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On one property of one analytic function
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Selberg Zeta Function

Let X be a compact surface of constant negative sectional
curvature κ = −1. Define

ZX (s) =
∞∏
n=0

∏
γ=primitive

closed geodesic

(
1− e−(s+n)`(γ)

)
,

Theorem (Selberg, 1956)

Let X be a compact Riemann surface. Then the infinite
product converges to an analytic non-zero function on
<(s) > 1 and extends as an analytic function to C. The
function ZX has a simple zero at s = 1 and for any zero s in
the critical strip 0 < <(s) < 1 we have that either s ∈ [0, 1] is
real, or <(s) = 1

2
.
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Years Past...

=⇒

ENIAC and its first programmers, c.1950 Dell Mini, 2017
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Numerical Experiments Revealed

0 500 1000 1500 2000 2500 3000 3500

0

0.05

0.1

0.15

Figure: 29504 Zeros of an approximation to the Selberg zeta
function associated to a pair of pants. D. Borthwick, 2014
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This Plot Raised Many Questions

1 What exactly the approximation is? (An infinite product
can’t be evaluated numerically, unless it can be reduced
to a finite one.)

2 If we consider another approximation to the same
function, will the plot be different?

3 Are these zeros any close to the zeros of ζ?

4 Why do we see the curves?

5 If we consider another surface, how the plot will change?
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Another Example

Figure: 107164 Zeros of the Selberg zeta function associated to a
one-holed torus. P.V., 2018.
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Why Do We See the Curves?

It is a feature (or a bug) of the outlook we have, like the photo below.

Figure: P.V. holding the Hunter’s moon on the 24th of October. 7 / 31
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Disappearance of the Curves

Take an affine transform for a closer look . . .
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Figure: A zoom-in of the plot of the zero set of the Selberg’s zeta
for a pair of pants.
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Figure: A zoom-in of the plot of the zero set of the Selberg’s zeta
for a one-holed torus.
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A One-Holed Torus

ϕ

γ1 γ2

Topologically one-holed torus T is a
punctured sphere with a handle;

It is a surface of constant negative
curvature −1 and cannot be embedded
into R3 by Efimov’s theorem;

As a metric space, it is uniquelly defined by
the lengths of two geodesics and the angle
inbetween T = T (`1, `2, ϕ) ;

It possess countably many closed geodesics
{γn} of lengths
0 < `(γ1) < `(γ2) < . . . < `(γn) . . .→∞
Symmetric torus means `1 = `2, ϕ = π

2
.
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A Pair of Pants

2ℓ1 2ℓ2

2ℓ3

Topologically pair of pants X is a
3-punctured sphere;

It is a surface of constant negative
curvature −1 and cannot be embedded
into R3 by Efimov’s theorem;

As a metric space, it is uniquelly defined by
the lengths of the three boundary
geodesics: X = X (`1, `2, `3) ;

It possess countably many closed geodesics
{γn} of lengths
0 < `(γ1) < `(γ2) < . . . < `(γn) . . .→∞
Symmetric pair of pants means
`1 = `2 = `3 =: b.
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The Hyperbolic Action

b

b

b R1

R2

R3
Cutting the pair of pants along the red
geodesics, we obtain a pair of hexagons;

The hexangons can be immersed into H2 as
right-angled hexagons;

The Fuchsian group Γ = 〈R1,R2,R3〉,
generated by reflections with respect to the
“cuts”, gives a pair of pants as a double
cover of the factor space X (b) = H2/Γ;

To any geodesic X corresponds a geodesic
in H; for any closed geodesic γ there exists
Rγ ∈ Γ preserving γ.

The action Γ y H2 is hyperbolic.
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Properties of Selberg Zeta Functions

1 In 1992, Guillopé established that in the case of
geometrically finite hyperbolic surfaces of infinite area,
the infinite product ZX converges for <(s) sufficiently
large and has a meromorphic extension to C.

2 Zeros of the Selberg zeta function correspond to the
poles of the Ruelle zeta function given by

ζ(s) : =
ZX (s + 1)

ZX (s)
=

∏
γ=primitive

closed geodesic

(
1− e−s`(γ)

)−1
3 There exists the largest real zero δ, which is equal to the

Hausdorff dimension of the limit set of Γ (a subset of the
unit circle).

4 There is no other zeros with <(s) = δ
12 / 31
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Properties of Selberg Zeta Functions (continued)

5 δ is the growth rate of the number of primitive closed
geodesics δ = limt→∞

1
t

log #{γ : `(γ) ≤ t}. Moreover,

#{γ : `(γ) ≤ t} ∼ eδt

δt
.

6 For a symmetric pair of pants δ = δ(b) ∼ 1
b

(McMullen)

7 There exists ε > 0 such that there is only finite number
of zeros satisfying <(s) > δ − ε (Jakobson–Naud)

8 Complex zeros are related to the eigenvalues of the
Laplacian operator acting on L2 functions and are a
subject of intensive research (Nonnenmacher, Patterson,
Perry, Zworski . . . ). These are defined as the poles of the
resolvent and are referred to as resonances of X .
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Closed Geodesics

R1

R2 R3R1

R3

R1

R2

R2 R3 R1

R2R3

R1

γ12132

To every closed geodesic γ on X (b) cor-
responds

a cutting sequence of period 2n

· · · j2n−1j2nj2n+1 · · · ,

where jk ∈ {1, 2, 3}, jk 6= jk+1 for
1 ≤ k ≤ 2n and j2n 6= j1.

a periodic orbit of the subshift σ
of finite type on the space of 3
symbols Σ = {1, 2, 3}Z with
transition matrix0 1 1

1 0 1
1 1 0


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Transition Matrices

Let’s fix n and define rn : Σ→ R, rn(ξ) = `(γ[ξ[n/2],ξ[n/2]+1
]),

where γ is chosen such that

`(γ) = min
γ′
{`(γ′) | γ′ intersects ξ1, . . . ξn}

Let ξ1, . . . , ξN be all subsequences of the sequences in Σ of
the length n. We define an N × N transition matrix

An
i ,j =

{
1, if ξik+1 = ξjk ; for k = 1, . . . , n − 1

0, otherwise.

and a complex matrix function

A : C→ Mat(N ,N) Ai ,j(s) = exp(−srn(ξ)) · An
i ,j ,

where ξ = ξi1 . . . ξ
i
nξ

j
n.
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Key Lemma

Lemma ∏
γ= primitive
closed geodesic

(
1− e−s`(γ)

)2
= lim

n→∞
det
(
IN − A2(s)

)
;

where IN is the N × N identity matrix.

Choosing n = 2 above we get r2 ≡ b

det(Id − e−2sbA2) = (1− 4e−2bs)(1− e−2bs)2

For a first approximation...

The zero set belongs to a pair of straight lines

The distance between consequetive zeros is π
b

.
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Curves of Zeros — I

Using n = 3 in the approximation of geodesics length

r3(ξ) = b + c(ξ)e−b + O(e−2b),

we obtain a 6× 6 matrix which determinant has the zero set
on the curves

C1 =

{
1

2b
ln |2− 2 cos(t)|+ iebt | t ∈ R

}
;

C2 =

{
1

2b
ln |2 + cos(2t)|+ iebt | t ∈ R

}
;

C3 =

{
1

2b
ln

∣∣∣∣1− 1

2
e2it − 1

2
e it
√

4− 3e2it
∣∣∣∣+ iebt | t ∈ R

}
;

C4 =

{
1

2b
ln

∣∣∣∣1− 1

2
e2it +

1

2
e it
√

4− 3e2it
∣∣∣∣+ iebt | t ∈ R

}
.
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Curves of Zeros — II
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Figure: The zero sets of ζX
(
σ
b + iteb

)
and renormalized curves Ck ,

for b = 6; and a zoomed neighbourhood of
(
ln 2
2 ,

π
4

)
.
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Comments on Geometric Approximation

1 Increasing n we do not see a change in the zero set for
=(z) < e3b;

2 There is no good estimates on error term (or rate of
convergence).

We need to estimate the approximation error.
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Transfer Operators Technique

Given a hyperbolic action, we introduce:

1 A proper Banach space of analytic functions;

2 A nuclear transfer operator acting on the Banach space;

3 The determinant of the transfer operator, which is an
analytic function;

4 Ruelle–Pollicott dynamical zeta function;

5 The Ruelle zeta function turns to be an analytic function,
which is closely related to the determinant (of the
transfer operator);

6 The zeta function can be computed very efficiently using
periodic orbits data (of the hyperbolic system) and its
zeros provide quontitative information about the system.
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The Banach Space

The space B of analytic functions on the union of disjoint
disks t3k=1Uk , chosen so that Ri(Uj ∪ Uk) ⊂ Ui for any three
distinct i , j , k ∈ {1, 2, 3}.

U1

U2

U3

b

b

b

β1

β2

β3

Figure: The domain of analytic functions forming the Banach
space (in pale red).
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Transfer Operator

We define a transfer operator Ls on the space B by

(Ls f ) |U1 (z1) = |R ′1(z2)|s f (z2) + |R ′1(z3)|s f (z3),

where z2, z3 are preimages of z1 ∈ U1 with respect to reflection
with respect to the geodesic β1.

Lemma (Grothendieck–Ruelle)

The operator Ls is nuclear.

We may write the determinant of the transfer operator as

ζ(z , s)
def
= exp

(
−
∞∑
n=1

zn

n
TrLn

s

)
= det(I − zLs).
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Zeta Function Magic

Lemma (Grothendieck–Ruelle)

The trace of the transfer operator may be explicitly computed
in terms of the closed geodesics.

TrLn
s =

∑
|γ|=n

exp(−s`(γ))

1− exp(−`(γ))

Theorem (Ruelle)

There exists a constant δ such that the determinant is an
analytic function in both variables in a strip 0 < s < δ, and

ζ(1, s) = ζ(s) = exp
( ∞∑

n=1

1

n

∑
|γ|=n

exp(−s`(γ))

1− exp(−`(γ))

)
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Computing the Zeta Function

Using Ruelle’s Theorem,

ζ(s) =
∞∑
n=0

znan(s)
∣∣
z=1

= lim
N→∞

N∑
n=0

an(s),

where an are explicitely defined in terms of closed geodesics of
the word length not more than |γ| ≤ 2n, and are analytic in s:

an(s) = −1

n

n−2∑
j=0

aj(s) · TrLn−j
s

Lemma (after Grothendieck–Ruelle)

The terms an(s) are decreasing superexponentially:
|an(s)| < λ(s)n

2
, where λ(s) < 1 depend only on Ls , but the

estimate is not uniform in s.
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Algorithm

Choosing truncation ζN(s) =
N∑

n=0

an(s), we can

1 find the largest real zero = the width of the critical strip,

2 consider a dense lattice in the strip,

3 compute the residue over each square,

4 find a zero using Newton method starting from a point of
the lattice.
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Numerical Output: Symmetric Pants
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Figure: Zeros of the zeta function associated to a symmetric pair
of pants and a more careful look for b = 12, N = 14.
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Another Viewpoint: Exponential Sums

The function ζN(s) is a finite exponential sum

ζN(s) =
n∑

j=k

αk exp(µks),

where the multipliers µk are the lengths of closed geodesics
with word length up to 2N .

1 Zeros form a point-periodic set and belong to a finite
strip, parallel to the imaginary axis

2 Their imaginary parts satisfy relation

=(sk) =
π

maxµk −minµk
+ ϕ(k),

for an almost periodic function ϕ.
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Main Approximation Result

R(T ) = {s ∈ C | 0 ≤ |<(s)| ≤ δ and |=(s)| ≤ T}.

Theorem (M. Pollicott-P. V.)

Let X be a symmetric pair of pants with boundary geodesics
of the length `(γ0) = 2b. We may approximate ζ on the
domain R(T ) by a complex trigonometric polynomial ζn so
that supR(T ) |ζ − ζn| ≤ η(b, n,T ), where T (b) = ek0b for
some constant 1 < k0 < 2 independent of b and n, such that

1 for any n ≥ 14 we have η(b, n,T (b)) ≤ O
(

1√
b

)
as

b →∞
2 for any b ≥ 20 we have η(b, n,T (b)) ≤ O

(
e−bk1n

2)
as

n→∞.

for some k1 > 0 which is independent on b and n.
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Subsequent Approximations
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Figure: Plots of the zero set of Z2n(s)
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Final Approximation

Lemma (after M. Pollicott-P.V.)

There exists an explicit 6-by-6 matrix B(s) such that the real
analytic function ζ12

(
σ
b

+ iteb
)

converges uniformly to

det(I − e−2σ−2itbe
b
B(e it)), and more precisely,∣∣∣Z12

(σ
b

+ iteb
)
− det

(
I − e−2σ−2itbe

b

B(e it)
)∣∣∣ = O

(
e−b
)

as b → +∞.

The matrix B can be constructed using a transition
matrix of a subshift of finite type on the space {1, 2, 3}N.

The curves C1, C2, C3, C4 computed using the formula

|e2σ| = eig(B(e it))
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