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A special feature of our work, which distinguishes it from other
traditional mathematical papers, is the fact that we rely heavily
on results of computer calculations. Therefore, a full verifica-
tion of our results with pen and paper only is impossible, and
computer calculations are required. It is our opinion that very
soon works referring to computer calculations will become much
more common in certain fields of mathematics.

K.I. Babenko, On a problem of Gauss (1977)

1 / 29



Markov and Lagrange spectra
The continued fraction of x ∈ (0,1) is an expression

x = [0;α1, . . . , αn, . . .]∶=
1

α1 +
1

α2 +
1

α3 + ⋱

, αn ∈ N

Consider a set of bi-infinite sequences (N∗)Z and Bernoulli shift
σ∶ (N∗)Z → (N∗)Z; σ ((αn)n∈Z) = (αn+1)n∈Z.

Introduce a map
λ∶ (N∗)Z → R λ(α) = [α0;α1, α2, . . . ] + [0;α−1, α−2, . . . ].

Definition (Perron, 1921)
The Lagrange value of α ∈ (N∗)Z is ℓ(α) ∶= lim sup

n→∞
λ(σnα)

The Markov value of α ∈ (N∗)Z is m(α) ∶= sup
n∈Z

λ(σnα).
The collection of Lagrange (Markov) values is called the Lagrange
(Markov) spectrum.

L ∶= {ℓ(α) ∣ α ∈ (N∗)Z} ⊊ M ∶= {m(α) ∣ α ∈ (N∗)Z} .
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Study of the spectra — I

L L

√
5

√
8 3

Markov
(1880)

Markov, 1880
L ∩ (

√
5,3) =M ∩ (

√
5,3) = {

√
5 <
√
8 <
√
221/5 < . . .}

is a countable set (the proof uses Markov triples).
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Study of the spectra — II

L

Hurwitz

(1890)
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Markov
(1880)

Hurwitz, 1890
minL =

√
5 (the proof uses a more classical definition via best

approximants).
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Study of the spectra — III

L

Hurwitz
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Markov
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Perron
(1921)

Perron, 1921
(
√
12,
√
13) ∩M = ∅, while

√
12,
√
13 ∈ L. Furthermore, L ⊂M and

both sets are closed.
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Study of the spectra — IV

L

Hurwitz

(1890)

L

Freiman’s
constant
(1975)

√
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√
12

√
13
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√
21

Markov
(1880)

Perron
(1921)

Hall ray

(1947)

Hall, 1947: There exists c ∈ R such that [c,+∞) ⊂ L ⊂M.
Schecker & Freiman, 1963: One can take c =

√
21 above.

Freiman, 1975: The smallest possible c is

cF =
2221564096 + 283748

√
462

491993569
.
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Study of the spectra — V
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√
21
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Perron
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Hall ray

(1947)

Freiman 1968, 1973; Flahive 1977
Near 3.11 and 3.29 the setM ∖L contains two countable subsets.
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Study of the spectra — VI
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12
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Moreira
(2018)

Perron
(1921)

Cusick’s conjecture

(1975)

Hall ray

(1947)

Cusick’s conjecture, 1975: (M ∖L) ∩ [
√
12,+∞) = ∅.

Bernstein’s conjecture, 1973: [4.1,4.52] ⊂ L.
Moreira, 2018: dim(L ∩ (−∞, t)) = dim(M ∩ (−∞, t)) and the
function f(t) ∶= dim(M ∩ (−∞, t)) is continuous. Moreover,
f(
√
12) = 1 and f(3 + ε) > 0 for any ε > 0.
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Study of the spectra — VII
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Freiman’s
constant
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Markov
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Moreira
(2018)

Perron
(1921)

Cusick’s conjecture

(1975)

Hall ray

(1947)

Cusick’s conjecture, 1975: (M ∖L) ∩ [
√
12,+∞) = ∅.

Bernstein’s conjecture, 1973: [4.1,4.52] ⊂ L.
Moreira, 2018: dim(L ∩ (−∞, t)) = dim(M ∩ (−∞, t)) and the
function f(t) ∶= dim(M ∩ (−∞, t)) is continuous. Moreover,
f(
√
12) = 1 and f(3 + ε) > 0 for any ε > 0.
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Intermission

f(t) ∶= dim(M ∩ (−∞, t))

end of part 1: introduction

next

part 2: Bumby’s method for computing f(t)
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Goal: Compute the graph of f

f(t) ∶= dim(M ∩ (−∞, t))

Matheus, Moreira, Pollicott, and P.V., 2021:
The first transition is

t1 ∶= inf {t ∈ R ∣ f(t) = 1} = 3.334384 . . .

So we are mainly interested in dim(M ∩ (−∞, t)) for 3 ≤ t ≤ 3.334385
The function f is a Cantor staircase function:
● continuous and monotone increasing
● f ′ = 0 almost everywhere,
● f(3) = 0, f(3 + ε) > 0 for any ε > 0; and f(t) = 1 for all t ≥ t1.
● Asymptotic at 3:

d (3 + ε) = 2 ⋅ W (c∣ log ε∣)∣ log ε∣ +O ( log ∣ log ε∣∣ log ε∣2 ) ,

where W is the Lambert function (the inverse of g(z) = zez) and
c = 1

log(3+
√
5)/2

.
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The graph
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The blue curve is an upper
bound for

dim(M∩(−∞, t)) = dim(M∩(3, t)).

The red curve is the lower
bound for

dim(M∩(−∞, t)) = dim(M∩(3, t))

The pink intervals are the gaps
in the Markov spectrum, iden-
tified by Cusick and Flahive in
mid 1970s.
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Now with Lambert function
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In 1982 Bumby gave an heuristic bound 3.33437 < t1 < 3.33440, and
suggested a technique for approximating d(t), but computers in 1982
were big but not powerful enough; now they are much smaller but
more powerful!

We can realise the approach Bumby proposed in practice.

Preliminaries
● Consider a set of continued fractions of 1’s and 2’s:

E2 ∶= {a = [0;α1, α2, . . . ] ∣ αj ∈ {1,2}, j ≥ 1}

Then minE2 = 1
2
(
√
3 − 1), maxE2 =

√
3 − 1 and dimE2 > 0.53128.

● Let α ∈ {1,2}Z. Then m(α) ≥
√
5 and m(α) =

√
5 if and only if

α = . . . ,1,1,1, . . . .
● Let α ∈ {1,2}Z. Then m(α) ≤

√
12 and m(α) =

√
12 if and only if

α = . . . ,1,2,1,2, . . .
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Approach to upper bound
Fix T > 0 and construct a finite set F of finite strings of 1’s and 2’s
with a property that if α ∈ {1,2}Z doesn’t contain a string from F ,
then m(α) < T .
Claim. Let K ⊂ E2 be such that for any x ∈K its continued fraction
expansion doesn’t contain a string from F . Then

M ∩ (
√
5, T ) ⊂ 2 +K +K.

Idea of the proof: m = λ(α) = [2;α1, α2, . . . ] + [0;α−1, α−2 . . . ].
Since dimH(K +K) ≤ dimH K + dimBK, thus

dim(M ∩ (3, T )) ≤ 2dimH K.

Example (Hall, 1971)
If α ∈ {1,2}Z doesn’t contain a substring 121, then m(α) ≤

√
10.

dim ({[0;α1, α2, . . . ] ∣ αj ∈ {1,2}, (αjαj+1αj+2) ≠ (121), j ≥ 1}) ≤ 0.45,

therefore dim(M ∩ (3,
√
10)) ≤ 0.9.
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Approach to lower bound

Let S be the maximal Markov value of strings which do not contain a
substring from a finite set of finite strings F :

S =maxm(α), where α ∈ {1,2}Z doesn’t contain a string from F

and let K ⊆ E2 be such that for any x ∈K its continued fraction
expansion doesn’t contain a string from F . Moreira proved

dimH((
√
5, S) ∩M) ≥min{2 ⋅ dimH K,1},

Example (Perron)
Note that m(α) ≤

√
12 if and only if α ∈ {1,2}Z. Therefore we may

choose F = ∅ and K = E2. Then

dimH((
√
5,
√
12) ∩M) ≥min{2 ⋅ dimH E2,1} =min(2 ⋅ 0.54318,1) = 1,

and conclude, in particular, that t1 ≤
√
12.

16 / 29



Strategy by Bumby T = 3.333
Identifying the strings with λ(α) > T (because m(α) ≥ λ(α)).

λ(α) = [α0;α1, α2, . . . ] + [0;α−1, α−2, . . . ], αj ∈ {1,2}

2•2

2•

2•1

12•1

212•1

212•12

112•1

21112•121

111112•121

21112•1222

121112•12

2̂1̂

1

2
2̂

1

1̂

2̂

21

2̂

1̂2

1

1

1 2

2̂

1̂ 1

√
3 < λ(1•) <

√
12− 1 < T
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Strategy by Bumby T = 3.333

Identifying the strings with λ(α) > T (because m(α) ≥ λ(α)).
λ(α) = [α0;α1, α2, . . . ] + [0;α−1, α−2, . . . ], αj ∈ {1,2}

2•2

2•

2•1

12•1

212•1

212•12

112•1

21112•121

111112•121

21112•1222

121112•12

2̂1̂

1

2
2̂

1

1̂

2̂

21

2̂

1̂2

1

1

1 2

2̂

1̂ 1

√
3 < λ(1•) <

√
12− 1 < T√

3 + 1 < λ(2•) <
√
12
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Strategy by Bumby T = 3.333

Identifying the strings with λ(α) > T (because m(α) ≥ λ(α)).
λ(α) = [α0;α1, α2, . . . ] + [0;α−1, α−2, . . . ], αj ∈ {1,2}

2•2

2•

2•1

12•1

212•1

212•12

112•1

21112•121
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21112•1222
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2̂1̂
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2̂

1

1̂

2̂

21

2̂

1̂2

1

1

1 2

2̂

1̂ 1

√
3 < λ(1•) <

√
12− 1 < T√

3 + 1 < λ(2•) <
√
12√

3 + 1 < λ(2•2) < 2 + 2/
√
3 < T
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Strategy by Bumby T = 3.333

Identifying the strings with λ(α) > T (because m(α) ≥ λ(α)).
λ(α) = [α0;α1, α2, . . . ] + [0;α−1, α−2, . . . ], αj ∈ {1,2}
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√
12− 1 < T√

3 + 1 < λ(2•) <
√
12√

3 + 1 < λ(2•2) < 2 + 2/
√
3 < T

1.5 + 5
√
3/6 < λ(2•1) <

√
12
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Strategy by Bumby T = 3.333
Identifying the strings with λ(α) > T (because m(α) ≥ λ(α)).

λ(α) = [α0;α1, α2, . . . ] + [0;α−1, α−2, . . . ], αj ∈ {1,2}
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√
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√
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√
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Strategy by Bumby T = 3.333

Identifying the strings with λ(α) > T (because m(α) ≥ λ(α)).
λ(α) = [α0;α1, α2, . . . ] + [0;α−1, α−2, . . . ], αj ∈ {1,2}
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1

2
2̂

1

1̂

2̂

21

2̂

1̂2

1

1

1 2

2̂

1̂ 1

√
3 < λ(1•) <
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√
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√
3 < T

1.5 + 5
√
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√
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2 + 2/
√
3 < λ(12•1) <

√
12

T < 3.4 < λ(212•12) <
√
12
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Strategy by Bumby (continued)

Taking inverses, we obtain the set F of 9 words of length up to 9:

F = {21212,111112121,121211111,12111212,21211121,
21112121,12121112,211121222,222121112}.

Question
How to estimate the dimension of the set X which we obtain from E2

after removing all numbers whose continued fraction expansion
contains these strings?
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Intermission

The usability of the method of computing the first transition point t1
depends on our ability to estimate the Hausdorff dimension of the
Gauss–Cantor set of continued fractions.

Xr̄ ∶= {[0;a1, a2, . . .] ∣ an ∈ {1,2}, with extra restrictions

ajaj+1 . . . aj+r1 ≠ d
(1)
0 d

(1)
1 . . . d(1)r1 , d

(1)
j ∈ {1,2}

ajaj+1 . . . aj+r1 ≠ d
(2)
0 d

(2)
1 . . . d(2)r2 , d

(2)
j ∈ {1,2}

∗ ∗ ∗

ajaj+1 . . . aj+rk ≠ d
(k)
0 d

(k)
1 . . . d(k)rk

, d
(k)
j ∈ {1,2}} ⊊ E2

with k ≤ 9 and rj ≤ 9 for all 1 ≤ j ≤ k.
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the end of part 2

approach for computing lower and upper bounds on f(t)

next

part 3: computation of dimension of Gauss–Cantor sets
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Toy example

X = {[0;a1, a2, . . . , ] ∣ aj ∈ {1,2}, ajaj+1aj+2 ≠ 121,212}

We define a Markov iterated function scheme of 4 maps parametrised
by strings j̄ ∈ A = {1,2}2 and a transition matrix M

Tj1j2(x) =
1

j1 +
1

j2 + x

M =
⎛
⎜⎜⎜
⎝

1 0 1 1
1 0 1 0
0 1 0 1
1 1 0 1

⎞
⎟⎟⎟
⎠

Columns and rows are encoded by A = {11,12,21,22}.
Mi1i2,j1j2 = 1⇐⇒ j1j2i1i2 doesn’t contain 121 or 212.

The limit set of {Tj}j̄∈A with respect to M is

{ lim
n→+∞

Tj̄1 ○ ⋯ ○ Tj̄n(0) ∣ j̄k ∈ A,Mj̄k,j̄k+1 =1,1≤k≤n − 1} =X
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Approximating eigenfunction
(after Babenko at al, 1977)

● Fix a small natural number m (e.g., m = 8 works).
● We can introduce

1 pk(x) ∈ C([0,1]) — the Lagrange polynomials (1 ≤ k ≤m ), and
2 xk ∈ [0,1] — the Chebyshev nodes (1 ≤ k ≤m )

so that pi(xj) = δij , for all 1 ≤ i, j ≤m
● Introducing d = ∣A∣ small m ×m matrices

Bj,t(i, l) ∶= ∣T ′j(xi)∣t ⋅ pl(Tj(xi))
we get a dm × dm matrix At given by

At =
⎛
⎜⎜⎜
⎝

M1,1 ⋅B1,t M2,1 ⋅B2,t . . . Md,1 ⋅Bd,t

M1,2 ⋅B1,t M2,2 ⋅B2,t . . . Md,2 ⋅Bd,t

⋮ ⋮ ⋱ ⋮
M1,d ⋅B1,t M2,d ⋅B2,t . . . Md,d ⋅Bd,t

⎞
⎟⎟⎟
⎠
.

● Let wt = (w1
t ,⋯,wdm

t ) be the (left) eigenvector for the largest
eigenvalue.

● Finally, set fj(x) =
m

∑
k=1

w
(j−1)m+k
t pk(x).
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Realisation challenges

1 The construction of matrix M which gives Markov condition
requires analysing of 22n words of length 2n looking for forbidden
substrings

2 For n = 17 the matrix M would take 2GB (and we need n = 24)
3 The matrix At is even larger: for n = 17 and m = 6 it would take

1512GB to store (and we need its eigenvector!)

4 The best method for the computation of the eigenvector is the
power method, it has complexity a bit more than O(n2.5)

Lemma (Matheus, Moreira, Pollicott, & V. 2021)
Assume that the columns j1 and j2 of the Markov matrix M are
identical, i.e. for all 1 ≤ k ≤md we have that Mk,j1 ≡Mk,j2 . Then any
eigenvector f̄ of At lies in the subspace of C2(S) for which fj1 = fj2 .
This is a huge help: In the case of the set X the Markov matrix has
3940388 columns of which only 429 are pairwise distinct. A reduction
procedure allows to replace the matrix At of size ≈ 31 ⋅ 108 with a
matrix of size 429 ⋅ 8 = 3432 only!
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Key Contributions

Advances on the study of Markov and Lagrange spectra:

1 We show that the first transition point

t1 ∶= inf {t ∈ R ∣ dim(M ∩ (−∞, t)) = 1} = 3.334384 . . .

2 We identify several non-affine Cantor sets inM ∖L and
demonstrate thatM ∖L has a rich structure.

3 We give an effective and efficient method for computing the
Hausdorff dimension of fairly complicated Gauss–Cantor sets and
apply it to approximate the devil staircase of the dimension
function.
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