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Abstract. 1 We study dynamic properties of the quadratic maps overrarginon-archimedean
fields. We find conditions under which these maps demonstha&techaotic behavior. For the
guadratic maps defined over a global field the chaos occuysowrt a finite number of valuations.

INTRODUCTION

0.0.Consider a general discrete dynamical system couatableset (phase spacg Formally
it is a deterministicmodel of motion (we knoweverythingabout the orbit of any point) and
there seems to be no context for the chaotic considerations.

However, if we are going to study arakscribethe orbits, we need some additional struc-
tures on the phase space.

First of all, we need soménguageto specify the points of the phase space. It can be
formalized as aecursivestructure, i.e. the distinguished class of numbering (edbipns with
natural numbers) up to recursive renumberings.

For the most dynamical systems thenount of informatiomeeded to specify a point (it
can be formalized in terms d€olmogorov complexijygenerically grows along the orbit. In
most cases not all this information is valuable for desoglihe system qualitatively; e.g., if an
orbit "goes to infinity" (in some sense) we might be not indéed in the details of the positions
of the points that are terribly far away.

Thus we impose som@pologieson the phase space in order to be able to describe the
orbits approximately. We emphasize the specific featurbehonclassicabliscrete dynamics:

it is not assumed that the phase space carries some distiegliopology; we rather consider
the setof natural topologies. The product of the completions ofthase space with respect to
all these topologies is provided by a suitapteduct topologythe diagonal embedding of the
phase space into this product should induce its digeretetopology.
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The adelic dynamics provides a perfect framework for thiprapch, the phase space be-
ing global number fields; the topologies are defined by themr-archimedean valuations.

In the present paper we consider the simplest non-linearemafdthis kind — the itera-
tions of quadratic maps. Conceptually our main result ighleerem 5, according to which the
system demonstrates the chaotic behavior only over the finitnber of valuations — precisely
over those ones over which the quadratic map is in some seesagely expanding the fixed
points.

The results of the paper generalize the earlier results of divthe authors Shabat [2]
and Dremov [1]. The similar results ovpradic fields withp # 2 were obtained considerably
earlier in Thiran at al. [3].

0.1. The paper is organized as follows. Sections 1 and 2 are dkvoteertain elementary
properties of the quadratic maps over non-archimedearsfi€leictions 3 and 4 are technical:
under some assumptions the preimages of 0 and of a "lardeasimand it are described. In the
section 5 the filled Julia sets for all the quadratic maps ait¢he non-archimedean local fields
are described. In the section 6 under the assumptions oétties 3 the isomorphism between
the quadratic dynamics on the filled Julia set and some seguimamics (Bernoulli shift on
the left-infinite sequences) is established. In the sedtitme main results are formulated; the
2-adic case is considered separately. In the section 8 sdeflie anterpretation of our results is
suggested.

0.2.Some of the notations we use are not quite standard.

For a mapT:X — X and forn € N we denote byT™ its nth iterate and byl ~"™ its n in-
verse iterate (possibly multivalued). ByN°(x) we denote thd - orbit of x € X; finally, for
Y C X denote byT “N°Y:= | T-™Y andT—®Y:= N T~™Y.

neN neN

When X is a metric space denote b (T) the filled Julia set i.e. the set of elements of
X with boundedr - orbits.

For an alphabet (=finite set of character8) denote by AN = {...ayajap} (where
ap,a1,a... € A) the set of sequences of elementsAgfinfinite to the left.For a finite se-
guencee we denote its length bjg|.

For a fieldk denote its set of squares ky := {x* | x € k}.

For a fieldk with the norm|| - | for a € k andr € R~ denote the open and closed discs
by

D(a,r):={xek]||x—al| <r}

Dla,r:={xek||x—a]| <r}



CANONICAL FORMS OF QUADRATIC MAPS

1.0.We fix a fieldk with chark # 2 and consider the general quadratic map
q:Al(k) — Al(k)

defined by
a(x) = A% +Bx+C

with A, B,C € k andA # 0.

1.1. The dynamical properties of the abogedepend only on the similarity class of it
means that we consider the action of the group of affine toam&ftion of argument

X L(X):=mx+nwithmek® nek
on the set of quadratic transformations. This action is defioy
Leg=Loqo L1

g and thus defined e g are calledsimilar. The problem is to find the simplest (and traditional)
representatives of similarity classes of the quadratic.map

1.2.1tis easy to check that in all the cases the transformation

B
L(x)::Ax—i—E
sends
q(x) = A% +Bx+C
to
[Lecl(y)=y*+c
with 2 g
c=AC—- Z+§

thus the standard form of the quadratic map
XX +C

is universal, and we are going to stick to it in this paper.

The invariant meaning of is as follows. Denote by Fiq) the (generally 2-element) set
of fixed points ofg, i.e., the set of solutions of the quadratic equation

AX 4+ Bx+C = x.

It belongs tdk or to its quadratic extension depending on whether or nadige@iminant of the
above equation
(B—1)>—4AC



is a square ik. But one checks that

B2 B 1
C=AC——+ - == q(x)
4 2 4X€Fu(q)

is always ink. We’'ll see that in the case whénis equipped with a (usually non-archimedean)
metric the dynamical properties of depend drastically on the norm of in particular,q
generates the chaotic behavior [iif|| > 1, i.e., whenq is averagely expanding in the fixed
points.We are not aware of any reasonable generalization of thisreaton.

1.3.The mapq is not always similar to another standard form (bgistic map)

[Leq)(y) =Ay(1-y).

(hence the results of this paper are a bit stronger than tinosghabat [2] even in the case
k = Qp). The obvious necessary condition is the existence of fixeatp of q defined ovek.
It is easy to show that this condition is sufficient as well.

BEHAVIOR OF NORMS ALONG THE ORBITS

2.0.We fix a fieldk with the non-archimedean norin || and for any element € k consider
the quadratic map
T Al(k) — AY(Kk)

defined by ” ,
Te(X):=X“+4+cC

2.1.Everyx € k defines a sequend@™(x)|| . In most cases the behavior of the norm is quite
simple.

Theorem 1 According to the values dfc|| and||x|| the following statements hold:

| | leff <1 | leff =1 | lef>1 |
IX|l < 2| lim [ T°(x)]| = [|cll, | No general statementlim [[T¢* (x)|| = o
x| =1 IT(X) || =1 No general statemertr!igrg0 |TE(X)|| = oo
IXI>1] Jim [T =e | lim [TEX)|=e | [[T°]is either
constant or— o

Proof. All the statements about existing limits and about the nofif}®|| being constant
are obvious. In the casg|| = ||x]| = 1 thenlim||TC”O(x)|| can exist. E.g., in any field where
— 00

12| = 1,x= —1is afixed point ok +— x? — 2. But it is possible as well thgc|| = ||x|| = 1, but
r!im | T&°(X)|| does not exist. Over any field the map
—»00

X x2—1



provides a cycle that gives a sequence of normis@®@1, ...

In the case|c|| > 1,||x|| > 1 the trajectories generally tend to. E.g., fork = Q3 and

x = c = £ we have the orbit
1 4 43
—

with the sequence of norms®81,. .. But in some special cases (which are the most interesting
from the viewpoint of the present paper) the norms along tihéare constant. E.g., over
k = Qs the map

X— X — —

25
has two fixed pointg + ¥2! € Qs of the norm 5 QED

THE PREORBIT OF 0.

3.0.We fix the triplek D O D M consisting of a local field, its valuation ring and its maxima
ideal; letp = cha(O/M). We fix the non-archimedean norfin || on k, normalized by the

condition||p|| = % and the elemerg € k\ O (i.e.||c|| > 1; this is the only case we’ll need). Our

goal is to describe the s&N°(0).

3.1.Informally,
T.°(0) = {x|¥®*+c=0} = +V/—c,
T.20) = {x| ®+ce T, 0} ={x| ®=—ctv/—c} = +y/—c+v/—cC

and so on. We should is to give the precise sense to the eipresgth nested roots

(continued recursively to theft).

Note that if the roots do not belong to the corresponding $ieddr notations would be
just the convenient names of the elements of their quadeatensions; however, we are most
interested in the case where these roots belorkgand we are going rather to provide for our
nested roots certaimnalyticsense.

3.2 Proposition. The following statements are equivalent:

3.2.0 —cek?;
3.2.1 T, %°(0) is non-empty
3.2.2 For any positive natural n the set T°(0) is non-empty and, moreover,

#{Tc " (0)} =2"



Proof. Implications 32.0 <= 3.2.1 <= 3.2.2 are trivial; concentrate on30 —- 3.2.2. The
assumption 2.0 impliesc = —a? for somea € k with ||a|| > 1. In fact, we havearbitrarily
attributed the signs te&-+/—c. Further,

1
+y/—Cctyv—-Cc==% azia:ia(lia)%::

sl () 5 ) R ) )

and this series converggsadically (we use # 2); see lemma 1 below.

The longer expressions with nested roots are also definechdycdonvergent series; see
the next subsection. A similar description in termsdithotomic variablescan be found
in Thiran at al. [3]. QED

3.3. Notations of the elements of; N°(0). We assume = —a? for all a € k and introduce
recursively the numbets; € k labeled by the stringsof +'s and -'s

b:=0,
by:=+a,

b.e: = { solution ofx? —a? = be}.

In order to choose the signs fdr. we introduce recursively the following Laurent series

BsGQ((%»: BL A
+. = 5

Be\ 3 1B 1(3-1) /B2
. 2 . € 2 ¢ 2\2 €
Biei=+ A+Bg._iA<1+—2> _iA[l+1! 5+ 22 ( 2) +]

and it makes sense since one proves inductively that

o c vz [1]

We check that after substituting the free variabley a € k all theBg ’ s converge in| - ||-norm
and hence definke: € k.

LARGE DISC AND THE INVERSE DYNAMICS ON IT

4.0.We keep the same notations, including: —a?. Besides, for anyd C k we denote by/S
the set{x € k | x? € S}.

Lemma 1 (Effective openness of the set of squarest % € k. Then Bxo, ||%o||) C k2.



Proof. Lety € k be such thag? = xo. By Taylor formula for any with ||x|| < ||Xo|
2 2 1(-1)(-3)...(3—2n) (x)”
-|—X 1/2 — 14+ —= =
(v y( v ) =Y3

& 2nn! y2

In order to prove the convergence of this series estimatedha of its general term. Using

—toggltllp= [3] + [5] -~ B 755 =50

1
~ p ®1. Thennth root of

1
We see thatl/[[n[p ~ p ™7, J[[(2n—1)], = ¢

general term satisfies
2n 3 ” 2n 1 ll
Fo |l H—H

De:= D[bg;HaH%]

4.1.By definition, for alle € | |?_o{+}{~"-0}
In particular, the one marked by the empty word is

n|-
2nn! D

(=1)(=3)...(3=2n) /x
2! \y2

y

D =DI0, ||l

Theorem 2 For any ne N

T (D)= || De.

le|=n
Lemma 2 Let ac k and r € R~ satisfy||al| > 1 and Dja?,r?] ¢ k%. Then

2

0.7 =0fa ] o[ -a g

Proof. First of all note thaf|a|| > r, sinceD[a?,r?] C k2.

We are going to show thayD(a?,r?) 2 D[a,ﬁ] LUD[—a, ‘a‘ ] Letx € D[a, Hal\] UD[—a, H':H]’
then ||x|| = ||al|, as|[x—a|| < ||a]| or ||x+ a|| < ||a]|. For one of the choices of the sign
I al| = max(|[x||, [|al|) = [|al|- Then|[x+a]| < |a]|, and

2
I —a’l| = [IxFal - [x+al| < el lalf < r?

Hencex? € D[a?,r?].



2 (2 2 2 2 (2 i
Now show thaty/Dl[a?,r?] C D[a,H%H] L D[—a,H%H]. Let x € \/D[a?,r?], then (as in the

[ Il
e~ [x+al|

|LID[-a, ). QED

previous case)||x|| = ||al|. Therefore|xF al| = ||al|]. Hence Therefore

r2

2 2
latx| ==Xl < Soxe Dla 13

lal = &l
Now we prove the theorem 2 by the induction m It follows from the effective
openness ofk® that for the discD[a? ||al|] belongs tok?. Therefore by lemma 2

T 5DI[0,||lal|]] = \/D[a2 [|a]]] = D[a,1] UD[-a,1] = ‘|‘_|1|38. Since +a € D[0,||a]|], we
£l=

have L
T >’D[0, [[al[] c D[O, [|all].

So for anyn
T_2D[0.]la]] = [ | De c D[O, ||a]],

|g|l=n
and the lemma 2 is applicable to every disk it is used for. Tieetem 2 is proved.

Corollary 1

THE FILLED JULIA SETS

Keep the notations of the previous section (with the exoepif c that now is arbitrary).
Theorem 3 If ||c|| < 1, then 1 (Tc) = O = DJ[0,1]. If ||c|| > 1, then

(a) if —c¢ k?, thenFI(T) = 0;
(b) if —c e k%, i.e. c= —a? for some &= k, then

FI(T_a2) =TD[0, ||all].

Proof. The statement in the cafie|| < 1 follows from the properties of the norm sequence for
T™(x), see section 2.

In the casd|c|| > 1 we see thatifix|| > /][c[[, then||T™(x)|| = [|x||Z" — w0 and if ||x|| < \/][c],
then||T™(x)|| = ||c||2n*1 — oo. Hence the?y lies on the circle defined bix|| = +/]|c||-

Consider the cas). The assumption-c ¢ k? for any x satisfying ||x|| = +/||c|| implies
X2 +c|| > ||c||. Indeed, if||x?> +c|| < ||c||, then—c € D(x?, ||x?||) € k? by the effective open-
ness of squares. Heng&"™ (x)|| > HcHanl — oo,

In the cas€b) we just use our construction of indexed discs:

J9 < D =DI0, |all].



Then# C T-"(D)= || D¢, 509 C (| T-™(D) =T D0, a]]
n=0

el=n

The opposite inclusioty 2 T~*D|0, ||a||] is obvious. QED

ISOMORPHISM WITH THE SEQUENCE DYNAMICS

Keep the notations of the section 4. Consider the spade™:= {...e5,€1,80 | &n € {+,—}}
of sequences of pluses and minuses infitatéhe leftendowed with Tikhonov topology. Denote

by
o {+} N (£} N ererg0— .. 36081

the Bernoulli shift

Theorem 4 For any a satisfying|al| > 1 there is an isomorphism of dynamical systems (i.e.
compacts with continuous endomorphisms)

(F(T_2), T-2) = ({£} ", 0).
Proof. For anyx € #7(T_,2) there exists a unique sequence of embedded discs.
D808182 C Dgogl C DSO C D

such that{x} = ... N Dge, NDg, ND and {T(X)} = ...NDg, NDNT(D). This construction
defines

| (T ) — {:I:}NZXD—> ...E2€1€,

and it is easy to check thais a homeomorphism satisfyilg T__,. = ool. QED

CHAOTIC PROPERTIES OF QUADRATIC MAPS

Restore the notationls > O D M (a local field, its valuation ring and its maximal ideal);
p:= cha(O/M). Extend the polynomial maps we consider fréth(k) to the projective line
PL(k), sending infinity to infinity.

Here are the main results of the paper.
Theorem 5 If p # 2, then the map

Te: PY(k) = PY(k): x+— X2 +¢
has positive topological entropy ift| > 1 and —c € k?.

Proof. Follows from the theorem 4 and the results of Nitecki [4] ardledet al. [5]. See details
in Shabat [2]. QED

Theorem 6 If p = 2, then the map
PL(k) — PY(K): x— X% +c
has positive topological entropy iffic|| > 1 and (1 — 4c) € k?.



Proof. We formulate and outline the proofs of the analogues of ounstatements fop = 2.

Consider the caséc| < ||1/4||. Denote the roots off;(x) — x by x; and x,. We have
K:= k[x1] = k[x2], with (K : k) € {1,2}. Our norm can be extended to the fie{d Then
|2x1|| < 1, ||2%2|| < 1 and moreovelx; —Xo|| = ||[v/1—4c|| < 1. SoD[xy,1] = D[x, 1].

Now prove the formulaZJ(T;) = k N Dk [x1,1]. Fort:= x—x; we obtain||T(x) — x| =
= ||(x¢ +1)?+c—xq1|| = ||t(2x +1)||. Hence for|t]| < 1 we have||T™(x) — x| < 1 and for
It]} > 1 we have| T (x) —xa|| = [1t]*.

For any two pointx,y € F7(Tc) we have
[Te(X) = TeW)[| = [(Xx=Y) (XY < [[X=Yll[[2x1 + (X=X1) + (Y =x2) [| < [[x =Y.

Hence if||c|| < 1/4, then the topological entropy @ equals zero.

Consider the caséc|| > 1/4. Now we have two distinct diskB|[x1,1] and D[xz,1], with
%] = [|%2]| = v/lc|| and||x1 — X2|| = +/]|4c||. We introduceb..: = X1 2, and construct thbg's
andD; as in the subsectior 3, 4.1(excluding the empty word). We argue similarly to the
casep # 2, but have to introduce some modifications.

As in the case # 2, || Te(X) —x1|| = || (X1 +1)%+c—xq|| = [[t(2x +1)].

Forx; ¢ k we have|| T8 (x) —xa| = [[t|[*" for [[t]] > || 2x]| and|[Te(x) —xa| = [|2x|- [Ix—xa | >
> ||x—xq|| for 0 < [|t|| < ||2x1||. Hence the filled Julia set is empty and the entropy is eqeats z

But for x; € k we havex, = 1 —x; € k and moreover all the disdd3; lie within k since
lemma 1 holds for the disk3(xo, ||4Xo|| ).

Lemma 2 is replaced by the statem [@2,r2] = D[a,ﬁ] L D[—a,%] for all the

discsD[a?, r?] with r? < ||4&2|| (in particular, for all the shifted disks in the proof of tirebrem
2). Hence foD, we obtain the formul®, = D[be, ||2a]|*~I#].

So we prove that onfJ(Tc) our dynamical system is equivalent to the Bernoulli shift as
in the theorem 4. Its topological entropy is positive. QED

ADELIC INTERPRETATION

Let K be a global number field X: Q) < «. Considerc € X and
Tei K — K:X+— X2 +cC.

For anyc there is only a finite number ofs such thatT.: K, — % demonstrates chaotic
behavior. For any non-archimedean valuation

V: K — Z U {oo}



we extendl to
T Ky — K-
According to the theorems 5 and 6 we can introduce the qasimétmeasure of global chaos:

chadc): = #{v e val(X) | Te: %, — % is chaotic} = #{ve val(X) | ||c|y > 1,ce KZ}.

Perhaps, it deserves further study.
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