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Mathematics is the part of physics, where
experiments are cheap

V. Arnold
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Toolbox in pictures

Figure: The Hammer Law of Abraham Maslow. If the only tool
you have is a hammer, everything looks like a nail.
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Known (to me) “nails”

Quontitative problems of hyperbolic dynamics

Estimating the rate of mixing for Anosov flows

Estimating the rate of mixing for geodesic flows

Estimating entropy of hyperbolic flows

Estimating Hausdorff dimension of Julia sets

Estimating Hausdorff dimension of limit sets (sometimes
coincide with the entropy of geodesic flow)

Estimating singularity dimension of self-affine sets

Estimating Hausdorff dimension of graphs of functions on
metric spaces

• • • ?
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Dynamical zeta function is our hammer

A proper Banach space of Hölder continuous functions on
the manifold;

A nuclear transfer operator acting on the Banach space;

The determinant of the transfer operator, which is an
analytic function;

Ruelle-Pollicott dynamical zeta function;

The zeta function turns to be an analytic function, which
is closely related to the determinant it contains contains
intrinsic information about the dynamical system;

The zeta function can be computed very efficiently and
give numerical information of high accuracy, using an
eight-years-old laprop (dob March 2007).
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A pair of pants

2ℓ1 2ℓ2

2ℓ3

Topologically pair of pants P is a
3-punctured sphere;

It is a surface of constant negative
curvature −1 and cannot be embedded
into R3 by Efimov’s theorem;

As a metric space, it is uniquelly defined by
the lengths of the three boundary
geodesics: P = P(`1, `2, `3) ;

It possess countably many of closed
geodesics {γn} of the lengths
0 < λ(γ1) < λ(γ2) < . . . < λ(γn) . . .→∞
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A Fuchsian group

ℓ2

ℓ3

ℓ1

Cutting the pair of pants along the red
geodesics, we obtain a pair of hexagons;

The hexangons can be immersed into the
hyperbolic upper plane as right-angled
hexagons;

The Fuchsian group Γ, generated by
reflections with respect to the “cuts”, gives
the pair of pants as the factor
space P(`1, `2, `3) = H/Γ.

Any closed geodesics is uniquely defined by
the sequence of crossings with the cuts, and
thus can be associated to an element of the
Fuchsian group.

6 / 1



The limit set

Λ The Fuchsian group is acting on the
boundary of the hyperbolic plane, and the
action is hyperbolic if the surface has no
cusps, or `j 6= 0;

We may consider the limit set Λ, the
smallest invariant set with respect the group
action;

The boundary is topologically equivalent to
the unit circle;

We are interested in the Hausdorff dimension
of the limit set as a function of the lengths
dimH,Λ(¯̀), where ¯̀ = (`1, `2, `3) ∈ R3.
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Selberg zeta function

Definition

Selberg zeta function for a infinite area hyperbolic surface is
defined by

Z¯̀: C→ C Z (s) =
∞∏
n=0

∏
γ

(
1− exp(−s + n)λ(γ)

)
Theorem (Ruelle)

There exists 0 < d < 1 such that the Selberg zeta function
converges to an analytic function on <(s) > d and has a
simple zero at s = d. It also has an analytic extension to C.
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The largest real zero

Consider a simplex

σ`
def
= {¯̀ = (`1, `2, `3) ∈ R3 | `1 + `2 + `3 = `}

and define a function

d : σ` → (0, 1) d(`1, `2, `3) = sup
R
{x | Z¯̀(x) = 0}

Lemma

The following are equaivalent

d is largest real zero of Z¯̀(s);

d = dimH,Λ(¯̀), Hausdorff dimension of the limit set;

d = lim
T→∞

1
T

log #{closed geodesics γ | λ(γ) ≤ T}.
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Computing zeta function

We choose the Banach space B of analytic functions on
the union of disjoint neighbourhoods of the disks bounded
by geodesics and their reflected images in C.

r
D1

D2

D3

Figure: Three circles of reflection on the unit circle
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Transfer operator

We define a transfer operator Ls on the space B by

(Ls f ) |D1 (z) = R ′`1
(z2)f (z2) + R ′`1

(z3)f (z3),

where z2, z3 are preimages of z ∈ D1 with respect to reflection
with respect to the geodesics `1 = ∂D1.

Lemma ( Grothendieck - Ruelle)

The operator Ls is nuclear, i.e. TrLs is finite.

The determinant of the transfer operator is given by

ζ(z , s)
def
= exp

(
−
∞∑
n=1

zn

n
TrLn

s

)
.
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Zeta function magic

Lemma ( Grothendieck - Ruelle)

The trace of the transfer operator can be explicitly computed
in terms of the bounded closed geodesics.

TrLn
s =

∑
|γ|=n

exp(−sλ(γ))

1− exp(−λ(γ))

Theorem (Ruelle)

There exists a constant C such that the determinant is an
analytic function in both variables in a strip 0 < s < C , and

ζ(1, s) = Z (s) = exp
(
−
∞∑
n=1

1

n

∑
|γ|=n

exp(−sλ(γ))

1− exp(−λ(γ))

)
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Computing zeros numerically

Theorem

The determinant can be expanded in a Taylor series

ζ(z , s) = 1 +
∞∑
n=1

an(s)z s with the coefficients an are bounded

by |an(s)| ≤ Cθn
2

where:

1 0 < θ = θ(`) < 1 is independent of s and there exists
K > 0 such that for all ` > 0 we have θ = O(e−K`); and

2 C = C (`, s) > 0 does depend on s and `, but it is
bounded and in a small neighbourhood of the iterval
(0, dimH,Λ(¯̀)) ⊂ R.
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Plotting Selberg zeta function
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Figure: A typical graph of the zeta function, computed using the
closed geodesics, crossing the cuts n = 6 and n = 8 times.
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Plotting Hausdorff dimension
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Figure: A typical plot of the Hausdorff dimension on the simplex
`1 + `2 + `3 = 11, computed using the closed geodesics, crossing
the cuts n = 10 times.
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Hausdorff dimension contour plot

Figure: A projection of the graph of the Hausdorff dimension on
the simplex `1 + `2 + `3 = 11, computed using the closed
geodesics, crossing the cuts n = 10 times.
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Properties of dimH ,Λ(¯̀)

The following properties hold for dimH,Λ(¯̀) on the simplex σ`,
for ` > 0:

1 The function is (real) analytic;

2 There is a critical point at (`/3, `/3, `/3);

3 There are critical points at (`/6, `/6, 2`/3) and 2 other
permutations;

4 There are critical points at (`/2, `/4, `/4) and 2 other
permutations;

Problem

The nature of the critical points remains a complete mystery.
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Behaviour of dimH ,Λ(¯̀) near the boundary ∂σ`

Fix ¯̀ then at the edge of σ` :

1 The dimension function extends continuously to the
boundary ∂σ`;

2 For (`1, `2, `3) ∈ ∂σ` we have dimH,Λ(¯̀) ≥ 1/2 (although
numerical methods are not applicable);

3 The dimension at the middle point
dimH,Λ(2ε, `/2− ε, `/2− ε)− dimH,Λ(0, `/2, `/2) � ε.
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