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Abstract

Given an expanding map of the interval we can associate an absolutely continuous
measure. Given an Anosov transformation on a two torus we can associate a Sinai–
Ruelle–Bowen measure. In this note we consider first and second derivatives of the
change in the average of a reference function. We present an explicit convergent series
for these derivatives. In particular, this gives a relatively simple method of computa-
tion.

1 Introduction

Linear response can often be used to describe how physically relevant quantities respond
to external stimuli. We recall the following informal description of Ruelle Ruelle [2009]:
“Linear response theory deals with the way a physical system reacts to a small change
in the applied forces or the control parameters. The system starts in an equilibrium or
a steady state ρ, and is subjected to a small perturbation x, which may depend on time.
In first approximation, the change ∆ρ of ρ is assumed to be linear in the perturbation
x”. A more mathematical formulation is the following. Let f : M → M be a smooth
discrete time dynamical system (on a compact Riemann manifold M) admitting a
unique SRB measure µ. Assume that λ 7→ fλ is a smooth path through f = f0 and
that there exists a large enough set Λ, containing 0 as an accumulation point, so that
fλ admits an SRB measure µλ for each λ ∈ Λ. One asks how smooth the map λ 7→ µλ
at 0, in particular whether it is differentiable (see Baladi [2008]).

Ruelle presented explicit formulae for the first derivative (using the susceptibility
function) in Ruelle [1997]. For example, if we associate a vector field X so that fλ =
f0 + λX ◦ f + o(λ) then one can hope to write

∂

∂λ

(∫
gdµλ

) ∣∣∣
λ=0

=
∞∑
n=0

∫
〈X, grad(g ◦ fn0 )〉dµ. (1)

However, to make sense of this expression one needs, for example, that the right hand
side of (1) converges in a suitable sense.

An approach suggested by Ruelle, was to consider the susceptibility function

Ψ(z) =
∞∑
n=0

zn
∫
〈X, grad(g ◦ fn0 )〉dµ, (2)

which reduces to (1) when z = 1.
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1.1 Maps of the circle 1 INTRODUCTION

In an incomplete manuscript of Sondergaard and Cvitanović, the authors propose
the idea of studying this problem using a different approach involving a complex func-
tion defined using periodic orbits Cvitanovic [2008]. We want to develop further these
ideas in the context of Cω expanding maps and Anosov diffeomorphisms, a key point
being the use of a somewhat different complex function. (A related problem was posed
by Baladi in §5 in her survey Baladi [2008], where she asked about the relationship of
periodic points and linear response.) In particular, we present an alternative convergent
series for the Right Hand Side of (1), which has the merit of being easily computed.

The problem of computing the first derivative of the integral was studied by Bah-
soun and Galatolo Bahsoun at al. [2015].

We consider the problem in the settings of expanding maps of the circle and Anosov
diffeomorphisms of the torus. Our results are as follows.

1.1 Expanding maps of the circle

The simplest possible setting in which to study these problems is expanding maps of
the circle.

Let us take a family of Cω expanding maps Tλ : T1 → T1, λ ∈ (−ε, ε), on the unit
circle K = R/Z. We denote by

dµλ = ρλ(x)dx

the associated absolutely continuous invariant measure, with density ρ ∈ Cω(T1) Collet
and Eckmann [2009]. Given a Cω function g : T1 → C we can consider the average∫
gdµλ, which has an analytic dependence on λ ∈ (−ε, ε), and find an expression in

terms of periodic orbits for the derivatives.

A =
∂

∂λ

(∫
gdµλ

) ∣∣∣
λ=0

and B =
∂2

∂λ2

(∫
gdµλ

) ∣∣∣
λ=0

(3)

In particular, this would lead to a series expansion∫
gdµλ =

∫
gdµ0 + λA+ λ2

B

2
+ o(λ2). (4)

The following theorem is our main result on expanding maps and gives both the de-
sired expression for the coefficients in (3) in terms of periodic points and convergence
estimates which will be useful later for computations.

Theorem 1.1. Let Tλ be a family of Cω expanding maps of the circle, let µλ be the
absolutely continuous invariant probability measure and let g be a Cω test function.
Then

1. The first and the second coefficients A and B may be written as explicit convergent

series A =
∞∑
n=0

An and B =
∞∑
n=0

Bn;

2. The kth term of the series is defined in terms of periodic points of period ≤ k;

3. The partial sums Sn(A) =
n∑
k=1

Ak and Sn(B) =
n∑
k=1

Bk of the first n terms in

each series converge faster than any exponential to A and B, respectively, i.e.,
|Sn(A)| ≤ α exp(−βn2) and |Sn(B)| ≤ α exp(−βn2) for some α, β > 0.
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1.2 Anosov diffeomorphisms 1 INTRODUCTION

For clarity of exposition, we have formulated the result for expanding maps of the
circle, but an extension to expanding maps in higher dimensions also holds.

Contributions to the study of this and related problems have been made by Ru-
elle Ruelle [1997] and Ruelle [2003], Baladi and Smania Baladi and Smania [2013],
Baladi and Smania [2012], Baladi and Smania [2010]; Dolgopyat Dolgopyat [2004],
Liverani and Butterley Butterley and Liverani [2007].

The connection with periodic points is not unfamiliar, we recall

Lemma 1.2. The average of a test function is related to periodic orbits by the formula∫
gdµλ = lim

n→+∞

∑
Tnλ xλ=xλ

g(x)/|T ′λ(xλ)|∑
Tnλ xλ=xλ

1/|T ′λ(xλ)|
.

The rate of convergence in this lemma is typically only exponential, which is the
same as the growth rate of the number of the periodic points needed to compute the
terms.

However, our goal is to give an explicit convergent power series in λ, where the
coefficients can be efficiently computed in terms of periodic points, as in Theorem 1.1.

1.2 Anosov diffeomorphisms

We recall that a diffeomorphism f : M →M on a compact manifold is Anosov if

1. there exists a continuous (in the manifold) Df -invariant splitting TM = Es⊕Eu
and constants C > 0 and 0 < λ < 1 such that ‖Dfn|Es‖ ≤ Cλn and ‖Df−n|Eu‖ ≤
Cλn for n ≥ 0.

2. f is transitive, i.e. there exists a dense orbit.

Let us consider a family of Cω Anosov diffeomorphisms fλ : M →M , λ ∈ (−ε, ε). Let
µλ be the associated Sinai–Ruelle–Bowen measures.

Given a Cω function g : M → R we can consider the average
∫
gdµλ, which has an

analytic dependence on λ ∈ (−ε, ε) and find an expression for its derivatives in terms
of periodic orbits.

A =
∂

∂λ

(∫
gdµλ

) ∣∣∣
λ=0

and B =
∂2

∂λ2

(∫
gdµλ

)∣∣∣
λ=0

In particular, this would lead to a series expansion, similar to (4)∫
gdµλ =

∫
gdµ0 + λA+ λ2

B

2
+ o(λ2). (5)

The following theorem is our main result on Anosov diffeomorphisms and gives
both the desired expression for the coefficients in (5) in terms of periodic points and
convergence estimates which will be useful later for computations. Let us restrict to
the case of Anosov diffeomorphisms of the two torus T2.

Theorem 1.3. Let Tλ be a Cω family of Anosov diffeomorphisms of T2, let µλ be the
SRB measures and let g be a Cω test function. Then

1. The first and the second coefficients A and B may be written as explicit convergent

series A =
∞∑
n=0

An and B =
∞∑
n=0

Bn;
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1.3 Examples 1 INTRODUCTION

2. The k’th term of the series is defined in terms of periodic points of period ≤ k;

3. The partial sums Sn(A)
def
=

n∑
k=1

Ak and Sn(B)
def
=

n∑
k=1

Bk of the first k terms in

each series converge faster than any exponential to A and B, respectively. In
particular, there exist constants α, β > 0, which can be explicitely estimated, such
that Sn(A) ≤ α exp(−βn2) and Sn(B) ≤ α exp(−βn2).

For clarity of exposition, we have formulated the result for Anosov diffeomorphisms
of T2 , but an extension to higher dimensional Anosov diffeomorphisms also holds.

We present the explicit formulae for the Sn(A) and Sn(B) in a later section.
The connection with periodic points is again well known:

Lemma 1.4. The average of a test function is related to periodic orbits by the formula∫
gdµλ = lim

n→+∞

∑
Tnλ xλ=xλ

g(x)/|det(DTλ|Eu)(xλ)|∑
Tnλ xλ=xλ

1/|det(DTλ|Eu)(xλ)|

The rate of convergence in this lemma is typically only exponential, which is the
same as the growth of number of the periodic points needed to compute the terms.
Thus Theorem 1.3 provides a faster and more efficient means of approximation.

1.3 Examples

To illustrate the efficiency of the approach to numerical computation we can consider
several simple examples.

1.3.1 Expanding maps of the circle

Example 1.5. Let T0 : [0, 1]→ [0, 1] be the doubling map defined by

T0(x) =

{
2x if 0 ≤ x ≤ 1

2

2x− 1 if 1
2 < x ≤ 1.

x

T0(x)

1

0 11
2

x

Tλ(x)

1

0 11
2

n Sn(A) Sn(B)
7 −0.00189764 7.847249099
8 2.503 · 10−5 7.655670510
9 −1.73 · 10−7 7.658058404
10 6.24 · 10−10 7.658050630
11 −1.15 · 10−12 7.658050565
12 1.42 · 10−13 7.658050566

Figure 1: (a) The doubling map T0; (b) The small perturbation Tλ; (c) Approximations to
the first derivative and to the second derivatives.

Let Tλ : [0, 1]→ [0, 1] (− 1
2π < λ < 1

2π ) be the map defined by

Tλ(x) =

{
2x+ λ sin(2πx) if 0 ≤ x ≤ 1

2

2x− 1 + λ sin(2πx) if 1
2 < x ≤ 1.
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2 APPROACH OF THERMODYNAMICS

n Sn(A)
4 8.103482255823
5 3.191273209097
6 −5.060637127313
7 −1.072969824595
8 0.002785871255
9 0.002790864776
10 0.002790864709

Figure 2: The case of Anosov diffeomorphisms. (1) Original domain (2) the image under T0.
(3) The image under Tλ. (4) Approximations to the first derivative ∂

∂λ

∫
gdµλ.

Let g(x) = cos(2πx). In this case the value A = 0 can be obtained as a part of
general statement, outlined in the Appendix 4.2 p. 13, and this leads to a useful check
on the numerics. In particular, using only ≈ 2000 periodic points with period ≤ 10 we
see from Table 1 (a) accuracy to 9 decimal places. Similarly, we have a method for

finding numerical approximations Bk to B = ∂2

∂λ2

∫
gdµTλ |λ=0 using periodic orbits of

period ≤ k. For instance, using only ≈ 8000 periodic points with period ≤ 12 we get
accuracy to 9 decimal places.

1.3.2 Anosov diffeomorphisms

Example 1.6. We can consider the Arnol’d CAT map T0 : T2 → T2 given by

T0(x, y) = (2x+ y, x+ y) mod 1;

and define a small perturbation

Tλ(x, y) = (2x+ y + λ cos(2πx), x+ y) mod 1.

The number of periodic points of T0 grows exponentially like
(
3+
√
5

2

)n
, and they are

equidistributed. We need to choose test function changing rapidly in order to re-
duce computational error. For example, one can consider g(x, y) = sin(19 sin(2πx) +
41 cos(2πy)). We obtain A = 0.00279 . . . with ≈ 6000 periodic points of period 9 with
accuracy to 10 decimal places.

2 Approach of thermodynamics

We will present the argument in a simple case of expanding maps and explain afterwards
the changes needed in the case of invertible Anosov diffeomorphisms.

2.1 Expanding maps of the circle

We will begin by reviewing thermodynamic formalism for expanding maps of the circle.
This then allows us to describe the zeros of the complex determinant function we need
to introduce. Finally, we explain how the determinant function can be used to study
the linear response problem for expanding maps of the circle.
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2.1 Expanding maps of the circle 2 APPROACH OF THERMODYNAMICS

2.1.1 Thermodynamic formalism

Let T : T1 → T1 be an expanding map on the unit circle. We can consider the Cω

function F : T1 → R defined by

F (x) = − log |T ′(x)|.

Definition 2.1. We define the pressure function P : C(T1,R)→ R by

P (F ) := sup
m

{
h(m) +

∫
Fdm

}
where the supremum is over all T -invariant probability measures. Let µF be the Gibbs
measure associated to F , i.e.,

P (F ) = h(µF ) +

∫
FdµF

Let us consider an analytic family Fλ : T1 → T1 of expanding maps on the circle
with parameter λ ∈ (ε, ε) and denote µλ := µFλ .

The following result is well known Ruelle [2004].

Lemma 2.2. Let g : T1 7→ R be a real analytic function. Then the function t 7→
P (Fλ + tg) is analytic and we can write

∂P (Fλ + tg)

∂t

∣∣∣
t=0

=

∫
gdµλ

2.1.2 Determinant for the expanding maps

We now introduce a complex-valued function of three variables, associated to the fam-
ily Fλ : T1 → T1 and a test function g : T1 → C

Definition 2.3. The determinant d : C×R×(−ε, ε)→ C, is a formally defined function

d(z, u, λ) = exp

− ∞∑
n=1

zn

n

∑
Tnλ xλ=xλ

exp(−ugn(xλ))

|(Tnλ )′(xλ)| − 1

 (6)

where the second summation is over periodic points xλ for Tλ of period n and we write

gn(xλ) =
n−1∑
k=0

g(T kλxλ).

It is relatively classical to show the following.

Lemma 2.4. For z ∈ C, λ ∈ (−ε, ε) and u ∈ R we have that:

1. d(z, u, λ) converges to an analytic function for |z| < exp(−P (Fλ − ug));

2. d(z, u, λ) has an analytic extension in z ∈ C to the entire complex plane C;

3. z 7→ d(z, u, λ) has a simple zero at z(u, λ) = exp(−P (Fλ − ug)).

These results can be easily deducted from the paper of Ruelle Ruelle [1976] and his
book Ruelle [2004], but we briefly recall the idea of the argument.

Let us treat the circle T1 as the unit interval [0, 1]. Let [0, 1] ⊂ U ⊂ C be its
complex neighbourhood. We let B be the Banach space of bounded analytic functions
f : U → C with the supremum norm ‖ · ‖∞.
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2.1 Expanding maps of the circle 2 APPROACH OF THERMODYNAMICS

Definition 2.5. To a family of maps Fλ ∈ B and a test function g ∈ B we associate
the transfer operator Lu,λ : B → B:

(Lu,λ)f(x) =
∑
k

exp
(
(Fλ − ug)(Tkx)

)
f(Tkx)

where Tk : U → U are Cω contractions with Tk(U) ⊂ U , and Tλ ◦ Tk is the identity
map.

Providing that Fλ : U → C and u : U → C are analytic, the operators Lu,λ are
nuclear. In particular, the determinant

det(I − zLu,λ) = exp

(
−
∞∑
n=1

zn

n
trace(Lnu,λ)

)

is an entire function in z. The previous statements come easily from results of Ru-
elle Ruelle [1976], after Grothendieck Grothendieck [1995]:

Lemma 2.6 (Grothendieck–Ruelle). We can expand the determinant in a power series

det(I −Lu,λ) = 1 +
∞∑
n=1

an(u, λ)zn, where the coefficients an satisfy: there exists α > 0

and 0 < θ < 1 such that |an(u, λ)| ≤ αθn2
.

In particular, we see the following

Corollary 2.7. Let z = z(u, λ) be the real zero for d(z, u, λ), i.e. d(z(u, λ), u, λ) = 0.
Then z(0, λ) = 1 for all λ ∈ (−ε, ε).

Proof. By Rohlin’s equality we have that P (Fλ) = 0 for all λ ∈ (−ε, ε).

Using Lemma 2.2 we can observe

∂

∂λ
z(u, λ) =

∂

∂λ
exp(−P (Fλ − ug)) = −z(u, λ)

∂

∂λ
P (Fλ − ug)

2.1.3 Analytic dependence of the average on measure

Implicit to our analysis is that the function λ 7→
∫
gdµλ is analytic in λ, from which we

can then turn to the problem of solving the derivatives. This is part of a general result
whereby we consider analyticity of the determinant d(z, u, λ), defined by (6). We may
introduce an analytic function η : C× (−ε, ε)→ C by

η(z, λ) :=
∂ log d(z, u, λ)

∂u

∣∣∣
u=0

=
1

d(z, u, λ)

∂d(z, u, λ)

∂u

∣∣∣
u=0

=
∞∑
n=1

zn
∑

Tnλ xλ=xλ

gn(x)

n

1

|(Tnλ )′(xλ)|

Lemma 2.8. The function η(z, λ) has a simple pole at s = 1 with residue
∫
gdµλ.

For each individual periodic point Tnλ xλ = xλ we have a Cω function (−ε, ε) 3
λ 7→ xλ. Moreover, we can find a common neighbourhood (−ε, ε) ⊂ U such that
(−ε, ε) 3 λ 7→ xλ has an analytic extension to U .
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2.2 Anosov diffeomorphisms 2 APPROACH OF THERMODYNAMICS

Lemma 2.9. In a neighbourhood 1 ∈ V ⊂ C we have that V 3 z 7→ 1/η(z, λ) is
analytic. Moreover, U 3 λ 7→ 1/η(z, λ) ∈ Cω(V,C) is also analytic.

Recall Corollary 2.7. We can use the residue theorem to deduce that

U 3 λ 7→ 1/η(z, λ) 7→
∫
gdµλ

is analytic.

2.2 Anosov diffeomorphisms

Let T : T2 → T2 be an Anosov diffeomorphism of the torus, i.e. we assume that there
exists a DT -invariant splitting T2 = Es⊕Eu, and C, ρ > 0 such that

∥∥DTn|Es∥∥≤ Cρn
and

∥∥DT−1|Eu∥∥ ≤ Cρn. We also assume that the map T has a dense orbit.
We will begin by reviewing thermodynamic formalism for Anosov maps of the torus.

This then allows us to describe the zeros of the complex determinant function we need
to introduce. We also include a brief description of the Banach space and operators
(due to Rugh) that we use.

2.2.1 Thermodynamic formalism

We can consider the Hölder function ϕu : T2 → R defined by

ϕu(x) = − log | det(DxT |Eu)|

and the Cω function ϕ : T2 → R given by

ϕ(x) = − log | det(I −DT )|

Definition 2.10. We define the pressure function P : C(T2,R)→ R by

P (T ) := sup
m

{
h(m) +

∫
TdmT

}
where the supremum is over all T -invariant probability measures. Let µT be the Gibbs
measure associated to T , i.e., the unique T -invariant probability measure such that

P (T ) = h(µT ) +

∫
TdµT .

Let Tλ : T2 → T2 be a family of Anosov diffeomorphisms. Let ϕuλ and ϕsλ be the
associated functions. The following result is well known Ruelle [2004].

Lemma 2.11. Let w : T2 7→ R be a real analytic function. The function t 7→ P (−ϕλ+
tw) is analytic and we can write

∂P (ϕλ + tw)

∂t
|t=0 =

∫
wdµλ,

where µλ is the SRB measure and P (ϕuλ) = 0.
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2.2 Anosov diffeomorphisms 2 APPROACH OF THERMODYNAMICS

2.2.2 Determinant for Anosov diffeomorphisms

We recall the result of Rugh from Rugh [1996]. For a real analytic Anosov diffeo-
morphism T : T2 → T2 and a positive real analytic function g : T2 → R+ given by
g(z) = exp(w(z)) we can associate the function

d(z)
def
= exp

(
−
∞∑
n=1

zn

n

∑
Tnx=x

n−1∏
k=0

g(T kx)

det(DTn(x)− I)

)
.

which converges for |z| < exp(P (−φu + w)). In particular, we observe that

lim
n→+∞

exp
(n−1∑
k=0

φu(T kx)
)

det(DTn(x)− I)
= 1. (7.1)

We have the following interpretation.

Proposition 2.12 (Rugh). The function d(z) has an analytic extension to C with a
simple zero at z = exp(P (−φu + w)).

However, examining the proof we see that there is an additional analytic depen-
dence. We therefore define

d(z, s, λ) := exp
(
−
∞∑
n=1

zn

n

∑
Tnλ xλ=xλ

exp
(
s
n−1∑
k=0

w(T kλx)
)

det(DTnλ (x)− I)

)
. (7)

Lemma 2.13 (Ruelle–Grothendieck–Rugh). The function d : C × R × (−ε, ε) → C,
given by (7) is analytic. Furthermore, we can write

d(z, s, λ) = 1 +
∞∑
n=1

an(s, λ)zn

where there exists 0 < θ < 1 such that such that |an(s, λ)| = O(θn
2
).

Thus the truncations

d(N)(z, s, λ) = 1 +
N∑
n=1

an(s, λ)zn

are efficient approximations to d(z, s, λ) and lead to approximations to
∫
wdµλ via

the implicit function theorem. As in the case of the expanding maps, one additional
ingredient is the expansion xλ = x0 + λx(1) + · · · and replacing the family of fixed
points xλ by x0 + λx(1), after solving for x(1).

Example 2.14. We can consider the Arnol’d CAT map T0 : T2 → T2 defined by
T0(x, y) = (2x+y, x+y) (mod 1). We can then define Tλ(x, y) = (2x+y+λ sin(2πx), x+
y). The periodic points for T0 correspond to ( x1x2 ) = (An − I)−1 ( nm ) where n,m ∈ Z,
and A = ( 2 1

1 1 ).
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2.2 Anosov diffeomorphisms 2 APPROACH OF THERMODYNAMICS

2.2.3 The Banach spaces and transfer operators of Rugh

For completeness, we briefly recall the approach by Rugh.
The spaces constructed by Rugh in his paper Rugh [1996] were the forerunners of

the modern theory of Anisotropic Banach spaces. For our purposes, the most important
feature is that it retains the property of being a nuclear space.

One associates to the Anosov map a Markov partition P = {P1, · · · , Pk}. Each piece
of the partition can be written in the form [Ui, Si] where Ui ⊂W u(zi) and Si ⊂W u(zi),
for some zi ∈ Pi, and we write [x, y] = W s(x, ε) ∩W s(y, ε) for sufficiently small ε > 0,
depending only on T . Following the original work of Adler and Weiss Adler and Weiss
[1970], and Sinai Sinai [1968], we can model T : T2 → T2 by a subshift of finite type
σ : ΣA → ΣA with transition matrix A.

On each piece Pi of the partition one can consider the natural coordinates associated
to the stable and unstable manifolds (i.e., we can identify points in Pi with Ui × Si
using the above. As is well known, these coordinates are typically only C1. In order
to recover analytic coordinates we need to use an approach introduced by Rugh.

Assume that z0 ∈ Pi0 , Tz1 ∈ Pi1 . In particular, writing z0 = (x0, y0) and z1 =
(x1, y1) we see that for each

1. y0 ∈ Ui0 the map x0(·, y0) : Si1 → Si0 is an analytic contraction.

2. x1 ∈ Si1 the map y1(x1, ·) : Ui0 → Ui1 is an analytic expansion.

Here contraction and expansion are understood in terms of the modulus of derivative
being smaller, or larger, than 1 respectively.

By virtue of real analyticity, we can fix small neighbourhoods Si0 ⊃ Si0 and
Ui1 ⊃ Ui1 with smooth boundaries corresponding to complexifications of these pieces
of unstable and stable maps such that:

1. for any y0 ∈ Ui0 the map x0(·, y0) : Si0 → Si1 is an analytic contraction and, in
particular, x0(Si0 , y) ⊂ Si1 .

2. for any x1 ∈ Si1 the maps y1(x1, ·) : Ui1 → Ui0 is an analytic expansion and, in
particular, y1(x1,Ui1) ⊂ Ui0 .

3. We can solve yj(ξ0, φs(ξ0, η1)) = η1 to get a family of contractions φs(ξ0, ·) : Ui1 →
Ui0 (indexed by ξ0).

4. We define a family of contractions φu(·, η1) : Si0 → Si1 by φu(ξ0, η1) = y1(φs(ξ0, η1))
(indexed by η1).

We can consider the space of functions B := ⊕iCω(Si × (Ĉ − Ui)) consisting of
bounded analytic functions f :

∐
i Ui → C with the supremum norm. We can then

define a transfer operator L : B → B by

Lf(x1, y1) = −
∑

A(i0,i1)=1

1

4π2

∫
∂Si

∫
∂Ui

f(x0, y0) ·G(x1, y0)

(x0 − ϕu(x0, y1))(y1 − ϕs(x0, y1))
dx0dy0

where A is the transition matrix, (x0, y0) ∈ Si0× (Ĉ−Ui0) (x1, y1) ∈ Sj× (Ĉ−Uj), and
G(x0, y1) = ∂2φs(x0, y1) is a weight function associated with the change of variables
(cf. Rugh Rugh [1992]).
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3 DETERMINANT AND TEST FUNCTION

3 Determinant and test function

The coefficients A and B, defined by (3), can be written in terms of the determinant.
They give linear and quadratic approximations to the derivative of the average (4). We
keep the notation introduced in the previous section.

The first coefficient A may be written in a relatively easy closed form.

Lemma 3.1 (Linear approximation).

∂

∂λ

(∫
gdµλ

) ∣∣∣
λ=0

= −

(
∂2d(1,u,λ)
∂u∂λ |u=0,λ=0

∂d(z,0,0)
∂z |z=1

)
+

 ∂2d(z,0,λ)
∂z∂λ |z=1,λ=0

(
∂d(1,u,0)

∂u |u=0

)
(
∂d(z,0,0)

∂z |z=1

)2
 .

Proof. By the implicit function theorem applied to d(z(u, λ), u, λ) = 0 we can write

−
∂d(z(0,λ),u,λ)

∂u

∣∣
u=0

∂d(z,0,λ)
∂z

∣∣
z=z(0,λ)

=
∂z(u, λ)

∂u

∣∣∣
u=0

= z(0, λ)
∂P (Fλ − ug)

∂u

∣∣∣
u=0

=
∂P (Fλ − ug)

∂u

∣∣∣
u=0

, (8)

using the corollary 2.7 to see that z(0, λ) = 1, and by Lemma 2.2

∂P (Fλ − ug)

∂u

∣∣∣
u=0

= −
∫
gdµλ. (9)

We thus see from the two identities (8) and (9) that∫
gdµλ = −

∂d(z(0,λ),u,λ)
∂u

∣∣
u=0

∂d(z,0,λ)
∂z

∣∣
z=z(0,λ)

.

Differentiating with respect to λ and taking into account that ∂z(0,λ)
∂λ

∣∣
λ=0

= 0, we get
the result.

The expression for the second coefficient B = ∂2

∂λ2

∫
gdµλ

∣∣
λ=0

involves third-order
derivatives of the determinant.

Lemma 3.2 (Quadratic approximation).

B =
(∂d
∂z

)−1( ∂3d

∂u∂2λ
− ∂3d

∂u∂λ2
− ∂3d

∂z∂λ2
·
∫
gdµ0−2

∂2d

∂z∂λ
·A−∂

2d

∂z2
·A·
∫
gdµ0

)∣∣∣
u=0,λ=0,z=1

,

where A = ∂
∂λ

∫
gdµλ

∣∣
λ=0

.

Proof. To estimate the value B we differentiate the determinant twice, and calculate
∂2

∂λ2

(
∂
∂ud(z(u, λ), u, λ))|u=0

)
|λ=0 using the identities z(0, λ) ≡ 0 and ∂z(0,λ

∂λ

∣∣
λ=0

= 0.

It is clear therefore that in order to estimate the coefficients A and B, it is sufficient
to be able to compute efficiently derivatives of the determinant. Below we provide
theoretical background and outline computational method.
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3.1 Differentiating determinant 4 NUMERICAL RESULTS

3.1 Derivatives of d(z, u, λ)

Since the determinant is an analytic function, we can expand it in a power series.

d(z, u, λ) = 1 +

∞∑
n=1

an(u, λ)zn. (10)

Comparing the terms in the expansion for d(z, u, λ) given by (6) we get the following.

Lemma 3.3. Let g : T1 → R be real analytic, and let Tλ : T1 → T1 be a family of the
expanding maps of the circle. Then each an(u, λ) depends only on periodic points of
period n, i.e.,

an(u, λ) =
∑

n1+···+nr=n

1

r!

r∏
j=1

 1

nj

∑
Tnjxλ=xλ

exp(−ugnj (x))

(T
nj
λ )′(xλ)− 1


Remark 3.4. In the case of the expanding maps on the circle, we can take any 1

2 < θ < 1

and then α can be explicitly estimated in the upper bound |an| ≤ αθn
2
.

Lemma 3.5. The derivatives of the determinant (6) can be approximated by the sums
of derivatives of coefficients an. Moreover, an upper bound for the approximation error
can be explicitly calculated.

4 Numerical results

We begin with an outline of the algorithm we use for computing the first and second
derivatives of the integrals. We then illustrate this, firstly, for expanding maps of the
circle and then, secondly, for Anosov diffeomorphisms of the torus.

4.1 Outline of the algorithm

Our goal is to calculate partial derivatives of the Taylor series coefficients an. We recall
the determinant identity, that follows from (6) and (7)

exp

− ∞∑
n=1

zn

n

∑
Tnλ xλ=xλ

exp(−ugn(xλ))

|(Tnλ )′(xλ)| − 1

 = 1 +
∞∑
n=1

znan(u, λ);

and consider sums over periodic orbits

bn(u, λ)
def
=

∑
Tnλ (xλ)=xλ

exp(−ugn(xλ))

|(Tnλ )′(xλ)| − 1
. (11)

The Taylor series coefficients and their derivatives can be calculated from recurrent
relation

an(u, λ) = − 1

n

n−1∑
j=0

aj(u, λ)bn−j(u, λ) (12)

where a0 = 1. To avoid accumulation of numerical error we compute the derivatives
analytically for each combination of perturbation and test function g.

12



4.2 Some rigorous values 4 NUMERICAL RESULTS

4.2 Some rigorous values

In the case of expanding maps of the circle, there is a nice criteria for estimating a
linear approximation to the average

∫
gdµ, which is of independent interest.

Theorem 4.1. Assume that Tλ and g are chosen so that there exist a constant C0 and
a polynomial P0 such that for any n

1

|(Tn0 )′| − 1

∣∣∣ ∑
Tnλ (xλ)=xλ

∂

∂λ
(Tnλ )′(xλ)

∣∣∣
λ=0

∣∣∣ ≤ P0(n) (13)

∣∣∣ 1
n

∑
Tn0 (x)=x

gn(x)
∣∣∣ ≤ C0 (14)

then
∂

∂λ

∫
gdµλ

∣∣∣
λ=0

= lim
n→∞

1

n

∂2

∂u∂λ
bn(u, λ)

∣∣∣
u=0,λ=0

; (15)

where bn(u, λ) are sums over periodic orbits given by (11), providing the latter limit
exists.

The hypothesis of Theorem 4.1 are satisfied; in particular, in the examples we will
consider below. The second condition (14) holds true for any test function g with zero
average

∫
gdµ = 0.

Proof. The argument is very straightforward. The conditions (13) and (14), imposed on
the diffeomorphism and the test function, allows one to show, relying on the analyticity
of the determinant, that ∂d(1,u,0)

∂u

∣∣
u=0

= 0 and

∂2

∂u∂λ
d(1, u, λ)

∣∣∣
u=0,λ=0

=
∂

∂z
d(z, u, λ)

∣∣∣
z=1,u=0,λ=0

· lim
n→∞

1

n

∂2

∂u∂λ
bn(u, λ)

∣∣∣
u=0,λ=0

.

Theorem follows from Lemma 3.1.

4.3 Expanding maps of the circle

Using the method described above, one can calculate partial derivatives of the first 16
coefficients a1, . . . , a16 very rapidly.

Example 4.2 (Tλ(x) = 2x + λ cos(2πx) and g(x) = sin(2πx)). The left graph in
Figure 3 shows a plot of sums over periodic orbits, bn and its derivatives against n in
logarithmic scale. We observe that log(bn) = ln(1 + 1

2n−1) ≈ 1
2n−1 converges to 0, as it

should, and each of partial derivatives are asymptotic to exp(−αn) for some constant
α > 0. The right graph in Figure 3 shows a plot of the Taylor series coefficients an and
their derivatives in the logarithmic scale. We observe that the coefficients and their
derivatives converge to zero superexponentially an ≈ exp(−αn2) for some α > 0. The
numerical values for partial sums Sn(A) and Sn(B), approximating the coefficients A
and B, respectively, were given in Table 1. In this example we obtain

∂

∂λ

∫
gdµλ

∣∣∣
λ=0

= 0; and
∂2

∂2λ

∫
gdµλ

∣∣∣
λ=0

= 7.6505 . . .
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4.4 Anosov diffeomorphisms of the torus 5 GENERALIZATIONS
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Figure 3: Representative plots. On the left hand side we see the plot of sums |bn| (dark
blue) and partial derivatives

∣∣∂bn
∂u

∣∣ (blue),
∣∣∂bn
∂λ

∣∣ (light blue),
∣∣ ∂2bn
∂u∂λ

∣∣ (green),
∣∣∂2bn
∂λ2

∣∣ (yellow),

and
∣∣ ∂3bn
∂u∂2λ

∣∣ (red) in logarithmic scale. On the right, the corresponding derivatives of an are
shown. All derivatives are evaluated at λ = 0, u = 0.

Example 4.3 (Tλ(x) = 2x+λ cos(4πx) and g(x) = sin(4πx)). Increasing the frequency
of perturbation and test function, we observe that for the second order partial deriva-
tive log

∣∣ ∂2bn
∂u∂λ

∣∣
u=0,λ=0

6→ 0, and, consequently, we get ∂
∂λ

∫
gdµλ

∣∣
λ=0

= 1.570796326 . . .;

which corresponds to the value π
2 from Theorem 4.1 up to an error 10−12.

These estimates took only 7 seconds on a modern Desktop computer.

Example 4.4 (Tλ(x) = 2x + λ cos(2πx) and g(x) = cos(2πx)). In this example we
consider synchronised perturbation and test function. As a result, we observe that
one of the derivatives ∂an

∂λ

∣∣
λ=0,u=0

vanishes, but log
∣∣ ∂2bn
∂u∂λ

∣∣
u=0,λ=0

6→ 0, and we obtain
∂
∂λ

∫
gdµλ

∣∣
λ=0

= 1.570796326 . . .; which corresponds to the value π
2 from Theorem 4.1

up to an error 10−14.

4.4 Anosov diffeomorphisms of the torus

It is well known that for an Anosov diffeomorphism A the total number of periodic
points of period n is equal to det(An− I), therefore we see that bn(0, 0) ≡= 1 for all n,
and d(z, 0, 0) = 1− z, i.e. a0(0, 0) = 1, a1(0, 0) = −1, and an(0, 0) = 0 for all n 6= 1, 2.
Using a similar method with obvious adjustments, we calculate partial derivatives of
the first 10 coefficients a1, . . . , a10 of the Taylor series expansion of the determinant (7),
evaluated at λ = 0, u = 0. The Figure 4 shows the plots of sums over the orbits bn
and the coefficients an in logarithmic scale. We see a very rapid convergence.

5 Generalizations

Finally, we formulate generalizations of Theorem 1.1 and Theorem 1.3 which can be
proved with the same basic method.
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5 GENERALIZATIONS
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Figure 4: Representative plots. On the left hand side we see the plot of partial derivatives∣∣∂bn
∂u

∣∣ (blue),
∣∣∂bn
∂λ

∣∣ (light blue), and
∣∣ ∂2bn
∂u∂λ

∣∣ (green) in the logarithmic scale. On the right, the
corresponding derivatives of an are shown. All derivatives are evaluated at λ = 0, u = 0.

We begin by considering the generalization of Theorem 1.1 to expanding maps on
d-dimensional compact manifolds.

Theorem 5.1. Let Tt be a Cω family of expanding maps on a d-dimensional compact
manifold, let µTt be the absolutely continuous invariant probability measure and let g
be a Cω test function. Then

1. The first and the second coefficients A and B may be written as explicit convergent

series A =
∞∑
n=0

An and B =
∞∑
n=0

Bn;

2. The kth term of the series is defined in terms of periodic points of period ≤ k;

3. The partial sums Sn(A) =
n∑
k=1

Ak and Sn(B) =
n∑
k=1

Bk of the first k terms in

each series converge faster than any exponential to A and B, respectively, i.e.,
|An| ≤ αe−βn

1+1/d
and |Bn| ≤ Ce−Bn

1+1/d
for some α, β > 0.

Finally, we have generalization of Theorem 1.3 to Anosov diffeomorphisms on d-
dimensional compact manifolds.

Theorem 5.2. Let Tt be a Cω family of Anosov diffeomorphisms, let µft be the SRB
measures and let g be a Cω test function. Then

1. There are expressions for A =
∞∑
n=0

An and B =
∞∑
n=0

Bn in terms of explicit con-

vergent series;

2. The kth term of the series is defined in terms of periodic points of period ≤ k;

3. The partial sums Ak and Bk of the first k terms in each series converge faster
than any exponential to A and B, respectively.

Remark 5.3. The method we have described might also be be applied to Cω expanding
semi-flows and Anosov flows, by using Markov sections.
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Math. Soc. 16. (1955)

H. H. Rugh. The correlation spectrum for hyperbolic analytic maps. Nonlinearity, 5
(1992), 1237–1263.

D. Ruelle. A review of linear response theory for general differentiable dynamical sys-
tems. Nonlinearity 22 (2009), no. 4, 855–870.

D. Ruelle. Differentiation of SRB states. Comm. Math. Phys. 187 (1997), no. 1, 227–
241.

D. Ruelle. Correction and complements: ”Differentiation of SRB states” Comm. Math.
Phys. 234 (2003), no. 1, 185–190.

D. Ruelle. Thermodynamic formalism. The mathematical structures of equilibrium
statistical mechanics. Second edition. Cambridge Mathematical Library. Cambridge
University Press, Cambridge, 2004. xx+174 pp.

16



REFERENCES REFERENCES

D. Ruelle. Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34
(1976), no. 3, 231–242.

H. H. Rugh. Generalized Fredholm determinants and Selberg zeta functions for Ax-
iom A dynamical systems. (English summary) Ergodic Theory Dynam. Systems 16
(1996), no. 4, 805–819.

Ja. G. Sinai. Construction of Markov partitions. (Russian) Funkcional. Anal. i Priložen.
2 1968 no. 3, 70–80.

17


	Introduction
	Maps of the circle
	Anosov diffeomorphisms
	Examples
	Expanding maps of the circle
	Anosov diffeomorphisms


	Approach of thermodynamics
	Expanding maps of the circle
	Formalism
	Determinants
	Analytic dependence

	Anosov diffeomorphisms
	Thermodynamic formalism
	Determinants
	Rugh's approach


	Determinant and test function
	Differentiating determinant

	Numerical results
	Outline of the algorithm
	Some rigorous values
	Expanding maps of the circle
	Anosov diffeomorphisms of the torus

	Generalizations

