Zeros of the Selberg zeta function for non-compact surfaces

Polina Vytnova
joint work with Mark Pollicott

ICERM, Brown University and University of Warwick

April 2016

Have nothing in your houses that you do not know to be useful, or believe to be beautiful.
W. Morris
Riemann Zeta Function

Let \(\mathcal{P} \) be a set of prime numbers. Define

\[
\zeta(s) := \prod_{p \in \mathcal{P}} (1 - p^{-s})^{-1}.
\]

Theorem (Riemann)

The zeta function \(\zeta \) converges to a non-zero analytic function for \(\Re(s) > 1 \). Moreover, the function \(\zeta \)

1. has a unique pole at \(s = 1 \),
2. has an analytic extension to \(\mathbb{C}^* \).

Riemann Hypothesis

The zeta function \(\zeta \) has zeros only at negative even integers or on the critical line \(\Re(s) = \frac{1}{2} \).
Selberg Zeta Function

Let Γ be the set of prime closed geodesics on a compact surface X of constant negative sectional curvature $\kappa = -1$. Define

$$Z_X(s) = \prod_{\gamma \in \Gamma} (1 - e^{-s\ell(\gamma)}) .$$

Theorem (Selberg)

Let X be a compact Riemann surface. Then the function Z_X has a simple zero at $s = 1$ and for any zero s in the critical strip $0 < \Re(s) < 1$ we have that either $s \in [0, 1]$ is real, or $\Re(s) = \frac{1}{2}$.

In 1992, Guillopé established that in the case of geometrically finite hyperbolic surfaces of infinite area, the function Z_X has a meromorphic extension to \mathbb{C}.
First Attempt on Location of Zeros

We may expand (after Grothendieck–Ruelle–Pollicott)

\[Z_{12}(s) = 1 + a_2(s) + a_4(s) + \ldots + a_{12}(s), \]

where \(a_{2j} \) are explicitly defined in terms of closed geodesics of the length not more than \(n_X j \), so that

- the constant \(n_X \) depends on the surface only,
- each \(a_{2j}(s) \) is an analytic function in \(s \).

Then we can

1. find the largest real zero = the width of the critical strip,
2. consider a dense lattice in the strip,
3. compute the residue over each square,
4. find a zero using Newton method starting from a point of the lattice.
Numerical Output: Symmetric Pants

Figure: Zeros of the zeta function associated to a symmetric pair of pants and a more careful look (after D. Borthwick).
Q&A

1. Is the zero set of Z_{12} close to the zero set of Z_X? → Yes!
2. How can we prove this? → Use transfer operators
3. What are characteristic properties of the set of zeros of Z_X?

Qualitative observations

Let the length of boundary geodesics be $2b$. Then

- The vertical spacing of zeros is approximately $\frac{\pi}{b}$.
- The pattern of zeros appears to lie on four distinct curves, which seem to have a common point at $\frac{\delta}{2} + i \frac{\pi}{2} e^b$.
- The vertical apparent periodicity of the pattern of zeros is approximately πe^b.

4. How can we explain them? → Study the very beginning of the geodesics length spectrum
Transfer Operators Technique

Given a hyperbolic action, we introduce:

1. A proper Banach space of analytic functions;
2. A nuclear transfer operator acting on the Banach space;
3. The determinant of the transfer operator, which is an analytic function;
4. Ruelle–Pollicott dynamical zeta function;
5. The Selberg zeta function turns to be an analytic function, which is closely related to the determinant (of the transfer operator);
6. The zeta function can be computed very efficiently using periodic orbits data (of the hyperbolic system) and its zeros provide quantitative information about the system.
A Pair of Pants

- Topologically pair of pants X is a 3-punctured sphere;
- It is a surface of constant negative curvature -1 and cannot be embedded into \mathbb{R}^3 by Efimov’s theorem;
- As a metric space, it is uniquely defined by the lengths of the three boundary geodesics: $X = X(\ell_1, \ell_2, \ell_3)$;
- It possess countably many of closed geodesics $\{\gamma_n\}$ of the lengths $0 < \ell(\gamma_1) < \ell(\gamma_2) < \ldots < \ell(\gamma_n) \ldots \to \infty$;
- Symmetric pair of pants means $\ell_1 = \ell_2 = \ell_3 =: b$.

\[
\begin{tikzpicture}
 \draw [thick,blue] (0,0) to [out=90,in=180] (1,1) to [out=0,in=90] (2,0);
 \draw [thick,blue] (2,0) to [out=-90,in=0] (1,-1) to [out=180,in=-90] (0,0);
 \draw [thick,red] (1,1) to (1,-1);
 \draw [thick,red] (0,0) to [out=90,in=180] (1,1);
 \draw [thick,red] (2,0) to [out=-90,in=0] (1,-1);
 \node at (0,0) {$2\ell_1$};
 \node at (2,0) {$2\ell_2$};
 \node at (1,-1) {$2\ell_3$};
\end{tikzpicture}
\]
The Hyperbolic Action

- Cutting the pair of pants along the red geodesics, we obtain a pair of hexagons;
- The hexagons can be immersed into \mathbb{H}^2 as right-angled hexagons;
- The Fuchsian group $\Gamma = \langle R_1, R_2, R_3 \rangle$, generated by reflections with respect to the “cuts”, gives a pair of pants as the factor space $X(b) = \mathbb{H}^2 / \Gamma$.
- Any closed geodesic is uniquely defined by a periodic cutting sequence, and can be associated to an element of the Fuchsian group: $\cdots R_{k_1} R_{k_2} R_{k_3} \cdots \leftrightarrow \gamma_{\cdots k_1, k_2, k_3}$.
- The action $\Gamma \acts \mathbb{H}^2$ is hyperbolic;
The Banach Space

The space \mathcal{B} of analytic functions on the union of disjoint disks $\bigcup_{k=1}^{3} U_k$, chosen so that $R_i(U_j \cup U_k) \subset U_i$ for any three distinct $i, j, k \in \{1, 2, 3\}$.

Figure: The domain of analytic functions forming the Banach space (in pale red).
Transfer Operator

We define a transfer operator \mathcal{L}_s on the space \mathcal{B} by

$$(\mathcal{L}_sf) |_{U_1} (z_1) = |R'_1(z_2)|^s f(z_2) + |R'_1(z_3)|^s f(z_3),$$

where z_2, z_3 are preimages of $z_1 \in U_1$ with respect to reflection with respect to the geodesic β_1.

Lemma (Grothendieck–Ruelle)

The operator \mathcal{L}_s is nuclear.

We may write the determinant of the transfer operator as

$$\zeta(z, s) \overset{\text{def}}{=} \exp \left(- \sum_{n=1}^{\infty} \frac{z^n}{n} \text{Tr} \mathcal{L}_s^n \right).$$
Lemma (Grothendieck–Ruelle)

The trace of the transfer operator may be explicitly computed in terms of the closed geodesics.

\[\text{Tr} \mathcal{L}^n_s = \sum_{|\gamma|=n} \frac{\exp(-s \ell(\gamma))}{1 - \exp(-\ell(\gamma))} \]

Theorem (Ruelle)

There exists a constant \(\delta \) such that the determinant is an analytic function in both variables in a strip \(0 < s < \delta \), and

\[\zeta(1, s) = Z_X(s) = \exp\left(\sum_{n=1}^{\infty} \frac{1}{n} \sum_{|\gamma|=n} \frac{\exp(-s \ell(\gamma))}{1 - \exp(-\ell(\gamma))}\right) \]
Estimating Approximation Error

Lemma (after M. Pollicott–P. V.)

Let X be a pair of pants with boundary geodesics of the length $2b$. Then we may expand the determinant in a Taylor series in z:

$$
\zeta(z, s) = 1 + \sum_{n=1}^{\infty} a_n(s) z^s
$$

with the coefficients a_n bounded by $|a_n(s)| \leq C^n(s) \lambda \frac{n(n+1)}{2}$, where

1. $0 < \lambda \leq (4e^{-b} + O(e^{-2b}))^{\frac{1}{3}}$ as $b \to \infty$.
2. $|C(\sigma + it)| \leq 16e^{-2b\sigma} + e^{2\pi t}$.
Main Approximation Result

\[\mathcal{R}(T) = \{ s \in \mathbb{C} \mid 0 \leq |\Re(s)| \leq \delta \text{ and } |\Im(s)| \leq T \}. \]

Theorem (M. Pollicott-P. V.)

Let \(X \) be a symmetric pair of pants with boundary geodesics of the length \(\ell(\gamma_0) = 2b \). We may approximate \(Z_X \) on the domain \(\mathcal{R}(T) \) by the complex trigonometric polynomial \(Z_n \) so that
\[
\sup_{\mathcal{R}(T)} |Z_X - Z_n| \leq \eta(b, n, T),
\]
where \(T(b) = e^{k_0 b} \) for some constant \(1 < k_0 < 2 \) independent of \(b \) and \(n \), such that

1. for any \(n > 3 \) we have \(\eta(b, n, T(b)) \leq O\left(\frac{1}{\sqrt{b}}\right) \) as \(b \to \infty \)
2. for any \(b \geq 8 \) we have \(\eta(b, n, T(b)) \leq O\left(e^{-b k_1 n^2}\right) \) as \(n \to \infty \).

for some \(k_1 > 0 \) which is independent on \(b \) and \(n \).
Subsequent Approximations — I

Figure: Plots of the zero set of $Z_{2n}(s)$, for $b = 5$
Subsequent Approximations — II

Figure: Plots of the zero set of $Z_{2n}(s)$, for $b = 5$
Subsequent Approximations — III

Figure: Plots of the zero set of $Z_{2n}(s)$, for $b = 5$
Subsequent Approximations — IV

Figure: Plots of the zero set of $Z_{2n}(s)$, for $b = 5$
Curves of Zeros — I

Figure: The zero sets of $Z_X\left(\frac{\sigma}{b} + ite^b\right)$ (red) and the curves C_k, (black) for $b = 5$; and a zoomed neighbourhood of $\left(\frac{\ln 2}{2}, \frac{\pi}{4}\right)$.
The curves

\[C_1 = \{ \ln |e^{2it} + 1| + it \mid t \in \mathbb{R} \} ; \]
\[C_2 = \{ \ln |e^{2it} - 1| + it \mid t \in \mathbb{R} \} ; \]
\[C_3 = \{ \ln \left| 2 - e^{4it} - e^{2it} \sqrt{4e^{2it} - 3e^{4it}} \right| - \ln 2 + it \mid t \in \mathbb{R} \} ; \]
\[C_4 = \{ \ln \left| 2 - e^{4it} + e^{2it} \sqrt{4e^{2it} - 3e^{4it}} \right| - \ln 2 + it \mid t \in \mathbb{R} \} . \]

contain the zero set of a real analytic function

\[g_X(\sigma + it) = \det (I - \exp(-2\sigma + 2ite^b)B(e^{2it})) , \]

where \(B(z) \) is a transition matrix for SSFT on the space of cutting sequences, encoding data about closed geodesics.
Asymptotic Result for Large b

$$B(z) = \begin{pmatrix} 1 & z & 0 & 0 & z^2 & z \\ z & 1 & z^2 & z & 0 & 0 \\ 0 & 0 & 1 & z & z & z^2 \\ z^2 & z & z & 1 & 0 & 0 \\ 0 & 0 & z & z^2 & 1 & z \\ z & z^2 & 0 & 0 & z & 1 \end{pmatrix}$$

$$\mathcal{R}(T) = \{ s \in \mathbb{C} \mid 0 \leq |\Re(s)| \leq \ln 2 \text{ and } |\Im(s)| \leq T \}.$$

Theorem (M. Pollicott–P. V.)

For any $1 < k < 2$ a real analytic function $Z_X\left(\frac{\sigma}{b} + it e^b\right)$ converges uniformly to $g_X(\sigma + it)$, more precisely, as $b \to \infty$,

$$\sup_{s \in \mathcal{R}(e^{kb})} \left| Z_X \left(\frac{\sigma}{b} + it e^b\right) - g_X(\sigma + it) \right| = O \left(\frac{1}{\sqrt{b}} \right).$$
Consider a closed geodesic γ on $X(b)$ corresponding to a cutting sequence of period $2n$

$$\cdots j_{2n-1}j_{2n}j_{2n+1} \cdots,$$

where $j_k \in \{1, 2, 3\}$, $j_k \neq j_{k+1}$ for $1 \leq k \leq 2n$ and $j_{2n} \neq j_1$. Then

$$\ell(\gamma) = 2nb + c(\gamma)e^{-b} + O(e^{-2b}),$$

where

$$c(\gamma) = \# \{1 \leq k \leq 2n : j_k \neq j_{k+2} \mod 2n\}.$$
References

