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Figure 1: One-funneled torus with Fenchel–Nielsen coordinates: a pair of shortest geodesic γ1,

γ2 and angle inbetween ϕ. Artistic impression. There is no embedding into R3.

A Heuristic analysis of symmetric tori

A.1 Introduction: plots of zeros and conjectures

In this part we apply ideas developed in [7] to study the Selberg zeta function associated to a

symmetric one-holed torus. The Selberg zeta function corresponding to the holed torus would

be the same as the one associated to a genus one hyperbolic surface with a single funnel, the

case studied by D. Borthwick and T. Weich [2], [3].

As before, we start with numerical experiments. It is well-known that as a Riemann surface

a one-holed torus is uniquely defined by the length of two shortest geodesics and the angle in

between as shown in Figure 1. We say that a one holed torus is symmetric if the two geodesic

have the same length and orthogonal to each other. Therefore a symmetric one-holed torus has

only one parameter and we will denote it by T̊(a). We would like to consider three different

symmetric tori1 T̊(10), T̊(14 log 2 + 0.05), and T̊(14 log 2).
It is known [6] that the width of the critical strip is proportional to the reciprocal of the

length of the shortest closed geodesic. Physical dimensions of paper and screen impose limita-

tions on the figures. To make them more realistic, we plot rescaled zeros and chose proportions

of the image to fit the scale on the axis. In addition, the algorithm we are using allows to

compute the zeros in a small part of the critical strip near the real axis 0 <Rs < δ, 0 < Is < e 3a
2

only. We refer to this subset of the zero set as “small zeros”, and these are the only zeros we

consider here, unless stated otherwise.

Three sample plots are shown in Figure 2. The plot in Figure 2(b) corresponds to a small

region of the plot in [4], p. 30, Fig. 7 (bottom) near the imaginary axis, and the plot in

Figure 2(c) corresponds to the plot in [2], p. 7, Fig. 11 (left).

1This choice will be clear later, here we just note that the first choice a = 10 is guided by previous research [2]

and the integer part [ 10
log 2
] = 14.
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We will be using the following notation. Let

Ẑ(a) def= {ẑ = a (Rz + e−2aIz) ∣ ζT̊(a)(z) = 0, 0 < Iz < e 3a
2 } (1)

be a set of small rescaled zeros of the Ruelle zeta function ζT̊(a) associated to the torus T̊(a).
Based on numerical experiments we state several conjectures on properties of small rescaled

zeros, which we will try to explain heuristically in Section §A.4, leaving rigorous arguments for

another occasion.

To characterise the density of the set of small zeros we introduce a cover by open balls

Cr(Ẑ) = ⋃
z∈Ẑ

B(z, r(z)), where r(z) = min
z′≠z,z′∈Ẑ ∣z − z′∣. (2)

The plots illustrating the cover in the cases which we consider are shown in Figure 3.

In order to describe differences between the sets of small rescaled zeros corresponding to

different tori, we will study the dependence of the following characteristics on the length pa-

rameter a.

1. The Hausdorff distance between the convex hull of the set of small rescaled zeros and the

set itself DH(a) def= distH(Conv(Ẑ(a)), Ẑ(a));
2. The area of the cover M(a) def= Area(Cr(Ẑ(a)));
3. Expectation E(a) def= E(inf ∣z − Ẑ(a)∣) and variance V (a) = Var(inf ∣z − Ẑ(a)∣) of the

distance from a randomly chosen point z in the critical strip to Ẑ(a).
Our empirical results are presented in Table 1 and is a basis for the following conjecture.

Conjecture 1 (distribution of rescaled zeros near the real axis). The Hausdorff distance DH ,

the area function M , the expectation E, and the variance V are continuous and monotone

functions with respect to the fractional part { a
log 2}. In particular, DH and M are increasing

while E and V are decreasing. Therefore, a ∈ N log 2 are local maxima for E and V , and local

minima for DH and M .

In the case of T̊(k log 2) for some k ∈ N small zeros can be described more precisely.

Conjecture 2 (the case of rationally-dependent short geodesics). Let a ∈ N log 2. Small zeros

with 0 < Iz ≤ e 3a
2 lie on a small number of well defined lines. Among them, there are a

log 2

lines nearly parallel to the imaginary axis if a
log 2 is odd, and a

2 log 2 lines nearly parallel to the

imaginary axis if a
log 2 is even.

The following conjecture address properties of the non-rescaled zero set of ζT̊(a) independent

of number-theoretic properties of a.
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Table 1: Hausdorff distance, expectation, variance, and area of the cover.

{ a
log 2
} DH(a) M(a) E(a) V (a)

0 0.1671 . . . 0.130210 . . . 0.040 . . . 0.001 . . .

0.072 . . . 0.0356 . . . 0.901338 . . . 0.010 . . . 10−5 ⋅ 5.1 . . .
0.427 . . . 0.0041 . . . 1.060217 . . . 0.006 . . . 10−6 ⋅ 9.6 . . .

Table 2: Dispersion and expectation of the distance to the zero set measured using different

choices of sample points.

Sample point distribution Expectation Dispersion

Symmetric torus a = 14 log 2

regular rectangular 100 × 50000 points 0.040454 . . . 0.001345 . . .

random 50 × 1000 points 0.040417 . . . 0.001347 . . .

random 100 × 50000 points 0.040361 . . . 0.001347 . . .

Symmetric torus a = 14 log 2 + 0.05

regular rectangular 100 × 50000 points 0.010254 . . . 10−5 ⋅ 5.135236 . . .

random 50 × 1000 points 0.010212 . . . 10−5 ⋅ 5.163147 . . .

random 100 × 50000 points 0.010218 . . . 10−5 ⋅ 5.148808 . . .

Symmetric torus a = 10 = 14 log 2 + 0.29 . . .

regular rectangular 100 × 50000 points 0.005994 . . . 10−6 ⋅ 9.705229 . . .

random 50 × 1000 points 0.006002 . . . 10−6 ⋅ 9.641849 . . .

random 100 × 50000 points 0.005972 . . . 10−6 ⋅ 9.657625 . . .

Conjecture 3 (distribution of zeros on a large scale). The zero set of the Selberg zeta function

for T̊(a) has the following properties

1. The asymptotic of the number of zeros in the critical strip with Iz < t is

#{z ∈ C ∣ 0 <Rz < δ, 0 < Iz < t, ζT̊(a)(z) = 0} = 2a

π
t +O(1);

2. Any rectangle in the critical strip of the height π
a contains at least one zero;

3. The real parts of zeros are dense in (0, 1
2δ).
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Figure 2: Characteristic plots of rescaled zeros of symmetric torus. Larger balls mean that the

rescaled zeros are further away.
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(a) The plot shows 1777 rescaled zeros z ∈ Ẑ(10), 0 < Iz < 0.2.
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(b) The plot shows 1382 rescaled zeros z ∈ Ẑ(14 log 2 + 0.05), 0 < Iz < 0.2.
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(c) The plot shows 1359 rescaled zeros z ∈ Ẑ(14 log 2), 0 < Iz < 0.2.
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Figure 3: Characteristic plots of rescaled zeros with a cover by disks of the radius equal to the

distance to the nearest zero. Bigger disks mean that the zeros are further apart.

(a) The cover Cr(Ẑ(10)) of the zero set from Figure 2(a).

(b) The cover Cr(Ẑ(14 log 2 + 0.05)) of the zero set from Figure 2(b).

(c) The cover Cr(Ẑ(14 log 2)) of the zero set from Figure 2(c).
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A.2 Geometry of a one-holed torus

A very good exposition can be found in Buser and Semmler [5]. Here we summarise the results

we need making necessary adaptations to the case we consider. A one holed torus is a genus

one Riemann surface whose boundary consists of a single simple closed geodesic. In order to

estimate the length of the closed geodesics we use Fenchel—Nielsen coordinates and a universal

cover by a holed plane. It turns out that in the case of symmetric one-holed torus the universal

cover has one parameter. Namely, we may consider a right-angled hyperbolic pentagon with

the sides {a,∗, b,∗, a} as shown by the shaded area in Figure 4(a). It is known cf. [1], §7.18

that a and b satisfy the identity

sinh2 a = cosh b.

Fixing the length of the boundary geodesic b we compute

a = 1

2
ln (eb + e−b + 1 +√e2b + e−2b + 2(eb + e−b) + 1) = 1

2
(b + log 2 + e−b + 1

3
e−3b + o (e−3b)) . (3)

We can glue together four identical pentagons Q and obtain a hyperbolic right-angled octagon

Q̃ as shown in Figure 4(a). The octagon is uniquely determined up to an isometry by b, which

can vary freely in (0,+∞).
For visualisation purposes, consider the octagon Q̃ as an ordinary right-angled octagon on

R2 plane, with four quarters of a circle as alternating sides and other four sides parallel to

coordinate axis. We assign labels ▽ and △ to two sides parallel to the horizontal axis and▷ and ◁ to the sides parallel to the vertical axis. Translating the octagon along vertical and

horizontal axes we obtain a tessellation of a holed plane Ω, where the holes are Euclidean disks

made of four quarters of the boundary circles glued together, as shown in Figure 4(b). The

holed plane Ω is a universal cover of a symmetric one-holed torus, and carries the hyperbolic

structure of Q̃. Evidently there is a natural action of the group Γ = Z × Z on Ω by isometries

and copies Q̃i,j of Q̃ are fundamental domains. Two dashed lines in Q̃ give a pair of shortest

closed geodesics in Ω/Γ, which are generators of the fundamental group.

We can use the isometry between the plane and the torus with hyperbolic metric in order

to estimate the lengths of closed geodesics.

It is known that every closed oriented geodesic γ on Ω/Γ is freely homotopic to a periodic

word . . .△n1 ▷k1 △n2 ▷k2 . . .△nt ▷kt . . . of period ω(γ) def= ∣n1∣ + . . . + ∣nt∣ + ∣k1∣ + . . . + ∣kt∣ where

nj and kj are integers and ◁=▷−1, △=▽−1. We denote this geodesic by

γ(△n1▷k1△n2▷k2 ...△nt▷kt),
and we call the periodic sequence (△n1 ▷k1 △n2 ▷k2 . . .△nt▷kt) the cutting sequence associated

to the closed geodesics. A good exposition on cutting sequences associated to closed geodesics

on a one-holed torus can be found in [8].
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Figure 4: (a) A right-angled hyperbolic pentagon Q and its three copies forming a fundamental

domain Q̃ in the Poincaré disk. (b) A tessellation of Z × Z-holed real plane by copies of the

fundamental domain Q̃i,j.

The homotopy is unique up to conjugation by fundamental group. In particular, the two

shortest geodesics correspond to the “constant” sequences of period one (▷) and (▽).
The homotopy defines a bijection between periodic two-sided infinite sequences {σk}∞−∞ in

the alphabet Σ = {△,▽,▷,◁} which satisfy an additional condition that σk ≠ σ−1
k+1 for any

k ∈ Z. We define a transition matrix

A =
⎛⎜⎜⎜⎜⎜⎝

1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1

⎞⎟⎟⎟⎟⎟⎠
.

Let ΣA be the set of words which are freely homotopic to geodesics on Ω/Γ, and periodic words

in ΣA correspond to closed geodesics. The shift on ΣA corresponds to action of Γ on closed

geodesics.

It is easier to do the calculations using the upper half model H = {z ∈ C ∣ Iz > 0} of the

hyperbolic plane and a subgroup of PSL(2,R) acting on H. Namely, consider matrices

B = ⎛⎝ cosh(a) − sinh(a)− sinh(a) cosh(a) ⎞⎠ C = ⎛⎝e
a 0

0 e−a
⎞⎠

Then the subgroup ⟨B,C⟩ ⊂ PSL(2,R) is a deck group of the universal cover H → Ω/Γ and

generators B and C correspond to the generators γ(▽) and γ(▷) of the fundamental group

— 7 —



Polina Vytnova Analysis of Symmetric Tori

of Ω/Γ. Moreover, the hyperbolic length of the geodesic corresponding to the cutting sequence

. . .△n1 ▷k1 △n2 ▷k2 . . .△nt▷kt . . . of period ω(γ) def= ∣n1∣ + . . .+ ∣nt∣ + ∣k1∣ + . . .+ ∣kt∣, (where kj ≠ 0,

nj ≠ 0 for j = 1, . . . , t) is given by

` (γ(△n1▷k1△n2▷k2 ...△nt▷kt)) = 2 ArcCosh(1

2
∣tr (Bn1Ck1Bn2Ck2 . . .BntCkt)∣) . (4)

A.3 Approximating determinant

Notation 1. Given a subsequence σ1, . . . , σk of a sequence σ ∈ ΣA we denote by γσ1,...,σk a

geodesic whose cutting sequence contains the subsequence σ1, . . . , σk. We denote by γ[σ1,...,σk]
a segment of a geodesic whose cutting sequence contains a subsequence σ1, . . . , σk with end

points in the middle of the segments enclosed between intersections with the sides σ1, σ2

and σk−1, σk. We denote by γ[σ1,...,σk] the segment of the shortest of all closed geodesics

whose cutting sequence contains the subsequence σ1, . . . , σk with end points in the middle

of segments enclosed between intersections with the sides labelled σ1, σ2 and σk−1, σk, re-

spectively. Then `(γ[σ1,...,σk]) = `(γ[σ1,...,σk]), where γ is a primitive closed geodesic such that

`(γ) = minγ′{`(γ′) ∣ γ′ intersects σ1, . . . , σk}.
Let σ1, . . . , σN be all subsequences of sequences σ ∈ ΣA of the length n. Let us consider an

N ×N transition matrix given by

An
i,j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if σik+1 = σjk; for k = 1,2, . . . , n − 1.

0, otherwise.

We now define a one-parameter family of N ×N matrices A(s) which elements depend on the

length of geodesic segments determined by σi and σj:

A∶C→Mat(N ×N) Ai,j(s) = An
i,j ⋅ exp(−s ⋅ `(γ[σi1σi2...σinσjn])) (5)

Note that A depends on n, but we omit this in the notation. We will be using the following

Lemma from [7] to find approximate location of the zeros.

Lemma 1. Using the notation introduced above, we have the following representation for the

Ruelle zeta function

ζX(s) = ∞∏
n=0

∏
γ=primitive

closed geodesic

(1 − e−(s+n)`(γ)) = lim
n→∞det(Idn −A(s)), (6)

where Idn ∈ Mat(n,n) is the identity matrix.

Our first Lemma gives approximations to lengths of geodesic segments.

— 8 —



Polina Vytnova Analysis of Symmetric Tori

Lemma 2.

`(γ[▽▽▷]) = 2a − log
√

2 + o(e−3a) see Figure 6(b); (7)

`(γ[△▷△]) = 2a − log 2 − 2e−2a + o(e−3a) see Figure 6(b); (8)

`(γ[△▷▽]) = 2a − log 2 + 2e−2a + o(e−3a) see Figure 5(b). (9)

Proof. The result follows by straightforward calculation by applying formula (4) together

with (3) to γ(△▷▽◁), γ(▽▽▷▷), and γ(△▷△▷), respectively. More precisely, by definition we have

that

`(γ[△▷▽]) = 1

4
`(γ(△▷▽◁)) = 1

2
ArcCosh(1

2
∣tr(B−1CBC−1)∣) =

1

2
ArcCosh(−e4a + e−4a

8
+ e2a + e−2a

2
+ 1

4
) = 2a − log 2 − 2e−2a − 5e−4a + o (e−4a) . (10)

Similarly,

`(γ[▽▽▷]) = 1

4
`(γ(▽▷▷▽)) = 1

2
ArcCosh(1

2
∣tr(BBCC)∣) =

1

2
ArcCosh (cosh2 2a) = 2a − log

√
2 + 3e−4a + o (e−6a) ; (11)

And in the last case

`(γ[△▷△]) = 1

4
`(γ(△▷△▷)) = 1

2
ArcCosh(1

2
∣tr(B−1CB−1C)∣) =

1

2
ArcCosh(e4a + e−4a

8
+ e2a + e−2a

2
− 1

4
) = 2a − log 2 + 2e−2a − 5e−4a + o (e−4a) . (12)

∎
In particular, we have the following corollary.

Corollary 1.

`(γ[σ1σ2σ3]) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a, if σ1 = σ2 = σ3;

2a − log
√

2 + o(e−3a), if σ1 = σ2 ≠ σ3;

2a − log 2 − 2e−2a + o(e−3a), if σ1 = σ3 ≠ σ2;

2a − log 2 + 2e−2a + o(e−3a), otherwise.

Remark 1. This explains why the case a = k log 2 is different. In particular, we see that this

choice makes the length of short geodesics rationally dependent.
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Figure 5: (a) Segments of geodesics lifted to the Z × Z holed plane, marked by subsequences

of their cutting sequences, according to visible intersections. (b) The shortest closed geodesic

among γ△▷▽ corresponding to periodic sequence (△▷▽◁) of period 4. The four marked points

divide the geodesic into 4 equal segments: γ[△▷▽], γ[▷▽◁], γ[▽◁△], and γ[◁△▷].
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Figure 6: (a) The shortest closed geodesic among γ▽▷▷, corresponding to the periodic sequence(▽▽▷▷) of period 4. The four marked points divide the geodesic into 4 equal segments: γ[▽▽▷],
γ[▽▷▷], γ[▷▷▽], and γ[▷▽▽]. (b) The shortest closed geodesic among γ△▷△, corresponding to

the periodic sequence (△▷△▷) of period 4. The four marked points divide the geodesic into

4 equal segments: γ[△▷△], γ[▷△▷], γ[△▷△], and γ[▷△▷].
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We now apply the Corollary to compute the matrix A(s) for n = 2. There are 12 subse-

quences of length 2 of the sequences from ΣA. We can enumerate them as follows σ1 = △△,

σ2 = △▷, σ3 = △◁, σ4 = ▷▷, σ5 = ▷△, σ6 = ▷▽, σ7 = ▽▽, σ8 = ▽▷, σ9 = ▽◁, σ10 = ◁◁,

σ11 = ◁△, σ12 = ◁▽. Then using definition (5) we may compute, for example

A1,1(s) = exp(−s ⋅ `(γ[△△△])) = exp(−2as);
A2,4(s) = exp(−s ⋅ `(γ[△▷▷])) = exp(−2as) ⋅ √2s ⋅ exp(−s ⋅ o(e−3a));
A2,5(s) = exp(−s ⋅ `(γ[△▷△])) = exp(−2as) ⋅ 2s ⋅ exp (2e−2as) ⋅ exp(−s ⋅ o(e−3a));
A2,6(s) = exp(−s ⋅ `(γ[△▷▽])) = exp(−2as) ⋅ 2s ⋅ exp (−2e−2as) ⋅ exp(−s ⋅ o(e−3a));

the other elements are similar. Observe that for values of s within the critical strip, 0 <Rs < 0.2,

we have that ∣ exp(−s ⋅ o(e−3a)) − 1∣ ≤ 2e−3a is small for a sufficiently large. Introducing a short-

hand notation

p1(s) = √2s (13)

p2(a, s) = 2s+1 cosh(2se−2a), (14)

p3(a, s) = 2s+1 sinh(2se−2a); (15)

we may consider a matrix

P (s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 p1 p1 0 0 0 0 0 0 0 0 0

0 0 0 p1
p2−p3

2
p2+p3

2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 p1
p2−p3

2
p2+p3

2

0 0 0 1 p1 p1 0 0 0 0 0 0

p1
p2−p3

2
p2+p3

2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 p1
p2−p3

2
p2+p3

2 0 0 0

0 0 0 0 0 0 1 p1 p1 0 0 0

0 0 0 p1
p2+p3

2
p2−p3

2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 p1
p2+p3

2
p2−p3

2

0 0 0 0 0 0 0 0 0 1 p1 p1

p1
p2+p3

2
p2−p3

2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 p1
p2+p3

2
p2−p3

2 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the matrix A(s) can be considered as a small perturbation of exp(−2as)P (s). By Lemma

from [7], the determinant det(I − A(s)) approximates the Selberg zeta function. Since the

matrices exp(−2as)P (s) and A(s) are close, the determinant det(I − exp(−2as)P (s)) is an

approximation to the zeta function, too. We see that the function det(I − exp(−2as)P (s)) is

an exponential sum in s, and therefore an almost periodic function with modul ⟨a, log 2,2e−2a⟩ if

a /∈ log 2Z and ⟨log 2,4−k⟩ otherwise. It follows from general theory of almost periodic functions
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that its zeros is a point-periodic set in the sense of Krein–Levin. The simplicity of the matrix P

allows us to get more information on exact location of the zeros of the determinant. Evidently,

the matrix exp(−2as)P (s) has an eigenvalue 1 if and only if exp(2as) is an eigenvalue of P (s).
The eigenvalues of the matrix P (s) have a closed form.

λ1,2 = ±p3 (16)

λ3,4 = 1

2
(1 − p2 ±√(p2 + 1)2 − 8p2

1) (17)

λ5,6 = 1

2
(1 + p2 ±√(p2 − 1)2 + 8p2

1) (18)

Introducing a shorthand notation p̃(p1, p2, p3) = 9p3 ⋅ (3p2
1 − p2) − 1 we write the remaining six

eigenvalues as follows

λ7,8 = 1

3

⎛⎜⎝1 +
3p3p2 − 1

3

√√
p̃2 − (3p3p2 − 1)3 − p̃ +

3

√√
p̃2 − (3p3p2 − 1)3 − p̃⎞⎟⎠ ; (19)

λ9,10 = 1

3
− i√3 + 1

6
⋅ 3p3p2 − 1

3

√√
p̃2 − (3p3p2 − 1)3 − p̃ +

i
√

3 − 1

6
⋅ 3

√√
p̃2 − (3p3p2 − 1)3 − p̃; (20)

λ11,12 = 1

3
+ i√3 − 1

6
⋅ 3p3p2 − 1

3

√√
p̃2 − (3p3p2 − 1)3 − p̃ −

i
√

3 + 1

6
⋅ 3

√√
p̃2 − (3p3p2 − 1)3 − p̃. (21)

Summing up, we deduce the following

Proposition 1. Any small zero of the zeta function ζT̊(a) is close to a solution of one of the

twelve equations

exp(2as) = λj(p1(s), p2(s), p3(s)), j = 1, . . . ,12, (22)

where λk, k = 1, . . . ,12 are given by (16)–(21).

We omit the proof here. Figure 7 shows the small zeros of the zeta function along with the

zeros of the determinant.

In the next section we discuss properties of solutions of equations (22), or in other words,

zeros of the determinant det(I − exp(−2as)P (s)).
A.4 Zeros of the determinant

A.4.1 Solving λ1,2(s) = exp 2as.

The first two eigenvalues have a simple form as functions of s and equation (22) gives us two

equations:

exp(2as) = ±2s+1 sinh(2se−2a). (23)
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Figure 7: Zeros of the determinant I − exp(−2as)P (s) (circles) and zeros of the zeta func-

tion (dots) in a small part of the critical strip 1300 < Iz < 1340. In the cases we consider

exp(3a
2 ) ≈ 1400.

1300 1305 1310 1315 1320 1325 1330 1335 1340

0

0.05

0.1

(a) The case of T̊(10).

1300 1305 1310 1315 1320 1325 1330 1335 1340

0

0.05

0.1

(b) The case of T̊(14 log 2 + 0.05).

1300 1305 1310 1315 1320 1325 1330 1335 1340

0

0.05

0.1

(c) The case of T̊(14 log 2).
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Figure 8: A plot of imaginary part I(s) = t as a function of the real part R(s) = σ as defined

by (24). The zeros of the determinant det(I −A(s)) defined by λ1,2 = exp(2as) are outside of

the domain of approximation.

We may write s = σ + it and use the equality between squares of the absolute values

∣ exp ((2a − log 2) s) ∣2 = ∣sinh(2se−2a)∣2
to obtain

exp((2a − ln 2)2σ) = exp(4σe−2a) + exp(−4σe−2a) − 2 cos(4te−2a),
which implies

t = e2a

4
(±arccos(−1

2
exp((2a − ln 2)2σ) + cosh(4σe−2a))) + 2πk) , (24)

provided

∣1
2

exp((2a − ln 2)2σ) − cosh(4σe−2a)∣ ≤ 1.

Since for small σ we have that cosh(4σe−2a) = 1+4σ2e−4a +o (e−6a), the above condition is valid

provided σ < ln 2
2a−ln 2 . However, for positive real part σ > 0 we have that imaginary part t > 1

4e
2a,

which is outside of the range of small zeros. Hence we have established the following

Lemma 3. The first two eigenvalues (16) don’t give any information on location of small zeros

in positive half-plane.

The equality (23) also implies the equality between arguments:

arg (exp ((2a − log 2) s)) = arg (sinh(2se−2a))
We see that for s = σ0 + it the function arg (sinh(2se−2a)) is monotone increasing and small,

while arg (exp ((2a − log 2) s)) is changing rapidly. We therefore expect that solutions of (23)
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with ∣s∣ < e2a belong to the curve given by (24) and the difference between imaginary parts of

consecutive zeros is approximately 2π
2a−ln 2 .

We now proceed to analyse the equations coming from the next four eigenvalues.

A.4.2 Solving λ3,4(s) = exp 2as and λ5,6(s) = exp 2as.

The equations (22) read

2e2as = 1 − 2s+1 cosh(2se−2a) ±√(2s+1 cosh(2se−2a) + 1)2 − 2s+3, (25)

2e2as = 1 + 2s+1 cosh(2se−2a) ±√(2s+1 cosh(2se−2a) − 1)2 + 2s+3; (26)

which is equivalent to

e2as (e2as ⋅ 2−s−1 − 2−s−1 + cosh(2se−2a)) = cosh(2se−2a) − 1,

e2as (e2as ⋅ 2−s−1 − 2−s−1 − cosh(2se−2a)) = 1 − cosh(2se−2a).
The determinant det(I−exp(−2as)P (s)) approximates the zeta function on a part of the critical

strip 0 < R(s) < δ, 0 < I(s) < e 3a
2 . We have the following asymptotic expansion for the right

hand side:

∣cosh(2se−2a) − 1∣ ≤ ∞∑
j=1

∣4je−4ajs2j ∣ = ∞∑
j=1

4je−4aj(σ2 + t2)j
≤ 4e−4a(σ2 + t2) + 16e−8a(σ2 + t2)2. (27)

This allows us to deduce that zeros of the zeta function with imaginary part I(s) = ∣t∣ ≤ e 3a
2 ≈ 1800

are close to solutions of the approximate equations

e2as ⋅ 2−s−1 − 2−s−1 + 1 = 0, (28)

e2as ⋅ 2−s−1 − 2−s−1 − 1 = 0. (29)

Evidently solutions of (28) and (29) should satisfy

∣e2as∣2 = ∣2s+1 − 1∣2 and ∣2s+1∣2 = ∣e2as − 1∣2; or (30)

∣e2as∣2 = ∣2s+1 + 1∣2 and ∣2s+1∣2 = ∣e2as − 1∣2. (31)

and therefore belong to the intersections T1 ∩ T2 of the of curves given by

T1
def= {σ + it ∣ cos(2at) = ±1 + e2aσ − 41+2σ

2e2aσ
} (32)

T2
def= {σ + it ∣ cos(t log 2) = ±41+2σ + 1 − e4aσ

41+σ } (33)

We summarize our fundings in the following
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Lemma 4. There exist a zero of the zeta function ζT̊(a) in e−a-neighbourhood of every odd

element of the following subsequences of the points of intersection with Izn < e 3a
2 (see plots in

Figure 9)

zn =σn + itn where cos(2atn)= 1 + e2aσn − 41+σn
2e2aσn

, cos(tn log 2)= e4aσn − 41+σn − 1

22+σn and tn < tn+1;

zn =σn + itn where cos(2atn)= 41+2σn − 1 − e2aσn

2e2aσn
, cos(tn log 2)= e4aσn − 41+σn − 1

22+σn and tn < tn+1.

Corollary 2. In the case a ∈ N log 2 solutions to this system belong to the straight lines

Iz = σ = const; moreover, the intersection of the zero set with any of this lines is a periodic set

of period 2π
log 2 . These lines correspond to seemingly straight lines we see in Figure 2(a). In the

case a /∈ N log 2 this no longer holds and we see a random structure as shown in Figure 2(c).

A.4.3 Analysing λ7,8(s) = exp(2as)
Let us now consider the remaining eigenvalues ∣ exp(2as)∣ = ∣λk(s)∣, 7 ≤ k ≤ 12. The explicit

expressions (19), (20) and (21) can be used to compute the curves where the zeros are located

numerically. It turns out that equation (22) have solutions in the domain of approximation

only for k = 7,8. In Figure 10(a) we see a part of the curve defined by

T3 = {s = σ + it ∣ ∣ exp(2as)∣ = ∣λk(s)∣} (34)

for k = 7,8; Figures 10(b) and 10(c) show two pieces of the curve corresponding to 0 < Is < 20

and 310 < Is < 340 with zeros of the zeta function located there.

In attempt to find a transversal family of curves that would help to describe location of the

zeros more precisely, we would like to study the polynomial

12∏
j=7

(x − λj(s)) = det(P (s) − xI) ⋅ 6∏
j=1

(x − λj(s))−1.

By straightforward calculation we obtain

12∏
j=7

(x − λj(s)) = (x3 − x2 + p2p3x + (2p2
1 − p2)p3)2 (35)

We would like to return to the original variable, s i.e. to reverse (13)–(15), taking into account

that for R(s) ≪ 1 we have that sinh(s) ≈ i sin(I(s)) and cosh(s) ≈ cos(t):
p1(s) ≈ 2

s
2 ; (36)

p2(s) ≈ 2s+1 cos(2te−2a); (37)

p3(s) ≈ 2s+1 sin(2te−2a)√−1. (38)
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Figure 9: Families of curves T1 quickly oscillating with period π
a and T2 slowly oscillating with

period 2π
log 2 as defined by (32) and (33) and described in Lemma 4 and zeros of the 12th Taylor

polynomial approximating the zeta function (stars). We see that the actual zeros occur very

close to odd elements of the sequences of points of intersections. Zeros on imaginary axis

correspond to solutions of e2as = λ7,8(s).

0 1 2 3 4 5 6 7 8 9 t
0

0.05

0.1

σ

(a) Case a = 10. A part of the zero set from Figure 2(a).

0 1 2 3 4 5 6 7 8 9 t
0

0.05

0.1

σ

(b) Case a = 14 log 2 + 0.05. A part of the zero set from Figure 2(b).

0 1 2 3 4 5 6 7 8 9 t
0

0.05

0.1

σ

(c) Case a = 14 log 2. A part of the zero set from Figure 2(c).

0 1 2 3 4 5 6 7 8 9 t
0

0.05

0.1

σ

(d) Case a = 15 log 2. Together with the plot above they illustrate Corollary 2.
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We obtain an approximation

12∏
j=7

(x − λj(s)) ≈ x3 − x2 + i22s+1 (sin(4e−2at)(x − 1) + 2 sin(2e−2at)) .
The latter implies

24σ+2 = ∣22s+1∣2 = ∣ (x3 − x2)(sin(4e−2at)(x − 1) + 2 sin(2e−2at))∣
2

. (39)

Substituting x = exp(2as) we solve the equation for cos(2at) and obtain the equality

cos(2at) = e8aσ(e4aσ + 1) − 24σ+2 (sin2(4e−2at)(e4aσ + 1) − 2 sin(4e−2at) + 4 sin2(2e−2at))
2e2aσ (24σ+2(sin(4e−2at) − sin2(4e−2at)) + e8aσ) (40)

We see that although the right hand side depends on t, as t varies in any small interval of

length c ≪ exp(a), say (nc, (n + 1)c) the dependence on t is negligible, so we may consider a

partition into intervals of length c and the curves defined by

T4 = {σ + it ∣ cos(2at) =
e8aσ(e4aσ+1)−24σ+2 (sin2(4e−2anc)(e4aσ + 1) − 2 sin(4e−2anc) + 4 sin2(2e−2anc))

2e2aσ (24σ+2(sin(4e−2anc) − sin2(4e−2anc)) + e8aσ) } (41)

on the intervals nc < t < (n + 1)c, n ∈ Z.

Remark 2. The dependence of the right hand side on t is reflected in increasing amplitude

of oscillations of the curve in Figure 10(a). It is possible to make further simplification of the

right hand side of (41), using first order approximations sin(x) ≈ x and cos(x) ≈ 1 for small x.

This would lead to

T ′4 = {σ + it ∣ cos(2at) = e8aσ(e4aσ + 1) − 24σ+5e−2at(2e−2at(e4aσ + 2) − 1)
2e2aσ(24σ+4e−2at(1 − 4e−2at) + e8aσ) }. (42)

It is evident that the plot will be a quickly oscillating curve with period π
a and increasing

amplitude of oscillations.

We summarize our discussion in this section as follows.

Proposition 2. Zeros of the zeta function in the critical strip with imaginary part Is < ea are

e−a-close either to the intersections T1 ∩ T2, as described in Lemma 4 or to the intersectionsT3 ∩ T4.
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Figure 10: Several plots showing the curve ∣ exp(2as)∣ = ∣λ7,8(s)∣. (a) General plot of the curve

within the rectangle −0.01 < Rs < 0.01, 0 < Is < 200; (b) A part of the curve near the real

axis −0.005 < Rs < 0.05, 0 < Is < 20, stars mark zeros of the zeta function, the oscillating

curve in horizontal direction is T2; (c) The curve in the part of the critical strip 0 < Rs < δ,
310 < Is < 340, oscillating around imaginary axis. Stars mark zeros of the zeta function. The

second oscillating curve is T2.

(a) (b) (c)
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