subgroups B, — B, defines an embedding of flag varieties
Gn/Bn < Gnt1/Bntq. This gives a surjective map H*(Gpy1/Bnt1, Z) — H*(Gn/By, Z). This map
is compatible with the Schubert classes: for each w € S, there exists a stable Schubert class
o) = limo € lim H*(G,/By, Z). A priori this class is a homogeneous power series in z;, z, . . ..
However it turns out that it can be represented by a unique polynomial, which is the Schubert
polynomial &,,. The elements {S,,} are thus obtained as the unique solutions of an infinite system
of equations involving divided difference operations.

The polynomials &,, have nonnegative integer coefficients; their nonnegativity is completely un-
obvious from their definition involving divided difference operators. Their combinatorial description
was obtained independently by S.Fomin and An.Kirillov [5] and S.Billey and N.Bergeron [6]. The
monomials in &,, are indexed by certain diagrams, called pipe dreams or rc-graphs, see Section 2.4.
A geometric interpretation of pipe dreams was obtained by A.Knutson and E.Miller in [7]: they
showed that the pipe dreams for a permutation w are in bijection with the irreducible components
of a certain flat Grobner degeneration of the corresponding matrix Schubert variety X,,.

There is an obvious analogy between Schubert and Schur polynomials: the monomials of the
latters are indexed by semistandard Young tableaux. In fact, if w is a Grassmannian permutation,
i.e. it has a unique descent, the corresponding Schubert polynomial equals the Schur polynomial
sy (w), where A(w) is a partition obtained from w (see Section 6.1 for details). This equality can
be easily obtained from the following geometric argument: the Schur polynomials represent the
classes of Schubert varieties in Grassmannians G/P, where P is a maximal parabolic group in G, and
the map H*(G/P) — H*(G/B) sends them to Schubert classes of Grassmannian permutations in a
full flag variety. There is also a purely combinatorial proof: one can establish a bijection between
the Young tableaux indexing the monomials in s,(,) and the pipe dreams indexing the monomials
in &,,. We recall this proof in Theorem 6.4; see also [8].

In [6] the authors introduced the notion of the bottom pipe dream for each Schubert polynomial.
It is a maximal pipe dream according to some partial order on pipe dreams, defined in combinatorial
terms; such a pipe dream exists and is unique for each permutation. This allowed them to show that
the basis change matrix between the Schubert polynomials and the monomial basis in Z[z1, z3, . . . ]
is unitriangular, and hence Schubert polynomials form a Z-basis in Z[z1, z3, .. . ].

The construction of Schubert polynomials can be extended as follows. Instead of the cohomology
ring H*(G/B, Z) we can consider the T-equivariant cohomology ring H;(G/B, Z). The map G/B — pt
defines the module structure on Hf(G/B, Z) with respect to the polynomial ring Z[ty, ..., t,] =
H;(pt). One can be interested in polynomial representatives of the T-equivariant classes of [X,,].
These are also classical objects, known as double Schubert polynomials &,,(z, t); these are homoge-
neous polynomials in 2n variables: zq, ..., z, and tq, ..., t,. The specialization t; = 0 gives us the
usual Schubert polynomials &,,(x) in n variables z;, . .., z;. Double Schubert polynomials also have
a description in terms of pipe dreams.

1.2. The case of symplectic and orthogonal groups

It is interesting to replace GL, by another reductive complex algebraic group and ask the same
series of questions. We will be interested in the classical groups of types B, C,, and D,: these
are SOzp+1, SPyp, and SOy, respectively. The Weyl group W for such a group is a hyperoctahedral
group, or the group of signed permutations on n letters, for the types B and C, or, in the type D, the
subgroup of this group consisting only of signed permutations with even number of sign changes.
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The (generalized) full flag variety G/B also has a cellular decomposition G/B = | |, .,, BwB/B,
with the cells indexed by the elements of the Weyl group W; and the cell closures X,, = BwB/B
define a basis o,, € H*(G/B, Z).

As in the case of GL,, one can consider the embeddings G, < Gy1, where G, and G, are
classical groups of the same type (B, C or D) and of the rank n and n + 1, respectively. We can fix
an element w € Wy, = [ J W, of the “limit Weyl group” and take the projective limit of Schubert
cycles o]ff") € l(iﬂ]H*(Gr, /Bn, Z). The question is as follows: what is a “nice” representative of this
class in the ring of power series Z[[z1, z2, ... ]]?

In [9] S.Billey and M.Haiman define Schubert polynomials for the classical groups. They show
that o ° is represented by a unique element §,, of the subring Z(z;, z, . . ., p1(z), p3(2), . .. ], where
pr(z) = Z?il zi" are the Newton power sums. Note that we need to take only the odd power sums;
the images of the even power sums vanish in each of the coinvariant rings for each of the types B,
C, and D. Similarly to &,,, the functions §,, are obtained as unique solutions of an infinite system of
equations involving divided difference operators. They also form a basis of the corresponding ring.

Schubert polynomials for the classical groups can be also expressed via the usual Schubert
polynomials and the Stanley symmetric functions. This implies that they are nonnegative integer
combinations of monomials in zy, z3, ... and p1, p3, . ...

Like in the previous case, we can consider the Schubert classes coming from cycles on La-
grangian/orthogonal Grassmannians. The results of P.Pragacz [10] imply that the corresponding
Schubert polynomials are equal to Schur’s P- and Q -functions; the details follow in Section 6.2.

One also can introduce double versions of Schubert polynomials, which represent the classes of
[X,] in the T-equivariant cohomology ring H;(G/B, Z), where T = (C*)" is a maximal torus in G.
They depend upon z1, z, ..., P1, P3» - . ., and another set of variables tq, t, ... Formulas for double
Schubert polynomials §,(z, p, t) were found by T.Ikeda, L. Mihalcea, and H. Naruse in [11].

Finally, in the paper [12], An.Kirillov and H.Naruse provide a combinatorial construction of
Schubert polynomials for classical Weyl groups outside the type A. They define analogues of pipe
dreams whose generating functions are equal to (ordinary or equivariant) Schubert polynomials.

Let us also mention an earlier paper [13] by S.Fomin and An.Kirillov, where the authors were
constructing Schubert polynomials of the type B in a completely different way: they were looking for
a family of polynomials indexed by the hyperoctahedral group and satisfying certain five properties,
similar to those of Schubert polynomials in the type A (stability, nonnegativity of coefficients etc.).
They have shown that such a family of polynomials does not exist; then they considered families of
polynomials defined by all but one of these properties. This led them to several different families
of polynomials. We should note that they are also different from the Schubert polynomials of type
B defined by Billey and Haiman and considered in this paper.

1.3. Our results

This paper is devoted to combinatorial study of Schubert polynomials for groups of the types B, C,
and D. We provide an alternative construction of pipe dreams for these cases; it is given in Section 3.
The pipe dreams are configurations of strands, similar to those in the type A; some of the strands
may be equipped with an additional element, called faucet, which represents the sign change. To
such a pipe dream we can associate a permutation w € W, called the shape of pipe dream, and a
monomial; our main results, Theorems 3.7, 3.4 and 3.11, state that the Schubert polynomial §,,(z, p)
equals the sum of monomials for all pipe dreams of shape w € W of type B, C or D, respectively.
We also give a similar description of double Schubert polynomials of these types in Corollary 3.18.

Our construction of pipe dreams is similar to the one by Kirillov and Naruse; the main difference
is that in their setting each pipe dream corresponds to a couple of terms in the Schubert polynomial
(namely, to the product of several binomials), as opposed to one monomial in our setting. We
provide a detailed comparison of these two constructions in Section 4.

Then we introduce a notion of admissible moves on pipe dreams of a given type; these are certain
transformations not changing the shape of a pipe dream, that turn it into a poset. We show that
each pipe dream for a permutation of each of the types B-D can be reduced to a certain canonical
form, referred to as the bottom pipe dream, by a sequence of admissible moves, similar to the ladder
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moves in the type A; thus the poset of pipe dreams corresponding to a given Weyl group element
is shown to have a unique minimal element. The existence of bottom pipe dreams is established in
Theorems 5.7, 5.8, and 5.9. This allows us to give a new proof of Theorem 5.10, which states that
the Schubert polynomials (of each type) form a basis of the ring Q[z, p1, p3, ... ]

In the last section we study Grassmannian permutations; we give a bijective proof of the fact
that the Schubert polynomial of such a permutation is Schur’s P- or Q-function (Theorem 6.7). For
this we recall the definition of the latter functions involving shifted Young tableaux and establish
a bijection between these tableaux and the pipe dreams of the corresponding Grassmannian
permutation.

1.4. Related questions: bumpless pipe dreams and specializations of Schubert polynomials

Recently, T.Lam, S.].Lee, and M. Shimozono [14] introduced objects called bumpless pipe dreams.
They also can be used to obtain a formula for double Schubert polynomials; however, there is no
weight-preserving bijection between them and the usual pipe dreams, so the two presentations are
genuinely different.

In her recent preprint [ 15], A. Weigandt defines a generalization of bumpless pipe dreams, which
provide a similar description of Grothendieck polynomials, and shows that they correspond to
alternating sign matrices. It would be interesting to find analogues of these results, as well as the
notion of bumpless pipe dreams, for the groups of classical types outside the type A.

Another series of questions concerns specializations of Schubert polynomials. In [4], I. Macdonald
conjectured a formula for the principal specialization of a Schubert polynomial; this formula was
proven algebraically by S.Fomin and R.Stanley [16]. Recently, a combinatorial proof was found by
S.Billey, A. Holroyd, and B. Young [ 17]. Taking an appropriate limit of Schubert polynomials gives the
so-called backstable Schubert polynomials, also defined in the aforementioned paper [14]. Similarly to
Schubert polynomials of types B, C and D, they depend upon two sets of variables, being polynomials
in the first set and symmetric functions in the second set of variables. They also admit a similar
expression for their principal specializations. E. Marberg and B.Pawlowski [18] prove analogues of
Macdonald’s formula for Schubert polynomials of types B, C, and D. A natural (however challenging)
question is to find a combinatorial proof of their results by means of pipe dreams, either those
defined in this paper or the bumpless ones.

1.5. Structure of the paper

This text is organized as follows. In Section 2 we recall the main definitions and notions con-
cerning the Weyl groups of classical types, the Schubert polynomials for these groups, as well as the
construction of pipe dreams in the type A. In Section 3 we describe the constructions of pipe dreams
for Schubert polynomials of the types B, C, and D (Sections 3.1-3.4). In Section 3.5 we are dealing
with the double Schubert polynomials; we provide a generalization of the previous construction to
this case. Finally, in Section 3.7 we compute several examples of Schubert polynomials. Section 5
is devoted to the proof of existence of bottom pipe dreams. Section 4 is devoted to comparing our
construction with the “excited extended Young diagrams" by Kirillov and Naruse: we recall their
construction in Section 4.1 and relate it to the ours in Section 4.2. In Section 5.1 we introduce
the admissible moves, and in Section 5.2 we recall the situation in the type A. The next three
subsections are devoted to the cases B, C, and D respectively. Section 6 is devoted to Grassmannian
permutations; we show that the Schubert polynomial of such a permutation is a P- or Q-Schur
function. In the appendix we provide more examples: namely, we list all the elements of the group
BC, and some elements of the group D3 and for each of these elements list all its pipe dreams.

2. Preliminaries
2.1. Weyl groups of the classical types

Let Q[z] = Q|z1, 22, ... ] be the ring of polynomials in countably many variables z1, z5, . ... Let
Dk = z’l< + z;‘ + ... denote the kth power sum; this is not a polynomial, but rather a symmetric
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function in the z;'s. Consider the ring of power series Q[z, p1, p3,...] = Q[z1,22,...,DP1, D3, .--]
which are polynomial in the z; and the p; for k odd. All its generators are algebraically independent,
so this ring can be viewed just as the polynomial ring in z¢, z, ... and pq, ps3, .. ..

Denote by S, the symmetric group in n variables, and let So, = lim S, be the group of finitary
permutations of Z.. ¢, i.e. the group of permutations fixing all but finitely many points. It is generated
by the simple transpositions s; = (i < i+ 1). The group S, acts on Q[z,...,p1,p3,...] by
permuting the z;'s.

Let us also consider the group of signed permutations BC,, (also called the hyperoctahedral group).
It can be viewed as the group of permutations w of the 2n-element set {1, —1, ..., n, —n} satisfying
the condition w(i) = j iff w(—i) = —j. The groups BC, are embedded one into another in the obvious
way, so we can consider the injective limit BC.,, which is the group of finitary signed permutations.
The standard generators for BC., are s; = (i <> i+ 1) fori > 1 and sg = (1 <> —1). The group BC
acts on the formal power series ring Q[[z1, 3, . ..]] by letting s; interchange z; and z;,; for i > 1,
and by letting so send z; into —z;. We can restrict this action to the rings Q[z] and Q[z, p1, ps, - - . ]
and see that the s; for i > 1 fix the py, while sopx = pr — 224‘.

We denote by D, the subgroup of BC, of signed permutations with an even number of sign
changes. The union of these subgroups is denoted by D,.. The standard generators for these groups
are s; for i > 1 and an additional generator s; = sps1Sp which replaces z; with —z; and z; with —z;.

These groups satisfy the relations si2 = id and the Coxeter relations (cf., for instance, [ 19] or [20]):

Soot SiSj = SjS; for |i —j| > 2, sisiy15i = Si+1SiSi+1 fori>1;

BCoo: sisj = sjsi for |i — j| > 2, siSiy1Si = Sit1SiSi41 for i > 1, 50515051 = $15051S0.
Dot SiSj = Sjs; for [i—j| > 2, siSip1Si = Sip18iSipq for i > 1 (here i,j € {1,1,2,...}; while
performing arithmetic operations we treat 1 as 1).

We will use the standard terminology for Coxeter groups. Let 7, be one of the groups Sy, BCco,
or Dg. A word (s, ..., s;,) is a finite sequence of its generators. We say that this word represents
an element w € F, if w = s;, ...s;,. The minimal number k such that there exists a k-element
word representing w is called the length of w and denoted by k = ¢(w).

Often we will use the one-line notation (not to be confused with the cycle notation) for elements
w € Sy, writing a permutation w as a sequence w(1)w(2)...w(n). For instance, 4132 € S; maps 1
into 4, 2 into 1, 3 into itself and 4 into 2.

For signed permutations w € BC, we will write negative numbers —m as m in one-line notation.
For example, 3241 € BC4 maps 1 into 3, 2 into —2, 3 into —4, and 4 into 1.

2.2. Schubert polynomials for the classical groups

Let us recall the definition of Schubert polynomials from [3] and the definition of Schubert
polynomials for the classical groups from [9].

Definition 2.1. Define the divided difference operators on the rings Q[z] and Q|z, p1, p3,...] as
follows:

of = ﬂ for i>1;
Zi — Zit1
oof = f —Sof;
—2Z;
o8f = 200f =T 5.
—Zq
f—sif
0if = 1
—2Z1— 2y



E. Smirnov and A. Tutubalina European Journal of Combinatorics 107 (2023) 103613

Definition 2.2. Schubert polynomials (of type A) are homogeneous polynomials &,(z) € Q[z]
indexed by the permutations w € Sy, and satisfying the relations

Gy = 1,
{G,Usi if £(ws;) < L(w);

06, =
e 0 otherwise

for each i > 1.

Definition 2.3. Schubert polynomials of type C are elements ¢,(z, p) € Q|[z, p1, P3, ... ] that are
homogeneous in z, indexed by the permutations w € BC., and satisfy the relations

Cag =1,
Cus:  if L(ws;) < L(w);
aicw = ! .
0 otherwise

for eachi > 0.

Definition 2.4. Schubert polynomials of type B are defined as B, = 27%")¢,,, where s(w) is the
number of entries from {1, 2, ...} changing their sign under the action of w. They also can be
defined by the relations obtained from 2.3 by replacing 9y by 83.

Definition 2.5. Schubert polynomials of type D are elements ©,(z, p) € Q[z, p1, p3, .. .] that are
homogeneous in z, indexed by the permutations w € Do, and satisfy the relations

Dig =1;
8D, = Dys; if Z(wfi) < f(w);
0 otherwise

foreachi:i,l,z,....

It was shown by S.Billey and M.Haiman [9] that such polynomials exist and are uniquely
determined by these properties. We recall these results below as Theorems 2.7-2.9.

For convenience we replace the ring Q[z, p1(z), p3(z), ...] by an isomorphic ring Q[z, p;(x),
p3(X), .. .]. Here pi(x) = Z:’il xf.‘, and the isomorphism is the unique ring isomorphism with z; — z;
and py(x) — —py(z)/2. Then the Schubert polynomials of types B, C, and D are polynomials in
21, 22, ... and symmetric functions in xq, o, . . ..

It is easy to see that the generators of the groups BC. and D, act on the ring Q[z, p;(x),

p3(x), ...] in the following way:

sif(z1, .., Ziy Zigty - o3 X1, X2, .. ) = f(21, o, Ziv1, Ziy - o 3 X1, X2, . ..) fori>1;
sof(z1,22, 23, .. .5 X1, X2, .. ) = f(=21, 22,23 .. .5 21, X1, X2, . . ),
sif(z1, 22,23 .. 5 X1, %, .. ) = f(=22, =21, 23 .. .; 21, 22, X1, X2, - - ).

2.3. Stanley symmetric functions and Schubert polynomials

In this subsection we discuss the expression of Schubert polynomials via Stanley symmetric
functions. We start with introducing some notation.
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e Let w be an element of S, BCo OF Ds. Denote the set of all reduced words for w by R(w).
e Leta =g, Sg, ... Sq € R(w) be a reduced word for w € BCy Or w € Dy.. We define the set of
peaks of a as the set

Pa)={ie(2,3,...,1 =1} | ai_1 < a; > Qj1}.

For the group D, we assume that 1=1<2<3<--

o A weakly decreasing sequence of nonnegative integers j; > j, > ---
x-admissible for the word a, if ji_1 = j; = ji+1 implies that i ¢ P(a).

To each x-admissible sequence j; > j, > --- > j; we can assign a monomial x;,X;, ...X; =
x‘;” ..Xy™ = x% Such monomials are also called x-admissible. We denote the set of all
x-admissible monomials for a by «(a).

o Let w € S, and let @ = s4,5q, ...Sq; € R(w) be a reduced word for w. A weakly increasing
sequence of positive integers j; < j, < --- <j is said to be z-admissible for a if for each i we
have j; < a;, and the equality j; = ji;1 implies that a; > a;y.

To each z-admissible sequence j; < j, < --- < j, we can assign a monomial z,z, ...z, =

zf‘ ...zJ" = zP. Such monomials are also called z-admissible; we denote the set of z-
admissible monomials for a by .« (a).

e Denote by i(«) the number of distinct variables occuring in X* in nonzero powers.

e For the group D, we denote by o(a) the total number of occurrences of the letters s; and s;

in a.

> j; is said to be

Definition 2.6. The Stanley symmetric functions are defined as follows. For w € BCy, we define

11) Z 2'(“))(

aeR(w)
X% € o7x(a)

For w € Dy, we define

Z Zz(a) o(a

aeR(w)
x% € o7x(a)

The following theorem, describing the relation of Schubert polynomials and Stanley symmetric
functions, is due to S.Fomin and R. Stanley [16] and S. Billey, W. Jockush and R.Stanley [21].

Theorem 2.7 ([21, Thm. 1.1]). For each w € S, we have

Gu@= » 7.

aeR(w)
Pe /z(a)

Its analogues for the cases of BC, and Do, were obtained by S.Billey and M.Haiman [9].

Theorem 2.8 ([9, Thm 3A]). Let w € BCw. The Schubert polynomial ¢, satisfies the equality

Cu(z:X) = Z Fu(X)8,(2) = Z Z > 2x

aeR(u) beR(v)
i i S Sl

Theorem 2.9 ([9, Thm 4A]). Let w € Dy,. The Schubert polynomial ©,, satisfies the equality

DuzX)= Y EXS(@= Y Y Y ey,

UU:yll_/ uv=w ’ aeR(u) beR(v)
i i G S,

2.4. Pipe dreams in type A

In this subsection we briefly recall the construction of pipe dreams for the symmetric group
Sn. We fix a positive integer n and consider the staircase Young diagram with rows of length
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1 2 3 4
1 DI}
2 @@J"z
3 va’.‘%
4 -

Fig. 1. Base diagram for pipe dreams of size n = 4.

n—1,...,2,1. We will refer to this diagram as the base Bs,. Let us index all the boxes in the
ith row by the variable z; (cf. Fig. 1).

Now let us fill this diagram by elements of two types: elbow joints Jr' and crosses + We also
put a single elbow -/ to the right of the rightmost box of each row. We obtain a diagram consisting
of n strands, or pipes (hence the name “pipe dream”).

For each box O we introduce the following notation:

e wt(0) is the weight of an element in this box. It is equal to 1 for a cross + and to O for an

elbow joint ~f".

e o(0O)€ S, is an element equal to s; for a cross in the box with the number i and to the identity
permutation id for an elbow.

e var(d) is the variable corresponding to this box, i.e. z;, where i is the row number.

To each pipe dream D we can assign:

e a monomial z#? = [T, var(@)"™) (ie. the product of all variables z; over all the crosses
in D); !

e A word word(D) obtained by writing out all the letters o (CJ) while reading all the boxes in the
base from right to left, from top to bottom;

e If word(D) is a reduced word for the permutation w € S, then the pipe dream D is said to be
reduced. We shall say that w = w(D) is the shape of D.

This definition can be restated as follows: a pipe dream is said to be reduced if each two strands
cross at most once. Its shape is the permutation w € S, such that the strands connect the numbers
1,2, ..., n on the left-hand side of the diagram with the numbers w(1), w(2), ..., w(n) on its top.

Example 2.10. Here are two examples of pipe dreams of size n = 4.

NEEE ESY

1
Dy = 2% Dy =2
3 3T~
et 4
ZzB8(D1) — 2323 zP(P2) — 2123723
WOI‘d(Dl) = 53525153 word(D3) = s2538283
w(Dy) =4132 € &4 Dy is non-reduced.

Let us show that for a reduced pipe dream D of shape w the monomial z*?) = z;z;, ...z is
z-admissible for the word word(D) = s¢,Sq, - - - Sq-

Indeed, the ith cross is positioned in the jith row and ag;th diagonal (crosses are ordered from
right to left, from top to bottom, so j; <j, < --- <jj). Since the numbers of the diagonals decrease
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while reading each row right to left, then j; = j;;1 implies a; > a;,1. Since the row number of the
box does not exceed the number of the corresponding diagonal, we have j; < a;.

Let w € Sy, a = 54,0, ---5¢ € R(w), and 2 = Z,z, ...z, € 4(a). There exists a unique
pipe dream D such that word(D) = a and z*® = zP. It can be obtained by placing a cross at the
intersection of the jith row and the g;th diagonal for each i.

It is clear that the set of all reduced pipe dreams of shape w € S, does not depend upon n, i.e. is
stable under the embedding S, < S,1. Denote this set by PD4(w). Theorem 2.7 can be restated as
follows.

Theorem 2.11 ([5,6]). For a permutation w € S,, we have

Gu(z) = Z !0,

DePDj(w)

Example 2.12. Llet w = s; € Sp, i < n. If D € PDy(w) is a reduced pipe dream, then D contains
exactly one cross. It is located in the ith diagonal; the row number of this cross can be equal to
1,2,...,(i—1),i. So

Gs(Z)=z1+2+ - +z.

Example 2.13. Let w = 1432 € S,. There are five reduced pipe dreams of shape w:

F A A B B
R -
4 4 4

.

St
S

The Schubert polynomial is thus equal to

2 2 2 2
G14n(2) = 2122 + 2123 + 2125 + 212223 + 25 73.

3. Construction of pipe dreams in the types B, C, and D
3.1. Type C

The Schubert polynomials of the types B, C, and D are elements of the ring Q[z, p1(X), p3(X), ...],
i.e. they are polynomials in z and symmetric functions in X. For our purposes, it will be sometimes
more convenient to deal with polynomials both in z and x. For this let us give the following technical
definition.

Definition 3.1. Let F € Q[z, p1(X), p3(X),...], and let k > 0 be a nonnegative integer. We define
k-truncation of F as follows:

F¥(z, %1, ..., %) =F(z X1, ...,%,0,0,...).
It is a symmetric polynomial in x4, ..., X.
Let w € BC, be a signed permutation of n variables. Consider the Schubert polynomial ¢,(z, x)
of the type C. As above, denote by ¢¥(z, x) its k-truncation.

The pipe dreams for d,’j] are obtained by putting elements inside boxes of the shape B’én shown
in Fig. 2. It consists of a staircase block, which is the staircase Young diagram (n—1,n—2,...,2, 1),

9
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Fig. 2. The base B’é4 for c-signed pipe dreams.

and of k consecutive blocks of a different shape, which we call I"-blocks. Each I"-block consists of an
n x 1 column and a 1 x n row; all the boxes outside these blocks are filled by elbow joints (this part
is sometimes referred to as the sea of elbows). The boxes in each row and each column of I"-blocks
are indexed by the integers from 0 to n — 1, from top to bottom and from left to right respectively.

The topmost box of each column and the leftmost box of each row can be filled by the elements
of two different kinds: the single elbow joint £~ or by a new kind of element, an elbow joint with

a faucet €. All the remaining boxes are filled either with elbow joints Jr’ Or Crosses + We will
refer to crosses and to elbows with faucets as significant elements. The diagram obtained by this
construction is called a c-signed pipe dream. It consists of n strands, or pipes, connecting the left
edge of the diagram with its top edge. We index the left and the top edges of the pipesby 1, ..., n;
as in the case of classical pipe dreams, this defines a permutation. Moreover, some of the pipes have
faucets on them; each faucet is responsible for the sign change for the corresponding variable.

In more formal terms, we can assign to each box O the following data:

o the weight wt(O) of the element inside it. It is equal to 1 for crosses and elbows with faucets
@ (i.e. for significant elements) and O for elbows £, “f".

10
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e Aletter o(0)€ Cy. It is equal to s; for a cross inside a box indexed by i > 0, to sp for an elbow
with a faucet in a box indexed by zero, and to nothing (the identity permutation id) for elbow
joints.

e A variable var(0). It is equal to z; for a box in the ith row of the staircase, counted from above,
and to x; for a box in the ith I'-block, counted from below.

To each c-signed pipe dream D we can assign the following data:

e A monomial x*(®zA0) —= l_lljeBlé var(@)™@D (i.e. the product of the variables for all significant
elements in D). !

e A word word(D) obtained as the result of reading the letters o(O) while reading the boxes of
the base from right to left, top to bottom.

e The word word(D) is subdivided into two parts, word,(D) and word,(D). The first of them
consists of the letters o(O) from the I'-blocks, while the second one corresponds to the
staircase part of the pipe dream.

o If word(D) is a reduced word for a permutation w = w(D) € Cp, then the pipe dream D is said
to be reduced, and the permutation w is called the shape of D.

The last definition can be restated as follows. A c-signed pipe dream D is reduced, if:

- each strand has no more than one faucet on it;
- if two strands intersect twice, then exactly one of these strands has a faucet located
between these two intersections.

The shape of a reduced c-signed pipe dream is the permutation w € C, such that each strand
connects the number i on the left of the diagram with w(i) or —w(i) above it. If the strand has
a faucet on it, this corresponds to the minus sign; no faucet corresponds to plus.

e If word(D) is a reduced word for w € C,, then word,(D) and word,(D) are reduced words for
the permutations u = u(D) € C, and v = v(D) € S,, respectively. Note that uv = w and
L(u) + £(v) = €(w).

Example 3.2. Here are three examples of c-signed pipe dreams of size n = 3 with k = 2 I"-blocks.

123 123 123

g, g,
Dy _f.bl-H- D, = ? %-I_H_ D; =
4 - /

Wk
S
hh

el

E;J ;::"= E;J
xMP1ZBD) = 2 zoaday xP2)gfD2) — 250030, x®Ps)zPPs) = 2 zpat)
word(D1) = s18251505152 word(D3) = s1525150528152 word(D3) = $15082505152
w(Dy) =213 € BC3 D3 is non-reduced. D3 is non-reduced.

If D is a reduced c-signed pipe dream, the monomial z#(®) is z-admissible for word,(D) (the proof
is similar to the case of S,, cf. Section 2.4), while the monomial x*®) = x; x;, .. . x;, is x-admissible
for the word wordy(D) = sg,Sg, - - . Sq- Indeed, j; > j, > --- > ji are exactly the numbers of I'"-
blocks that contain significant elements. While reading each I'-block right to left, top to bottom
the numbers q; inside the boxes first decrease and then increase. This means that the equality
jio1 = ji = ji+1 (three neighboring significant elements are located in the same I"-block) implies
that either a;_1 > a;, or @; < a1, and hence i ¢ P (wordy(D)).

11
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Proposition 3.3. Let w € C, be decomposed into a product uv = w, where v € Sy, £(u)+4£(v) = £(w).
Let @ = Sq,Sq, - . .Sq € R(u) and b € R(v) be reduced words, and let X* = x;,x;, ...xj, € #(a), 2’ €
,(b) be admissible monomials, such that k > j; > j,... > ji. Then there exist exactly 2% reduced
c-signed pipe dreams D, such that wordy(D) = a, word,(D) = b, x*(P) = x* zf(D) = zP,

Proof. There exists exactly one placement of crosses in the staircase block (the proof is similar to
the case of S,) and exactly two ways to place a nonzero number of significant elements in each of
the I"-blocks. Indeed, let j; = ji11 = - - - = ji+m. Then the sequence a;, g, 1, ..., Gi+m has no peaks,
which means that it starts with a strictly decreasing segment (since a reduced word cannot contain
two consecutive identical letters) and then strictly increases. Let a;;; be the smallest number in this
sequence.

The significant element for a;;; can be placed in two possible ways: in the horizontal or the
vertical part of the jith I"-block. The significant elements for a;, ..., a;;;—1 can be placed only in
its horizontal part, and the remaining elements corresponding to d;y¢i1, ..., Gi+m are necessarily
placed in the vertical part.

Since there are exactly i(«) blocks containing significant elements, and each of them can be filled
in two possible ways, there are 21 pipe dreams for such a word. O

Denote by PDE”(w) the set of all reduced c-signed pipe dreams with k I"-blocks of shape w € C,.
Then the previous discussion can be summarized as the following theorem.

Theorem 3.4. Let w € BCy, k > 0. Then the k-truncated Schubert polynomial ijj(z, X) equals the sum
of monomials over all reduced c-signed pipe dreams in PDi‘:”(w):

3 xligh) Z 3 > 2@x*2f = Wz, x).

P acR(u) beR(v)
DePD¢, (w) e(u)tzg(v)n o(w) X e ciy(a) . P eutyib)

g1 =2 ==

3.2. Type B

The Schubert polynomials 98, of type B differ from ¢, only by a multiplicative coefficient:
B, = 275W¢,, where s(w) is the number of integers from 1 to n that change their sign under
the action of w. The number of sign changes in w is equal to the number of entries of sq in each
reduced word a € R(w).

We can use the formula from Theorem 2.8 to get a similar formula for the polynomials 23,,:

%w(z; X) = Z Z Z 2'(”) S("’)x Zﬂ

K(H)Jrfe(lgn w) Xda:};x(a) z/’b:g;()b)

Here we describe a construction of b-signed pipe dreams. Let us modify the base for c-signed
pipe dreams in the following way: in each I"-block we make the vertical and the horizontal part
overlap, so that the whole block would consist of 2n— 1 boxes. A base with k blocks will be denoted
by B’l‘gn. We will fill the boxes of this base in a similar way. The diagram we obtain is called a b-signed
pipe dream (cf. Fig. 3).

For each b-signed pipe dream D the words word,(D) and word,(D), the monomial x*(?)zA(®),
as well as the notion of reducibility, the shape w(D) and the permutations u(D), v(D) are defined
similarly to c-signed pipe dreams.

In the same way we can show that for a reduced b-signed pipe dream D the monomial x*®) is
x-admissible for the permutation word,(D), and the monomial z#(®) is z-admissible for word,(D).

12
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Fig. 3. The base B’l‘,g4 for b-signed pipe dreams.

Example 3.5. Here are three examples of b-signed pipe dreams of size n = 3 with k = 2 I"-blocks.

123 123 123
i i i
- 7 z
o o 5
Dy = @Jln Dy = @Jlll Dy — @J
T o =
100 1 1 100
o ot o
xADDBD) — 4 oody xoD2) (Do) 12, 08, X(D3) gB(D5) 0202

word(D1) = 515251508152 word(Ds) = $1528150525152 word(D3) = 518052808152
w(Dy) =213 € BC3 D is non-reduced. Dj is non-reduced.
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Proposition 3.6. Let w € BC, be decomposed into a product uv = w, where v € Sy, £(u)+£(v) = £(w).
Let @ = sq,Sg, - .- S € R(u), b € R(v) be reduced words, and let X* = x;,x;, ... X, € a(a), 2% € a(b)
be admissible monomials satisfying k > j1 > j,... > ]

Then there exist exactly 2(9)~—S) reduced b-signed pipe dreams D such that word,(D) = a,
word, (D) = b, x*(P) = x*, zf(?) = zP.

Proof. We need to find the number of ways to put significant elements in all I"-blocks. Let
Jji = jix1 = -+ = ji+m. The sequence a;, @11, .. ., Gi+m contains no peaks, so it first decreases and
then increases. Let a;,; be the minimal element of this sequence. If a;;; = 0, we need to place an
elbow with a faucet in the upper-left box of the corresponding block; otherwise a;. # 0 and the
cross corresponding to this letter can be placed either in the horizontal, or in the vertical part of
the I"-block. The elements corresponding to a;, . . ., a;1+—1 can be placed only in the horizontal part
of the block, and those corresponding to @jy;y1, ..., 0i+m can be only in the vertical part. Hence
for each nonempty block with a faucet there is a unique way to place the elements, and for blocks
without faucets there are two ways. The number of nonempty blocks without faucets is equal to
i(a) — s(w). The proposition is proved. O

Denote by PD’Z‘gn( w) the set of all reduced b-signed pipe dreams with k I"-blocks of shape w € B;.
Then the following theorem holds.

Theorem 3.7. Let w € BC, and k > 0. The k-truncation %E,’j](z, X) of the Schubert polynomial B8,,(z, X)
can be obtained as the sum of monomials over all reduced b-signed pipe dreams in PD’;n(w):

DR S 3 D 2ty = 5z, x).

k uy=w aeR(u) beR(v)
DePDy; (w) ((Ll)tvf/e(lén:ﬂw) ) Xide(i) B Bestyib)
k1 =42 ==
3.3. Type D

The base B’{)n consists of a staircase block with n — 1 stairs and k I"-blocks of height and width

n — 1. We join the blocks by elbows Jf" . In each box of the staircase we write the number of its
diagonal. The upper left corner of each I'-block is indexed by the symbol 1/, while the remaining
boxes are indexed by the integers 2, ..., n from top to bottom and from left to right (cf. Fig. 4).

Let us fill the boxes indexed by 1’ by elements of four possible types: elbows ~f, crosses +
crosses with a faucet and elbows with two faucets “#. All the remaining boxes will be filled

by crosses + and elbows Jr’ . The object we obtain will be called a d-signed pipe dream. As in the
previous cases, it consists of strands that connect the left edge with the top one. Let us index these
edges by the integers from 1 to n. To each box O of the base we assign the following data:

o the weight wt(O) of the element inside it. It is equal to 2 for elbows with two faucets d? , 1
for crosses and crosses with a faucet “¥, and 0 for elbows Jr' .

e zero, one or two letters o(O)e BC,. This set of letters is equal to s; for a cross + in a box
indexed by i, to s for a cross + in a box indexed by 1', to s; for a cross with a faucet '$'
to a pair of letters s15; = s;s1 for an elbow with two crosses d;a and nothing (the identity

permutation id) for elbows ~f.
e a variable var([d). It is equal to z; for a box in the ith row of the staircase (counted from above)
and to x; for a box in the ith I"-block (counted from below).

14
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Fig. 4. The base B’;D4 for d-signed pipe dreams.

To each d-signed pipe dream D we assign:
; D), B(D) _ ().
e a monomial x*P)zA0) = ]_[DGBan var([@V';

e the number r(D) of elbow joints with two faucets occuring in D;

e a set of words Word1(D),word2(D),...,WordZT(D)(D). Each of these words is obtained by
consecutive reading of all the letters o(O), where O runs over the set of all boxes of the base
from right to left, top to bottom. For each elbow with two faucets there are two possibilities
to(r;ead the pair of commuting letters si, s3, so the total number of words obtained is equal to
210,

e Each of these words word”(D) can be split into two subwords wordf(D) and word,(D) (the
latter word is the same for all p). The first word is obtained by reading the letters of I"-blocks,
and the second one corresponds to the staircase block.

o If word”(D) (and hence all the other words) is a reduced word for the permutation w = w(D) €
Dy, the pipe dream D is said to be reduced, and the permutation w is called the shape of this
pipe dream.
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Fig. 5. Forbidden patterns not occuring in the reduced d-signed pipe dreams (dashed faucets may either be or not be
there).

o If word?(D) is a reduced word for w € Dy, then word?(D) and word,(D) are reduced words
for the permutations u = u(D) € D, and v = v(D) € S, respectively. Note that uv = w and
L(u) + £(v) = L(w).

Remark 3.8. Let us restate the definition of a reduced d-signed pipe dream in terms of the
intersection of the strands; it is somewhat more involved than in the previous cases. Consider two
strands that intersect twice, in the boxes a and b. A d-signed pipe dream is nonreduced if it contains
any of the eight patterns shown in Fig. 5 (the boxes a and b are highlighted by gray frames):

e the boxes a and b contain crosses + and the segments of both strands between the
intersection do not have faucets on them;

e the boxes a and b contain crosses + and the segments of both strands between the
intersection have faucets on them;

e the boxes a and b contain crosses with faucets '$' and the segments of both strands between
the intersection do not have faucets on them;

e the boxes a and b contain crosses with faucets '$' and the segments of both strands between
the intersection have faucets on them;

e one of the boxes a, b contains a cross + and the other contains a cross with a faucet '$'
Exactly one of the two strands has a faucet between these two boxes;

e one of the boxes a, b contains a cross + and the other contains an elbow with two faucets
p.
e one of the boxes a, b contains a cross with a faucet '$' and the other contains an elbow with

two faucets <P :
e each of the boxes a and b contains an elbow with two faucets.

In the last three cases the existence of an extra faucet on the segments situated between a and b
is not important. If a d-signed pipe dream does not contain any of these eight “forbidden” patterns,
such a pipe dream is reduced.

The shape of a reduced d-signed pipe dream D can be read in a similar way as in the cases B
and C: it is the permutation w = w(D) € D, such that for each i = 1, ..., n the number i on the
left-hand side is joined with (—1)5(P)w(i) on the top side, where c;(D) is the number of crosses on
the ith strand.
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Example 3.9. Here are two examples of d-signed pipe dreams of size n = 4 with k = 2 I'-blocks.

1234

I

=

o
Il

L

NSRS

z#(P1) = 2123050

(D1)

worda(D1) = 5251515352575153
w(Dl) =1423 ¢ Dy

= 8281515382818183

,_.
—— o
w
S

Fa
2

Pt
P

oad
Dy = J‘iij-)

3
" .Jr.J

1
200
3 j:*"
4
x(P2)zAD2) — 22 zrie
wordy (D) = 5257525151525153

WOI‘dQ(DQ) = 5251525151525153
D5 is non-reduced

Similarly to the previous cases we can show that if D is a reduced d-signed pipe dream, the
monomial z*®) is z-admissible for word, (D), and the monomial x*?) is x-admissible for each of the

words word} (D), ..., wordfr(D)(D).

Proposition 3.10. Let w € D, be decomposed into a product uv = w, where v € S, and £(u)+£(v) =
L(w). Let @ = $4,Sq, . ..Sq, € R(u) and b € R(v) be reduced words, and let X* = x;,X;, ... X, € ()
and z# € «,(b) be admissible monomials, and k > j; > j» ... > ji. A )
Let r(a, o) denote the number of i such that j; = ji.1,a; = 1, a;.1 = 1or, viceversa, a; = 1, aj;1 = 1.
Then there exist exactly 21®)=°@+1@a) redyced d-signed pipe dreams D such that word?(D) = a
for some p, word,(D) = b, x*®) = x* and z#®) = zP. For each of these pipe dreams D we have
r(D) =r(a, ).

Proof. Similarly to the previous cases we can show that there exists a unique way to place the
crosses in the staircase block. We need to find the number of ways of placing the elements in each
of the I'-blocks. Let j; = jir1 = - - - = jiym. We distinguish between the following cases:

e the sequence a;, .. ., a;., does not contain elements equal to 1 or 1. There are two possibilities
for putting the cross corresponding to the smallest element a;;; of the sequence: it can be
located in the horizontal or in the vertical part of the block. The remaining elements are placed
in a unique way.

e The sequence g;, ..., i1, contains 1, but does not contain 1. Then the top left corner of the
Jith block contains a cross “T~; all the remaining elements are placed uniquely.
e The sequence a;, . . ., gi+, contains 1 and does not contain 1. Then we put a cross with a faucet

into the corner of the jith block; the remaining elements are placed uniquely.
e The sequence a;, ..., i m contains both 1 and 1. Then we place an elbow with two faucets

# into the corner of the jith block; the positions of the remaining elements are determined
uniquely.

This means that for i(or) — o(a) + r(a, @) blocks there are two possibilities to place the elements,
and all the remaining blocks are filled uniquely. This concludes the proof. O

Denote by PD’%)n(w) the set of all reduced d-signed pipe dreams with k I"-blocks of shape w € D,,.
Since each pipe dream D corresponds to 2"®) pairs (a, x*), where a is a reduced word, and x* is an

17
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admissible monomial, each such pair corresponds to 2{*)~0@+7@®) pipe dreams, and r(D) = r(a, «),
this gives us the following theorem.

Theorem 3.11. Let w € D, and k > 0. Then the k-truncation @Eﬁ](z, x) of the Schubert polynomial
Dw(z, X) is equal to the sum of monomials over all reduced d-signed pipe dreams in PD"Dn(w):

DI S A 3 Y 2wy = oz, x).

k uy=w R| beR|
Depbp, (w) O O T Ry R
veSnh _ o “z
et =gy ="=0

3.4. Infinite pipe dreams

Let F, denote either BC, or D,. Denote by F,(X, z) the Schubert polynomial of type B, C or D
respectively for w € F,.

We can consider bases of pipe dreams with countably many I"-blocks, going infinitely in the
northeastern direction:

o k
Br, = |_JB,.
keN

These bases can be filled with elements according to the same rules as in the finite case. Reducibility
is defined the same way as above. Note that if a signed pipe dream D of arbitrary type is reduced,
it contains finitely many significant elements. This means that for a reduced infinite pipe dreams D
the monomial x*®zf®) and the shape w = w(D) € F, are well defined.

Denote by PD £, (w) the set of reduced infinite signed pipe dreams of shape w € F;:

PD £, (w) = UPD’;n(w)
keN

(finite pipe dreams are assumed to have an infinite “tail” of elbows ~f"). Since Schubert polynomials
equal the projective limits of their truncations

Fu(x.2) = lim §,)(x,2),
k— o0

they are equal to the sums of monomials over infinite signed pipe dreams:

Corollary 3.12. For each w € F,, we have
Fuxz)= Y xOF0)

DePD £, (w)
3.5. Double Schubert polynomials

Double Schubert polynomials for the classical groups were introduced in [11]. They are elements
of the ring Q[z, p1(x), p3(X), ..., t], where t = tq,t,... is another countable set of variables,
responsible for the action of a maximal torus of the corresponding classical group.

This ring is equipped with an action of the group BCs, X BCx and hence of its index 4 subgroup
Doo X Duo. The first copy of BC, acts as before, permuting the variables z;:

S‘»Zf(Z1,.“,Z,',Zi+1,“.;X],Xz,.“;ﬁ,tz,...) =f(Z1,...,ZH_],Zi,...;X],Xz,...;t1,t2,...)f01'l‘2 1;
1
sof (21,22, 23, .. X1, X2, ..ty by, ) = f(=20, 22,23 .5 20, X0, Xay -5 by B, L)
Szif(zl,zz,zy--;Xl,Xz,~~-;f1,t2,~~~) =f(~2z,~21,23...;21,22, X1, X2, . . . b1, b2, . L),

(recall that s; = $pS150).
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The second copy of BC, acts by permuting the variables t;:

Sff(Z],ZQ...;X],Xz,...;t],...,ti,fj+1,...) =f(Z],Zz..A;Xl,Xz,...;t],...,t,‘+1,fj,..4)f01'l-Z 1;
SU(Z],Zz,...;Xl,Xz,...;t],fz,tg,...) Zf(Zl,Zz,...; —t1,X1,X2, ...} —t],tz,tg,...);
i@z, XXt ) = f(21, 22,2305 — b, X1 Xe, L~ —h )

It is easy to check explicitly that this defines an action, and that the actions of the two copies of
BC~ commute.

This allows us to define two families of divided difference operators. Following [11], we call them
81- and 51'.

Definition 3.13 ([11, Sec. 2.5]). Let us define divided difference operators d and § acting on the ring
Q[z, p1(x), p3(x), . .., t] as follows:

— ¢ _st
S R
Zi — Zitq tiy1— ¢
fori> 1;
_f=sf s
BOf_ —221 ’ SOf_ 2f1 ’

_ & ot
3gf=230f=f_7210f’ 53f=250f=1¥;
O e R
Yoz Y b+

Definition 3.14. Double Schubert polynomials %8,(z, X, t), €,,(z, X, t) and ©,(z, X, t) (as before, we
denote by F,,(z, X, t) any of these three polynomials) are elements of the ring Q[z, p1(X), p3(X), ..., t]
that are indexed by the permutations w € BCy, Or w € Dy, and satisfy the equations

Sia =1,
o, = [Sos TL@S) <€) (S, i EGw) < Lw),
Y o, if ¢ (wsp) > e(w), " |o, if £ (s;w) > &(w),
foreachi=1,2,...,
Cuspr I £ (wSo) < L(w), Copur i € (Sow) < €(w),
30%) = . 50€w = .
0, if £ (wsg) > £(w), 0, if £ (sow) > £(w),
9Bn Bus,»  if £ (wsg) < L(w), B — Bsyw,  if £ (sow) < L(w),
o7 o, if £ (wsg) > €(w), ° " 0, if £ (sow) > €(w),
Bi’Dw — gwsiv lfe (wsi) < e(w)v (Si@w — Dsiwa lfe (Siw) < Z(w),
0, if € (ws;) > £(w), 0, if € (syw) > €(w).

3.6. Double Schubert polynomials as sums over pipe dreams

The goal of this subsection is to express double Schubert polynomials of types B, C, and D as
sums over the set of pipe dreams. We start with recalling the following theorem, which expresses
double Schubert polynomials via the ordinary ones.

Theorem 3.15 (Cauchy Expansion Formula, [11, Cor. 8.10]). Double Schubert polynomials §,(z, X, t)
satisfy the equation

Sw(Z, X, t) - Z Gu—l(_t)gu(zv X)~
e e(w)
vESH
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Fig. 6. The base for pipe dreams of size n = 4 indicating the variables var’.

The following easy proposition describes the pipe dreams for the inverse permutation.

Proposition 3.16. Let v € S,, and let O be a box in the base Bs,. Let var’' (O0) = —t;, where j is the
number of the column containing this box. To a pipe dream D we can assign a monomial

(—t)ﬂ’(D) _ l_[ var/(D)wt(D)
DEBSH
(the product of all the variables —t; over all the crosses in D). Then

Sa(-t= Y (-t

DePD4(v)

Proof. Denote by D' the transposed pipe dream: the pipe dream obtained by reflecting D with
respect to the NW-SE diagonal. It is easy to see that D € PD(v) iff DT € PD,(v~1). The proposition
follows from this assertion and Theorem 2.11. O

As before, let us denote the truncations of Schubert polynomials as follows:
¥z, X, 1) = §u(z. X1, %2, ..., %, 0,0, ..., 1)

Theorems 3.4, 3.7, 3.11 and Proposition 3.16 imply that the formula from Theorem 3.15 can be
rewritten as follows:

Corollary 3.17. Let w € F, and k > 0. Then we have

Waxn= 3 Y @0 g,
g(v)_;,[u(f)u;g(w) D’EPDI;-"(L!) D" €PDa(v)
veSnp
The base for double Schubert polynomials DB’}H can be obtained by adding another staircase of
size(n—1,...,2,1) (shown in Fig. 6) in the northeastern part of the base B’jfn and joining them by

elbows Jf" (cf. Fig. 7). The boxes of the “double” base DB";H are filled according to the same rules
as in the case of B"Fn; the object obtained is called a b-, c- or d-double signed pipe dream.

For a double signed pipe dream D of any of the three types we can define similarly to the ordinary
case the following data:

o a monomial x*(®)zAD)(—t)#'();
o the reducibility property;
e for D reduced, the shape w = w(D) € F.

We can subdivide the base DB’}H into the base for usual signed pipe dreams B’}n and the staircase
B:Sn in the northeastern part. So, if D is reduced and its shape is equal to w € F, it is subdivided
into D' € PD’}n(u) and D" € PD4(v). Obviously, £(u) + €(v) = ¢(w) and vu = w.
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Fig. 7. Bases DBj;, and DBY, for b- and d-double signed pipe dreams.

The converse is also true: if ¢(u) + ¢(v) = ¢(w) and vu = w, v € Sy, then the pipe dreams
D e PD’jfn(u) and D" € PD4(v) add up to a reduced double signed pipe dream of shape w.

Denote by DPD’}n(w) the set of all reduced double signed pipe dreams of type B, C or D of shape
w € Fy. Then the formula from Corollary 3.17 can be rewritten as follows:

Corollary 3.18. If w € F, and k > 0, the k-truncation of a double Schubert polynomial is obtained as
the sum of monomials over all reduced double signed pipe dreams of a given shape:

§M(z,x, 1) = Z x2(P)zF D) _g)f' ),
DeDPDX. (w)

Remark 3.19. We can consider the base for double signed pipe dreams with countably many I"-
blocks in the middle. This allows us to obtain double Schubert polynomials §,(z, X, t) as sums of
monomials over infinite reduced double signed pipe dreams.

3.7. Examples

Example 3.20. Let w = sy € BCx. All pipe dreams D € PDg_ (o) have exactly one significant
element: a faucet in a corner of any I"-block. Hence

Byy(2,X) = Y % = pi();
(2, X) =2 x = 2pi(X).
Example 321. let w =s; € BCx and i > 1, 0r w = §; € Dy, and i > 2. Each pipe dream (of any

type) of this shape has a unique significant element: a cross in a box labeled by i. It can be located

either in one of the first i rows of the staircase block, or in any of the two parts of any I"-block.
Hence

B, (2, X) = €(2,X) = D5 (2, X) =21 + 2 + - - - + 2 + 2p1(X).
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Now consider double signed pipe dreams of shape s;. The cross can be also located in one of the
first i columns of the upper staircase block, so

%Si(zs X, t) = €Si(za X, t) = ®5i(17 X, t) = (21 - t]) + (22 - tz) + 4+ (Z[ - tl) + 2p](x)'

Example 3.22. In a reduced d-signed pipe dream of shape s; € D, the unique cross can be located
either in the corner of the staircase block, or in the corner of any I"-block. In the case of d-double
signed pipe dreams the cross can also be situated in the corner of the upper staircase block. This
means that

Ds,(2, X) = 21 + p1(X);
D5,(z, X, t) = (21 — t1) + p1(x).

Now consider a reduced d-signed pipe dream of shape s; € D,. They contain one cross with a
faucet, which can be situated only in the corner of a I"-blocks, hence

:DST (Za X) = ©Si (Z! X, t) = pl(x)'

Example 3.23. Let w = 5155 € D If D is a reduced d-signed pipe dream of shape w, the following
cases may occur:

e There is a cross in the corner of the staircase block and a cross with a faucet in the corner of
the ith I"-block. For each i we obtain a summand z1x;.

o In the corner of the ith I"-block there is a cross, and in the jth I"-block there is a cross with a
faucet. For each i # j this gives us a summand x;x;.

o In the corner of the ith I"-block there is an elbow joint with two faucets. For each i we obtain
a summand x?.

So we have

Dy X)=21 ) _xi+ Y x+ Y xx =z1pi(X) + pi(x).
i i i
If D is a reduced d-double signed pipe dream, another possibility occurs: a cross can be located

in the corner of the upper staircase block, while a cross with a faucet is in the corner of the ith
I'-block. These cases provide summands of the form —tx;, hence

DS]Si (Z’ X, t) = (21 - t] )p1(x) + p%(x)'

Example 3.24. Let w = 515051 = 12 € BCoo. If D € PDg,(w), the pipe dream D has two crosses in
the boxes indexed by 1 and a faucet between them. The following cases may occur:

e The lower cross is in the corner of the staircase block, the faucet and the upper cross are in
the same (ith) I"-block. For each i we obtain zlxiz.

e The lower cross is in the corner of the staircase block, the faucet is in the ith I"-block, the
upper cross is in any of the two parts of the jth I"-block. For each i < j we obtain a summand
2Z1XiX;.

e All three elements are situated in the ith I"-block. For each i we obtain a summand x3.

o The lower cross is in any of the two parts of the ith I"'-block, the upper cross and the faucet
are in the jth I"-block. For each i < j we get a summand 2xixj2.

o The lower cross and the faucet are in the ith I"-block, and the upper cross is in any of the two
parts of the jth I'-block. For each i < j we have 2xi2xj.

e The lower cross is in any of the two parts of the ith I"-block, the faucet is in the jth I"-block,
the upper cross is in any of the two parts of the kth I'-block. For each i < j < k we have a
summand 4x;X;Xy.
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2 ;Z/ zo + a1
3

Fig. 8. An extended excited Young diagram.

Summarizing, we obtain

Bosos (Z.X) =21 ) X +2z1 ) x5+ Y %+
i i<j i
2 1
+2 inzxj +2 Z xisz +4 Z XiXjXyp = Z1P?(X) + §P?(X) + §P3(X)-

i<j i<j i<j<k
4. Relation to extended excited Young diagrams
4.1. The construction by Kirillov and Naruse

In this section we compare our construction to the construction of pipe dreams described by
An. Kirillov and H. Naruse in [12] by means of “extended excited Young diagrams”. We refer the
reader to [12, Sec. 8.2].

Let us recall their construction for type B. They start with a trapezoidal skew Young diagram'
consisting of a staircase block (n — 1,n — 2, ..., 2, 1) with n rows of length n above it, with each
upper row shifted by one to the right with respect to the row below it, see Fig. 8. This diagram is
called an extended excited Young diagram (extended EYD for short). A pipe dream is a subset of
boxes of this diagram, marked by crosses.

Each box of an extended EYD corresponds to the sum of two variables: z; 4+ x;, x; + Xj, or X; — ¢;
(our variables z; and —t; are denoted in [12] by a; and bj, respectively). The weight of a pipe dream
is the product of all such binomials corresponding to the boxes marked by crosses.

Moreover, each box of the extended EYD corresponds to a simple reflection in the corresponding
Weyl group s, ..., s,— for the types B and C, sy, 53,2, ..., S;—1 for the type D. The permutation
corresponding to a pipe dream is the product of all simple reflections corresponding to the marked
boxes, read from right to left and from top to bottom.

Thus, the (truncated) Schubert polynomial F["(z, x, t) is equal to the sum of the weights for all
reduced pipe dreams with the permutation w (see [12, Thm 5, Thm 6]).

Here we reproduce Example 8 from the aforementioned paper.

Example 4.1. Consider the signed permutation w = 231 = 5551525051 € BCs. Here is an example of
pipe dream corresponding to this permutation. Its weight is equal to (x3 —t;)(X3 — t1)(X2 — t1)x2(z2 +
X1 )

The boxes of each diagonal of this skew Young diagram are indexed by the corresponding
simple reflection; this allows us to assign to an extended EYD an element of 7;. There is another

1 We turn the figures from [12] 90 degrees clockwise; this allows us to draw Young diagrams in the English notation,
as opposed to the French one, used in the cited paper.
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indexing of its boxes, shown on the same figure on the right: each box, except those on the topmost
antidiagonal, corresponds to a binomial (as opposed to a monomial in our case), i.e. the sum of
variables x;, z;, or —t;. Each extended EYD with d crosses thus produces a polynomial with 2¢
monomials. In our setting, it corresponds to 2¢ different pipe dreams. In the next subsection we
describe the procedure producing these pipe dreams from the extended EYD.

Remark 4.2. These two constructions of pipe dreams for are somewhat parallel to the construc-
tions of pipe dreams of double Schubert polynomials due to Bergeron-Billey and Fomin-Kirillov,
respectively. In the former paper, the authors assign a pipe dream to each monomial of double
Schubert polynomial; this is similar to our construction presented in Section 3. Corollary 3.18 is
thus a direct generalization of [6, (4.1)]. Fomin and Kirillov, on the other hand, assign to each pipe
dream a product of several binomials (see [5, Thm 6.2]), just like in Theorem 5 of the paper by
Kirillov and Naruse [12] discussed in this section. The latter presentations are thus more efficient
(or, put it differently, coarser): each diagram corresponds to several monomials, as opposed to one.
Algebraically, the relation between these two constructions is nothing but the Cauchy expansion
formula (see Theorem 3.15).2

4.2. Producing pipe dreams from an extended EYD

Starting from an extended excited Young diagram, one can produce several pipe dreams corre-
sponding to the same permutation, such that the sum of the monomials corresponding to the pipe
dreams is equal to the weight of the extended EYD.

Let us illustrate the bijection of our pipe dreams with those from the paper [ 12] with an example
of the type B. For the types C and D, this bijection is constructed similarly.

Informally, a pipe dream from [12] can be obtained from our pipe dream by pushing the bottom
staircase block, n copies of I"-blocks, and the top staircase block one into another. Our aim is to “pull
these blocks apart” in such a way that the shape of the pipe dream and the number of significant
elements in each of the blocks remain unchanged.

To do this, for each binomial x; —tj, x; 4 X;, or z; 4-x; corresponding to a cross in the extended EYD
let us select one of the two terms. We want to construct a pipe dream with the same permutation
and the monomial equal to the product of the selected terms. That means that the crosses in the
lower/upper staircase blocks of this pipe dream should correspond to the crosses in the extended
EYD marked by z; and —t; respectively, and each cross in the extended EYD marked by x; should
produce a cross or a faucet in the ith I"-block of the resulting pipe dream. This will be done as
follows.

The diagram can be represented as the union of several I"-blocks (an example with two of them
is shown in Fig. 9). They will be indexed, counting from top to bottom, by the following variables:
—tp—1, ..., —t1, Xn, - .., X1. On the figure we write the corresponding variable under each I"-block.
The I'-blocks indexed by the —t;’s contain significant elements only in their vertical parts: their
horizontal parts are located “outside” the pipe dream.

Let us pull out the I'-blocks one by one in the northeast direction, starting from the top one.
After shifting the first block far enough, we proceed with the next I'-block, counted from the top,
and so on. We shift the first n — 1 blocks, corresponding to the —t;’s, by the same number of
positions northeast, in such a way that the shifted blocks would again form an upper staircase of our
pipe dream, but it does not intersect any lower blocks. Then we shift all the subsequent I"-blocks,
corresponding to x;, also starting with the top one, in such a way that finally they are separate (and
thus form a pipe dream) (see Fig. 10).

Further we describe one step of this procedure, i.e., how to shift the topmost, i.e. the nth, I"-block
one box up and right.

2 We are grateful to the referee for this remark.
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Fig. 9. An extended EYD. The regions corresponding to lower (resp. upper) staircase blocks are shaded in dark (resp.
light) gray; the I"-blocks corresponding to t; and x5 are highlighted.

1]

]
o o

1]
%

Fig. 10. Shifting of the topmost I"-block northeast.

Let us draw circles around the significant elements corresponding to the variable x,, i.e. the
elements which belong to the block we are shifting.
All the significant elements in the topmost row necessarily belong to the topmost I"-block; we

shift them one box northeast.

Now consider the crosses in the vertical part of the I"-block that we are shifting. Denote the
column containing this vertical part and the column immediately right of it by V and V + 1,
respectively. Note that all nonencircled crosses in the column V correspond to the horizontal parts
of their I'-blocks (or belong to the rows of the staircase block). So we need to shift some crosses
in such a way that:

o the shape of the pipe dream remains the same;

e the number of encircled crosses in the column V + 1 after the shift is equal to the number of
encircled crosses in the column V before the shift;

o the number of nonencircled crosses in each row remains the same.

Let us move the encircled crosses one by one, starting from the top. We distinguish between the
two cases:
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o There is a cross to the right of the encircled cross. This means that the encircled cross does not

belong to the bottom line of the I"-block. In this case, we swap the encircled cross with the
nonencircled one (so the encircled cross moves one box down with respect to the I"-block,

see the figure below).

This operation does not involve any elements to the top of the encircled cross.

— . [7
T

[}

e There is an elbow to the right of the encircled cross. We need to distinguish between the
following subcases.

- If above @Jf’ there are two elbows Jf'J ", the encircled cross is shifted northeast.

@A%J

- If above @Jf’ there are several rows with a cross followed by an elbow: I {, the
whole column of crosses is shifted northeast, and we put a circle around the topmost of

vl
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- If above @Jf’ there are several lines with double crosses: ++ the encircled cross is

shifted by a ladder move.

AR
N1/

[

- In the general case we proceed as follows. Consider the columns V and V + 1. Above
- we have some sequence of pairs ++ and I f", and on the top of this

sequence there are two elbows
(.

f~ (since our pipe dream is reduced, the configuration
cannot occur below Jf"‘ {). Starting from the top, we pull the crosses from the

configurations I f~ through I I using ladder moves and encircle the topmost of

the shifted crosses.

—

fr

%

AN

~

Jf

J

(

)
"’

||
| NP

i

The figure below shows the procedure of shifting a I"-block in case of several encircled crosses.

&9’ (2 AD %&B %&B E;%&B
KKK
BT s ar > o o
- & = B B &
o W B W F

We shift the encircled crosses one by one, starting from the top. However, as we proceed, the

order of the encircled crosses may change.

Finally, is clear that the operation of “pulling apart” of I"-blocks is invertible: we can bring the
blocks back together, starting from the bottom ones and keeping in mind which significant element
belongs to which block. This would give us an excited Young diagram together with one of the

monomials occuring in its weight.

The procedure for the types C and D is similar, so we do not describe it here.
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Remark 4.3. T.lkeda and H.Naruse [22] proposed a description of P- and Q-Schur functions in
terms of the so-called excited Young diagrams. These functions are particular cases of Schubert
polynomials of types B, C and D (see Section 6), corresponding to Grassmannian permutations. The
procedure described above is a generalization of the separation of variables described in [22, Sec. 10].

5. Bottom pipe dreams
5.1. Admissible moves and extended Lehmer codes of signed permutations

Let w € S, or w € Fy,. Consider the set of pipe dreams of a given shape: PD4(w) or PD £, (w).
We introduce a partial order on this set as follows. Let D and D’ be two pipe dreams of the same
shape that coincide everywhere except two boxes a and b, and the row containing a is above the
row containing b. We shall say that D is obtained from D’ by an admissible move (notation: D < D’)
if the elements in a and b are located in one of the following nine ways:

D'|D D'|D D'| D D'| D D'|D

ol o|¥ | o+ ¥ ¥ o & F

D'| D D'| D D'| D D' | D
a d? '$' a dfa + a -619- Jr a + Jr"
bl |+ bl |+ b H

(For the entries in the first line, D is obtained from D’ by shifting one significant element down.)

Example 5.1. Let D, D’ be pipe dreams of the type A. In this case, only the first of these nine moves
is allowed. As a particular case of this move, we have a ladder move defined in [6]:

Jr"' r ‘|—)r'
(here the dots represent a sequence of crosses).

Extending the relation < by transitivity, we obtain a partial order on the set of pipe dreams. This
is indeed a partial order. To show this, let us introduce an order on the set of variables as follows:
Zn1 <Znp <--- <21 <X <Xp < ---. Consider the corresponding lexicographic order > on the
set of monomials. It is clear that for D < D’ we have x*(?)zf(0) < x(D)z8(D")
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Our next goal is to show that for each w the set PD4(w) (resp. PDx,(w)) has a unique minimal
element with respect to the partial order <. Such a pipe dream is called the bottom pipe dream of
w.

Recall the definition of the Lehmer code of a permutation. We also need to generalize the notion
of the Lehmer code for a signed permutation.

Definition 5.2. Let w € S,. The Lehmer code L(w) of this permutation is a sequence (Li(w), ...,
L,(w)), where

Li(w) = #{j > i | w(i) > w()}.

Definition 5.3. Let w € BC,. Consider w as a bijection from {—n, ..., —1,1, ..., n} to itself. The
Lehmer code of w is a sequence L(w) = (Li(w), ..., Ly,(w)) defined as

L(w)=#{ > i| w(i) > w(j)}.
The signed Lehmer code of w is the pair (L(w), N(w)), where
N(w) = (N](w) > Ny(w) > -+ > Ny)(w) | w™! (Ni(w)) < 0 for all i)

is the decreasing sequence of positive entries with negative preimages.

It is well-known (cf., for instance, [4, p. 9]) that a permutation is uniquely defined by its Lehmer
code. This immediately implies that a signed permutation is uniquely defined by its signed Lehmer
code.

Remark 5.4. There seems to be no prevalent notion of the Lehmer code for signed permutations
in the literature. For example, the definitions of Lehmer codes for signed permutations given in the
papers [23,24] are different from ours, and from each other as well.

5.2. Type A pipe dreams

Here we recall the proof of existence of bottom pipe dream for type A permutations, due to
S.Billey and N.Bergeron [6] (cf. also [8]).

Theorem 5.5. Let w € S,. There exists a unique bottom pipe dream D, € PDy(w) with all

crosses adjusted to the left (i.e., not containing fragments of the form ). It can be constructed
as follows: for alli = 1,...,n the ith row of D, contains exactly Li(w) left-adjusted crosses (here
L(w) = (L1(w), ..., Ly(w)) is the Lehmer code of w.)

Each pipe dream D € PD4(w) can be brought to Dy by a sequence of ladder moves.

Proof. First observe that every pipe dream without fragments of the form Jr' + is reduced.

It is easy to check that if for each i = 1,...,n the ith row of the pipe dream D, has Li(w)
crosses adjusted to the left, then Dy has indeed the shape w € S,. Since a permutation is uniquely
determined by its Lehmer code, D, is the unique bottom pipe dream in PD4(w).

Consider a pipe dream D € PD4(w). Since it is reduced, it cannot contain a fragment of the form

...... If D is not the bottom pipe dream, it contains fragments of the form Jr I . Let us take the
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lowest row containing such fragments; among them, take the leftmost occurrence. The cross in it
can be shifted downstairs by means of a ladder move. Repeating such an operation, we will obtain
the bottom pipe dream for w. O

Example 5.6. Let w = 126543 € Sg. The Lehmer code of this permutation equals L(w) =
(0,0,3,2,1,0). Let us show how to bring one of the pipe dreams of shape w to the bottom
one.

gﬁf——j‘rff? EEASSE J,JAJAJ 151 UHJJ ljﬁﬁrf‘rfr?
o o o
4jr"‘r"‘ 4-H-J 4 1 4 T d
i i o i 5

5.3. B-signed pipe dreams

Theorem 5.7. Let w € B,. There exists a unique bottom b-signed pipe dream D, € PDg,(w) that
satisfies the following conditions:

e Dy, does not contain fragments of the form Jr I and £~ +;
e The numbers of significant elements in its I"-blocks form a strictly decreasing sequence (ending by
zeros).

This pipe dream Dy, can be constructed as follows. Let (L(w), N(w)) be the signed Lehmer code of w.
Foreachi =1, ..., n the ith row of the staircase block in Dy, contains Ly(w) left-adjusted crosses. And
foreachj=1,...,s(w) the horizontal part of the jth I"-block contains Nj(w) left-adjusted significant
elements (i.e. an elbow with a faucet and Nj(w) — 1 crosses).

Moreover, each b-signed pipe dream D € PDg,(w) can be brought to D, by a sequence of admissible
moves.

Proof. By definition, the bottom b-signed pipe dream D, satisfies the following conditions:

o All the crosses in the staircase block are left-adjusted.

e All the significant elements in each I"-block are located in its horizontal part and are left-
adjusted. Hence each nonempty I'-block has a faucet in its corner. Denote the number of
significant elements in the ith I"-block by ;.

e The total number of faucets equals s(w), which is the number of nonempty I"-blocks. Since
the numbers of significant elements in I"-blocks decrease, we have n > uq > uy > --- >

Msw) > 0.

It is easy to observe that such b-signed pipe dream D, with Lj(w) crosses in ith row of the
staircase block and N;(w) significant elements in jth I"-block is reduced and has the shape w. Since
a permutation w € BC, is uniquely determined by its signed Lehmer code (L(w), N(w)), Dy is the
unique bottom b-signed pipe dream in PDg(w).

It remains to show that each non-bottom b-signed pipe dream D € PDg,(w) can be brought to
the bottom one by shifting significant elements down.

Suppose that D contains a fragment or . Consider the lowest of them; let a be its
box containing a cross. Let us go down along the strands crossing at a, and consider the next pairs
of adjacent boxes containing these strands. They can look as follows:
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. JfJ or Jr"’r'. Let b be the left box of the first such pair. Then the strands cross at a and
“nearly meet” in b. Note that if one of these strands has a faucet on it, it is located below b.
Thus we can move the cross from a into b without changing the shape of our b-signed pipe

dream.
. I I : in this case the two strands continue passing next to each other.
. cannot occur, because a was the lowest box with such a condition.

° f~ only can occur if one of the strands had a faucet on it (otherwise D is nonreduced).
But before the faucet the corresponding strand should turn left, hence there is a fragment of

the form Jr' Jf" before it, and this case was already considered.

Summarizing, we see that the two strands crossing in a follow next to each other and do not

. . ) .

contain faucets before passing through a fragment of the form f'J f or JfJ . Since each strand
contains at least one elbow in the staircase block, we necessarily obtain such a fragment. So the
cross from a can be moved down:

This allows us to bring D to the following form: all significant elements in the I"-blocks are
located in their horizontal parts and are left-adjusted.

Now suppose that the number of significant elements in I"-blocks does not form a strictly
decreasing sequence. Let these blocks have w1, i, ... significant elements and let i be the minimal
number satisfying @i 1 > i > 0or piy1 > 0, u; = 0.

If u; = 0 and w1 > 0, we can move all the elements from the (i + 1)-st block into the ith one;
obviously, this does not change the shape of our pipe dream. Thus we can reduce the situation to
the case w1 > 0, uy > 0, ..., sw) > 0, with all the following blocks being empty.

In the next examples we will draw the horizontal parts of the I"-blocks adjacent to each other,
ignoring the elbows between them.

A reduced pipe dream cannot contain a fragment of the form Q, so the horizontal parts of

-
all non-empty I'-blocks except the top one must contain at least two crosses. Also, reduced pipe

cannot contain @"‘ so the horizontal parts of all non-empty I"-blocks except the top two must

contain at least three 'c:osses. Proceeding in this way further, we obtain u; > s(w) —j + 1.

Now consider the box in the (i+ 1)th I"'-block on the w;th position, counted from the left; denote
this box by a. Since u;11 > w;, this box contains a cross. Consider the pair of strands crossing in a
and follow then down.

It is clear that both of these strands have faucets; moreover, they enter the staircase block at
adjacent positions. Similarly to the previous case we show that they pass through a box b of the

staircase block containing an elbow ~f". Since both strands have a faucet between a and b, we can
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move the cross from a to b without changing the shape of our b-signed pipe dream, as shown on
the diagram below:

- e
e

Repeating these operations, we will obtain the bottom b-signed pipe dream D,. O

5.4. C-signed pipe dreams

The case of c-signed pipe dreams is treated similarly to the case of b-signed pipe dreams. For
w € C, the bottom pipe dream D, € PD¢,(w) looks like the bottom pipe dream Dj € PDy,(w), with
one exception: all the elbows with faucets are located in the vertical parts of the I"-blocks. Let us
state an analogue of Theorem 5.7:

Theorem 5.8. Let w € BC,. There exists a unique bottom c-signed pipe dream D, € PD¢,(w) with
the following properties:

e all the crosses in the staircase block are left-adjusted;

e every nonempty I'-block contains an elbow with a faucet in the vertical part of the block;

e all the crosses in the I"-blocks are located in the horizontal parts and left-adjusted: the box indexed
by 0 contains an elbow £~ and is followed by a sequence of crosses;

o the numbers of significant elements in I"-blocks form a strictly decreasing sequence.

This pipe dream Dy, has Li(w) crosses in the ith row of the staircase block and Nj(w) significant elements
in the jth I"-block (here (L(w), N(w)) is the signed Lehmer code of w € BCy).
Any c-signed pipe dream D € PD¢,(w) can be brought to Dy, by a sequence of admissible moves.

5.5. D-signed pipe dreams

Theorem 5.9. Let w € Dj. There exists a unique bottom d-signed pipe dream Dy € PDp, (w) satisfying
the following properties:

e Dy, does not contain fragments of the form Jr I (however, f I may occur);
o the numbers of significant elements in the I"-blocks form a strictly decreasing sequence (ending by
zeros);

e The 1-boxes of nonempty I'-blocks contain crosses + and crosses with faucets '$' These
elements alternate: the blocks with odd numbers contain crosses with faucets '$' while those
with even numbers contain ordinary crosses 1 .

This pipe dream D}, can be constructed as follows. Let (L(w), N(w)) be the signed Lehmer code for w € D,
and let

M(w) _ {(Nl(w) -1, NZ(U)) -1,..., Ns(w)(w) - 1) s ist(w)(w) > 1;
(N1(w) = 1, No(w) = 1, ..., Nyguy—1(w) — 1), if Nyquy(w) = 1.
For each i = 1,...,n the ith row of the staircase block contains Ly(w) left-adjusted crosses. For each
j=1,...,€(n) the horizontal part of jth I"-block contains u;(w) left-adjusted crosses. If j is odd, then

there is a faucet on the cross in the corner box.
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Moreover, each d-signed pipe dream D € PDp,(w) can be brought to Dy, by a sequence of admissible
moves.

Proof. The proof is similar to the proof of Theorem 5.7.

The bottom d-signed pipe dream D, constructed as in the statement of the theorem is reduced
and has the shape w € D,. Since the number of sign changes in w € D, is even, the partition
u(w) uniquely determines N(w) and each permutation w € D, is uniquely determined by the pair
(L(w), u(w)). Thus, Dy is the unique bottom d-signed pipe dream in PDp(w).

Let us show how to reduce a d-signed pipe dream D € PDp,(w) to Dp.

.J,_I_ .
The cross from the lowest fragment can be moved down: to do this, we follow the
two crossing strands down; since they are not the leftmost, these two strands cannot contain the

fragment of the form . Then we proceed similarly to the proof of Theorem 5.7.

These operations can bring our pipe dream to the following form: the significant elements
are only in the horizontal parts of the I'-blocks; in each row they are left-adjusted. Further in
the examples we draw the horizontal parts of the blocks one under another, ignoring the elbows
between them.

If certain I"-block is empty, we can move to it all the significant elements of the block above it.
So we can suppose that all the empty blocks are located above the nonempty ones.

Now look at the elements in the boxes of the I"-blocks indexed by 1'. In the odd blocks we should

have crosses with faucets , and in the even ones crosses . Suppose this is not true; take the
lowest (ith) block where this does not hold, and distinguish between the following possibilities:

e The number i is odd, and there is a cross + in the corner of the ith block. In the corner of the

(i — 1)-st block there is also a cross + Since D is reduced, the (i — 1)-st block also contains
at least one more cross. Then we can move the cross from the corner of the ith block down
similarly to Theorem 5.7 (since both strands do not have faucets on them):

L i

)

e The number i is even, and there is a cross with a faucet in the corner of the ith block (denote

this box by a). The corner of the (i—1)-st block also contains an element '$' Since D is reduced,
the (i — 1)-st block should contain at least one more cross. Similarly to the previous cases we
can show that the strands crossing at a also “nearly meet” at some other box b containing an

elbow Jf" . Then we can replace the cross with a faucet at a by an elbow joint and replace the
elbow at b by a cross; this would preserve the shape of the permutation:

— —~

++
-
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e The number i is odd, there is an elbow with two faucets d? in the corner of the ith block:

~l —c-

I} 1

Jr_J 4/
Now suppose that the numbers of significant elements in the I"-blocks do not form a decreasing

sequence. Let these blocks contain w1, s, ... significant elements, and let i be the least number
such that piq > p; > 0.

If u; = 1, the crosses '$' and + from the two neighboring corners can be shifted into one
elbow joint <P

~ .
+r e

. rr
4 I

Otherwise consider the box a in the (i+ 1)-st I"-block at the u;th position counted from the left.
Similarly to Theorem 5.7, the cross at this box can be moved down:

A
I

41 -
- A
Lo J 4 J

—F — ¥
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Let us summarize the previous discussion. Consider a d-signed pipe dream D € PDp, (w). If it is
not the bottom pipe dream, we can bring one of the significant elements down:

. ..J,_|_
e if Dhasa fre_lgment , we can move the cross from the lowest of such fragments;

e if D has no ~f I , but certain nonempty block is above an empty one, we can shift all the
elements from this block;

e if D has no Jr I , all the empty blocks are above the nonempty ones, but at some of the boxes

1’ the alternation of crosses and is violated, we can move down the element from
this box;

e if D has no Jr' + all the empty blocks are above the nonempty ones, the crosses '$' and

at the boxes 1’ are alternating, but the number of significant elements is not decreasing,
we can move the lowest cross that violates this rule. O

The bottom pipe dream of w € F, corresponds to the lexicographically highest monomial of §,,.
This immediately implies the result by Billey and Haiman that Schubert polynomials form a basis
(cf. [9, Thm 3, Thm 4]).

Theorem 5.10. Each family of Schubert polynomials {8, | w € BCx}, {€» | w € BCs},
{Dy | w € Do} forms a Q-basis in Q[z, p1(x), p3(X), .. .].

Proof. As before, we consider the order ... > z, > z; > X1 > X3 > --- on the set of variables and
the corresponding lexicographic order < on the set of monomials. The highest (with respect to this
order) monomial inL(J, ) in a Schubert polynomial ¥, where w € F, C Fs, corresponds to the
bottom pipe dream Dj, € PD £, (w).

From the description of the bottom pipe dreams we see that:

o for different w € F, the highest terms of the Schubert polynomials §,, are distinct, hence the
Schubert polynomials of each given type (B, C or D) are linearly independent;

e for Schubert polynomials of a given type (B, C or D) and each 8 = (81, 82,...,0,0,...) and
a =ﬁ(a1 > ap > - - -) there exists an element w € F, such that the highest term of §,, equals
xX“z”,

Now let us show that the highest term of each monomial f € Q[z, p1(X), p3(X), . ..] satisfies the
following property: the powers of x; occuring in it strictly decrease.

Let f € Q[pi(x), p3s(x), ...], and let the highest term of f be equal to x‘flxgz ...x3%. Since f is a
symmetric function, we have o1 > a; > - -+ > «s. Suppose that oy = a; = «.

B1,,b2,83 ; ; : ; :

Let x7'x,°x5° ... be another monomial occuring in f. Then f also contains the monomial
xfzxglxé% ... 80 B1 < a, B < a and we have either 81 = B, = «, or B1 + B2 < a1 + @y = 2a. This
means that

flx1,%2, X3, ...) = X{X58(x3, X4, ...) + h(x1, X2, X3... ).

Here g is a nonzero symmetric function, and h is a symmetric function with the following property:
for each of its monomials the sums of powers of x; and x; is less than 2«. The function f is
supersymmetric:

FO, =y, x1, %2, ...) = f(x1, %2, ...,
since every odd power sum py,_1(X) satisfies this property. On the other hand,
fO. =y %1, %0, . = £y g(x1, X2, X3, . .) + h(y, =y, X1, . .),

where the power of h with respect to y does not exceed 2« — 1. So f(y, —y, X1, X2, . . .) depends on
y and hence cannot be equal to f(x1, Xa, ...). This contradiction shows that «; > «5.
Now let us express f(X) as

f(X) =x"1g(x2, X3, ...) + h(x1, X2, .. .),
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where g € Q[pi(x2, X3, ...), P3(X2,X3,...),...], and the power of h with respect to x; does not
exceed oy — 1. The highest term of g(x,, x3,...) is equal to x§2x§3 ...x¥. A similar reasoning
applied to g shows that @y > «3. Proceeding in this way further, we obtain the desired inequalities
o] >0y > > . O

Remark 5.11. Note that the Schubert polynomials, viewed as elements of the ring Q[z, p;(x),
p3(x), .. .], do not necessarily have integer coefficients. For instance, if w = ¢S, the corresponding
Schubert polynomial of type B equals
Biosso = Z(X?xj + xix?) + 2 Z XXXk = %p?(X) - %P3(X)-
i<j i<j<k
More examples can be found in Appendix.

However, if we consider them as elements of the ring Z[z] ® $2[x], where $2[X] is the ring of
supersymmetric functions in x, then the Schubert polynomials of types B and D form bases of this
ring. The argument for proving this is similar to the one in type A: every monomial x*z? with
oy > o > ... occurs as the highest term in some Schubert polynomial with coefficient 1.

6. Schubert polynomials of Grassmannian permutations
6.1. Schubert polynomials of Grassmannian permutations are Schur polynomials

It is well known that the Schur polynomials appear as the Schubert polynomials of permutations
with a unique descent (such permutations are called Grassmannian ones). This fact can be proved
combinatorially (cf., for instance, the notes [8] by A.Knutson). The Schur polynomial s;(z1, ..., z,),
where A is a partition, can be obtained as the sum of monomials z' over Young tableaux T of shape
A filled by the integers not exceeding n; one can construct a bijection between the Young tableaux
of a given shape and the pipe dreams of the Grassmannian permutation corresponding to A. For the
reader’s convenience, we recall this result as Theorem 6.4 and provide its proof.

It is well-known that this result can be generalized to the case of other classical groups. In this
case the ordinary Schur polynomials are replaced by the P- and Q -Schur polynomials: P for the types
B and D, while Q corresponds to the type C. This observation is essentially due to P.Pragacz [10];
in [9, Theorem 3], this fact was shown using a modification of the Edelman-Greene correspondence.
The main goal of this section is to give a proof of this fact without referring to the Edelman-Greene
correspondence; instead, we mimic the type A proof and construct the bijection between the pipe
dreams of a Grassmannian permutation and circled shifted Young tableaux, which index monomials
in P- and Q-Schur functions.

Definition 6.1. Let 2 < k < n — 1. A permutation w € S, is said to be k-Grassmannian, if
w(l) < w2) < -+ < wk) > wk+1) < wk+2) < --- < w(n). A permutation is said to
be Grassmannian, if it is k-Grassmannian for some k. In other words, a Grassmannian permutation
has a unique descent at k.

A k-Grassmannian permutation w € S, bijectively corresponds to the partition A(w) =
(A1, ..., Ag) of the number £(w) into at most k parts: it is given by A; = w(i) —i.

Definition 6.2. Let 7, = BC, or D,. A permutation w € F, is said to be Grassmannian if
w(l) < w(2) <--- < w(n).

Let k be a number such that w(k) < 0 < w(k 4 1). A permutation thus defines a strict partition,
i.e. a partition of strictly decreasing integers, —w(1) > —w(2) > --- > —w(k) > 0. This provides a
bijection between strict partitions and Grassmannian permutations in BCe.

In the one-line notation, saying that a permutation w € BC, is Grassmannian is equivalent to
saying that w =1y ... %ik41 . . . in, with all §; > O distinct, iy > iy > -+ > i, and i1 < ipg2 < -+ <
in: all the entries with bars precede those without bars, the absolute values of the barred entries
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Fig. 11. The bottom pipe dream for w = 135624 and the Young diagram A(w).

U~ W

6

decrease, and the values of the entries without bars increase. The corresponding strict partition is
(i1, 825 -+ o5 k)

In this section we prove that the Schubert polynomials of Grassmannian permutations for 7, =
BC, and D, are equal to P- (in types B and D) and Q-Schur functions (in type C), respectively, by
constructing an explicit bijection between the pipe dreams and the circled Young tableaux.

We start with recalling the combinatorial description of (usual) Schur polynomials.

Definition 6.3. Let A = (A; > Ay > ... > A; > 0) be a partition and k > 0. Consider the Young
diagram (in the English notation) with rows of length A4, ..., A;. A (semistandard) Young tableau of
shape X is a labeling of its boxes by the numbers 1, ..., k weakly increasing along the rows and
strictly increasing along the columns. The set of all semistandard Young tableaux of shape A will be
denoted by SSYTy(A).

If T e SSYTy(A), denote by z' the monomial obtained as the product of z; over all occurrences of
i in the tableau T. A Schur polynomial is defined as the sum of monomials z' over all semistandard
Young tableaux of a given shape:

su(z1, ..., zk) = Z 7"

TeSSYTk()

It is well-known (cf., for example, [25]) that s; is a symmetric polynomial in z1, . .., z.

The following theorem is a fundamental property of Schubert polynomials (see, for instance, [4,
(4.8)]). Its bijective proof is probably folklore; it can be found, for example, in [8]. For the reader’s
convenience, we give this proof here. It will be generalized for the cases B, C, and D in the next
subsection.

Theorem 6.4. Let w € S, be a k-Grassmannian permutation. Let
Mw) = (A(w), ..., (w)) = (w(k) —k, ..., w(2) — 2, w(1) = 1).
Then we have

6u(z) = syw)(z1, 22, - - ., Z¢)-

Proof. We first observe that Li(w) = w(i) — i for i < k and Ly(w) = 0 for i > k. This means that for
the bottom pipe dream D;, € PD4(w) its crosses are located in the boxes forming the Young diagram
A flipped upside down: (see Fig. 11).

Now let D € PD4(w) be an arbitrary pipe dream of shape w. Let us assign to D a Young tableau
T € SSYTy(A(w)) as follows. First let us bring it to D, by moving some crosses down. Now we replace
each cross in D, by the number k —i+ 1, where i is the number of the row which initially contained
this cross.
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Fig. 12. Pipe dream and the corresponding Young tableau.
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Fig. 13. Shifted Young diagram p = (7,4, 3, 1).

One can check that all the crosses were only shifted southwest:

L
I

This means that the order of crosses along each strand remains unchanged. Hence the numbers
along the rows of T weakly increase, and the numbers along the columns strictly increase (see
Fig. 12).

This correspondence between PD4(w) and SSYT,(A(w)) is a bijection. Indeed, let us start with a
tableau T; we will read the crosses in D, from right to left, from top to bottom, and lift each of the
crosses into the row prescribed by the value inside the corresponding box. Since the numbers in
T weakly increase along the rows and strictly increase along the columns, each of the crosses will
not “bump” into the crosses lifted before, so all of them will be lifted to the prescribed positions.

LetZ = (2, Zk_1,...,21). If T € SSYT(A(w)) is the tableau corresponding to D € PDs(w), the

monomial z#) is equal to Z".
Hence
s@= Y 7= ) 2#P=6,0@.
TeSSYT(A(w)) DePDj(w)
Since the Schur polynomials are symmetric, we have s,(z) = &,(z1,...,2). O

6.2. Schubert polynomials of types B, C and D are P- and Q-Schur functions

Let w = (u1, ..., u¢), Where g > uy > --- > u, be a partition into distinct parts. Consider a
shifted Young diagram, as shown on the figure below: its ith row consists of u; boxes, and the rows
are aligned along the NW-SE diagonal. The partition & = (w1, 42, ..., i¢) is called the shape of this
diagram (see Fig. 13).

Let us fill the boxes of a shifted Young diagram by the numbers 1° < 1 < 2° < 2 < - - - according
to the following rules:

e the numbers weakly increase along the rows and the columns;
e a row cannot contain two equal numbers with circles;
e a column cannot contain two equal numbers without circles.
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Such an object is called a circled Young tableau of shape . The set of all such tableaux of shape u
will be denoted by CYT(w).

Let CYT'(11) C CYT(u) be the subset of circled Young tableaux such that the leftmost number of
each row has no circle.

To each tableau T € CYT(;) we can assign a monomial x” obtained as the product of x; over all
the occurrences of i° and i in T.

Definition 6.5. The P- and Q-Schur functions are defined as the sums of monomials over all circled
Young tableaux:

Q= Y x

TeCYT(p)

Pu(x) = Z x'.

TeCYT (1)

Remark 6.6. Let T € CYT(w) be a circled Young tableau. Note that we can add or remove a circle at
the number of the leftmost box of each row, still obtaining a valid circled tableau. This means that

P, (x) = 27109, (x),

where £(u) is the number of parts in the partition u.

The following theorem was proved in [9, Prop. 3.13, 3.14] using a modification of the Edelman-
Greene correspondence. Here we prove it with a different (and easier) bijective argument.

Theorem 6.7. Let w = W{Wy... Wsu)Wsw)ti---Wn € BCp be a Grassmannian permutation
with the decreasing segment wy, ..., wyy) and the increasing segment Wgw)i1, ..., Wy Let p =
(w1, ..., Wyw)). Then B, =P, and &, = Q,,.

Proof. Consider the bottom pipe dream D, € PDg,(w). The positions of its crosses can be deduced
from Theorem 5.7: since —w; < —wy < -+ < —Wyw) < Wsw)41 < -+ < Wy, its Lehmer code
equals L(w) = (0,0, ..., 0), hence the staircase block of D, does not contain any crosses. On the
other hand, the ith I"-block for i < s(w) contains w; left-adjusted significant elements.

Let us establish a correspondence between the significant elements of D, and the boxes in the
shifted Young diagram in a natural way: the jth significant element (counted from the left) of the
ith I'-block corresponds to the jth box of the ith row in the shifted Young diagram. If two boxes are
located in the same column of the Young diagram, there is a strand passing vertically through both
corresponding significant elements. Meanwhile, two boxes in the same row of the Young diagram
correspond to a horizontal segment of a strand.

Since each D € PDg,(w) can be reduced to D, by shifting down significant elements, the staircase
block of D also does not contain crosses. We assign to D a circled Young tableau T € CYT'(u) as
follows. For each significant element from Dj let us look at its initial position in D. If it was in the
vertical part (excluding the corner) of the ith I"-block, we put i° into the corresponding box of our
tableau. If it was in the horizontal part (including the corner), we put i.

One can show that for Grassmannian permutations the significant elements will only move along
the NE-SW diagonal:

—~
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g, T

so the order of the elements corresponding to each strand will remain unchanged. This implies
the non-decreasing of the numbers in T along the rows and the columns. Also, if a strand passes
through two significant elements horizontally (resp. vertically), these elements cannot be located in
the same vertical (resp. horizontal) part of the same I"-block. This implies that the circled integers
are not repeating along the rows of T, and the non-circled ones are not repeating along the columns.

This correspondence between PDg, (w) and CYT'(u) is a bijection. Indeed, consider a tableau
T € CYT'(u). Let us read the significant elements of Dy, one by one, right to left top to bottom, and
lift each of them into the vertical or horizontal part of the I"-block prescribed by the entry in the
corresponding box. It is easy to see that the elements will not “bump” into each other, so all of
them will be lifted to the prescribed positions.

To conclude, note that if a b-signed pipe dream D corresponds to the tableau T, then x” = x*?) =
x*(P)zBD)_ This means that

Buxz)= » xPFP= 3" x'=p,x).

DePDg, (w) TeCYT (1)

In the case of c-signed pipe dreams a similar reasoning gives us the following relation:

¢u(x,2) = Z x¥D)zA0) — Z X' =Qu(x). O

DePD¢,, (w) TeCYT(n)

We conclude by a similar statement in type D.

Theorem 6.8. Let w = W Wy ... Wy)Wsw)+1 - - - Wn € Dy be a Grassmannian permutation, with the
decreasing segment wy, . .., Wy, and the increasing segment ws(y)+1, - - ., Wp. Let u' = (w1 — 1, wy —
1,..., wswy — 1) (if the last entry of the sequence is zero, we omit it). Then ©,, = P.

Proof. Similar to the proof of Theorem 6.7. O
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Appendix. More examples

In the appendix we present an alternative, more compact, notation for pipe dreams. Then we
list all the elements, except the identity, for the group BC,, as well as some elements of the group
Ds. For each element we list all the signed pipe dreams of types B and D respectively, with the
corresponding monomials.

While working with usual pipe dreams, it is convenient to omit elbows and to draw only
crosses. Thus, a pipe dream for a permutation w € S, is represented by a staircase Young diagram
(n—1,...,2,1) with some boxes filled by crosses.

For the pipe dreams of other classical types, we will do the same: a pipe dream of type B, will be
represented by a sequence of Young diagrams consisting of a staircase (n— 1, ..., 2, 1) and several
hooks (n, 1, ..., 1), with some boxes filled by crosses and eventually by the sign o. The latter sign
can only be located in the upper-left corner of a hook; it represents a faucet. Type C is treated
similarly.
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Table 1
B-signed pipe dreams for w € BC;.
w Pipe dreams Weight
[
TZ =50 L Xi

Bs, = ;% = p1(X)

B [[]
21=S1 LI 21

[+] Xi

(N

By, =21 +2) % =21 + 2p1(X)

B [+

21 = 5150 L | X2

B ] |
LI i XiXj
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L L XiXj
B,y = Zixi2 +2 ij XiXj = P%(x)
E [
21 = sps1 L | 21%;
B [

O | [e]]
i LI XiX;j
B [[H []]
L L XiXj
Bigs; =21 DX+ 2% + 2, %% = z1pa(x) + pi(x)

B [ [[]

21 = 505150 L] x2x;

B e[ ] []]

L | [+] xix?
B [o]] | [o] |

L | L] L | X,‘Xij
B [e[] +] [o] ]

L | L | L XiXjXk

%x(]s]so = Z,‘q‘(x,‘zxj + Xisz) +2 Zi<j<k XiXjXk = %p:i’(x) - %p3(x)

B [+
12 = 515051 L | 21%2

1
E ] 1]
EH [T [H

L L Z1XiX;

+

Z1XiXj

(continued on next page)
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Table 1 (continued).
w Pipe dreams Weight

H [
[+] 2
H [ [[H
] — X2x;
B [e]] |
] ] X2X;
= | [e]H]
) L xix?
= | [o] | |
i — i XiXjX)
= | e[ [
] L L] XiXjXk
B [[H A
— L xix?
= 4] [l ] |
— — i X,'Xij
H [H [ [H
— S— L XiXjXk
Bsisos1 = 21 X:ixi2 + 2z Zi<j XiXj +2 Ziq(xizxj + Xisz )+
43 Xixpxe = Zip3(X) + 5p3(%) + §p3(%)
H H [H
12 = 50515051 L | L X}
H [ [ |
= $15051S0 L | L | [+ ] X%
H [ [ [H
L L L] XXX
B [ [H
L ] xx}
B [e] ] [o]] |
L | [ +] [+ x,-szxk
H ] ] [
L ] L XiX? Xy
EH [o]] | [T+
L | sl L | XiXjX2
B [o]] | [o] | |
— i L i XiXjXXm
B [o]] | [o] | +]
L ] L L] XiXjXiXim
H [ 5 [
L] L | L XXXz
B [[] + [o] | |
— — L i XinXka

(continued on next page)

42



E. Smirnov and A. Tutubalina European Journal of Combinatorics 107 (2023) 103613

Table 1 (continued).

w Pipe dreams Weight

B L [ L [

Ll L L L | XiXiXkXm
of+] [o] ]

L | L] 21X%%;
ol 1 [o[]

L [+ Z1Xi%?
o[ ] | [o] ]

L1 + L | Z1XiXjXk
ol 1 [+ [o[]

Ll L L Z1XiXjXy
B M []]

il L x3x;
B ] [

[+] [+] XX
0 [o[] | [o]]

il + L X2
B 1] [H [o]]

1] L L | XXX
[ | [ [o]]

+ L L | x,-xj?xk
[ | [ [o]]

+ L | nal XiXiX2
[ | [o]] | [o] ]

+ L + L XiXiXkXim
O | [ [ [

+ L | L | L | XiXiXiXm
B [ [ [o[]

L | L L | x,-szxk
B [ 1 [

L | L ad XiX;X2
B [[H [ | [e] ]

Ll L + L XiXiXeXim
O [ L L

L] L L_| L XiXiXkXim

B, sps150 = 21 ij(xizxj + xisz) + 221 305 g XixiXt

+ 2020 X +20%) + 4D (XX XXX+ XXX )+
+8 i ke XiXiXiXm =

321p3(X) — 3z1p3(X) + 3pi(x) — 3p1(X)ps(x)

Likewise, for type D the upper-left corner of each hook can be either empty or contain one of
the signs: +, &, or %, representing a cross, a cross with a faucet, or an elbow with two faucets,
respectively.

In the tables below we omit the empty I"-blocks. The total weight of all such pipe dreams is a
polynomial in z; times a quasisymmetric function in x;, given in the right column. The first (staircase)
Young diagram is shaded gray (see Table 1, Table 2)..
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Table 2
D-signed pipe dreams for some w € Ds.

w Pipe dreams Weight

ﬁ = 5153 . Z1Xi
| 2
. XiXj
. XiX;j

©s1si =7 Zixi + Z,‘X,'z +2 ij XiXj = Z][)](X) + p%(x)

312 = 555 r 2
|
r i Z1Xi
B O
L Z1X;
"
L] x?
e,
L | i XiXj
ey
L L XiX;j

+

Dsysy = Z%+221 Zixf+2i xiz

237X = 23 +221p1(X)+p3 (%)

231 =s;5, 25X

D

Z1Xi

[+

XiXj

||

+]

B3
><I\l

0] |

~%

Dsis, =21 Xtz Y X+ X+ 2

(z1 + 2)p1(X) + pi(x)

i<j XiXj =

r o[ +]
132 = 555155 L | 2%
ol | +]
r L L Z1XiX;j
r ol | |
L | i Z1XiXj
-l
L] P
r % ] |
L] hal x2x;
r %1 [
L L] x2x;

(continued on next page)
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Table 2 (continued).

w

Pipe dreams Weight
r + ] [8]+]

L] L xix?
r o 1 [+

L | L | x,-sz
r el 1 [+[] |

L L | i XiXjXk
r o 1 [+ 1 [t

L L | L X,‘Xij
r ] [e] ] |

L L [+] XiXjXk
r N

L L L XiXjXk

Dupsysy =21 2 X +221 2 iy + 2 (k0% + xixP )+
+4Y XXX = 71pA(X) + $p3(%) + 3p3(x)
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