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Closed geodesics on a pair of pants
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A pair of pants is a three-punctured
sphere. It is uniquely defined by the
lengths of boundary geodesics: 2ℓ1,
2ℓ2, and 2ℓ3. Cutting the pants along
the red geodesics, we obtain a
right-angled hyperbolic hexagon.
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The pair of pants appears then as a
factor-space H/Γ, where the group Γ
is generated by reflections with respect
to red geodesics. The group Γ is
uniquely defined by the pairwise
distances ℓ1, ℓ2, and ℓ3.
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We are interested in the short closed
(non-simple) geodesics. To any
geodesics corresponds a reduced
periodic word of period 2n in the
alphabet of three symbols.

Selberg Zeta Function

The Selberg zeta function for a hyperbolic surface is a complex analytic function
defined in terms of lengths of closed geodesics λ(γ):

Z(s) =
∏

n

∏

γ

(1 − e−(s+n)λ(γ)).

Any closed geodesics is uniquely defined by a sequence of reflections with
respect to the red cuts. This allows us to define the dynamical zeta function as

ζ(z, s) = exp
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The power series coefficients converge to zero superexponentially, and this gives
us an efficient way of computing zeta function numerically, as ζ(1, s) = Z(s).
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Typical graphs of a zeta function,
computed using closed geodesics
corresponding to words of periods
n = 6 and n = 8.

Zeros of the Selberg Zeta Function
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Zeros of the Selberg Zeta function associated to a
symmetric pair of pants with boundary geodesics of the
length 8.

Let the length of boundary geodesics be ℓj ≡ 2b > 8.
• the vertical spacing of zeros is approximately π

b ;

• the vertical apparent periodicity of the pattern of zeros is
approximately πeb;

• the zeros belong to small neighbourhoods of four distinct
curves, which have common intersection point at δ

2 + iπ
2eb:
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