FAST DYNAMO ON THE REAL PLANE
0. KOZLOVSKI & P. VYTNOVA

ABSTRACT. In this paper we show that the Baker map of a square, extended to the
real plane by a non-expanding map satisfying mild extra conditions does induce a
fast dynamo action on the vector fields on the plane in the sense that there exist a £4
vector field whose norm grows exponentially under the induced action. This is the

second step towards a solution of the kinematic fast dynamo problem.

1. INTRODUCTION

The present work contains the third chapter of my PhD Thesis, where the fast
dynamo theorem is proved for piecewise diffeomorphisms of the real plane R2.
Theorem 2. There exists a volume preserving piecewise diffeomorphism F: R? — R?

such that for some vector field By in R?

| n
ll_r}(l)nh_}rgo - In [[(exp(eA)F.)" Bol|z, > 0.
The map F' may be realised as a Poincaré map of an incompressible fluid flow filling a

compact domain in R* (an immersed 3-dimensional manifold with a boundary).

2. PREFACE

The classical kinematic fast dynamo problem dates back to 1970s and concerns the
evolution of a magnetic field in a conducting fluid flow in the presence of small diffusion.

The kinematic dynamo equations read [1], [2]

0B
EZ(B'V)U—(U'V)B—FéAB Q)

V.=V -B=0,

where v is the known velocity field of the conducting fluid filling a certain compact
domain M, tangent to the boundary OM; B is the magnetic field, and ¢ is a parameter
corresponding to the speed of diffusion through the boundary OM. The case of slow
diffusion corresponds to an almost perfectly conducting fluid.

As usual, V is the divergence and A = V? stands for the Laplacian operator.
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Problem 1 ([5],[!]). Whether or not there exist a divergence-free velocity field v
with a compact support suppv = M such that the energy E(t) = ||B(t)||%1(M) of the
magnetic field B(t) grows exponentially with time for some initial condition B(0) = By

with supp By = M, and for arbitrary small diffusivity €7
The exponential growth of the magnetic energy is equivalent to

1
lim lim —In [ |B(z,t,¢)|dz >0 (2)
Rd

e—0t—00

This is a Cauchy problem for a Navier-Stokes type equation. The main interest is
related to stationary velocity fields v in 2— and 3-dimensional domains M.

A scheme (a drawing) of a possible 3-dimensional flow has been suggested by my
supervisor, Dr. O. Kozlovski. The goal of my Thesis work was to complete the details
and to find an analytic argument that will verify the construction.

The provisional flow resembled a hyperbolic flow in places. This suggests the fol-
lowing approach: to choose a Poincaré section such that the Poincaré map possess a
hyperbolic set and is easy to analyse, and to prove an analogue of the inequality (2) for
the Poincaré map, replacing the flow action by the diffeomorphism action composed
with the exponent of the Laplacian. In other words, let g be the Poincaré map, and
let consider the operator

B — exp(eA)g.B.

Then a discrete analogue of the inequality (2) is [!]

1
lim lim . ln/ | (exp(eA)g.) Bo(z)|dz > 0 (3)
Rd

e—0t—o0

The hyperbolic two-dimensional Poincaré map can be reduced even further by con-
sidering induced transformation on a suitably chosen unstable manifold; which would
be a one-dimensional non-invertible piecewise smooth map with a hyperbolic set. The
general theory for these maps is very well developed.

Following this course, in the second chapter of the Thesis, we study one-dimensional
case, develop an approach, and establish the following fast dynamo theorem in dimen-
sion one.

Theorem 5. Let w. be the Gaussian kernel on R with variance €. There exist a
piecewise diffeomorphism g: R — R and a function v: R — R such that'
lim lim llnH(w6 * g.)" || >0,

e=>0n—oco N

1Tt is generally known [0] that exp(eA)v = w, * v.

— 2
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where * stands for convolution and g, is a transfer operator induced by g according to

(g0)(@): = Y sendg(y)e(y)

y€g—1(x)

The third chapter, presented here, is independent of the second chapter, apart from
one construction, one Theorem, and a Lemma, that we present here for coherence.
Small random perturbations. We construct a random dynamical system using skew-
products. Let X be a real manifold and let f: X — X be a transformation. We

consider its extension

) n ry def
f: XxR"—= X f(@,8) = f(z) +£(1). (4)
Let ¥ C £ (R™) be a shift-invariant subset of two-sided bounded sequences of vectors

in R”. We introduce a skew product over the Bernoulli shift

-~

X fiExX 3 NxX (0 x )& 2) = (@), [(zE1).  (5)
The induced transformation on fibers we denote by

fer X = X, fe(2) € F(z,€(1)). (6)

Its iterations are given by
JEG) S FUE (=), 6(h)). (7)

Definition 1. We call the map fe a random perturbation of the map f associated to

the sequence £ €.

Canonical partitions. If the map f is Markov, its perturbation, depending on the se-
quence £ may or may not be Markov. To study the latter case, we introduce the
notion of a canonical partition associated to a sequence &, a substitute for the Markov
partition.

We are particularly interested in the following class of maps. Let so < 2 < s, be
two real numbers such that log 3+ = > < 1. Let m > 1 be a large integer and let
0 = 27™* be a small real number with % < a < 1. Consider a map f: R — R given
by

sit+s—1, if —l<z<Z-—1;
f(x) =< sox + 1 — 59, if%—1<x<1; (8)

-, otherwise.

— 3 —
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and define its extension f: R? — R by f(x,y) = f(x) + y. We associate a small
perturbation fe to any sequence § € £ (R) and ||| < 9.

It may seem at first sight that the examples chosen are too simple since they are
linear. However, they appear to be sufficiently complicated to analyse and the same
approach will work for non-trivial perturbations, since most estimates are based on
distortion estimates and the distortion is easy to control for perturbations of hyperbolic

maps.

Definition 2. Let I C [~1,1] be an interval of continuity of the map ff. We call a
branch f{'(I) of the map f{ main, if for any 0 < k < n we have that ff([) C [-1,1].

Theorem 1. For any sequence § € (x(R) with ||€||e < & there exist a partition
Q=11;ez 2 of R such that
(1) The interval [—1,1] contains at least 2™' and at most 2™ intervals of the
partition, and {+1} are the end points of some intervals of the partition.

(2) The length of intervals §); is bounded away from zero and from infinity

11
S <l <2(+ o).
msy st sy

(3) Anyinterval I C R of the length |I| = & contains not more than N5 = 27+1§18 2
intervals of the partition.

(4) Any interval of the partition ; C R\ [=1 —md;14+md] has length |Q;| = 27™.

(5) Any main branch belongs to a single element of Q and any element of Q contains

not more than 2 main branches.

We call the partition 2 a canonical partition for the map f{" associated to the pertur-
bation &.

Lemma 2.1. We call a main branch fE(I) of the map f¢ long, if ‘fé([)ﬂ[—l, 1| > %
The map fgk Jor any 1 < k <malog, 2 has ezactly 2% long branches.

3. NOTATION

The following notations will be used throughout.

We denote the unit square in the plane R? by 0 % [—1,1]2.

The Jacobian of a function F' we denote by dF, and by |dF'| we denote its deter-
minant. For a function of two variables, by 0, we denote the derivative in the first
variable and by J, we denote its derivative in the second variable. Similarly, for any

point z € R? we denote by z, and z, its first and second coordinates.

— 4 —
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The indicator function of a set X we denote by xx. In particular, yp is the indicator
function of the square [—1,1]%. Given a subset X C R? and a partition Q = {Q;;} j)ez2
of the plane R? we abuse notations and write (4, 5) € X for ;; C X. We denote by 7,

and 7, the natural orthogonal projections

7 R2 >R o (Zay 2y) = 2o, (9)

T RE =R (2, 2) = 2, (10)

The length of a vector v we denote by |v| and the n-dimensional Lebesgue measure of
a subset A € R™ we denote by |A|. For any sequence of vectors £ € £, (R?) we denote
by & € ((R) and &, € (- (R) two sequences of z- and y-coordinates of elements of £,
respectively. We denote by Y5 the subset of sequences with ||¢]|s < 9.

The two dimensional Gaussian kernel ws is specified by

def 1 _ 22 4y?

ws(a,y) & e (1)

The Weierstrass transform is a convolution operator with the Gaussian kernel. For

any absolutely integrable function f it is given by
Wif(z) < ws = f(z) = / ws(z — ) f(H)dt. (12)
R

For a vector field v = (v,, v,) with absolutely Lebesgue-integrable components v, and v,
the Weierstrass transform is defined by Wsv = (ws * vy, ws * vy).

The space of essentially bounded vector field in R? with absolutely integrable coor-
dinates we denote by X.

The supremum norm of a matrix A is supremum of absolute values of its elements, we
denote it by || Al|o o sup;; | Ayj|. The matrices we are dealing with will be bi-infinite.

The following letters are reserved for real constants: M, M, p1, f2, o, Y1234 > 0.

Suitable intervals of values will be specified later.

4. THE DYNAMICAL SYSTEM

Here we introduce the dynamical system we will be studying. It consists of the phase
space X; the norm, which is the maximum of weighted £; and L., norms; and the trans-
formation of the phase space, which is an action, induced by a piecewise diffeomorphism

of R2. To define the piecewise diffeomorphism we use a tower construction.

4.1. Action on vector fields.
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A tower of M floors. Let M > 1 be a large natural number; and let 0 < p; < 0.1,
0 < p2 < 1 be two small real numbers.
Let Fy be the Baker’s map on the unit square

Fo(n ) dof (2o —1);22,+ 1), if 2z, <0;
Ty ~y) T
(3(z0 +1);22,— 1), if 2z, > 0.

Consider M — 1 maps Fi, ..., Fy_1: R?\ O — R?\ O with the following properties

(1) each Fj is a smooth map;

(2) each F}, is area-preserving: |dFy| = 1;

(3) the Euclidean norm of the differential is uniformly bounded ||dFy| < 1+ p;
(4) the Hessian is small [|[d?2F|| < po.

(5) all F} are polynomials, most are linear, some are not; the product of degrees
of all of them is bounded by a small number d, which is independent of M. In
particular, dnr < 2s0. This condition holds true, for example if Fj, = Fj, for all
1 <k<j<M-—1. We use this a strict assumption only to claim that for any
point z € R* #{r;'(Fio...0Fy(2))} <dand #{r, ' (Fio...oFy(2))} <d

This bound is required in Proposition 6.2 only.

We build a tower X C R? defined by

X % <R2 X {0})U<(R2\D) x {1,2,...,M—1}>

with coordinates (z,n), where z = (2,,2,) € R* and n € {0,1,..., M — 1}. We will
abuse notations and identify [0 x {0} C X with OJ.

The choice of piecewise diffeomorphism. We are ready to introduce a map F': X — X
defined by

o Fo(2),0), ifn=0and z € [J;
(Frt1(2),(n+ 1)mod (M — 1)), otherwise.
Consider an extension F: X x R2 — X
(Fo(2) + w,0), if n=0and z € J;
ﬁ((z,n),w) &of (Fao1(2) +w,0),  ifn=M—1; (14)

(Fag1(2), (n+1)), otherwise.

Given a sequence § € X C (o(R?), we define a small random perturbation F¢ of the

map F, as described in Subsection 2. Then the zero floor R? x {0} is invariant with

— 06 —
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respect to F¢' and we may consider the M’th iteration as a map FM: R* — R?. We
denote by Fy: X — X the map corresponding to the zero sequence & = 0.

Remark 1. The inverse map F;' o is given by

(Fy (2 = €M),0), if z€ O+ &% and n = 0;
Ff_kl(zan): (Fy (=€), M—1), ifz¢gO+& andn=0;1 (15)
(FyH(2),n = 1), otherwise.

Also observe that the inverse Baker’s map is given by

(220 + 1 =288 3(2 — 1) — 3€F),  if 2, <&, and z € (O + &F);
(220 —1—2¢k2(2, +1) — 3€F),  if 2z, > &k, and z € (O+ ).
(16)

Let mg>1be a large natural number. We set m = 4Mmg and choose a small real
number ¢ = 27" with 12 < a < 1. The subset of sequences in £ (R?) with [|£]|o < 6
we denote by . leen a sequence £ € Y5 we may define a map

def

P:: R* —» R? Pe(z) = F"(2,0). (17)

The map P: defines induced action on the space X according to
(Pew)(2) < dP(P 2)u(Be 2). (18)

The number of iterations m remains fixed throught the manuscript. We assume it

to be sufficiently large so that all inequalities hold true.

4.2. The choice of the norm in X. In this Subsection we introduce a norm in the
space of vector fields in R?. We also give a general definition of a cone in X.

Given a partition Q of R?, we define an associated weighted (£2, £;)-norm of a vector

def
lolla.e, Z /
|7Ty

Observe that ||v||q.z, is finite if the ordlnary Ly-norm is finite and the size of elements

field v on the plane by

of partition is bounded away from zero:

—m 2—m
lolloe, = } P / < o= — 2 olle.
' | y 1nf |7Ty( )| R2 inf |7Ty(Qij)| '

The supremum norm of a vector field v we denote by ||v]|s © sup |v|. We denote by X

the space of vector fields on the real plane with finite £; and supremum norms.

— 7 —
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Definition 3 (Norm). We introduce a new norm in X, associated to the partition €2,
combining the two:

def —m
lelle & max(fjello,c,, 2 sup |v]). (19)

The subspace of piecewise constant vector fields associated to the partition 2 we
denote Xq. We reserve Greek letters for piecewise constant vector fields. We shall call
the basis

def 1 1 w det 1 0 }
X, = T (0)Xau Xa,, = —7a—(1)Xay, .
Vb = (e, = g (e,
the canonical basis of the subspace Xq.
Whenever we are dealing with several partitions Q!, Q2, and O3, say, we omit  in

the norm index and write || - ||1, || - ||2, and || - ||3, respectively.

: : _ 9~ S iU .
We have for the norm of a piecewise constant vector field v = ) % X, T Vi Xa,°
ij
—m/4

- 2 -
Vg > max(Z’m VY|, ——————sup v ),
v S ey P
in particular,
IWlo=1 = Y |uyl<2™ and suplyyl <27 (20)

Invariant cones. By analogy with one-dimensional part, cones of a special form in the
spaces X and Xq play an important role. We reserve notation for a cone of radius r
with main axis yg in the subspace of piecewise constant vector fields associated to the
partitions Q! and Q2
Cone (r,0") Uy = d(Oxo+ ¢ | ¢ € Xar, gl <dr. Sl =0} (21)
|
We extend the cone Cone (r,2') to include general functions from the main space:

Cone (r,e,2") @ {f =n+v|neCone (nQ), ol <cllnlli}.  (22)

4.3. The canonical partition. In this subsection we introduce the notion of canonical
partition of R? associated to a sequence of perturbations £ € £, (R?) as a direct product

of a pair of canonical partitions of R and list the main properties.

Definition 4. The k’th escaping set for k € Z is defined by

B, % {zeDcX | HXD<Fg(z)>:o}. (23)

Obviously, Ey C Ejyq1,if k> 0; and E, 1 C Fy if £ <.

— 8 —
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Lemma 4.1. Let £ € 35 C (oo(R?) be a sequence of small vectors in the plane. Define
a sequence (&) of the length m by ¢! = —2&*™ ¢* = —2672m~1 ¢m = —2¢mtl,
Let p., and pe, be two random perturbations of the doubling map p defined by (8) with

s1 = s9 = 2. Then the following diagrams are commutative.

D\E,mERQ D\Emi>R2
Pe, Pg,
R — R R — R

Proof. Straightforward from definition. The Baker’s map preserves the horizontal and
vertical foliations, so the second diagram is trivial. For the first diagram, recall that
by definition (Subsection 4.1) Pt = (F")™' = Fg'Fg' ... Fgi. Using (16) and (15),

we conclude that the corresponding sequence ¢ for the doubling map associated to Pg1

is as defined in supposition of the Lemma. |
We associate a chain T!, Y2, ... of partitions of R? to a sequence & € Y.
The first element T! is defined as follows. Let T¢ = {Tf = [2%”, Z;—ml] }, 1 € Z, be a

partition of R into equal intervals and let T* = {7} } ez be the canonical partition of

the map e, Then
Tl = {Tij}a Tij = Tf X T;L
To define partition T*, consider a sequence

§1 _ _2$2km7 §2 _ _2€2km—17 o 7§m _ _25(2k—1)m'

Let T° be the canonical partition for the perturbation p[* of the doubling map, and let
T* be the canonical partition of the perturbation p;”?mkgu of the doubling map. Then
Tk is given by

TF ={Ty}, Yoy =" xTY
Definition 5. We say that a partition T of the plane R? is a partition of the class

G(m,§), if there exists a sequence £ € X5 such that T = T* for some partition T* from

the chain of partitions associated to &.

Definition 6. A rectangle (zCC — %, Ze+ %‘) X (zy — %’, zy—i—%‘) with centre at z and sides

l, and [, we denote by Rec,(l,,1,). Whenever location of the centre of the rectangle is

of no importance, we omit z and write Rec(l,,l,).

Lemma 4.2. Any partition Y of the class G(m, ) has the following properties

— 09 —
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(1) The unit square O contains at most 4™ and at least 4™~ elements of the par-
tition.
2) For any element Y;; of the partition Y we have two rectangles
( Y J g
2—m 2—m

R€C(W, 7) Q Tij Q RGC(21_m, 21—m)'

T—a)+1

(3) Any square with a side § may be covered by at most N5 = 4™ elements

of the partition.

Proof. Follows from the properties of the canonical partition for perturbation £ of the

doubling map. |

5. FAST DYNAMO THEOREM IN DIMENSION TWO

In this we show that the main result, the fast dynamo theorem for the Poincaré map
of the provisional fluid flow, follows from Noise Lemma 5.1, that we prove immediately,
and Theorem 4, which is proved in the Section 7 after the preparatory Section 6.
Consider a map T': R? — R? given by T'(z) o FM(z,0), where the map F is defined

by (13). Our goal is to show that for the vector field v = (?)W%XD

1
lim lim HlnH(W(gT*)"UH > 0. (24)

6—0n—oo

The argument is based on two ideas. The first idea is the Noise Lemma, which suggests
to replace the operator (W;F,)*™ with operator W FtimW% =W PE*W% for large,
suitably chosen m > 1 and a sequence t € £, (R?). The second idea is to construct
explicitly an invariant cone for the operator W s PEW i independent of the choice
of t.

The proof of the existence of an invariant cone requires a new approach to operators
P2, which is developed in Section 6. The existence of an invariant cone is established
in Section 7 in the following
Theorem 4. Let Q be a partition of R? of the class G(m,d); and let ||€]|o < & be a

sequence of real numbers. There exists r1(m) < r5(m) and €;(m) < e2(m) such that

W%PE*W%: Cone (r1,e1,Q) — Cone (rg, 9,Q) C Cone (r1,1,) .

HW%PE*W% |Cone(r1,£1,Q)H Z 2m—5

(See p. 8 for definition of a cone in the space of vector fields).

In this Section we denote the n-dimensional Lebesgue measure on R™ by \,,.
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Lemma 5.1 (Noise Lemma). In the notations introduced above, for any vector field v

on the tower X and for any n > 0 we have

(WsF)"v(z, k) = / we(t1)ws(ta) .. .w(;(tn_l)(W(;FO—”t*v)(z, k)dX,_1(t), (25)

R2(n—1)
where 0t = (0,t1,ta, ..., t,_1) € R?™.

Proof. Observe that for any t € R?
Foo(z, k) = dF(F N (2,k) - o(F7 Nz, k) = dF(F e — t, k) -v(F Yz — t,k)).
By straightforward calculation,

(WoF)"0(2, k) = (WaF)" Wy Fuo(2, k) = (WyF.)"~! / ws () (Fov) (= — £, k) () =

RQ

— (W,F)"! / ws () (Fyowt) (2, k)M () = . . =

R2

— / ws(t1) - w3 (b ) (FuFon o Fr o) (2, k)1 (F) =

B /Rz(n-l) ws(tr) - - - ws(tnt) (W g v) (2, k) dAna (B).

|
To any sequence of vectors t € Lo (R?) we associate a sequence t € (o (R?) defined
by
~ tk, if j =M k;

tj L= (26)
0, otherwise.

Then for any t € R* we have Ty(z) = T'(2) +t = FM(2,0) +t = F}(2,0). In particular
for m = moM we have T;"(2) = FI*(,0); and for any vector field v on R* we have
Tou(z) = (F2w) (2, 0)

The following Lemma is a corollary of the previous one.

Lemma 5.2. In the notations introduced above, for any vector field v on the plane R?

and for any n > 1

W TS T o(z) = /R s )ws () g (b)) (Vg B0 () 0

(27)

K
m

We choose three constants o = %, v3 =1—a+0.001, v, = % — v — 0.001, and
four cone parameters r; = %, ry = 9-miTt = 2-%61, g = 9-miFt = 2= and
€9 = 9-2m3* — 9=%§ such that Theorem 4 holds true (see the proof in the end of

Section 7 for details).
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Remark 2. One can check by straighforward calculation that for any real number ¢
and for any function f: R? — R? we have W;W;f = 2W ssf-

Lemma 5.3. Let m = % > 1 be a large number and let ) be a partition of the
class G(m,d). Then for any f € Cone (ri(m),e1(m), )

/ i(tl) g(tgn 1)(W s T;S*nW s U)d>\4n z(ﬂ S Cone (7’2,62, Q) ; (28)
[ 66]4n 2 m m
where vy = rh(m) = (1 + 3¢ M)ry(m) and &, = eh(m) = (1 + 3e M )eq(m).

Proof. Observe that

/[_676]411 2

ws (tr) - ws (ton1) (W s TEW 5 0)dAgno(t) =

Ws
m

3\%

- /[ 8,0]4n—2 %(tl) %(t2"—1)(W%Ft%mwﬁv)d)qn_z(f) —

:/ ws () . ws (o 1) (W s P2W 5 v)din o(f). (29)
[—4,5]4n—2

By Theorem 4 we know that W s Pt*W 5 V= d(9)xo + ¥ + g for any t € [—4, 5>,
where ¢, € Xq, ||l < dra and ”gtHQ S dey. Observe that € is independent on .

Therefore, for m large enough
[ et (e Oral@) (0 = xa() ([ v
[_575]2(271—1) m m
> xo(2)(1— e > (1-2(2n — e ™)xa(2). (30)
Since ¢, € Xq for any ||t]|o < 0,
/ ws (t1) ... ws (ton—1)VAan—2(t) € Xq.
[ 575}471 2 m m

and we calculate Q2-norm.

m

Z\m Qi /[aaw . ws (ty) ... ws (ton- 1)</Qij |¢t(z)|dz)d)\4n_2(t)§

< sup ||¢]lo < dry.
¢

H/554n 2 we %(t% 1)VrdAgn—o(t )HQ <

Similarly,
H/ ws (t1) ... ws (ton—1)grdAan—o(t )H < dey
[ 55]4n 2 m Q

m
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Observe that

/UU/ Wi tl g(tgn 1)lpt( )dA4n_2(t)dZ:
§,0]4n—2 m

m

m

_ / W (1) s (1) () / (U (2)dz = 0
[6,5]4n—2 O

Summing up, for any partition €2 of the class G(m,d) and for any vector field v on the
plane R? from the cone Cone (ri(m),e1(m), )

Ws
m

3\%

/ wa () ws (b 1)(Ws T2'W 5 v)d i (t) € Cone (r(m), £y(m), Q).
[ 65]471 2
[ |

Lemma 5.4. Let m = Mn > 1 be a large number. Let ) be a partition of the

class G(m). Then in the notations introduced above,

(W s T)(Ws T.)*" W s : Come (r(m), &1(m), 2) — Cone (ra(m), £a(m), )
H W§ T >(W T)2n 1W25 |Cone (ri(m

m ) 51

H >22m 2

Mn

=5 and definition of T', for any vector

Proof. By Lemma 5.2, taking into account m =

field v € Cone (11, €1, 2) we may write

(W s T)Ws T 1W s v = / W (0) s (b )W s PEW s 0)dAguoa(t) =

m % 2m Tk
R2(2n—1)

) </ / ) ws () (W s PEW s v)dAina(t). (31)
R4n— 2)\[ 55]4n 2 [ 55]4n 2) Sem

By Lemma 5.3 we know that

t
/[_5,5]471 2 ( 1)

We estimate the first term

3

(tan-1)(W s P2W 5 v)dsyo(t) € Come (v}, ), ).

Ws
m

3\%

n—1

ws (£)(W s P2W s v)d\y,_ tH <
H/]R‘ln 2\[—4,8]4n 2H m(‘])( tk ) 4 2() 0

'L]

< - s ( / WLPEWLUZ’dZd)\n, t) <
%: |7Tz(Qz])| /szn 2\[—§,8]4n— 21;[ m am * 3, ( ) 4 2()

< Ws P2W 5)dAan—o(t).
o Sl:pH % b anUHQ/IR;‘ln 2)\[ (55471 2 ]J % ! 2< )
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We have an upper bound for the integral:

/R4 ~2\[-5,0]4 2H £(t)dAan—2(t) < (2n = D)~

We substitute this bound to the estimate for the norm above and use Lemma 7.3:

J(W s PEW 5 v)dAs, - H <
H/Rzln 2\[— 554n2];[ % 5 61]) 4 2() —

< (@2n— e Sup [ W2 P2V s vl < (2n — 1)e” ( 29~2m )H 20 <

2—m 2 2—m
<4(2n — D)mte ™ — || P2 <4(2n — )mte ™ ———22m <
—_ ( n )m € 1nf |7T;C(Qz])| || t*UH»cl — ( n )m € lnf |7Tq;(Q'L])| H/U“LI —_

2 Sup | (25)]

< 4(2n — 1)m* _—
<4@2n = Dm'e inf 7, ()]

227 |lv[l, < 4(2n — 1)mP22"e ™™ < o(m)|v]|q.
(32)
|

The following fast dynamo theorem is the main result of the present work.
Theorem 2. There exists a vector field v on R? such that

lim lim —logH (WsT, UH >0

d—0n—oo N,

Proof. One can check by straightforward calculation that for any number € and any
vector field v we have W.W_v = 4W 5 v. Therefore we may choose v = W X0 and

Theorem follows from Lemma 5.4. [ |

6. MATRIX, APPROXIMATING THE OPERATOR Pg*.

In this Section we assume that a sequence of vectors n € £, (R?) is fixed and we study
the associated operator P772* on vector fields on R?, defined by (18), where the map P,
is given by (17). Our goal is to show that for any sequence 7 there exist a pair of
subspaces Xq1, Xg2 C X and a linear operator A(n): Xq1 — Xq, with a simple matrix,
approximating Pnz* |, well enough. Given the operator A(n), we construct a pair of
cones C; C X and Oy C Xqe such that A(C)) C Cy; Cy < Oy and [|A]| |¢,> 2™~
We begin with the choice of the operator A.

Let T be a chain of partitions associated to the sequence n € X5= {£ € loo(R?) | [|€]|oc < 0}
Let Q' = T* and Q2 = T**! be two consecutive partitions from the chain Y. We in-

troduce two subspaces Xq1 and Xq2 of piecewise-constant vector fields in X, associated
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to the partitions Q' and Q?, respectively. The subspace Xq1 has the (canonical) basis
def 1 def 1

Xal, |72 (€2

def ]
and the (canonical) basis of the subspace X is
def 1 def 1
Xoz = (0)xe2, X2 = (9)x02;
% Jm ()]0 W ()

both bases have Z? elements.
Let € & 52m(=Dy (see definition of the chain Y in Subsection 4.3, p. 8). We would
like to approximate the operator Pg* : X— X by a linear operator A: Xq1 — X2 chosen

so that the averages along the elements of partition Q2 are equal for any field v € Xq1:

/ Al/:/ Piuv. (33)
4 o

We write down the action of the operator A on Xq: in matrix form

AV iy +vx ) = 70 (S5, + SUL, )+ (U S + VUL R ). (34
k

where the four matrices SS, SU, US, and UU are specified as follows, so that (33)
holds true (see Lemma 6.14 on p. 35 for details).

1

S 4t / 0,(P2).(2)d2; (35)
! ‘7T:e<911])‘ : |7Ty QZ; | P2(Q3)N0, ¢

Sk [ X YOE (36)
! |7Tz( U |7Ty kl ) P2(02)n0 ¢

UsH = / 0, (P2),(2)dz; (37)

\7%( @] |7Ty kl )| 2(Q2)nal;

vuy /. 2)(:)d. 39

! |7Tz( |7Ty kl ’ P; 22 l)ﬂQ €

We observe that
S5t (xar) = oz )i SU: (xay) = (Xaz s USt (o) = (Xoz )s UU: (xar) = (Xaz )-

The matrix UU is the most important as it is responsible for the largest eigenvalue

of the operator A. We will study it in a great detail in the next Subsection.

Lemma 6.1. The map sz, corresponding to the zero sequence & = 0, gives the following
matriz elements for any quartet (i,j5,k,01) € O x O : UUi’;-l = 1; SSfjl = 274m.
SUl =0; USH=0.
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Proof. Each partition of the chain, associated to the zero sequence, is a partition of
the unit square [J into 222 equal squares with side length 2. Therefore we have

that 9}, = [ 53] x [, 5] and O = [, 551] x [ 50

The preimage of an element Q%, C O of the partition Q2 under P;? is equal to 2™
disjoint rectangles Rec(2,27%™) in 0. Thus [P, *(Q7,) N ;| = 27*™. The derivative of
sz on [ is given by the matrix

dP&(z)

272m ()
for all z € OJ.
0 22m

Definition 7. The matrices, corresponding to the map PQQ, we denote by S.S, SU, US,
and UU, respectively.

Remark 3. Immediately by definition we see that for any quartet (i, 7, k,[) such that
(4,7) € O and (k,1) € R*\ Oyppms or (i,5) € R?\ Oy 1ms and (k, 1) € O we have

Tkl oprkl _ prakl _ Qokl _
In addition, given ||dFy|| < p1, from definition of Fj p. 6, we have
max ([|UU]|, [ SUllse, 1USloo, 1SS 1s0) < (1 + p)*™ (40)

Remark 4. The condition on the Euclidean norm ||dF|| < p; implies that there exists

a constant M, such that for any two partitions Q' and Q? of the class G(m, d),

sup #{ (k, 1) € R*\ Oy s | P 2(QF) N, # @} < My - (4 1)*™. (41)

(i.9) ’
Therefore for any pair (k,1) C R?\ Oy4,,s there exist not more than M - (1 + pp)*™
pairs (i,7) C R? \ O such that

SSE - SU-USH - UUY # 0.

Remark 5. Recall the notations introduced in the beginning of Section 6. There exists
a constant My, independent of m, such that for R := Mymd(1 + u1)*™ + 1 and for any
quartet (4, j, k, 1) where (i,7) € O and (k,1) € R*\Ug or (i,j) € R*\Ug and (k,1) € O

SSfjl =0, SUZ}I =0, USfjl =0, UUi’;l =0.
Definition 8. The domains of continuity of the map P£2 we call (P, §)-domains.
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We split (P, €)-domains in Pé_2(Q%l) NQ} € Oin “good” and “bad” parts:

(A9 E{A € P(Qf) N | Als a (P.&)-domain, and ¥ < 2m: F(A) € O}

(42)
(AB)H def{A P () NQ | As a (P,¢)-domain, and 3n < 2m: F{'(A) ¢ O}.
(43)
Then we may write for (i,7,k,1) € O x OJ,
UUY = (UUYE + (UUP)E, (44)
where UU%, UUB € Mat(2™,2™) are given by
e 1
(UG / 8,(P2),(2)dz; (45)
’ ‘7%(9@13” |y ( QZl Agc
def 1
wuryy J o (10
e X, L

We define three more pairs of matrices SUP + SUY = SU, USB + USY = US,
SSP 4+ S8% =SS in a similar way.

6.1. Properties of the matrix UU. The submatrix UU: (xg}]} — <X8?j> corre-
sponds to a mapping between two subspaces of vector fields parallel to the expanding
direction of the Baker’s map and associated to two different partitions. It is also re-
sponsible for the norm of the operator A. Our goal is to establish the following two
facts about the matrix UU.

Proposition 6.1. The following inequalities hold true for the elements of the matrix

UUS in the canonical bases.
(1) |UU%]|o = sup [UUY| < 4;
(2) #{(UUS)H #£1} < 21275,

Proposition 6.2. There exist a constant y; < 0.01 such that for M and m sufficiently
large and for py sufficiently small

max([|SS oo, [[USloos [[SUloo, [UU]|o0) < 27,

(Recall Condition 3 on F,: ||dFy|| < 1+ pq in the Euclidean operator norm,).

By definition, the matrix UUY is related to subsets of the survivor set [1\ FEs,,. To
study the set O\ Ey,,, we introduce a simplified system, since the map outside of the

unit square is of no importance.
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Consider a circle S and a cylinder ¢ & R x §1 & {(z,y),z € Ry € [-1;1)}.
Define a map h: C — C by

(2o —1),22,+1), if —1<2,<0,-1<2,<1;
h(z) o (Aze+1),22y— 1), f0<2 <1, -1<2 <1 (47)
2, if |z, > 1.

Let h: C x R?2 — C be an extension given by

(

h(z, w) o (

(2o — 1) + wy, (22, + wy)mod2 — 1), if —1<2, <0, -1< 2, <1

N= D=

(22 + 1) + wy, (22 + wy)mod2 — 1), f0< 2, <1, -1<z, <1
(24 + Wy, (2y + wy)mod 2 — 1), if |z, > 1.
(48)
Using the extension ﬁ, we define a small perturbation he, as described in Subsection 2.
We denote the central part of the cylinder by ® o {z € C: |z,| < 1}. By rectangle
in ® we understand a subset Rec(l,,l,) = I, X I,,, where I, C [-1;1) and I, C S*\ {1}

are two intervals with || = [, and |[,| =,,.

Lemma 6.2. Given a sequence & € g, with 6 =27, for any 1 < k < ma — 3 there

exist k rectangles rlf’g, cen T‘Z’§ C ©® such that
k
. i k,
{Z€®|31§j§klhé(z)¢®}cUT’jE.
j=1

Moreover, T?’S C Rec(276,2179) for all 1 < j < k and for any a € R? with |a| < § the

map h; ' is continuous on the union of the rectangles U rf’g.

7=1
Proof. By induction in k. Indeed, the conditions z € ® and he¢(z) € © are equivalent
to |m,(he(2))| > 1 and z € 0. The latter means

caer ) (FL—=142) x (=1;0) C (=1 —1+425) x (=1;0), if& <0,
zerf < ‘ (49)
(1 —2¢51) x (0;1) € (1 —26;1) x (0;1), if & > 0.

Thus the statement holds true for £ = 1. Let us add to the induction assumption the

following inclusion which is trivial for k = 1:

k
b (1-256:1) x (1 1) U (=15 —1 +2%6) x (~1;1). (50)
j=1
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We may write

{zeo|F<k+1:hl(z)¢0}C
c{zeo|h(z)¢olu{zem|3l<j<k+1:hl(z)¢0}C

k
CrU{w=ha(z) COIIN< )< kil (w) g0} Cr§URG <U 9.

7=1
Therefore we may set r % = r$ and ?"fj:ll £ hei ( YN DO for j=1,..., k. Since
hy' is continuous on every (r; ko(€) - &Hn0O, the sets rfil £ are rectangles. Using

supposition (50) we conclude

hgﬂ(o 7"?’5> c h;((u — 286, 1) U (=1, —1 + 289)) x (—1, 1)) c

7j=1
Rl
and therefore h, " is continuous on J 7; L8 _ g for any |a| < 6.
7j=1

Finally, one can check by straightforward calculation that for all 1 < j < k we have

ht(r I-”(E)) C Rec(27115,219).

51
|
Corollary 1. For any sequence & € s there are 37’” rectangles rf,ré, e ,rgm/4 [@NO)
such that
3Im . 3m/4
{z€®|31§j§7:h2(z)€®}c rf;
j=1
3m/4
and the union | J rf. C O may be covered by at most m>22™§ rectangles Rec(27°m/4,273m/4).
j=1
Proof. By Lemma 6.2, there exists 37 1 rectangles 7’1, e ,rgm 1 CO such that
3m/4
{z€®|31§j§k:h2(z)¢®}C T§;
j=1
moreover, r§ C Rec(276,2'77). Therefore, each 7"5 may be covered by at most
m?((25m/4 X 2]6) X (23m/4 . 21—j) + 2m/4 . 22—j + 23m/4+j+16) S 22mm35
rectangles Rec(m m) Since there are 22 rectangles r$ ¢ thei i
g —, ). ; gles ry,...,rs, , their union
may be covered by not more than 22™m?4 rectangles Rec(27°m/4,273m/4), [ |
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We may identify a rectangle on the cylinder I, x I, C ©® with a rectangle on the
plane I, x I, C O C R?, since we agreed that I, C S*\ {1}.

m/4

Lemma 6.3. Under the hypothesis and in the notations of Lemma 6.2 the set | J /A
j=1

J

22m

may be covered by at most m33 elements of a partition of the class G(m,6).

Proof. By definition, all elements of a partition of the class G(m,d) are rectangles. By
2= 2 7) CQ; C Rec(2'7™,2'7™). Therefore any

rectangle Rec(2%6,217%) may be covered by at most

2”-m 2™

the second part of Lemma 4.2, Rec(

m2(2k+m5 . 21+m—k + 2m+2 X 2—k + 2m+k‘+16) S m222m+25

elements of the partition. Then all 7 rectangles may be covered by at most 22mm3§
elements. |
We lift the map h: C — C to the plane R? and obtain

(%(zx—l),2zy+1), if ze O, —1<2,<0;
H(z) % { (Y +1),22,— 1), ifze0,0<2 <1 (52)
2, if z ¢ 0.

Let H: R? x R2 — R? be an extension given by

(%(zx—l),sz%—l)—l—w, if redand —1< 2, <0;
ﬁ(zaw) = (A(ze+1),22y — 1) +w, ifzeOand0< 2, <1; (53)

Z+w, if z ¢ .

Given a sequence & C X5 C £oo(R?) and extension H, we define a small perturbation

He, as described in Subsection 2.

k )
Remark 6. Observe that z € Ej, if and only if [[ xo(H{(z)) = 0; where Ej, is the
j=1
k’th escaping set defined by (23), p. 8.
Remark 7. Let p be the doubling map defined by (8) with s; = so = 2. Let £ and ¢ be
two sequences defined as in Lemma 4.1. Then for any k£ > 0 the following two diagrams

are commutative.

Hé“ HFk
O\ E, —— R? O\E_, —— R?
R 2, R R 2=y R



O. KOZLOVSKI & P. VYTNOVA

Recall the settings, introduced in the beginning of the Section 6, p. 14. Let T be a
chain of partitions associated to the sequence n € ¥5. Let Q! = T* and Q2 = T*! be

2mk

two consecutive partitions from the chain T, and let £ = o°™*n be a shifted sequence.

Lemma 6.4. The number of elements of the partition Q' inside the square (I possibly
escaping in the first 7 iterations is bounded by PERETY
m 9m
#{Q}j cOl31<k< 7 HAQY) ¢ D} < 9%+,
Proof. By Lemma 6.3

#{Q}jc®|31gkg%.

REQL) ¢ o) < 2w,
which is equivalent to

m
#{ng CO|31< k< 7 m(HEQY) € [-1; 1]} < 22 3,

Recall the doublin map p defined by (8) with s; = so = 2. Let p’gy be a small pertur-
bation as in Lemma 2.1. Then the map pe, p’gy has exactly 2 long branches for all

k < ma. Therefore we get an upper bound
m
#{Q}j COIV1<k< T m(HEQL) € [-1;1] and
< k< Tom (HEQL) ¢ 131 <
Tk () ¢ [F11] < 2,

By supposition on «, we know that 22™m3§ < 25/, (In other words, assume that for
some Qf C [—1;1] we have p§ (Q}) C [~1;1] for all k < ko and pIES(Q]l) ¢ [—1;1]. Then
le is a subset of the domain of a long branch of p’gy for all k& < kg; and the subset of

<o ol c[-11] |31 <k <

the domain of a main branch that may escape at the iteration £ is an interval, i.e. a
connected set, of the measure at most 27§, which contains at most 2§ intervals of

the canonical partition of the perturbation of the doubling map pg) |

Remark 8. In Lemma 6.4 above, an alternative upper bound would be 2% -Cs, where
Cs is the maximum number of intervals of the canonical partition for the doubling map
in the interval of the length d. In our case all intervals have the length |, (€2;;)] < 2™,
therefore 2§ > C5 > 2m~1§.

Lemma 6.5. There exists at least 2°™ — 297/4%25 elements Qf; € O of the partition Q'
such that HE(Q};) € O for all1 < k < m and

Rec (27 m, ()], 27/, (@)1 ) = HZ' (@) € D
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Proof. By Lemma 6.4 we know that there are at most 2°/4+2§ elements of the par-
tition Q' such that H," / 4(9}]-) ¢ 0. We shall show now that there are at most 2°7/4
elements of Q" such that Hf(Q};) C O for all 1 <k <%, and yet

HPH (L) 2 Ree(27/my (1)), 27|y (24)]).

If Hm/4(§21-) is connected, then Hm/4(Ql) = Rec(2_m/4|7rw(ﬂgj)|,2m/4]7ry(§2i1j)\>.
Thus without loss of generality we may assume that H, m/ 4(91 ) is not a connected set.
The latter implies Hf(Q};) N {z, = 0} # & for some 1 < k < m/4. Recall the doublin
map p defined by (8) with s; = s5 = 2. Let pgy be a small perturbation as in Lemma 2.1.
Since by supposition Hf(Q};) € O for all 1 <k < %, we conclude that Q} : = 7,(€};)
belongs to a main branch of the map p?/ 1 We know that the map p’gy has at most
2% main branches, and if {0} € pkl(Ql) then {0} ¢ ka(Ql) for all k1 < ko < % So
there are at most 2™/**! elements Q} such that {0} € pf () for some 1 < k < 7
Thus there are at most 2°™/* elements Q; such that HE(QL) N {y = 0} # & for some

1<k<%and H{(Q}) cOforall 1 <k <2 [ |

Corollary 1. There exists at least 22™ — 29™/4§ elements Qz-lj C O of the partition Q!
such that FE(Qy;)) € O for all 1 <k <% and

Ree(274|m, (Q4)], 2/, (Qh)]) = FZ' (@) € O
We need the following fact about small perturbations of the doubling map p.

Lemma 6.6. For any 5 < k < ma — 2 the perturbation of the doublmg map p?‘ with

[€]loe has at most 2¥7% main branches such that their domains a;

P'mof Let a(m) = (agm); ; +1) be the domain of a main branch of the map p}* such that
e (a™)] < 2 - 275,
We shall show that the interval a§m) is not contained in a domain of a main branch

of the map pk+2.

Assume for a contradiction that for some 7 < k < ma — 2 there exists a main
branch agk“) D a ) of the map pk”. By assumption, agm) and ayﬂ are points of

discontinuity of the map pg*. Since p *2 is continuous on a(-kH) we deduce that there
exist k1,ks > k + 2 such that p’“( (m ) = 0 and p *( ]+%) = 0. Since p{'(a (m)) is an
interval, we see that either [p}*(a; a™) + 1| > 2m=k-1§ or P j+1) 1] > 2m=k-16.
Without loss of generality, assume the first. Then

pE(al™) = prR(0) = p TN (=1 4k + 1)),

() satisfy P (a ( ™| < 2—2mkg,
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and, therefore, \p?(ayﬁ) + 1] < 2m=*M*15 Thus ky < k + 2. We deduce that the map

p’g+2 is not continuous on ag-m). We know by Lemma 2.1, that for any 1 < k < ma the

map p’g has exactly 2¥ main branches and the Lemma follows.
|

Lemma 6.7. There exist at least 22™ — 23™ elements of the partition Q' in the unit

square [J such that for some Qzlj C Qz-lj we have HQ(Q}]) cUO foralll <n<m and

H?(Qzlj) = Rec(27"|ma(Q)],2 — 2% ).

Proof. Let n = o™*(¢) and let 7“;.’, 1 <7< 3Tm be rectangles covering the es-

Fsm/4

caping set ESTm of the map , defined according to Corollary 1 of Lemma 6.2.

According to Lemma 6.5 there exist at least 2*™ — 21M+2§ elements of the parti-
tion Q' such that HF(Q;) € O for all 1 < k < %, and there exists a rectangle
Rec(Z*m/4|7T$(Qz1j)|,2m/4|7ry(QZ-1j)|) = H?/4(Q}j) c 0. It follows from Corollary 1 of

Lemma 6.2, that among these elements of the partition Q! one can find at least
3m/4

92m _ 93m+25 _ 92mpds elements that satisfy H?/4(Q}j) n(U )=
j=1
4 3m/4
The condition Hgn/ Q)N (U r) = o implies 7, (HF(Q};)) € [-1;1] for all

j=1
1 <k < m, and it follows that |, (H*(;))| = 27™|m,(;)|. Therefore, H¢(€;) ¢ O
for some 5t <k < m if and only if m, (H£ (€;)) ¢ [~1;1]. By construction, Q} = 7,(€};)
is an element of the canonical partition of the map P By Lemma 6.6 with k& = 7,

there map pg! has at most 2272 main branches such that |pg(a§-m))| <2-2%4. For

every Q;, such that m,(HE(;)) C [-1;1] and 7,(€2};) contains the domain agm) of
a main branch of the map py’ with |pg(a§-m)
Q}j def T2 () X ag-m) C Q}; with the property Hf(()}]) C Oforall 1 <k < m, and,

moreover

)| > 2 —2%4, there exists a rectangle

HE(Qh) > HE () D Ree(27"|ma ()], 2 = 27/%).

Therefore, there are at least 22m — 21m+2§ — 92mpd§ — 95m+2 > 92m _ 95m+3 glaments
of the partition Q' such that for some ng C Q; which satisfies HF(Q) ¢ O for all
1 < k < m we have

HP' () = Rec(27™|m, Q)] 2 — 2%9).

In other words, the map H{" has at least 2°™ — 23™+3 main branches. [ |
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Corollary 1. There ewist at least 2*™ — 23m+3 clements of the partition Q? such that

for some 2, C Q% we have H;’,fé((u)?j) c O foralll <k<m and

Hgm(éfj) = Rec(2 —2%6,27"|m,(Q2)])-

Definition 9. The rectangles Qzlj and Q?j,

Lemma 6.7 we call domains of the long branches of the maps P and P;ig, respectively.

constructed in Lemma 6.7 and Corollary 1 of
Their images we call long branches.

Lemma 6.8. For any element Q; of the partition Q' the set Q};

(disjoint) rectangles. The number of rectangles is equal to the number of main branches

\ B, is a union of

of the perturbation 2 of the doubling map p.

Proof. We split the argument into several steps.

Claim 1. The projection 7, (Q; \ E,) is a union of domains of main branches of
the small perturbation e of the doubling map. First we shall show that the image
of the projection p (m,(€; \ Em)) C [~1;1] for all 1 < n < m. Indeed, assume for a
contradiction that for some 1 < n < m we have pg, (m,(;\ Er)) € [=1; 1], and n is the
smallest number with this property. Since the horizontal lines {y = const} N0\ E,,,—4
are invariant under H¢, we may conclude that Hén(Q}j \ E,) ¢ O, which is a con-
tradiction. Therefore m,(€}; \ Ep,) is a subset of the domain of a main branch. Let
an interval (a,b) D m,(Q}; \ En) be the domain of the main branch. We shall show
that Qf x (a,0) C Q}; \ E,. Assume that there exists z € €} x (a,b) such that
H¢(z) ¢ O for some 1 < n < m. Since m,(H(2)) = p{ (2y) € [-1;1], we conclude
T (H{(2)) € (—=1;1). Observe that, the lines {x = const} N0\ E,,_; are invariant with
respect to HY', we get H{ (2., m,(Q; \ Ep)) € O, which is a contradiction. Therefore
(a,b) C my(Q; \ Ep) and hence m,(Q}; \ E,,) is a union of domains of main main
branches.

Claim 2. The set {y = const} N (; \ E,) is connected. Indeed, assume that
there are three points z,u,w € {y = const} N (; \ En) such that z, < u, < wy,
with z,w € Qf; \ E, and u ¢ Q}; \ E,,. Then there exists 1 < n < m such that
H{(u) ¢ O, and we may assume that n is the smallest number with such property.
Then by invariance of {y = const} N Q; \ E,_; with respect to Hf, we conclude that
either HY(z) ¢ O or H(w) ¢ [J, which is a contradiction.
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Claim 3. For any two points z,w € Q}j \ E,, such that z, and w, belong to
the same domain of a main branch of p’, we have (2, w,), (wz, zy) € Qi \ En. In-
deed, assume for a contradiction that (z,,w,) & Qf; \ E,. Then choose the small-
est n such that H{(z;,w,) ¢ O. It follows that either m,(H} (2, w,)) ¢ [—1;1] or
o (H{ (22, wy)) € [—1;1], or both. Without loss of generality suppose that projection
of the image m, (H{ (22, w,) € [—1;1]. Then due to invariance of {x = const} N\ E,,
we have 7, (H{(z)) € [~1;1], which is a contradiction.

Summing up, we conclude that the set Q; \ E,, is a union of rectangles and the

number of rectangles is equal to the number of main branches of the map pg; in le
|

Corollary 1. In the notation of Lemma 4.1, the set Q0 \ E_,, is a union of (disjoint)
rectangles for any element Q?j of the partition Q2. The number of rectangles is equal

to the number of main branches of the perturbation pI of the doubling map p.

Lemma 6.9. There exist at most 2'™§ quartets (i,7j,k,1) such that Hme(Q%l) N Qy
has more than one (P,§)-domain A that satisfies Hi(A) C O for all1 <n < 2m. For
any quartet (i,j,k, 1) the set Hg%”(Qil) NQy; has at most four (P, §)-domains with this

property.

Proof. Let A be a (P,€)-domain in H, *™(Qf,) N Q}; such that HZ(A) c O for all
1 <n<2m. Then

#{A C Hng(Qil) NQ | HY(A) cOforall 1 <n <2m} =
— #{A C Hm(02) N HP(QL) | HA(A) € Ofor all —m < n < m} =
= #{A C (G \E_n) 0 (2 \ En) }-

By Lemma 6.8 and Corollary 1 of Lemma 6.8, both sets Q2,\ E_,,, and Q}j\Em are unions
of rectangles, and the number of rectangles equal to the number of main branches of
the corresponding doubling maps on the associated intervals. By Theorem 1 there are
at most 2™¢ intervals €2; or €; that contain two main branches. Thus there are at most
24m§ quartets (4, j, k, 1) such that Q; or €; or both contain two main branches of the
maps p.’ and Pe; respectively; and the Lemma follows. ]

Using Lemmas 6.7 and 6.9 and Corollary 1 of Lemma 6.7, we get

Corollary 1. Let T be a chain of partitions associated to the sequence n € Xs. Let
QY = T* and Q2 = T be two consecutive partitions from the chain Y, and let

€ = 0¥ =Ny be a shifted sequence. Then
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(1) There exist at least 2°™ — 2213 clements Ql such that for some Ql C Ql we

have
(Q_m O)
-\ o0 2o2m /)"

(2) There exist at least 2*™ — 22mF3 clements Q2. such that for some Q2, € Q2 we

have
(2m : )
Qij_ 0 2™ ’

(3) There exists at most 29™§ quartets (i,7,k,l) such that the set P_2(Qil) Ny

contains more than one (P, §)-domain A that satisfies d,, P2 |A— 22m.

P§<§zij):Rec(z-mm(szij)|,2—2%5) and AP

P () = Rec<2 — 2%, 2—m|7ry(9ij)l) and dp!

Proof. Observe that for any 1 < k < 2m and for any z € 0\ Ej, we have F§¥(z) = Hf(z).
|

Lemma 6.10. The area of a good (P,&)-domain A is very small. More precisely, we

have an upper bound |A| < 2274m,

Proof. Recall the definition of good connected components (42) and observe

(AG n={AC P () NQ | Ais a (P,¢)-domain, V1 < n < 2m: F(A) c O} =
={AC P 2Q2)N Qzlj) | Ais a (P,£)-domain, V1 < n < 2m : H(A) c O},

We shall show that for any A € A the area |[A| < 272" . 1, (Q)] - |7, (QF)]. In-

deed, consider the image A’ = P¢(A). Since F is area-preserving, |A’| = |Al]. Since

Pe(A") € Q3 the length |m,(A")] < 27™ - |7, (QF,)]; and Pamg(A’) C €, implies
e (A)] <27 - |1, (€;)]. Thus

Al = A < 27 ()] - [y ()| < 2277 (54)

|

Corollary 1. The matriz SS€ is small. More precisely,
ZZ‘ SSG kl‘ <24 2m
O O
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Proof. By straightforward calculation, using Lemma 6.10,

ZD:Z\SSGM ZZ,W o) m% Z/a (P2)s(2)dz <

AEAG

= ZZ |70 ( Ql \7Ty Qil Z 27mAl <

AENG

1
< - Q27w ()] - Iy (QR)) - 270 < 20
;; !m(Q}j)l |y (€25, O

Now we are ready to prove

Proposition 6.1. The matrix UU% has the following properties
(1) U0 < 4;
(2) #{(UUO)Y # 1} < 2475,

Proof. By Lemma 6.9, for any (i,j,k,1) € O x O we have #(A%)¥ < 4, and by
Lemma 6.10 we know |A[| < 272" - |, (Qp)] - [, (2;)]. We calculate

(UUGI< D AL 10,(PE), |- Ima( )7 - [y ()7 <

Ae(AG)H
<4 (27 ()] Iy () - 227 - e () |y ()| = 4.

To prove the second part, we recall that by Lemma 6.7 there are at least 92m _93m+3

ments €2j; such that for some Q;;C Q}; the image is a rectangle Pe(Qij) = Rec(27™|m,(Qy5)]), 227 6)
and HQ(Q”) C Oforall 1 <mn < m. Similarly by Corollary 1 of Lemma 6.7, there are at

ele-

least 22 — 23™+3 clements (2, such that for some small rectangle Qp C Q2 the preim-

age Pgl((ulkl) = Rec(2—27%6,27™|r,(%;)|) and H’”(le) C Oforall 1 <n <m. Then

there are at least (22" — 223 _25m§)2 pairs QF;, QF, such that Pg(Q”)mP‘l(le) + &

which correspond to (UU) # 0. If (A%)f has only one element, then it is A = PS(QU)OP;J&(QM)
and [A] =27 - |7, ()] - |7, (Q)|. Therefore

1 1
(UUSE = : / 22m =1
T me Q)] Iy ()] Ja

Summing up, there are at least 24™ — 221§ clements (UU%)f = 1. By Lemma 6.9 the
set (AG)Z? has more than one connected component for not more that 24§ quartets
(i,7,k,1). Therefore at most 2% elements satisfy 1 < (UU®)¥ < 4. The other

elements are zeros. [ |
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Now we proceed to the supremum norm of the matrix UU. Our goal is to prove the
following
Proposition 6.2. There exist a constant y; < 0.01 such that for M and m sufficiently

large and for u sufficiently small

max([|SS oo, [[SUlloos [US]loo, [UU]|o) < 271,

We define two functions on the unit square

2m
tn: 0 — N tin(2) = ZXD(Fg(Z)); (55)
=0
tex: 0 — NN [1; %n} tex(2) = #{1 <n < 2m: an_l(z) € Oand F{(z) ¢ O}.
(56)

Given a sequence 1 € {0, 1} we define a subset of the unit square [J]
def n
A, = {z e D: xa(F'(2)) =1, for all n € {0,1,...,2m} }.
Note that some of A, may be empty and they are not necessary connected.
Lemma 6.11. There are at most %"262335]4” non-empty disjoint subsets A, C [.

Proof. We know the total number of sequences that correspond to the points with

tex = S:

#Hoe 0.1 ol =5y = (707D,

Observe that the number of disjoint subsets A, C A is equal to the number of different
sequences, which we can estimate in the following way. It is well known that (2:) > (1;;)
forall 1 <k <2nand 1 < s < k. The equality 2m — (s — 1)M = 2s has the solution
S = 2335\?4 so we conclude (2’”_(‘2_1)]\4) < (28500) for all s > sy = QQTS\Q/I Using the
Stirling formula, we calculate

2s Sp)2%0 4m2M
< 0) < const - (250) — const - 22%0 = const - 2 2+M

2
So SOSO

We also may write for all s < sq

<2m ) (Z ) DM) N s!(z(ilm—_<s(s—_1;)\y_)!s)! < (2m = (s = ”M)s(g)S'
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By straightforward calculation

d /(2m—(s—1)M)e\s
)
:<(2m - (85_ UM)e)S’(ln e (Ss_ 2 2m — (j— 1)M> >0

for all s € (1;0), because

2m — (s —1)M >1n2m—(50—1)M
S So

In =Iln2 >

S0 S
= >

> .
2m — (so— 1)M = 2m—(s—1)M

N | —

We conclude that for s < sg
(Qm —(s—1)M

so 2m+M

) < (280)80670 = (2e) 2FM .
s

0

S

Summing up,

m

M
> (2m - (2_ 1)M) < T (2e)

Jj=1

Given a sequence j € {—1,0, 1} we define a subset of the unit square
A, o {z e O: xa(F(2)) - sgnmy(F(2)) = gn for all n € {0,1,...,2m} }.
Note that some of A, may be empty, and they are not necessary connected.

Definition 10. We introduce to projections of the tower to the zero floor:

et X = X me(z,n) = ((24,0),0);
T X =X my(z,n) =((0,2,),0).

Lemma 6.12. Given a quartet (i,j,k,l) and a subset B, AN Q5N Pé_Q(QiZ), there
are at most 631 disjoint subsets A, such that A, N B, # &.

Proof. Consider a first half of the sequence @ of the length m, the subsequence

11,12, -, 4m. 1t may contain not more than §; “blocks” of 1’s. We shall show by

induction in number of blocks that

(1) There are not more than 637 different sequences jy, .. . , 7, such that ANB, # .
2) The projection of the image 7,(P:(B,)) may be covered by not more than 6
J ge Tyl L¢ y y

intervals of the total length not more than 2.
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In order to use induction, we need to study the original map F': X — X of the tower X
defined on p. 6; we also recall that by definition Py = F{": R? — R2.

Given a sequence 1, there are two possibilities.

Case 1. All blocks of 1’s in ¢ are not longer than ma — 1.

Case 2. There are blocks of 1’s in 2 of the length ma or longer.

Case 1. Assume that all blocks of 1’s in the sequence 2 are not longer than ma — 1.
The base of induction. Assume that there is only one block of 1’s. Then there exist

two numbers 1 < t; < s1 <m, s; —t; < ma:

L, ifty <k < sy
1 —
0, otherwise.

We deduce that Wy(Pgl_l<Al)) belongs to a union of domains of main branches of the

it

pjlt;_t} ¢ has exactly 251" main branches, all of them are long and their domains have
Y

the length at least 21751 > 27 In addition, since

perturbation p of the doubling map p. We know by Lemma 2.1 that the map

diam(B,) = diam(A, N Q}; N P£_2(Qil)) < diam(Qj;) < 22—m

we conclude that there exists an interval I C [—1; 1] such that Wy(Fgl(Bl)) C I and’
the length |[I| < 227™ - (1 + py)* =1 < 27™@ < 201751 Thus the interval I may intersect

s1—t1
O'tl_lfy

not more than 4 sequences j;, 1 < k < m corresponding to the sequence 1, 1 < k < m.

not more than 2 domains of main branches of the map p and therefore there are

In addition, we observe that the image m,(F¢'(B,)) may be covered by 4 intervals of
the total length not more than 27™ - 25171« (1 + pp)™.

Now assume that there are n blocks of 1’s. Namely, there exist
1<t <51 <tg9<s59<...<t, <5, <m (57)
such that ;41 —s; > M and s; —t; < ma — 1, where

1, ift; <k<s;, fori=1,...,n;
" = (58)
0, otherwise .

Since s, —t, < ma, by Lemma 2.1 the doubling map p’7 - t»_has exactly 2°»~*» main

_15
branches, all of which are long, and their domains have length at least 2i»~*». By

IWe may safely assume that 2% > 1+ 5.
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induction assumption, the set Wy(Fg"_l(Bz)) may be covered by 4"~! intervals of the
total length

n—1
2—m . H 28k—tk . (1 4 Hl)m S 2—m . 2m—(sn—tn)—M(n—1) — 2tn—sn . 2—M(n—1)'
k=1
Therefore it may intersect not more than min(2 - 4"~ 25~) domains of the main
Sn—1tn

branches of the map p’7 ™~ Te- Consequently, there are at most 4" different sequences

g of the length m and the projection of the image 7, (F{"(B,)) may be covered by 4"
intervals of the total length 2=™ H 25kt (1 puy)™ < 27M=1 (1 4 )™

Case 2. There exists a subsequence of 1’s of the length ma or longer. Then there is

only one subsequence with this property (since a > E)‘ There are two possibilities.

(2A) In the notations introduced in (57) and (58) above, s; — t; > ma.
(2B) In the notations introduced in (57) and (58) above, s, —t, > ma for some
n > 1.

In the case 2A, the map p’} tﬁg has at least 2517%1=2 long branches, and their domains
have length at least 21751, At the same time the projection of the image Wy(Fgl_l(Bl))
is contained in an interval I of the length [I] < 27™- (14 puq)" < 212751, By Lemma 2.1,
the distance between any two domains of the main branches of the map p’. h ¢ which
are not long, is at least 2™(@~1) > 20=s1 Therefore the interval I may intersect
not more than three domains of main branches (two long and one more) of the map
P t} ¢ Thus we conclude that there are not more than 6 different sequences ., ... Js;,
corresponding to the sequence #,,...,15,. The induction step then follows as above,
giving 63 sequences.

In the case 2B, the map p’7, - f’fg has at least 2°»~t~2 long branches, and their domains
have length at least 2!»~*». Then by induction from the Case 1, we know that there are
4=t < gm=2)=M gequences corresponding to the sequence 2y, ...,1,_; and the image
of the set Wy(Pt”_l(B )) may be covered by 4"! intervals of the total length not more

Sn—tn

than 2»=5»=M We see that the total number of long branches of the map Poin-ie I8

greater than the number of intervals covering the image

2ma72 > 4m(17a)7M7

and the total length of intervals is shorter than a domain of any long branch. Therefore,
each of the intervals may intersect not more than three domains of main branches, and
we get at most 6 - 457! different sequences. In addition, we notice that the image
my(F¢"(B,)) may be covered by 6 - 47! intervals.
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To complete the proof of the Lemma, we need to calculate number of different
Sequences Jm41, .- -, jam such that A, N B, # @. We would like to apply the argument
above to the inverse map F_.¢ = Po"”}ﬁ Let us consider the image P:(B,) C Q,. Define

a sequence j', associated to the iterations of the inverse map P,m&~1.

L i Fat(z) e O+ @ik 2, > gmh
7z —={=10,1}"  g(z)=4 -1, if FoA (2) € O 4 g2mik o < gmeh,
0, if F5E(2) g O+ &mih,
(59)
We see that
7e(PE2) = am—ks1(z) for all 0 < k < m.

We may associate the sequence 5 to main branches of the doubling map p,, defined

as in Lemma 4.1 p. 9, in the following way.

{f=1for 0<t; <k <ty <m, t; <lp} <

{7Tz 2m ., (%)) in a domain of a main branch of p t1§1 1}

Indeed, if, say, 5;, = 1, then by definition, F ;1% (z) € O+ &2+ and z, > &m—1.

og2m— t1€
Consequently, F}lm 11¢(2) € Oforall ty <1 < t5, and therefore m, (P A lg(Z)) is in

to—t1

a domain of a long branch of p%,t,_ I,

In the case t; = t5 = 1, i.e. a block of the length 1, we get two sequences corre-
sponding to a given 3;, = 1 and 7 = —1, similarly to the previous case.
It follows that to any sequence ¢ of the length 2m correspond 6™/ sequences ).
|

t2m

Corollary 1. Among all sequences 3, there are at mos 677 (2¢) ST pairwise

disjoint segments A, such that PgZ(Qil) NQLNA #@.

Now we are ready to prove
Proposition 6.2. There exist a constant v; < 0.01 such that for M and m sufficiently
large

max([|UUl|sc, [|SU oo, [|US oo [[95]|o) < 271,

Proof. Recall the definition of the matrices, for instance

1 1
UUF = . / 5 (P2 ()
! ’7‘-96(921])’ |y (%) P2 (03 ))n0 A f)y< )
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and the other three are defined using another three partial derivatives, according
o (35)—(37). Consider a vertical line segment A, = {z, = ¢} N Pg_Q(Q%l) N Q.
Recall that according to condition 5 the composition of maps outside of the unit
square Fj, o...o F; ., where i,...,iy € {1,..., M} is a polynomial of degree at
most d. Since P¢ is smooth on each A;N A, and PZ(A;NA,) C Qf;. We can estimate
the length of the image using condition 5, p. 6:

IP2(A, N A)| < diam(Q2) - d 3 < 25 (60)

since the preimage with respect to any of the orthogonal projections 7, and m, has at

2m
most d™ connected components.

max( \a (P2),(2)|dz, / 10,(P2), )|dz,/A\ay(Pg 2)|dz, / 10,(P2), |dz) <
J
< ‘Pg AJHAC)’ < dﬁdlam(Qil).

Therefore
/ g, PP 00 (F)y (N 10 (P ()], 102 (P (2)) = =
:/(Ql / max (|8, (P2)y ()], 10:(P2)y(2)], 18y (P2)s(2)], 102 (P2).(2)]) dzde =

=y 2, me B O ) 0 R P2 e

) A,cac 7B
2 m—+M 2m 2m
< %(2e) 5 6% - diam(QF) - 43 - |m, ()],

Finally,

/ - max (|0, (P2),(2)], [0 (P2)y(2)], 10,(P2)a(2)], |02(P2)u(2)])dz <

2m 2m+M

< e N(my ()] - 7 ) 550 - 67 - a3,

We can choose p; and po sufficiently small so that for m and M large enough and for

some v; < 0.01

2m 2m+M 2m 2m
T (2e) T L 65 L 4 < 2,
M

Lemma 6.13. The sum of elements of the matriz |(UUP)H| with (i, j, k,1) € Ox O is

at most 2%™ - 8mJ.



FAST DYNAMO ON THE REAL PLANE

Proof. Indeed, recall that for any A C Af there exists 1 < n < 2m such that
FE(A) ¢ U and thus

UU U A= UU{Alsa P¢) doma1n|F” ¢Dforsome1<n<2m}
ikl (AB)kl ikl
={zeO|31<n<2m: F(z) €0} =: B.

We get |B| < 8md by induction in number of iterations and conclude

uUuP)hl < a (P2),(2)|dz < 2%™ . 8mé.
ZZ! ?)
1j
]

Remark 9. It follows from the condition 3 on the map F (see p. 6) that partial
derivatives are essentially bounded [|0,(P?)elloc < (14 1)*™, 10:(P)ylloc < (14 p)*™,
102 (P)alloe < (14 p)*™. Thus by the same argument as in Lemma 6.13 we get

ZZ| (USP)E) < (1 + p)*™md; (61)
ZZ| (SUPYE < (1 + p)*™md; (62)
ZZ| (SSEYE < (1 + p)*™mé. (63)

6.2. The operators WA and W(;Pg* are close on X. We keep the notation intro-
duced in the first paragraph of this Section.

Let T be a chain of partitions associated to the sequence n € 5. Let Q! = T*
and Q2 = T*+! be two consecutive partitions from the chain Y. Let ¢ & g2m(k-1)p
(cf. Definition of the chain T in subsection 4.3, p. 8). Let A: Xq, — Xq, be a linear
operator, approximating the operator Pg*, defined according to (34).

In this section we establish the following

Proposition 6.3. The operators Ws A and W(;Pg* are close. Namely, for anyv € Xq1,
4 sup diam(2%;)

HW5<P§2* - A)VHQQ,El < 5 . 22m’ (64)
4 sup diam (Q2
[Ws(P2 — Al < 2222 d1§m( W germm, )

where 71 is defined by Proposition 6.2.

We start with
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Lemma 6.14. For any element 23, of the partition Q?, and for any v € Xq,

/ PEQ*V = Av.
L %

Proof. Let v =3 vIx8: + ;v xe: - Then
] )

Pv(z) = AP (P %z) - I/(P_Qz) =

3
= Z VI AP (P22 )Xoy (P 2) + Z vl AP (P 2)xiy (P%2) =
ij 1 _
x ij
1) — 1 -
+Z j )—1—8 (Pz) (PE 22)) nggj(PE 22).
T ij
We may integrate
! Ou(P2)a (P2 ! P?z)dz =
T Jo, A Z*m‘w e
1 1 / 1
0p(PH) (2)dz = ———5—SSk.
T m@)] I ()] |7Tz ij)] grat ot e (2
Similarly,

;USEZ _ ! 9,(P?) (P_Zz);xg (P_zz)dZ'
(G110 oy, ™ TS T ()] |

1 1 1
———SU! = 0p(P2), (P7%2) —————xa1 (P %2)dz;
w%|”mm%(w“”mwwﬁﬂm

1 Kl _ 1 2 -2 1 -2

kl

|7Tx(Qzlg)’
So we may write

1 2 — ij 1 ki ki ki ki
T Jo, T ()0 = ZVJ ey (556 + U + ZV o Qil (S +UUY)

Observe that for any Q2,, by definition of the operator A (34) on p. 15,

1 ..
S(55 1+ USE) + 3 vI(SUE + UU
‘sz’ Q2, A ’Wm Qil (Z Vs S + USZ]) + — Vy (SUZ] + UUZ] )> ’

Lemma 6.15. For any partition 0 of the plane R? into rectangles we have
4 sup diam(€2;)
o '

—t i —t)|dz <
stz =0 = sz - s <
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Proof. Given a compact convex subset A C R?, let v(A) be the longest line segment
connecting the points where the function ws(¢) achieves its maximum and minimum in

A. By straightforward calculation

max ws(z —t) — min ws(z — t) = max ws(t) — min ws(t) < / |Vws(t)|dt.
¥(Qij—z)

tEQi]‘ tGQij tEQij—Z tGQij—Z

Thus

‘maxw(;(z—t) min wg(z — t) ‘dz</ / ‘Vw(g |dtdz-
R2 J4(Q;5—2)

R2 Qz‘j tGQ”

:/ / ‘Vw(;(t—z)‘dtdz:/ / |Vws(t — z)|dzdt =
R2 J~(Qi5) 7(Q5) JR?

= /W(Q /RZ‘ng(zﬂdzdt < diam(2;;) /Q‘Vw5(z)|dz =

2
= diam(; 22+ 22-e — dz <
J R2 7T2(S4

i)

2 2
g@mmm/QQ&WA+%DQQﬂdz<
2

< diam(2;;) ( |23|36 22dz, + |21(/5|36 262 dzy) <

- 0

Lemma 6.16. Let f: R? — R? be a bounded integrable function. Assume that for any
element Qj; of a partition Q' of the class (m,d) we have fQ f = 0. Then for any
partition Q2 of the class (m,d)

sup diam(Q})

Wsflloze, <8 5 Ifllo e (6.16.1)
sup diam(},)
Wil < 87D (6.16.2)

Proof. By straightforward calculation

Wasle, = [ | [ wste = ooz = [

2:/;muﬂﬁﬂz—ﬂ&dz
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We recall | o, flz—t)dt = fQ (t)dt = 0 and so |, —a, f Z_t)f_ﬂij

Hence we conclude

2—m 1
Wi fllare, < —— / (st ——/ ws(s)ds) f(= — t)dt|dz <
' 1nf|7Ty(Q%z)| R2 Z 2—Q; |Qzl]| 2—Q}
1
< ws(t —/ ws(s)ds| - | f(z —t)|dtdz <
mfm @B o 2 Ly 0= gy [, o] 1=
< —  mi : —t)|dtdz <
< lnflﬁy » |/1R2Z/z . ‘Sgagl ws(s) seril—lgng(SH |f(z —t)|dtdz <
< —— — mi : —t)|dtdz =
- 1nf|7ry ol /Rz Z‘Sgaé(l ws(s ser?—lggj ws(5)] /Z_ng £z = t)ldtd=
= — mi : t)|dtdz =
inf |7Ty 2) /Rz Z‘sgagl wsls ser?—lggj w5(5)| /ng £ (8)ldedz
< — —  mi : t)|dtdz <
~ inf |7Ty /RQ sérzlaé(l wss seril—lggj w(;(s)} /ng [F(B)]dtdz <
4diam( Ql
< - t)|dt <
Sup|7ry(QZ-1j)| 4supd1am(Qzlj)
< - 2 ) HfHQl L1s
inf |7, (27,)] )
by Lemma 6.15.
Similarly for the supremum norm
suplWsf| =sup| [ stz = 0] <l 3 / wilz —t>f<t>dt] -
R2 - JQy
_sgpz</glw5 —t) |Ql|/ ws(z dt‘
ij
< —t i — )| f(t)|dt <
supz/l pmacu(z ) = min (= — )] (O <
< sup | Sgp; 2] - \gggwa(z —t) - i wy(z —t)|<
< sup | f[sup > Q)] - sup [V.ws(z — t)] - diam(Q;) <
z teQy;
' sup diam (2},
<swpflswpdiam(@}) [ Vi < LD )
|

ws(s)dsdt = 0.
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Lemma 6.17. Let Q' and Q2 be two partitions of the class G(m,d). Then for any
¢ € l(R?) we have
I(PEv)]l2 < 2272wy,

Proof. Upper bound for the supremum norm is obvious. Indeed, we have for the first

coordinate
IPerles = [ [(Pam(a]as =
= / |02(P2)y (P2 2)vs (P 22) 4+ 0y (P2)y (P2 2)vu(P22)|dz =
= [P + 0, mlde < 270 [ )]+ )z (66)

For the second coordinate we have got

I(Prbles = [ |(Pamu()las =

_ / 10, (P2), (P 22)0s(P222) + 0y (P2)a(P 22 (P 22) | d2 =

/(a (P2),(2)ws(2) + dy (P2)a(2)vl2 \dz<22m+1/ a(2)] + [pa(2)|dz. (67)

Therefore

27m
Parl= Y o [ R < PR < mo
e =2 ] Jo, TN < g el
|

Lemma 6.18. In the notations introduced in the beginning of this subsection 6.2, p. 3/,

the following inequalities on the norm of operators hold true for M and m large enough.
| UUv 2., < 4-2°™|v|]1, (6.18.1)
max(||SUv, |2 £, IUSVs|| a2 24, |9 SVs||laz,c,) < 2727 ||v]s; (6.18.2)

where the constant o satisfies

9 3
1<"}/221+’71+210g2(1+/1/1>—06<5. (68)

Proof. Let v, = Y v7x%, € ®o1 be the y-component of a field with the unit norm
i i

o) = e (37 1471 Iy (€)] 23 sup 7]} = 1.

ij
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therefore we will be assuming that 37 [v#] < 271 and sup [/ < 271™. We write
]
down the formal action of the operator UU on v,

Ut =33 VUi, = 2 2 (VU = Dol + 2. D vixig +
kl g o 0O
OIS Z)UUZ?V;%@ 30 S UUti L (69)

R2\O O 0 R2\O R2\OR2\O

We estimate the norm of each of the four terms separately. Recall that by the choice

of the basis X;‘ZQ X2, (9) and therefore

|7z (92

2—m

u — u :27m.
Iy lovco = 2Ty s Yo

L2Tm L

) SCLATE
<2 WZZWU“ |- V] <27 msup|u”|ZZ|UU’;f—1|§
< 2l=im. ZZ| (UUY) + (UUP) 1] <
<2t ZZ (UUC)5 =1+ I(OUP)5] <
0O

< 27EM(2IMG 4 2376) < 27374, (70)

using Lemma 6.13 and the second part of Proposition 6.1.
The second part of (69) has the following upper bound, since Y [v¥] < 2™,
]

S 22m .om . 217m S 22m+1'

H Z Z V”Xm

=27 E E VY
02,0, v
: O O

The last sum has only finite number of non-zero terms and can be estimated via the
supremum norm. Recall Remark 5: for R = My(1+p;)*™-md+1, any quartet (i, 7, k, 1)
such that (¢, 7) € O and (k,1) € R*\ Og or (,7) € R*\ Og and (k,1) € O

SSi =0, SUf=0, US=0, UUY=o0.
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Therefore
H <Z >t Z)UUZIEZ%’XQQ =
R2\O O O R2\O 02,L,
=(2 22 3 Jutivin ), <
< (X X+2X ) swlvUl] - sup w2 <
Og\O O O Ogp\O

S 4(R2 o 1) 424m om 9= m 21 m <
< MomP§20 D™ (1 4 1iy)?™. (71)
We have for the last term, using the bound (41) (p. 16)
|22 Y vutvii |, < D0 W27 sup US| M1 ) <
R2\OR2\O R2\OJ

<ML 2T M (14 pa)?™ = My -2V (14 )™ (72)

Summing up the last four together, we get an upper bound ||UUwv, g2z, < 2212,
Now we proceed to the last inequality (6.18.2). We would like to show that there

exists a constant 7, satisfying (68) such that for M and m large enough:
max([|SUv oz 24, 1USVsllaz, 2., [1SSvsllaz.2,) < 2™ [[v]ln -

We shall show that it holds true for the matrix SU, the argument for the matrix US
is similar.

As before, we may assume for the first component of the vector field vy € ®g1 that!
max (Y7 v - |y ()], 247 sup [v]) =1,
]

and, consequently, " 7] < 2~ and sup || < 271™. We recall the definition of
ij
“good” and “bad” connected components (42) and (43) :

(A9 S{A € P(QR) QY | As a (P&)-domain, V1 < n < 2m : FY(A) € O;
(AB Kl def{A C P 2Q2)N Qij | Ais a (P,€)-domain, 31 < n < 2m : F2(A) ¢ O}.

We may write, similarly to (44)
(SU)H = (SUCYE + (SUP)H,

'We denote the space of essentially bounded, absolutely integrable, piece-wise constant functions,

associated to the partition Q' of R by ®q1.
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where

G\kl. __ 1 /
(SURG: = any) m 2 B

AEAC

1
SUPYH. — / 0,(P2)
SUDG: = @nl Qzl p3 )

AcCAB

Obviously, (SU%)}} = 0. We also recall B = {z € 0|31 <n < 2m: F{'(z) ¢ O} and

observe that
(SUP)H| < a (P2),(2)|dz = 2*™ - 8mJ.
5
O O
We may write the action of SU on v,

SUv, = Z > SUSIX: = ZZ (SUB) iy
ij
0D SUSIy, + D D SUSvINg, + D D SULYIXGy,

R2\O O O R2\O R2\OR2\O

We have the following upper bound for the first term, corresponding to the central part

of the matrix

H;;(SUBZZ ;]XQQ o, _ZZ’ SUB ‘I/”’ 92— m<

<sup |27 Z Z\(sUB>,-j| < g2 im o < 2 s

Repeating the estimates (71) and (72) above, since ||SU||e < [|[UU|l < 2™ and

using the upper bounds ||v4]|e < 271™ we obtain
(o203 + 30 0 ) subviruy,
R2\O O O RA\O RA\OR2\D

< SUP‘SU;;! - sup |V;‘7| (14 )™ (My + Mam®s - ng) <

92"61 o

< MMM (T 4 )2 MymBS < 20 28 (1 + pg)2™ - Mams,
Summing up altogether, we get
1SUV|laz.c, < 2™ - 25™(1 4 1)*™ - Mym®S + 2% ms < 2™

Similarly, [|USv,|| < 272™. It only remains to show that for o = 145 +21logy (14-411)—
and for M and m sufficiently large

HSSVSHQQ,ﬁl S 272m. (73)
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Recall Corollary 1 of Lemma 6.10:
Sl < 2
o o
We can get an upper bound for the central part

H;;<SSG Zl ;JXQM 02,04 o ZZl SSG kl ’Vij\ 27" <

< sup ’V;]‘ LoTm, ZZ’(SsG)”’ < 94=2m 27%m L9TM 4. 2,3m/2.

Repeating the estimates (71) and (72) for the matrix SS and taking into account an
upper bound ||SS||. < 2M™ from Proposition 6.2, we get

[(EX >+ > )sstving,

R2\O O O R2\O R2\OR2\O

< sup|SUM | - (1 + )™ (M, + Mam®23™5) < 200F3m (1 4 1)>™ - Mym?s,

927‘61 B

Thus

<
Q27£1

[EEA - HZZSSZWXQQ
kl g
< o+Hm. (14 )™ - Mym®6 + 2°73m/2 < 2,
]

Corollary 1. Under the hypothesis and in the notations of Lemma 6.18, the norm of
the operator || Allqz < 2°™*2. Namely, || Av|lz < 22" +2||v||;.

Proof. Recall the definition (34) of the operator A: Xg1 — Xq2

Av =37 AWIxG + i) =

ij

= Z Z( & Sle?lz + SUleQQ ) + Vftj (USleQQ + UUleQQ ))
ij

The upper bound for £;-norm follows from the parts 6.18.1 and 6.18.2 of Lemma 6.18.
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Now we proceed to the supremum norm.

sup [Av(z)| =

S 3 (M (S (2)+ SUBe () + v (USEXGs (2)+ UU X8 (2)) )] <

ij  kl

1 - -
N i (SSE 1+ SUMY 1 i (UM 4 gk
< o) P12 (7 (585 SU8) + v Ul + U )| <

1
[ —
= Tnf [, (O3

= sup
z

(158l + 15U lloe + [US oo + 100 1) - (3201 + 1)) <
(]

< om . 4. onm  gm < 22+(2+'y1)m‘

The Corollary follows from the definition of the norm on p. 8. |
The result we were seeking follows immediately

Proposition 6.3. The operators WsA and W(;Pg* are close. Namely,

4 sup diam(Q%)) _sup |y ($2;)]

P2 — < . 92m . 4

||W5( Ex A)VHQ?,Ll = 5 1nf’7ry(Qzl)‘ ||V||17 (7 )
4 sup diam (%)) m

IWs(PZ, — A)vlloe < — 2By (75)

Proof. Follows from Lemma 6.14, Lemma 6.16, the first and second parts of Lemma 6.18,
and Corollary 1 of Lemma 6.18. [ |

Corollary 2.

8 sup diam(£2%,)
)

IWs(PE, — Avll2 <

-2 lwlls

6.3. A pair of cones for the operator A. In this Subsection we construct two cones
C; C Xqn and Cy C Xq2 such that A(Cy) C Oy, Cy < C4, and || A |, || > 2™~ L. This
is the main result of Section 6, which is presented in Preliminary Dynamo Theorem 3

below.
Lemma 6.19. The operator UU is a small perturbation of the operator UU. Namely
(U= VU < 202075 v
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Proof. We begin with (2, £;)-norm. Consider a vector field v € Xq, with [|v]|; = 1.

We may assume that Y [v¥| < 2™ and sup || < 271™_ Then
]

|wU-UD) u||m,cl—HZZ Ul - Ui ||,
ij
—Z\Z UUE — UUS)v zm<ZZ\UUM UUs| -] 27 <
<Y |uul - vug]- ]2
o 0O
HOIDIEDIDSED IS DY I B

R2\O O O R2\O R2\OR2\O

We have for the first term

SOSUUE —vUs - (v 2 = ZZ|UU“ ||| 2 <
O O

<NUU|loo - #{(i, 4, k, 1) € Ox O| UU # 1} - sup [y |- 27 <
< omm., 24%7”5 . 2*%’” LS 2(2%+v17a)m_

Recall Remark 5: for R = My(1 + pp)?™ - md + 1, any quartet (i, j, k,1) such that
(i,7) € dand (k,1) € R*\ Og or (4,5) € R?*\ Og and (k,1) € O

SSfjl =0, SUZ}I =0, USfjl =0, UUZ.’;-Z = 0.

Since UOUZ? =0 for all (i,4,k,1) € O x (R?\ O) U (R?*\ 0) x O we may write for the

second term

(S5 + 3 0w — vutl|- v - Imy (03] =

R2\O O O R2\O
—(E T+ ) lwus] - [v] - il =
R2\O O O R2\O
- <Z Z+Z Z)|UU£’I ' ’Vij‘ |y ()] <
Or\O O O Op\0

<27 {(i,4,k, 1) e Ox (O \O) U (O \ O) x O} - |[UU]| - sup || <
< 21—m . 24m(1 + ,ul)Qm . M2m55 Lomm 2—%m < ,'7122(%—1—')/1—&)7117
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where 7, = g + v — a+2log(1l + py). Finally, for the last term we calculate
S S wuk - UOU;C]% il <2 3N (lUUkl‘ n |UUkl ) wid| <
R2\O R2\OJ R2\O R2\OJ

<2 2Mi(1+ )™ |UU oo D 7] < (14 )™ - 200
R2\0)

Summing up,

(UU—= UUW|g2.z, < m?2Z56] 1wy

The upper bound for the supremum norm is easy:

|UU= VU)o = sngZ > - UUE X (2)| <
kl kl i
- 1nf|7rx Q%z SupZ|UU U {Vu]‘ <

2 v ;
< 2z 7l | i) < 2(71+2)m+1.
S gy 2

Then
max(||(UU — UU)w|lgz.c,, 2 5™ (UU — UU)V||) < 22545,

|

Let T be a chain of partitions associated to the sequence n € ¥;. Let Q! = T*,
02 = Y1 and Q3 = T#+2 be three consecutive partitions from the chain Y. Consider
the sequence ¢ o o?™k=1)p (See definition of the chain Y in subsection 4.3, p. 8).
Let A: Xq, — Xq, be a linear operator, approximating the operator Pg*, defined
according to (34). Consider Cone (1,9') C Xg and Cone (2(%”1*0‘)’”,92) C Xgz;

defined according to the general definition from p. 8.

Cone (1,0') = {v =(Dxo+vb, e ¢l <d Y vl = o}; (76)
O
Cone (20+7=m,02) © Ly — ($)xe+ v, ¥ € Q2 [, < d20+im, S i — 0},
O

(77)

Theorem 3 (Preliminary Dynamo Theorem). In the notations introduced above for

arbitrary partition * of the class G(m,d),

A: Cone (1,0Q") — Cone (2(%”1’0‘)’”, QQ)
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Proof. Consider a piecewise constant vector field v € Cone (1,Q'). By definition of the
Cone (1,9Q'), we may write v = (9)xg + v, where ||| < d and > % = 0. We deduce
0

lvsl| = [|s]] < d and ||¢,|| < d. Moreover, since

/UU% /ZZUU? X, —Z/ZW"XW =
=S / > o |7r o = S @) =2 S (79)

We conclude that the condition f UUy, = 0 is equivalent to
0

> Wi =0 (79)
O
By definition of A we write

Av =3 Al + i) =

—ZZ< ij Sskl 32 _i_SUleQZ)—i-yiJ(USkl sz —i—UUleQz )) =

ij

= ZZ( & Sklep + SU“XQQ ) + u”USleQz >+
ij

+ ZZ (UK — Uk YV X + ZZUUQ;ZV;JW . (80)
i ij
By Lemma 6.19 we know
KL prrrkly, iju 234y—a
IS (ol —vusyving |, < 22 (81)
Kl i
Using the third equality of Lemma 6.18, we get (recall 75 = 1 + 21 +21logy(1+ 1) — )
g kl Kkl u ) kl m
HZZ( ] S XQ2 _’_SUZ]XQi)—}_V]US XQQ)H 2751 §3'272 d
ij
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The supremum norm estimate is similar to the supremum norm of A

( (55K, (2) + SUE sz (2)) + v USENGs (2))| <

j

R — i sk.l SU ijUslf!)‘ <
~ inf |7rgC 2| Sup‘Z( + ”) O )| =

1

< e . i) <
< @z 195l + 15Ul + 1T S]lo0) (w1 + 1) <

ij
<M. 4. omm . gm < 92+ Hy)myg

Thus

<

HZZ( i SleQQ n SU;}ZXg% ) I VngSksz)
ij

< max(22t(3Tm 3. 9nmyg = 3. 2mmg. (82)

We expand v, = dxp + 1, and observe, using Lemma 6.1 and equality (39)

UUys = Z Z UU’“Xm = 22"y (83)

By definition of the (22, £;)-norm,

Using (79), we calculate the norm
DIDICLTEREN M D39 DU TR
Kl ij it
H(E X+ X+ X X otk

R2\O O O R2\O R2\OR2\O
<2 mzjzw F2m SN WU ) [ (93] <

R2\OR2\O
<27(1 4 )" sup UUH] - sup ] < 27™(1 4 ur)?™ - 20 - d2 ™2 <
R¥\OxO

< d273m2(1 4 py)?m -2, (85)

u

2mm Xz, (2)
X6 R

e dz =27
oz, |y ()] 02, |72 (€25)]

(84)

QQNCI

Q27‘C1
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We shall estimate the supremum norm as well

I sup‘z UUM@/)”
QF)

XQ2()

ij ’ x

< sup [UTE] - ST ] < d(1+ ) - 22
m(ﬂzm 2

]

Then
IS vutving
kKl ij

<d- max(273m/2<1 + Iu1>2m . 2'ylm7 (1 + M)2m X 23m/2) — d(l + ’u)2m . 23m/2. (86)

<
102

Now we substitute (81), (82), and (83) to (80) and obtain Av = d2?™yg+ ', where

=3 Z( 7 (SSHXEg, + SUNXE: ) + viUSK s )+

ij
+ Z Z Ukl Ukl VUXQZ + Z Z UUklw”XQ (87)
iJ ij

with the norm (recall o = v + 2 + 2log,(1 + 1) — ).
[ oz < d202™ + d2GHEN=0m 4 (1 4 p)?m2Em < @lFCiTm—em <

S d||UUX|:’||Q2 . 2(%+’yl—o¢)m'
We would like to write 1, as a sum 1, = bxg + ¢ with [, UU¢$ = 0. We may choose

I5 UUzpl
f UUXD

b= (88)

Using (83) we get [ UOUXD = 22m+2 Using (87) we get
e Z ZV”SU“X% + %:Z(UU“ UUt) Vi X, + ZZ UUMyiy he - (89)
ij ij ij
Apply (78) to 1,
/ b =2 NS (SUBYE + (UUE - UURY I + UUR ).
We may obtain an upper bou:d

[l sy s

< 2m+1

+(ZZ (UUE — UUy v

+ )Z Z UUy

)
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From Lemma 6.19 it follows that
S wuy - vy
kKl ij
Using (85) we deduce

>3 g
From the third part (6.18.2) of Lemma 6.18 we get
DIELHIE
ij
Summing up the last three together, we get

[ 4] <

We conclude that the ratio (88) is bounded by b < 2(l5tn-aym  g2m
Therefore Av = d(22™+b)( )X[H-( ) e Cone( 2(tm—a)m Q2> and || Av|| > d2*m~1.
|

< om . 2(2%+717a)md.

< d(1 4 p)®™ 275 2™ (1 )™,

2(’72+1)md‘

(90)

7. AN INVARIANT CONE FOR THE OPERATOR W s PAW s
2m 2m

The main goal of this Section is to get rid of the dependence of the sequence in the
Preliminary Dynamo Theorem. We exploit properties of the Weierstrass transform,
and construct an invariant cone for the operator W Pt*W 5 , which is independent of
the choice of ||t|| < § =27™°.

7.1. Discretization and the Weierstrass transform toolbox. In this Subsection
we establish the fact that the image of the Weierstrass transform may be very well ap-
proximated by piecewise-constant vector fields associated to some canonical partition.
Two-dimensional discretization operator on vector fields on the real plane, associated

to a partition €2, we define by
Dq: L(R?) N Loo(R?) — X Dov = Y " (d¥ys, +dixs, ), (91)

ij

- de 1 odef 1
d? def —/ vy and dY = —/ Uy (92)
|7y (S2i5) Ja, Iy (2i5)] Ja,

In this section we assume that Q', Q2 and Q3, are three arbitrary partitions of the

where

class G(m, ¢), defined on p. 9. In particular, all three partitions satisfy Lemma 4.2.
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Lemma 7.1. Let v € X be a bounded vector field with absolutely integrable components
in R%. Then there exists a constant 3 > 0, that depends on § and on the size of

partition elements, such that
HW%I/ — DQQW%VHQ <2773 |y ;.
One may choose 3 = 1—%4—21(’% =1l—a+ QIOng <1l—a+m.

Proof. We shall show that the inequality holds true for any bounded and integrable
function f: R? — R first. We may write by definition

Waf(e) = [ wilz = f (0t
R2
and for the discretization operator we have that

Do W f(2 Z’ |/Q2 /sz(g (s —t)f(t)dtds - XQ2( ) =
f Z|Q |/ w(; dS XQQ( )dt

Therefore, (22, £1) norm may be bounded as following:

[Wsf = DooWif e, = Z| ol / Waf(2) — WiDga f(2)|dz =
—Z|7ry w’ a2 /R2f(t< Z|Ql| 92 —t)ds - Xﬂz ))dt‘dzg
S/ﬂ@‘f(tﬂz |7, (22 |/
/lf )|dt- supZ’ ]

/lf )|dt - supZ’ ‘

\f )|dt - supz‘
Ty

ws(s —t)ds - XQil(z)‘dzdt <

1
— 12 Jaz,
w(;z t Z|Q

1
ws(z —t) — ]Q ] 0 wg(s—t)ds‘dzg

—t)ds-xaz( ‘dz <

l‘ 92

QQ

max ws(z — t) — minws(z — t)‘dz. (93)

)| 02 z
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We have to find an upper bound for the last term:

max ws(s — ) — min ws(s — t)|dz <
seQ seQ

2 @l o

o)l Jez

<27 msupZ|7rx 2|+ |max ws(z — ) — min ws(z — )| <

2€Q; 2€QZ;
sup Z | ()] - [diam(Q7,)] - sup |V.ws(z —t)| =
zeﬂfj
|d1am
=2 | - sup [Vas(z — )] - |03 <
zEQ%
Idlam(Q?')l
<2 sup (e sup 3 sup Veans(z 1) -0 <
ma)
|diam (Q2))| 2-m |diam (Q2))|
<27 msup —_— |V.ws(2)|dz < sup J (94)
my ()] Jee 0 iy |my ()]
Therefore substituting (94) to (93) we conclude
sup |m, (L) diam
W — Ds Wi flon, < TS gup IRy g03)
|y (251
Similarly, for the supremum norm
||DQQW5VS - W(Sys”oo =
1
= sup / ws(s — t)vg(t)dt — Z = [ ws(z— t)dtdZXQZ_(S>‘ =
S R2 i |QZ]| R2 iJ
= sup sup / ws(s — t)vg(t)dt — / ws(z )dtdz‘
] sEﬂ?j R2 ’sz| Q2 R2
= sup max/ ws(s — t)vg(t)dt — min/ ws(s — t)z/s(t)dt‘ <
ij s€N? R2 SEQ?]. R2
< Sup/ (V[ ws(s — t)u,(t)dt|ds, (96)
Q2 Jy(9F R2
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where v(€2;) is a line segment connecting the points of maxima and minima of the

integrand in Qf] We proceed therefore

||DQ2W5V5 - W(SVSHOO S sup dlam(ng) ’

S/R2 ws(s — t)l/s(t)dt‘ <

< sup diam(€2;;) - sup |v| -sup/
R2

S

Vws(s — t)‘dt <
1 22
< Supdiam(ij) -sup |v] - /R2 7T254,/t§ +t2-e” 2 dt <
< W)
T
We put (95) and (97) together, and conclude that we may find a constant 3 > 0 such
that

(97)

msup |, (Q};)] - |diam(Q2,)] msupdiam(ij)> e

ma. )
x( 5 w1 (Q)] 5

Remark 10. It follows from the properties of partitions of the class G(m, ¢), Lemma 4.2,

that v3 < 1 — « and it may be chosen arbitrary close to 1 — a.
Lemma 7.2. Let Q) be a partition of R? the class G(m,§). Then

IWaxo — DaWsxolla < 2774 (7.2.1)
[Wisxo — xalle < 27™% (7.2.2)

Proof. We start with the first inequality. The upper bound for the supremum norm

is trivial. Indeed, observe that for any non-negative integrable function f and any

/
~ ; > (),

1
L[ <swirl
| 'LJ| Qij Qij

element €;;

sup f >

and, consequently,

.
Qij

Therefore

ws(z — t)dtdsxa,, (2 )‘ =

stz o= 33 w/ /

= sup sup‘/w(;z t)dt— / /w(gs t)dtds
ij  2€8Q;; |QZ]|

sup
z

<supsup’/w52 tdt‘<1

ij  2€8Q;
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Now we consider (€, £;)-norm. Let k be such that e¥ > 2™ and k < m. Introduce

three sets of indices:

ri: ={(i,5) € Z° | Qi C Oy_ps};
ro: = {(i,5) € Z* | Qij C Diyrs, Quj € O1rs};
rs: ={(i,5) € Z* | Quj ¢ Diss}-

We split the sum of integrals in three parts:

1
|7Ty ol /le’/ ws(z dt — Z_IQUI /in/Dw(;(s—t)dtdsxgij(z))dz:
Z‘W Q\/ / ‘/w(;z—tdt ]Q\/ /w(gs—tdtds’dz
y 1]

<Z+Z+Z P ng|/ ‘/U}(g t)dt — ]Q”|/ /w5 s—tdtds’dz

98)

We estimate the three sums separately.

Observe that for any (i,7) € r; and any z € ;; C Oy_ps

ko ok
1 >/w5(z —t)dt = / ws(t)dt > / / t)dt,dt, = / / wi (t)dt > 1 — 4e™F.
O 00—z —kJ—k

Therefore

Z|7r ’/ ‘/w(; dt—|Q|/ /w(;s—tdtds‘dz<
y( ij

) P ‘1 - —/ (1 —4e_k)‘dz < 2 Nyt <
; |7Ty(Qij)! /Q] €251 S, inf |, (€2;;)] ; !

(1 — ko)?

- 2m€k inf ‘WQ(QUN

< sup diam|€2;;|. (99)
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Observe that for any (i,j) € 7, and any z € (),

sup‘/w(;z—tdt / /w(ss—tdtds’<
2€8Q;;5 |Qw|

< sup |V, / ws(z — t)dt‘ - diam(€2;;) < sup /‘Vzw(;(z — t)’dt - diam(€2;;) =
0

ZGQ”‘ ZEQl‘j O

(Zw—t:c)2_(zy—ty)2

1 —_—— 5 .
= sup /D 1254 \/(Zx —to)? + (2 —1y)? - € 267 dt - diam(€2;;) <

ZGQij

1 _ Ga—ta)?=(zy—ty)? 4diam(€2;;)
< —— |2y — s —t.]) - 32 dt - di 0;) < ———12
< s [ty =) e (2, < “25

Therefore

1
Z/ ’/ ws(z —t)dt — / / ws(s —t)dtds - xq,,(2)|dz <
- Ja,;'Jo €2%5] Ja,; Jo

4 sup diam(§2;;)
J

< Z ‘QU’M < ((1+k5)2—(1—k5)2)

5 < 16k sup diam(€2;;).

T2

(100)
Finally, for the third term we cut r3 into squared annuli
aly,: = {(i;j) € 7"17| Qz’j C E’1+ (k+n)d> Qij Z D1+(k+n—1)5}'

Obviously, U al, =11, and Y ;] < 20 + 6%(2k + 2n — 1). Therefore,

ain

Z/ ‘/W dt_|Q_1ij’/%/Dw5(S—t)dtds‘dz:
./Dw‘;(z_t)dt_m_lm/%/Dwa(s—t)dtds)dz:

1
_ZZ\QM sup‘/w(;z—tdt 0 |/ /w(g(s—t)dtds)g

n=0 aip

< ZZ €25 - diam(€2;;) - sup /‘Vzw(;(z — t)‘dt <

n=0 ain ZeQij U

> . 4 (k+n)2
<Y 1y - diam(Qy;) - € < 4supdiam(€2;). (101)

n=0 aip,

Substituting up (99), (100), and (101) to (98):

HW%XD — DQW%XDHQ < 32msup diam(€2;;).
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We conclude, using the second part of Lemma 4.2: Q;; C Rec(2'7™, 21=™)
[Wsxa — DaWsxolla < max(32m sup diam(€;;), 27™/4) = 27™/4,

Now we consider the second inequality (7.2.2). Obviously, ||[Wsxo — xollee < 1. We
proceed to the weighted (€2, £;)-norm. We shall show that

2—m 126
|Wsxo — xollo,e, = —/ (Wsxo — xo| £ =— : (102)
zg:|ﬂy“?ﬁ)\ 2 2 inf |m, (§2;)

By straightforward calculation
Z / |W5XD X|]| Z / ‘/w(s Z—t dt_XD ‘dz<
|7y (€235 |7y (€245
2 m
g—- / ’/w(gz—tdt‘dz—l—/‘/w(gZ—tdt—l‘dz> (103)
lnf ‘ﬂ'y R2\O

Recall the error function

erf(2): :/0 ﬁe’de;

and its antiderivative

/erf(z)dz = zerf(z) +

We estimate each of two terms of (103) separately.

252 dxldtl

1=t “"”% 1 % 1 2
e 22dxdt :/ ——e “idxydty =
/ /1 —t \/271'(5 o L Jou T o

V25
1 [, [ 2 i 9
25 2 28 2
- = el = el )dt -
2/_1</0 e "’”/ ¢ dr)dh
1 [t 1—t 1+t
= — erf [ —— | + erf dt
2/1 ( V26 ) ( V26 ) b

= %(/Oﬂ/(S erf(z)dz — /_(i@/a erf(z)dz) =

e V2/8 e=%°\ |0
= %((zerf(z)+7> 0 /—(zerf(z)—i— ﬁ)‘ﬂ/(s) =

- zerf<?) + \/ga(e—w 1) > (2= 0)(1— e U,

\/%5
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Therefore for the first term of (103) we have

/D’/Dwa(z—t)dt—1‘dz:/<1—/mw5(z_t)dt>dzz

1 (Tl f1)2 2
:4—(/ dxdt><4— 2 —6)2(1 — e 2/%7)2 < 46.
. \/% 191 ) = ( ) ( ) =
We claim
/ / ws(z — t)dtdz < 84.
r2\0O JO
Indeed, using approximation erf(x) =1 — == f e ®dz >1—e" for large x,
/ /+°° e 1 /1 oo Vare-dand
— 262 drdty = ¢ me 1dxdt; =
27r5 1dh = 5 ey 1diy
1 1— 1 /0 1 eFN\ |0
=1- 5/_1erf< VT )dtl =1+4- 5 /_ﬁ/éerf(z)dz =1+ §<zerf(z) + ﬁ>
1/ 1 2 2 —2/8? —2/52
:1+_<__£erf<\/__>_€ )Sl_(1_€—2/62)+L_€
2\ym 0 4] NZ3 V2n 27w
Therefore,

+o0 +o0
/ / / ws(z — t)dtdz < 46%
1 1 O
+o0 1 1 1
/ / / / ws(z — t)dtdz < 20.
1 —1J-1J-1

The claim (105) follows and hence the inequality (102).

and, similarly,

(104)

(105)

<.

_\/5/5:

Lemma 7.3. Let Q' and Q2 be two arbitrary partitions of R* of the class G(m,?).

Then An upper bound for the norm of the Weiertstrass transform is given by

2 Ns
52

[Wsvllz < sup |my ()] - sup [72(Q)] - m* = - I

Proof. Consider a function f € £;(R?) N Lo (R?) with || f|jqx = 1. Then
> D s swlis2®
|y (2 |
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By straightforward calculation

W5 fllaz,e, = Z| () ’ 0 Z/Ql ws(z —t)f dt‘dz<
<2e 3 [ ’Zm N Jos

-m 1
<9 Z/m (Y o+ Y )—m.)' [, itz — .

ws(z — t)dzdt <

kl kl |Qb_9%b”ﬁ |Qb_ﬂikﬂw ’Wy< ij
(106)
We have to estimate two sums separately. We know that [Jws||e < 55; thus
1 7. (QF,
ws(z —t)dz < M
|7Ty(QZ]>| Q2 Y

Therefore, since for a fixed €y, the total number of elements of another partition Q7

satisfying |Q7; — Q| < md is bounded by m?Nj:

1 N,
Z — ws(z — t)dz < sup |m, ()| - m? - 2

- (107)
|QF,—Q2;|[<md |7T3/(szj)| 2, -

We also observe that for any t € Q},

3 ! (r—t)ds < — 1 / (e—t)de < — "
—_— ws(z—t)dz < ————— ws(z—t)dz < ——————.
o2 T )] e, o [ ()
(108)

Substituting (107) and (108) to (106) we get

m e ™ N6
HngHQQ £, =2 Z/ m‘i‘suP’ﬂx<Q?j)l ) 52>dt<

Ns
< sup |, (Q23))] - sup |y (Qp)] 'm2§||f||91,£1-

The upper bound of the supremum norm is easy

W5 flloe = sup

2€R2

[ st = 00| < sup |72

z€R2

The upper bound for the vector fields follows immediately.
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7.2. Constructing an invariant cone. In this Subsection we use approximations we

obtained earlier and two cones constructed for the operator A (Section 6, Theorem 3)

to get an invariant cone in the space X for the operator W s Pg* W _s . The main result
2m 2m

is Theorem 4. We shall prove two Lemmas first.

Lemma 7.4. There exists 4 > 0 such that for any v € Cone (2(%”1’0‘)’”, Ql> and for
arbitrary partition Q% of R? of the class G(m,d):

|DeWavlla = (1 — 27 v
(See p. 8 for a general definition of a cone in X.)

Proof. Let v € X2 be a bounded and integrable vector field. Then similarly to

one-dimensional case, by Lemma 7.3

||W(S V|ozc, = Z 0 (Q )| / ws(z — t)v(t)dt|dz <

QQ

N,
< sup |, ()| - sup |7, (25| -m45—§ vl

By Lemma 7.2 we know that
IWs(?)xo — Da2Ws(9)xoll2 <27

Now we find a lower bound for the norm of || Do2W5({ )xnllaz. Observe that the integral

over the unit square [ ws(z)dz > 1 —e /%,

1Da=Ws(9)xallz = 1Ws(9)xallz — [Ws($)xo — DaeWs()xalla > 1 — 275 — e 1/,
Consider 1 € X1, with |||, < d2GFn—m [ UUtb, = 0. Then by Lemma 7.1
[Ws ) — DgaWs ]|y < d - 20 ma=a)m, (109)

where 73 =1 — a + 210%; and thus by Lemma 7.3

HDQQWAQZJHQ < ||W@1/}||2 +d- 2(%+’71—’73—a)m <
mzN(;
52

We use Lemma 7.2 and (109), to estimate the approximation error for the field Wsv:

4 d -2 tmsmem - (110)

<d-sup ‘ﬂ'y(ijﬂ - sup ’ﬂ-a:<Qzlj)| )

IWs v — DaeWs vy < d[Ws(9)xo — De2Ws ()xall2 + [[Wsth — DaeWs b2 <

< d2m 4 g 2@ emam,
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Observe that by Lemma 7.3, since |[¢|| < 2%“!")/1—047

IWavle=[ldWs(?)xo+Wstlla = [[dWs (Y)xall: = [Wstlls =

2 /82 N
> d(1 = e 1) — sup |y (O2)] - sup (2| - PP >

m2N5

> d(1— ™™ 17) — dsup my ()] - sup |mo ()] - 250" =

Summing up altogether

1D Ws vl > [Ws vlls — [Ws v — DopWs vfy > d(1 — 2704 — /8%

m2N5

— d(sup my (03] - sup |, ()] - 247 20,

We know that ||v| < d(1 +201T3-2m)  Hence
[De2Wsv|| = (1 =27 ][],

where v4 > 0 has been chosen such that

m2N5

sup |, (02)] - sup |7, Q)] Com+dm + 2 tn—m—a)m < g-ym

Remark 11. It follows from Lemma 4.2 and Remark 10 that we can choose the con-

stant'y4tobe0<’y4<}l—’yl<i.

Proposition 7.1. Let T be a chain of partitions associated to the sequence n € .

Let Q' = Y* and Q> = Y be two consecutive partitions from the chain Y. Let

13 o o2ty Consider a linear operator A: Xq, — Xaq,, approvimating the opera-

tor PZ,, defined according to (34). Let Q° be another partition of the class G(m, 9).
DgsWs A: Cone (1,Q') — Cone (2774, Q?) .
(See p. 8 for definition of a cone and the chain Y.)

Proof. According to Theorem 3 p. 45, A: Cone (1,Q') — Cone (2(%“1"‘)7”, QQ>. We

may write then

3 —a)m (%)
Av = 22"(D)xo + ¥, ¥ € Xo,, [¥]2 < d2CTT7m N "y = 0,
O

By straightforward calculation

DasWs Av = 22" DsWs (9)x0 + DasW s 9.
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Using Lemma 7.1
|1 DasWsth — Wath||s < 270™|ep|, < d2@itn—s—em,

Thus introducing 4 defined by Lemma 7.4 and using Lemma 7.3,

[DesWisthlls < [[Waplls + [ DasWstp — Was )]s <
< 22D gup |7y (25)] - sup |mo (Q3;)] - mZ% + d2Catnmem < gomm - (117)
By Lemma 7.2 we deduce
I DasWs (9)x0 - (xalls < 2774
Thus we may conclude
d2" DosWs (§)x0 = 2" (§)xa + ¢ € Xas,
where ||¢||3 < d2%™/2. Together with (111) we get the result. [ ]

Theorem 4. Let Q2 be a partition of R? of the class G(m,d); and let ||€]loo < 0 be a

sequence of real numbers. There exists ri(m) < ro(m) and e1(m) < e2(m) such that
W%Pg*W%: Cone (r1,1,) — Cone (rg, 9,Q) C Cone (r1,1,2) .
W2 PEW s lcone(r.cr || = 277
(See p. 8 for definition of a cone in the space of vector fields).

Proof. Let Q! be a canonical partition for the map Pg. First of all we shall find a
number r; such that for any n € Cone (11, 2) we have Do, W s n € Cone (1,Q1). We
may write n = (§)xog + ¢, with Y9y =0 and |[¢[|q < dry. Then

D91W2L77 = (3)D§21W2LXEI + DmWQL%U;
and using Lemmas 7.1 and 7.3, we calculate

[1DaxW s ¢l < W[l + [[Dax W s 0 = Ws 4bly <

N, N,
< (2—%’” + 22—2mm45—j> [llo < 5drm'272" = (112)

Using Lemma 7.2, we calculate

1Dt W s xo — xolly < 287774, (113)
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which implies Dor W5(9)xo = (9)xo+v1, where ¢, € Xqg1 and [[1h1]); < 2'7™/%. Hence
Do W s = (g)xa + Do W s xo + 1, where

N,
[DexW s xo +¢nll < dry (77142*2’"—‘s T 21*M/4)_

52
In order to guarantee Dg, W ER/AS Cone (1,Q') it is sufficient to choose 71 such that
N,
do—2m*Yo
27— < —.
m (52 - T
We set 2mg2
det 27"
= —. 114
"7 InAn, (114)

We can also notice using Lemma 7.1 that
HDQlW%n — W%?’]Hl S dr12_73m.

Taking into account Doi W s 1 € Cone (1,2') we deduce Wane Cone (1,7,27m Q).
We also observe that by Lemma 7.3 for any v =n+g¢g € Cone (r1,€1,2) we have
N§ 1681 ~
2 _ _.
”WﬁgH <deym 22m§2 e, €1

We will be assuming that €1 > r1277"™. Then without loss of generality

W s : Cone (ry, 1, Q) — Cone (1,87,). (115)

2m
Let A: Xq1 — Xq2 be a linear operator approximating Pg* and defined by (34), p. 15.
It follows from Theorem 3 p. 45, that A: Cone (1,Q!) — Cone (2(%”1_“)’”, Ql> C Xqz;
moreover, the norm is growing exponentially with number of iterations || A |cone(1,01) || = 2771

In particular, we see that for any vector field v € Cone (1,Q!),
§_Oé m
AVl = A(S)xa + ¥)]l2 > d A(9)xollz — [|AY]e > d2¥™ (1 — 20Fa=em)

Consider a vector field v =v + g € @(1,5,91), where v € Cone (1,Q') C Xq1 is
a piecewise constant part with the norm [|v||; < d and ||g||; < £1d. Then by linearity
PZv = PAv+ PZg. By inequality (6.17) of Lemma 6.17,

|Peglle < m2™™|lg| < mdz22" 2. (116)

By Proposition 6.3 for v € Cone (1,Q') C X

sup diam(€2;;)

W2 (P2 = Ao < 8525

22|y, < d2™H6. (117)
We have decomposition

Ws Plo=Ws PLv+W.s Plg=W, (P& — Av+ W Av+ W Pig.  (118)
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We write W Av and W s Pg u as a sum of piecewise-constant part and a remainder
2m 2m

*

W%.Ayzl/l—l—gl, WhereylzDQW%AVE%Q, andglzw%Ay—DQW%Au;

(119)
W%Pg*g:l/g + g2, where vy = DQW%PEQ*Q € Xq, and gQZW%Pg*g — DQW%P&Q*Q.
(120)
We estimate all four terms separately.
Using Lemmas 7.1 and 6.18, since [|v||; < d, we get
lgille = W o Av — DaW s Av|lq < 274" Av]lq < d2=rem (121)

By Lemmas 7.1 and 6.18, using ||g||; < dé1, and (116)

lgella = IIW 2 P2g — DaW s Pig

0 < 27| PLg|lo < mde;2@m+2, 122
13

Finally, using (116) and (122),

Ivelle = | DaW s Pe.g

lo <[Py

o+ ||W%P§*g — DQW%ng lo <
< mde 22 (14 279™). (123)

We now need a lower bound for the norm of v; defined by (119). By Theorem 3 p. 45
we have Av € Cone (2(%“1*0‘)’", Ql>, and Lemma 7.4 is applicable:

Ille = 1DaW 5 Avllg = (1= 270™) - [|Av|ly = d2>™ (1 — 26 F7m) (1 — 27m),

(124)
We need to check that
v+ vy = DQW%AV + DQW%P&%Q € Cone (rq,) ; (125)
and to verify the inequality
lgille + llgalle + W_s (Pe — Avlle < [lv1 + vefla - 2. (126)

Consider a vector field v = (9)xg+v € Cone (1, Q') with |[¢||; < d and %:wff =0. Us-

ing Theorem 3 p. 45 we write Av = d22™(9)xo+p, where ¢ € X2, and |||y < 2@i+n—oIm,

For the first inclusion (125), we expand DoW 2 Av as following.

DoW s Av = DQW%(d22m(?)XD + ) = d22mDQW2i(9)XD +DoW s =
= d22"(9)x0 + 42" (DaW e (3)xc = We ($)xa + W (9)xo = ($xo )+

+(DQWQLQO_W%S0>+W2LQO.
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We see that by Lemma 7.2
A2 | DWW s (§)xc = W ()xolla < d27™ (127)
42" [W s (9)x0 = (Dxolle < d2i™ (128)
By Lemma 7.1 again, since ||¢[|s < d2@1t7—m
[DaWV s 0 =W s glla < d2f it e, (129)
Therefore we may write
DoW s Av = d2*™(9)xo + ¢ € Xq, (130)
where
¢ = d2""(DaW s (9)xo — (§)x0) + DaW s ¢ € Xg;
with the norm that can be bounded using (127), (128) and (129)
[6lle < &2 DWW & ()xc — (Dxclla + [DaW.s ¢~ Wos llo+ W s gllo <
< a2 a3 gup [, (02 -sup ()] - w2 ) ) <
< 4d - 2@m - (131)
Thus using (130) and (119), (120), we write
DQW%AV+DQW%Pgﬁg = v+ vy =d2"(V)xg + &+ vs. (132)

Then the condition (125): v+, € Cone (72, €2, ) is equivalent to ||¢p+vs|q < dry22™.
We see using (131) and (123) that

16+ vallo < [|6llo + [[va]lo < 4d - 2C79™ 4 4dme 2™ (1 +273™) =
= 4d2*™ (27 + me (1+277™))  (133)
Now recall the second inequality (126)
lorlle + llgalle + W s (P, — Al < &2l + wala. (134)
We know already from (117), (121) and (122),

Hgl||Q+H92HQ+||W%(Pg*_A)VHQ S d22m (2*’73m+&?“12*73m+2(a71)m+1) S 3dé“12(2*’}’3)m.
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Using (124) and (123), we deduce, taking into account Remark 10 and Remark 11

1 15.
13<l—aand v <7 —m,and a = 3:

11 + | > d2?m (1 — 2G+m=eImy (1 — 9= mm) 492 (1 4 271™) >
> 22 (1 — 2GHm=em _g=mm _ 2970m) > g2 (1 — 5973)  (135)
Therefore (125) and (126) would follow from
361271 < gy(1 — &2 %) (136)
2T LS £ E27EM <y, (137)

Recall now that £, = 451m222]yn—552. We may choose the following parameters for the

l—a mao l—« ma l—« mao .

cones 1y = 27T =276, =22 =2 ,and ey, =222 =2 16. Itis
2m §2 o . . N

clear that ry < | = ﬁ and the second condition on the norm follows immediately

from (132), (133), and (134).
[ |
The proof of the existence of an invariant cone is complete. The fast dynamo theorem

in dimension two follows as shown in Section 5.
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