
Estimating Singularity Dimension

M. Pollicott and P. Vytnova

University of Warwick∗

1 Introduction

Despite the prominent role played by Hausdorff dimension in both analysis and dynamical
systems, there remain very few non-trivial examples for which the value of dimension can
be explicitly stated, or even effectively computed. There has been some success in the
case of conformal iterated function schemes [7] and [4], but considerably less in the case
of non-conformal maps.

On the other hand there is a very elegant result of Falconer which shows that the
Hausdorff dimension of the limit set for a typical finite set of (non-conformal) affine
contractions is equal to the singularity dimension, whose presentation is more suggestive
of allowing estimation of the value. However, even this doesn’t necessarily lend itself to
numerical evaluation. In this note we want to consider a particular setting, introduced
by Hueter and Lalley, where they showed that the singularity dimension is always equal
to the Hausdorff dimension. In this case we shall describe a very effective method for its
rapid numerical evaluation.

We begin by recalling the general setting in which we will be working.

Notation 1.1. Let A1, · · · , Ak ∈ GL(2,R) be 2 × 2 invertible matrices and assume
that ‖A1‖, · · · , ‖Ak‖ < 1

2
. Given vectors b1, · · · , bk ∈ R2 we can consider affine maps

Ti : R2 → R2 defined by Ti(x) = Aix+ bi (i = 1, · · · , k).

We next give a basic definition.

Definition 1.2. The limit set Λ ⊂ R2 is the unique smallest closed non-empty set such
that Λ = T1Λ ∪ · · · ∪ TkΛ.

Falconer introduced the notion of the singularity dimension dimS(Λ), which is typi-
cally equal to the Hausdorff dimension, but while having a better implicit characterization
is still remarkably difficult to estimate numerically.

Notation 1.3. If n ≥ 1 and i = (i1, · · · , in) ∈ {1, · · · , k}n, then we write |i| = n. We
can then associate to i the product of matrices Ai = Ai1Ai2 · · ·Ain .
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We can associate to the 2 × 2 matrix Ai the two singular values α1(Ai) ≥ α2(Ai).
These are the major and minor axes of the ellipse which is the image of the unit circle
under Ai. Equivalently, these are the eigenvalues of the 2× 2-matrix

√
A∗iAi [1].

Definition 1.4. We denote

φs(Ai) =

{
α1(Ai)

s if 0 < s ≤ 1

α1(Ai)α2(Ai)
1−s if 1 ≤ s < 2.

This leads to the following definition of singularity dimension due to Falconer.

Definition 1.5. We define the singularity dimension by

dimS(Λ) : = inf

s > 0 :
∞∑
n=1

∑
|i|=n

φs(Ai) < +∞

 .

We now recall the following fundamental theorem of Falconer.

Theorem 1.6 (Falconer [1]). Assume that ‖A1‖, · · · , ‖Ak‖ < 1
2
. Then for a.e. (b1, · · · , bk) ∈

R2k, we have dimH(Λ) = dimS(Λ).

In fact, Falconer proved the result under some slightly more restrictive assumptions,
which were removed by Solomyak [11]. The significance of this result is that the formula
holds quite generally: for any contractions with Euclidean norm less than 1

2
; and almost

all translational parts. On the other hand, except in very special cases it is not always
easy to give explicit examples to which the formula applies. Heuter and Lalley showed
that under more restrictive hypotheses on the maps it is possible to remove the almost
everywhere hypothesis.

Let Q2 = {(x, y) : x ≤ 0, y ≥ 0} denote the closed second quadrant

Hypotheses 1.7 (Heuter–Lalley conditions). We want to assume the following technical
conditions:

1. ‖Ai‖ < 1 for i = 1, · · · , k;

2. α1(Ai)
2 < α2(Ai) for i = 1, · · · , k;

3. A−11 Q2, · · · , A−1k Q2 are pairwise disjoint subsets of int(Q2);

4. there is a bounded open set V such that TiV are disjoint, i = 1, · · · , k.

Conditions (1)–(3) depend only on the Ai, but condition (4) also depends on the bi.
(An additional simplifying assumption would be that A1, · · · , Ak have positive determi-
nants.) Condition (1) is a weaker contraction hypothesis than in Theorem 1.6. Condi-
tion (2) is a bunching condition; condition (3) a separation condition. Condition (4) is a
closed set condition. Next, we recall the result of Heuter–Lalley.

Theorem 1.8 (Heuter–Lalley [3]). Under Hypotheses 1.7 we have that

0 < dimH(Λ) = dimS(Λ) < 1.
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Figure 1: The singularities of the matrix Ai and a few images of the second quadrant.

However, it remains to address the question of effectively estimating the dimension.
Our main result is the following

Theorem 1.9 (Main Theorem). Under Hypotheses 1.7 there exists 0 < θ < 1 such that
we can define a sequence dn using the 2n+1 singularities {α1(Ai) : |i| ≤ n} so that

| dimS(Λ)− dn| = O
(
θn

2
)

for n ≥ 1.

In particular, we see that the rate of convergence of the n’th approximation to the
dimension is super exponential, whereas the number of terms needed to compute is
exponential.

Example 1.10. Heuter and Lalley proposed the matrices

A1 =

(
1
30

1
120

1
30

1
60

)
, A2 =

(
1
30

1
40

1
30

1
30

)
, A3 =

(
1
40

1
30

1
60

1
30

)
.

It is easy to show that for suitable translations Heuter–Lalley conditions hold. Moreover,
we estimate that the dimension of the limit set is

dimS(Λ) = 0.375797704495199 . . .

using products of the length 5, so we need to calculate only 35 = 243 matrices overall.

It can be difficult to find explicit examples of matrices satisfying the Heuter–Lalley
conditions (Hypotheses 1.7 ). It is an interesting question to ask how likely it is that
a family randomly chosen matrices A1, . . . , Ak satisfy them. We will discuss this in the
next section.
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In §2 we consider how restrictive hypothesis 1.7 are. In particular, we consider the
probability that a k-tuple of matrices chosen at random with respect to a natural mea-
sure has these properties. In §3 we relate to the matrices projective maps, which allows
us to use dynamical techniques. In §4 we use this formulation to describe the singularity
dimension in terms of thermodynamic formalism. In §5 we describe the main mecha-
nism in the proof, the determinant of the transfer operator and in §6 we complete the
proof of the main theorem 1.9. Finally, in §7 we present examples illustrating the rapid
convergence in the main theorem.

We would like to thank Professor Karoly Simon for posing the question that motivated
this work, that of whether it was possible to estimate the dimension of the limit set for
a family of affine contractions satisfying Hypotheses 1.7 using these methods.

2 The likelihood of the hypotheses

In this section we address the following question: What is the probability that k matrices
chosen randomly satisfy conditions (1)–(3) of Hypotheses 1.7? In fact, we will see, both
empirically and rigorously, that these conditions can be difficult to satisfy, particularly
when the number of matrices k is large. On the one hand, if the singular values of two
or more of the matrices are sufficiently large then the image of the positive quadrant will
be a large sector and part 3 of Hypotheses 1.7 may be impossible to satisfy. We will
quantify this in this section. On the other hand, if the singular values of the matrices are
all small, it is relatively easy to estimate the probability that a k-tuple of such matrices
satisfy Hypotheses 1.7. In particular, in this case the images of the positive quadrant are
very narrow sectors and we could consider the product of their independent distributions.
It remains to understand the general case, which we can approach by estimating the
number of k-tuples where the singular values have a common lower bound τ , say. We
will present formulae for the density of the k-tuples which satisfy the hypotheses, and
consider their asymptotic behaviour as the lower bound on the singular values tends to
zero. In particular, we will show that there is a simple asymptotic formula (Proposition
2.7) which fits with the empirical results for k = 1, 2.

We begin by presenting a natural parametrization of matrices which is useful for both
interpreting Hypotheses 1.7 (1)–(3) and quantifying the probability they are satisfied.

Using the Singular Value Decomposition for matrices we can write the inverse of each
matrix as

A−1i = Rθ1(Ai)

(
1/α1(Ai) 0

0 1/α2(Ai)

)
Rθ2(Ai)

where Rθ is rotation by an angle θ. Provided θ2(Ai) ∈ (0, π
2
) ∪ (π, 3π

2
) =: I2,i the image

of Rθ2(Q2) contains the real axis. More precisely, the image cone Rθ2(Q2) is bounded by
lines containing the vectors(

− sin θ2(Ai)
cos θ2(Ai)

)
and

(
− cos θ2(Ai)
− sin θ2(Ai)

)
.

The action of the diagonal matrix then squeezes the cone Rθ2(Ai)(Q2) inside itself. The
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new cone is bounded by lines containing the vectors(
−1/α1(Ai) · sin θ2(Ai)
1/α2(Ai) · cos θ2(Ai)

)
and

(
−1/α1(Ai) · cos θ2(Ai)
−1/α2(Ai) · sin θ2(Ai)

)
.

In particular, these lines make angles with the horizontal axes equal to

φ1 := tan−1
(
α2(Ai)

α1(Ai)
tan θ2(Ai)

)
and φ2 := tan−1

(
α2(Ai)

α1(Ai)
cot θ2(Ai)

)
,

respectively, and the angle for the image cone is given by φ = φ1 +φ2. Therefore we may
write

tanφ =
α2(Ai)

α1(Ai)
· tan θ2(Ai) + cot θ2(Ai)

1−
(
α2(Ai)
α1(Ai)

)2 . (1)

Finally, the map Rθ1(Ai) maps this cone back into the second quadrant Q2 under the
condition that θ1 ∈ [π

2
, π] ∪ [3π

2
, 2π] =: I1,i.

The following result is now very easy to establish and gives preliminary restrictions
on the matrices to satisfy the Hypotheses 1.7.

Lemma 2.1. Given k matrices such that preimages of Q2 are disjoint, at least one of
them satisfies

α2(Ai)

α1(Ai)
≤
√

1 + tan2(π/2k)− 1

tan(π/2k)
.

Proof. This is an explicit computation. By (1) the image of Q2 under any A−1i is a cone
with angle φ that satisfies

tanφ ≥ α2(Ai)

α1(Ai)
· 2

1−
(
α2(Ai)
α1(Ai)

)2 .
In particular, if there are k disjoint cones then we require that for at least one choice 1 ≤
i ≤ k we have that

tan
( π

2k

)
≥ tanφ ≥ α2(Ai)

α1(Ai)
· 2

1−
(
α2(Ai)
α1(Ai)

)2 ,
which implies the result.

Example 2.2. For example, in order to have k = 2 matrices with disjoint preimages, we
need one of them to satisfy α1(Ai)

α2(Ai)
≤
√

2− 1.

We now turn our attention to the likelihood that the hypotheses hold. We assume
that parameters defining matrices A−1i are uniformly distributed on the corresponding
intervals:

Xi : =
{

(α1, α2, θ1, θ2) ⊂ (0, 1)2 × I1,i × I2,i
}
. (2)
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The probability space is defined by X : =
k∏
i=1

Xi, where we assume a uniform distribution.

We observe that if α1 � 1, the contraction is strong and the image of Q2 under A−1i
is a very narrow cone. Thus, at least quantatively, the probability that k matrices satisfy
Hypotheses 1.7 is high. We are therefore interested in the probability that k matrices
chosen at random satisfy Hypotheses 1.7 when the singular values are assumed not to
be too small. In particular, we want to add an additional condition on singularities
0 < τ ≤ α2 ≤ α1 < 1 and study the probability that Hypotheses 1.7 (1)–(3) hold true as
a function of τ .

Definition 2.3. We denote by νk(τ) the emprically observed proportion of k-tuples of
matrices satisfying the hypotheses, whereas we denote by Pk(τ) the theoretically predicted
value.

The graphs in Fig. 1 below show the proportion νk(τ) of families of k matrices that
satisfy Hypotheses 1.7 among all possible families of k matrices. They are obtained by
a routine straightforward computer calculation. More precisely, we take 200 values of τ
between 0 and 0.125, and for every τ we consider 50 values of angles θ1 ∈ I1,i, θ2 ∈ I2,i
and 30 values of singularities α1, α2 on the interval (τ, 1). Afterwards, we consider all
possible matrices and calculate ν1(τ), the proportion of matrices that satisfy Hypotheses
1.7 (1)–(3). Then we look for pairs, triples, quartets and quintets.

We would like to explain the shape of these empirically observed plots by rigorously
estimating the asymptotic behaviour of νk(τ) as τ → 0 and to find the probability
Pk(τ) that k matrices, chosen randomly with respect to uniform distribution satisfy
Hypotheses (1.7). We start with P1(τ). Let φ(θ1, θ2, α1, α2) be the angle of the cone
A−1(Q2). Then

P1(τ) =

∫ π
2

0

(π
2
− φ
)
ρφ(x)dx (3)

where ρφ(x) is the probability density function for φ. The following lemma gives us the
density of the distribution for tan(φ).

Lemma 2.4. The random variable tanφ is distributed with density

ρtanφ(x, τ) =

∫ x/2

2
√
τ

1−τ

1√
2π

y

x
√
x2 − 4y2

( τ 2

u2(y)
+
u2(y)

4

)
u′(y)dy, (4)

where u(x) =
√
4x2+1−1

2x
.

Proof. We can write tanφ as a product of independent variables using

tanφ =
2

sin(2θ2)
· α1α2

α2
1 − α2

2

.

To simplify the calculations, we introduce α̃ : = α1α2

α2
1−α2

2
and θ̃ : = 2

sin(2θ2)
. We can now use

standard formulae for the density of the product distribution to approach the density of
tanφ. We obtain the density ρθ̃(x) by straightforward calculation.

ρθ̃(x) =

{
1
2π

1
x
√
x2−4 , if x > 2;

0, otherwise.
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Figure 2: There are plots of the proportion of (a) Heuter–Lalley matrices A; (b) Heuter–
Lalley pairs of matrices (A1, A2); (c) Heuter–Lalley triplets of matrices (A1, A2, A3); and
(d) Heuter–Lalley quintets of matrices (A1,. . . , A5) with singularities α1>α2> τ .

To calculate the density of α̃ we introduce new a function u(x) =
√
1+4x2−1

2x
. Then the

probability P(α̃ < x) is given by the area in the (α1, α2)-plane bounded by the lines
α2 = τ , α2 = u(x)α1, and parabola α2 = α2

1. Hence by definition

ρα̃(x) = lim
ε→0

1

ε
(P(α̃ ≤ x)− P(α̃ ≤ x+ ε)) =

{(
τ2

u2(x)
+ u2(x)

4

)
u′(x) if x >

√
τ

1−τ ,

0 otherwise .

Convolving ρθ̃ and ρα̃ together, we conclude

ρtan(φ)(x, τ) =

∫
R

1

y
· ρθ̃
(x
y

)
ρα̃(y)dy =

∫ x/2

√
τ

1−τ

1√
2π

y

x
√
x2 − 4y2

( τ 2

u2(y)
+
u2(y)

4

)
u′(y)dy,

provided x > 2
√
τ

1−τ .
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As a corollary to Lemma 2.4 we have the following asymptotic expansion for ρtanφ(x, τ)
in powers of τ 1/2.

Corollary 2.5. There is a power series expansion

ρtanφ(x, τ) =


∞∑
j=0

aj(x)τ j/2 if x > 2
√
τ

1−τ ,

0 otherwise;

which converges uniformly for any x > 2
√
τ

1−τ , and all aj(x) are analytic on the same
domain.

Proof. It suffices to observe that the integrand, and thus its anti-derivative, is analytic
at 0 as a function of x.

Combining 2.1 with 2.4 we get an upper bound for τk : = inf{τ : Pk(x, τ) = 0}:

Corollary 2.6.

τk ≤
2 + tan2(π/2k)− 2

√
1 + tan2(π/2k)

tan2(π/2k)

Heuristically, as k increases we see that at least one of the matrices in the k-tuple
must correspond to a small value of α. In particular, this imposes conditions which
suggest this is a relatively rare event.

We now use corollary 2.5 to show that P (τ) has an asymptotic formula in terms of
τ 1/2.

Lemma 2.7. The probability P (τ) that A(Q2) ⊂ Q2, ‖A‖ ≤ 1, and α1(A)2 < α2(A)
subject to α1(A), α2(A) ≥ τ > 0 can be expanded as a power series in

√
τ (where the

coefficients for
√
τ and τ vanish).

Proof. The probability that the image A(Q2) lies back in the quadrant Q2 is∫ π
2

0

(π
2
− x
)
ρφ(x, τ)dx =

∫ ∞
0

(π
2
− tan−1(x)

)
ρtanφ(x, τ)dx

=

∫ ∞
2
√
τ

1−τ

(π
2
− tan−1(x)

)
ρtanφ(x, τ)dx.

We observe that for small τ > 0 the integrand is analytic at x = 2, with radius of
convergence 2. In particular, it is analytic at the value of the lower value in the range of
integration. Therefore we can expand it in a power series in x at x = 2, and integrate
term by term. This gives the result.

Similarly, the probability P2(τ) that the images of two sectors are in the quadrant is
given by

P2(τ) =
2

π

∫ π/2

0

(∫ y

0

(y − x1) ρφ(x1, τ)dx1

)(∫ π
2
−y

0

(π
2
− y − x2

)
ρφ(x2, τ)dx2

)
dy
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can be expanded as a power series in
√
τ . (We make sure that two sectors are disjoint

by putting one of them between the real axis and a ray (0, y) and another one between
(0, y) and the imaginary axis). This brings us to an asymptotic expansion for Pk(τ).

Continuing inductively one can show that the probability Pk(τ) that k images of the
quadrant are disjoint takes the following form:

Proposition 2.8. The probability Pk(τ) to have k matrices satisfying Hypotheses 1.7
(1)–(3) and with singularities at least τ , may be expanded as a power series in

√
τ .

In view of Proposition 2.8 we can attempt to fit polynomials in
√
τ to the plots in

Figure 2. In Figure 2 we illustrate this for the representative cases of single matrix and
triples of matrices.
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Figure 3: The first and the third plots from Figure 1 with approximating polynomial
curves of degree 6 in

√
τ superimposed.

In summary, the proportion of k-tuples of matrices satisfying Hypotheses 1.7 is sen-
sitive to the restrictions on the singular values (2.6). We can explicitly compute Pk(τ)
and compare these with the numerical estimates νk(τ). In the case that we allow a lower
bound on the singular values to tend to zero, we get asymptotic estimates Pk(τ) (in
Proposition 2.8).

3 Projective maps

We can introduce a dynamical viewpoint by looking at the projective action of the ma-
trices on RP 1. This technique is classical in the study of the ergodic theory of random
matrix products, but will prove to be particularly useful in the present context. The
idea is that the linear action of the matrices on R2 induces a map on the real projective
space RP 1. We recall that RP 1 corresponds to R2−{(0, 0)}/ ∼ where we use define the
equivalence relation v ∼ w if there exists λ ∈ R − {0} such that λv = w. Equivalently,
we can identify RP 1 with the unit circle in R2 with the antipodal points identified. It is
well known that one can naturally parameterise RP 1 locally by using the arc distance on

9



3 PROJECTIVE MAPS

the unit circle. In particular, these matrices correspond to an iterated function scheme
of projective maps.

Let us write each matrix Ai in the form

Ai =

(
ai bi
ci di

)
,

where ai, bi, ci, di ∈ R, then we can associate the linear maps Ǎi : R2 → R2 given by

Ǎi(x, y) = (aix+ biy, cix+ diy).

The assumption of positivity of the matrices ensures that the first quadrant Q1 =
{(x, y) ∈ R2 : x, y ≥ 0} is preserved by the linear maps. Consider the one dimen-
sional simplex ∆ = {(x, 1 − x) : 0 ≤ x ≤ 1} then the linear maps naturally give rise to

projective maps Âi : ∆→ ∆ given by

Âi(x, 1− x) =

(
aix+ bi(1− x)

aix+ bi(1− x) + cix+ di(1− x)
,

cix+ di(1− x)

aix+ bi(1− x) + cix+ di(1− x)

)
.

In particular, the first component is a linear fractional map Ai : [0, 1]→ [0, 1] given by

Ai(x) =
(ai − bi)x+ bi

(ai + ci − bi − di)x+ (bi + di)
.

Each of these maps is merely the same action on (part of) RP 1 viewed using different
coordinates. The strict positivity of the matrices ensures that the images Ai([0, 1]) lie
inside the open interval (0, 1). Although the fact will not be necessary in our analysis, this
is sufficient to ensure that these maps are contracting with respect to a suitable metric.
Given the product of 2× 2 matrices Ai we can denote its eigenvalues by λ1(Ai) ≥ λ2(Ai)
and then we can write its determinant as their product det(Ai) = λ1(Ai)λ2(Ai). The
rest of this section is devoted to relating the fixed point of the projective map Ai to the
eigenvalues of the matrix Ai.

We collect together in the following lemmas some simple estimates which will prove
useful in the next section.

Lemma 3.1. If vi = (xi, 1− xi) is an eigenvector for Ai then xi is a fixed point for Ai.
Moreover, we can write the derivative by

DAi(xi) =
det(Ai)

λ1(Ai)2
.

Proof. This could be deduced indirectly from equation (41) of [3]. However, it can also
be seen easily directly by a simple geometric argument. Consider a small ε-ball B(vi, ε)
around vi in R2. The ratio of the areas of the original ball B(vi, ε) to its image Ai(B(vi, ε))
under the linear map Ai : R2 → R2 is detAi. On the other hand, we see that Ai maps vi
to Ai(vi) = λ1(Ai)vi. Thus, since the point vi is fixed by Ai a consideration of the area of
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Ai(B(vi, ε)) shows the contraction in the projective distance in a neighbourhood of this
fixed point must be approximately

det(Ai)

λ1(Ai)2
.

Letting ε tend to zero gives the result.

The next lemma shows that the largest singular value and the largest eigenvalue are
of a comparable size.

Lemma 3.2. We can estimate:

α1(Ai) � λ1(Ai)

i.e., there exists C ≥ 1 such that 1
C
λ1(Ai) ≤ α1(Ai) ≤ Cλ1(Ai), for all strings i.

Proof. This is suggested by comparing equations (23) and (29) in [3]. However, it can
be seen directly by considering cones ±Q1 associated to the first and third quadrant. It
is immediate to see that the action of the positive matrices is such that the direction of
the longest axes of the ellipse image of the unit disk must lie in the image come Ai(Q1).
Moreover, this also contains the eigenvector associated to the largest eigenvalue. One
then sees easily the result by considering the contracting maps associated to the projective
versions.

4 Singularity dimension and transfer operators

The use of positive matrices and the contracting nature of their projective action has been
used by several authors in different contexts, including [9], [8]. This has the advantage
that it places us in the context of an expanding real analytic map and thus allows us to
employ in §5 the powerful theory of nuclear transfer operators associated to this setting.

In the present context, the hypotheses imply that 0 < dimS(Λ) < 1. Thus we have
by definition that φs(Ai) = α1(Ai)

s and

dimS(Λ) = inf

s > 0 :
∞∑
n=1

∑
|i|=n

α1(Ai)
s < +∞

 .

In order to understand the convergence and divergence of the above series we can
define a pressure-type function in a natural way as follows.

Definition 4.1. Let P : R→ R be defined by

P (s) := lim
n→+∞

1

n
log

∑
|i|=n

α1(Ai)
s

 .
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The function P (s) can be viewed as a generalisation of the more familiar pressure
function in thermodynamical formalism, which has proved so useful in analysing the
Hausdorff Dimension of conformal attractors. The map P : R → R is a homeomor-
phism and its significance is that the singularity dimension dimS(Λ) is then given by the
following result:

Proposition 4.2 ([3], corollary 4.4). The value δ = dimS(Λ) satisfies P (δ) = 0.

By the estimates in the previous section we can see that this is equivalent to the
following.

Lemma 4.3. We can write

P (t) := lim
n→+∞

1

n
log

∑
|i|=n

Ψn(i)t


where for convenience we denote Ψn(i) :=

(
det(Ai)

DAi(xi)

) 1
2
.

Proof. By Lemma 3.1 we have that λ1(Ai) =
(

det(Ai)

DAi(xi)

)1/2
and by Lemma 3.2 (1) we have

that α1(Ai) � λ1(Ai). The result then follows by taking limits.

We want to relate the pressure to a transfer operator on the Banach space of bounded
analytic functions. As with the classical theory of Thermodynamical Formalism, the
value P (s) will be characterised in terms of the maximal positive eigenvalue of a cor-
responding linear operator. We first introduce a suitable Banach space upon which the
operator acts.

Definition 4.4. Let [0, 1] ⊂ U ⊂ C be an open neighbourhood of the unit interval. Let
B ⊂ Cω(U) be the Banach space of bounded analytic functions on U , with respect to the
supremum norm ‖w‖ = supz∈U |w(z)|.

We could equally well work with the Banach space of square integral analytic functions
on U , but we use this particular space to be consistent with [10].

We can next associate the bounded operator which we will use to characterise P (t).

Definition 4.5. Given s ∈ C, we can consider the transfer operator Ls : B → B defined
by

Lsw(z) =
k∑
i=1

ψi(z)sw(Aiz)

where ψi(z) =
(

detAi
DAi(Aiz)

)1/2
.

The above operator is well defined provided the open set U is chosen sufficiently small
that the closures of its images are contained in U (i.e., Ai(U) ⊂ U for i = 1, · · · , k) and
also sufficiently small that ψ0, ψ1 : U → C and analytic (i.e., the square root is applied
away from the negative real axis).

To understand the relationship of the transfer operator to the singularity dimension
we require the following standard result.

12



5 TRACES AND DETERMINANTS

Lemma 4.6. If t ∈ R then eP (t) is the spectral radius of Lt.

Proof. Observe that from the definitions, we have that for any finite string i = (i0, i1, · · · , in−1)

we have that Ψn(i) =
n−1∏
j=0

ψij(Ai0 · · ·Ain−1xi). The result then follows from [10].

5 Traces and Determinants

In this section we will recall some classical results on operators. In many other appli-
cations of transfer operators, it is sufficient to consider the transfer operator acting on
the Banach space of Hölder continuous functions. In that context, the operators are
quasi-compact. However, for our purposes it is important that we are considering a
small Banach space of analytic functions for which the transfer operators have smaller
spectrum.

We begin with a general definition due to Grothendieck [2] and apply these to the
particular case of the transfer operator Lt.

Definition 5.1. We say that an operator T : B → B on a Banach space is nuclear if:

1. There exist vectors vn ∈ B with ‖vn‖ = 1;

2. There exist linear functionals ln ∈ B∗ with ‖l∗n‖ = 1;

3. There exists an absolutely summable sequence λn ∈ C,

such that we can write T (v) =
∞∑
n=1

λnvnln(v), for all v ∈ B.

Such nuclear operators are automatically compact operates and thus consequently
have only countably many non-zero eigenvalues, whose only possible accumulation value
is 0. In particular, nuclear operators are trace class and we can define their traces in
terms of the sum of their eigenvalues. For our present purposes we can also assume that
(λn)∞n=1 ∈ lp for all p > 0.

We recall some properties of these operators that can be easily deduced from more
general results of Ruelle [10] (and we refer the reader to Appendices A, B and C of [6]
for a useful summary). These are contained in the next two propositions [2].

Proposition 5.2 (Grothendieck, Ruelle). For each t > 0 the operators Lt : B → B are
nuclear and we can explicitly write the trace of the n’th power Lnt as:

trace(Lnt ) =
∑
|i|=n

(Ψn(i))t

1−DAi(xi)

for each n ≥ 1.

The proof of this explicit form for the trace trace(Lnt ) is quite explicit. It involves cal-
culating the eigenvalues, and thus traces, of each of the composition operators associated
to the individual contractions Ai and then summing.

We next introduce a family of complex functions D(z, t) of the complex variable z ∈ C,
parameterized by a real variable t ∈ R.

13



6 PROOF OF THEOREM 1.9

Definition 5.3. We can define the determinant

D(z, t) := exp

(
−
∞∑
n=1

zn

n
trace(Lnt )

)
,

which converges for t sufficiently large and |z| sufficiently small.

Finally, we recall the following useful result on the analytic domain and expansion
of D(z, t).

Proposition 5.4 (Grothendieck, Ruelle). The function D(z, t) is entire in C2. Moreover,
there exists 0 < θ < 1 such that

D(z, t) = 1 +
∞∑
k=1

ak(t)z
k

where |ak(t)| = O(θk
2
).

In order to exploit the nuclearity of the transfer operators it is crucial that we work
with the Banach space of analytic functions rather than, say, the more familiar setting
of Hölder continuous or continuously differentiable functions. In particular, it is crucial
(but trivial) observation that analytic function in B remain analytic under composition
with the linear maps Ai. This is a simple observation based on such maps being linear
fractional maps, which arises automatically from their construction.

Remark 5.5. We recall that the constant 0 < θ < 1 is related to the minimal contraction
of the Ai, for i = 1, · · · , n. In particular, it can be readily estimated.

6 Proof of Theorem 1.9

The proof of Theorem 1.9 depends on the results in the previous section. The use of
determinants to compute Hausdorff dimension appeared in [4] in the context of gen-
eral hyperbolic repellers (e.g. hyperbolic Julia sets and limit sets of suitable Fuchasian
groups). The general principle is the same here, although the application is somewhat
different. Let us set z = 1 and then denoting η(t) := D(1, t) and using Proposition 5.4
we can expand

η(t) := D(1, t) =
∞∑
k=1

ak(t)

where |ak(t)| = O(θk
2
). The significance of this function is the following simple result.

Lemma 6.1. The value δ = dimS(Λ) is the abscissa of convergence of η(s) (i.e., the
least value for which η(s) converges to an analytic function for Re(s) > δ)

Proof. By definition, the convergence (or divergence) of the function η(t), for t ∈ R,
depends on the growth of the terms trace(Lnt ), whose explicit form is given in Propo-
sition 5.4. However, we can then deduce from Definition 4.1 that for t > 0 the series
converges (since the terms tend to zero exponentially fast) and for t < 0 the series
diverges (since the terms grow exponentially fast). Finally, the lemma follows by Propo-
sition 4.2.

14



7 THE NUMERICAL ALGORITHM

Next, we can write ηN(t) for the truncation of this series of the form:

ηN(t) :=
N∑
k=1

ak(t)

for N ≥ 1. Let δN > 0 denote the smallest zero, i.e., ηN(δN) = 0. Thus since for each t
we have |ηN(t)− η(t)| = O(θN

2
) and δ is a simple zero for η(t) we deduce that δ − δN =

O(θN
2
).

Remark 6.2. The value of 0 < θ < 1 in the bound |ηN(t)−η(t)| = O(θN
2
) depends on the

hyperbolicity of the projective maps associated to the matrices. It is not simply a bound
on the derivatives, since it also reflects the complexification of the maps, but it can be
assumed close to this value. The implied constant can also be effectively estimated.

7 The Numerical Algorithm

It remains to show empirically that this method gives an efficient way to estimate δ.
In this section we present a basic numerical algorithm resulting from theorem 1.9 and
illustrate its efficiency using two examples 7.2 and 7.3.

Consider matrices

Ai =

(
ai bi
ci di

)
and i = 1, . . . , k

satisfying the hypotheses (1) – (3) of Hypotheses 1.7.

Step 1. For each n ≥ 1 we can consider a string i = (i0, · · · , in−1) ∈ {1, · · · , k}n. We
associate the product matrix

Ai = Ai0Ai1 · · ·Ain−1(xi) =

(
ai bi
ci di

)
,

say, and the linear fractional maps Ai : [0, 1]→ [0, 1] given by

Ai(x) =
(ai − bi)x+ bi

(ai + ci − bi − di)x+ (bi + di)
.

Step 2. We can then associate to each string i = (i0, · · · , in−1) ∈ {1, · · · , k}n:

1. the determinant detAi;

2. the unique fixed point Ai(xi) = xi;

3. the derivative DAi(xi) of the map at the fixed point;

4. the weight

Φn(i, t) =

(
det(Ai)

DAi(xi)

)t/2
1

1−DAi(xi)
.

15



7 THE NUMERICAL ALGORITHM

Step 3. We can write

DN(z, t) := exp

− N∑
n=1

zn

n

∑
|i|=n

Φn(i, t)


and expanding the exponential as

exp(y) = 1 + y + y2/2 + · · ·+ yN/N ! +O(yN+1)

with

y = −
∞∑
n=1

zn

n

∑
|i|=n

Φn(i, t)

we rewrite this as

DN(z, t) = 1 +
N∑
k=1

ak(t)z
n +O(zN+1).

Step 4. Setting z = 1 we can define

ηN(t) := 1 +
N∑
k=1

ak(t).

Let δN > 0 be the smallest positive solution to ηN(δN) = 0.

Remark 7.1 (Comparing with the matrix approach). A more standard approach is to
associate to each N a matrix whose entries are approximations to the derivatives raised
to the power tN . In particular, for each N ≥ 1 we can solve for tN > 0 such that∑

|i|=n

DAi(xi)
tN = 1,

say. It then follows, as in [7] that tN → dimH(Λ) at an exponential rate, i.e., there exists
0 < θ < 1 such that dimH(Λ) = tN +O(θN).

Example 7.2. With the matrices considered in Example 1.10, one can consider the
approximations to the dimension using determinants (Theorem 1.9) and compare it with
the matrix approximation method (Remark 7.1).

In particular, we see that for n = 5 the determinant method gives a solution

δ = 0.375797704495199 · · ·

which is accurate to 15 decimal places. However, even when n = 10 the matrix method
is only accurate to 9 decimal places.
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7 THE NUMERICAL ALGORITHM

N δN tN

1 0.410717582765210 0.373123313880933
2 0.375211732460593 0.375566771742160
3 0.375799107164494 0.375775898884967
4 0.375797703892749 0.375795619644123
5 0.375797704495199 0.375797504758157
6 0.375797704495199 0.375797685359066
7 0.375797704495199 0.375797702683667
8 0.375797704495199 0.375797704340403
9 0.375797704495199 0.375797704507750
10 0.375797704495199 0.375797704514025

Table 1: Approximations for Example 7.2

N δN tN

1 0.609325221387553 0.514374159566069
2 0.502335263611167 0.508602279690240
3 0.507406976235507 0.507597431583781
4 0.507371544351918 0.507413527612153
5 0.507371616545424 0.507379412950468
6 0.507371616478486 0.507373067887602
7 0.507371616478486 0.507371886819237
8 0.507371616478486 0.507371666879226
9 0.507371616478486 0.507371625895939
10 0.507371616478486 0.507371618256548

Table 2: Approximations for Example 7.3

Example 7.3. With the matrices

A1 =
1

26

(
3 1
2 1

)
, A2 =

1

26

(
5 3
5 6

)
and A3 =

1

26

(
4 5
2 9

)
we can consider the approximations to the dimension using determinants, and compare
it with the matrix approximation method.

In particular, we see that for n = 6 the determinant method gives a solution

δ = 0.507371616478486 · · ·

which is accurate to 15 decimal places. However, even when n = 10 the matrix method
is only accurate to 8 decimal places.

To construct examples satisfying Hypotheses 1.7, part (1) is easy to check. For part
(3), we can first consider inverse matrices

A−1i =

(
ci −ai
−di bi

)
17
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with ai, bi, ci, di > 0, for i = 1, · · · , k, since then we have that Ai(Q2) ⊂ Q2. If we also
assume that det(A−1i ) > 0 , then in order to have these images disjoint it suffices to
arrange that ai+1

bi+1
> ci

di
. Part (2) can be confirmed by explicit computation. Part (4) can

be satisfied for any choice of matrices.

Remark 7.4. A nonlinear extension of the work of Hueter and Lalley was stated by Luzia
[5]. Let f1, · · · , fk : R2 → R2 be C2 diffeomorphisms such that:

1. supx∈R2 ‖Dxfi‖ < 1 for i = 1, · · · , k;

2. there is a convex bounded open set U such that f1(U), . . . , fk(U) are pairwise
disjoint subsets of U ;

3. Dxfi(P ) ⊂ int(P ) for every x ∈ U , where P is the union of the closed first and
third quadrants; and

4. ‖Dxfiv‖3/| det(Dxfi)| < 1 for every x ∈ U and v ∈ P with ‖v‖ = 1;

We can consider the function Φ : {1, . . . , k}N → R defined by Φ(i) = log ‖Dπ(i)fi1|V ‖
where i = (i1, i2, i3, · · · ) and

π(i) = lim
n→+∞

(fi2 ◦ · · · ◦ fin)(U)

and V = V (i) is a line given by

V = lim
n→+∞

Dfi1◦···◦finπ(i)(fi1 ◦ · · · ◦ fin)P

Then we have dimS J = dimH J = s, where s is the unique root of the equation P (sΦ) =
0, where P is the pressure function. A variant of the method of this note should also
apply in this case when the maps are real analytic.
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