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Science is what we understand well enough to explain
to a computer. Art is everything else we do.

D. Knuth
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Goal:
Develop a numerical method for computing the
Hausdorff dimension of a parabolic limit set;

Provide theoretical foundations on the level of
computer-assisted proofs;

Model example:
the Apollonian gasket, the oldest fractal set.

2 / 37



History Background Approach Realisation notes

The question of Apollonius

Theorem (Apollonius)

Given three circles tangent
to one another, there exist
exactly two circles that are
tangent to all three.
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The question of Apollonius

Theorem (Apollonius)

Given three circles tangent
to one another, there exist
exactly two circles that are
tangent to all three.

Student of Euclid,
Originally from Perga,
260–190BC;
First to study conic sections.
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The question of Apollonius
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Theorem (Apollonius)

Given three circles tangent
to one another, there exist
exactly two circles that are
tangent to all three.

Student of Euclid,
Lived in Perga, 260–190BC;
First to study conic sections.

Problem

Identify the two circles (find
their radii and centres).
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The world during Apollonius’ time
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Solution(s): from 1643 to 2002
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The curvatures of the
circles satisfy:
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Solution(s): from 1643 to 2002
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(In a letter to the Princess
Elisabeth of Bohemia.)
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The world during Descartes’ time
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The correspondents

Frans Hals, National Galery of Denmark, Copenhagen;
Gerard van Honthorst, Ashdown House, Oxfordshire.

10 / 37



History Background Approach Realisation notes

Hyperbolic positioning is used

to describe the orbits of
planets in the solar system
(Newton)

to locate the source of a
signal based on the different
times the signal is received at
three different locations
(WW1)

in modern GPS systems:
“gasket anthenna”

Image credit:
Chalkdust, 11/2020
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When ingeneers and physicist are done with a
topic, mathematicians take it on!
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Bounded gaskets: Examples
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d-dimensional Hausdorff measure

Given a d-dimensional set, we
want to estimate its volume
(think about the area of a piece
of paper, d = 2) provided we
only know how to measure
distances.

Naive idea: we can cover it by
sets An and consider a

∑n diam(An)
d.

This is bad: the area is likely to
be bigger than diam(ball)2.

Take many tiny balls: better
bound, but still low.
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Hausdorff dimension

Definition

d-dimensional volume of a metric space X is smaller than V
if for all ε > 0 there exists a countable cover X = ⋃nAn such
that (1) diam(An) ≤ ε for all n; (2) ∑n diam(An)

d < V .

Vary V continuously from +∞ to 0.

Spot the moment when the claim “d-dimensional
volume smaller than V ” fails.

Hd(X) ∶= V ; d-dimensional Hausdorff measure.

H0(X) =#X; Increase d continuously from 0 to +∞.

Spot the moment when Hd(X) ≠ 0.

The critical value of d is called the Hausdorff dimension of X.
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Hausdorff dimension of the gasket

Let rn be the sequence of radii,
counting multiplicities.
Define the critical exponent by

δ = inf {t ∣
∞
∑
n=1

rtn is finite} .

Then δ = dimH(A).

This is one of the first known fractals — sets of non-integer
Hausdorff dimension

16 / 37



History Background Approach Realisation notes

What is in dimension?

Conjecture (Bishop)

Among all sets X whose residual set R2 ∖X consists of
round disks, the Apollonian gasket has the smallest
Hausdorff dimension.

There are only finitely many circles of radius bigger
than a given number t ∶= NC(t).

Lee–Oh, 2012: There exists η > 0 such that for any
bounded Apollonian packing,

NC(t) = const ⋅ t−α +O(tη−α)

where α is the Hausdorff dimension of the packing.
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Hausdorff dimension estimates

Consider an Apollonian gasket A derived from three equal
circles; denote α ∶= dimH(A).

David W. Boyd, 1973: 1.300197 < α < 1.314534.

Peter B. Thomas and Deepak Dhar, 1994:
α = 1.30568672910 . . .

Curtis T. McMullen, 1998: α = 1.305687 . . .

Roberto De Leo, 2014: α = 1.3056867 . . .

Zai-Qiao Bai and Steven Finch, 2018:
α = 1.3056867280498771846459862068510 . . .

Theorem (V. & Wormell, 2023 (?))

The estimate by Bai and Finch is accurate to all decimal
places given.
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... more estimates

Theorem (Vytnova & Wormell)

dimH(A) = 1.3056867280498771846459862068510408911060

2644149646829644618838899698642050296986

4545216123150538713280792466882421869101

967305643608453036083 ± 10−140

“I am ashamed to tell you to how many figures
I carried these computations, having no other
business”

— Isaac Newton
(on computing 15 digits of π during the Great
Plague in 1666.)
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Step 1: Introduce a dynamical system

Idea

To compute the Hausdorff dimension of a bounded set
X ⊂ B ⊂ R2 we want to realise it as a limit set of an
iterated function scheme.

More precisely, we want to find a countable family of
uniformly contracting maps T = {Tj}j∈N such that
Tj(B) ⊂ B for all j ∈ N and X is the limit set for T :
x ∈X ⇐⇒

there exists y ∈ B and a sequence {jn} ⊂ N such that

x = lim
n→∞

Tjn ○ . . . ○ Tj2Tj1(y)

In fact, since all Tj are uniformly contracting, i.e.
∣T ′j ∣ < 1 − ε for some ε > 0, the limit is independent on y.
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Iterated function scheme for the gasket

X

f2(X)

f32(X)

f31(X)

f33(X)

f111(X)

f112(X)

f113(X)

f1(z) =
(
√
3 − 1)z + 1

−z +
√
3 + 1

R(z) = exp(
2πi

3
) z

f2(z) = R(f1(z))

f3(z) = R
2(f1(z))

A =⋂
n
⋃
∣σ∣=n

fσ(X)

(σ ∈ {1,2,3}n).
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fj are not uniformly contracting!

Indeed, since

f1(z) =
(
√
3 − 1)z + 1

−z +
√
3 + 1

we get f ′1(1) = 1, ∣f
′
2(1)∣ = ∣f

′
3(1)∣ = 1.

Idea

We apply inducing to replace the IFS {f1, f2, f3} with an
IFS {Tk, k ∈ N} with countable number of uniformly
contracting maps with the limit set of the same Hausdorff
dimension.
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Inducing — I

X

f2(X)

f32(X)

f31(X)

f33(X)

f111(X)

f112(X)

f113(X)

Find S ⊂ D:

dimH(S ∩A)
= dimH A

The first
return map
to S ∩ A is
uniformly
expanding.
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Inducing — II

S
For k ∈ N

T2k+1 = f1 ○R○f
k
1

T2k = f1 ○R
2 ○ fk

1

Infinite IFS of
uniformly con-
tracting maps
on a square S.
Dimensions of
the limit sets are
the same.
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Step 2: Introduce the operators

Idea

The estimates on the Hausdorff dimension of the limit set
of an iterated function scheme of uniform contractions come
from the study of (associated) bounded linear operators.

Given the maps Tj ∶S → S, consider the Banach space of
real analytic functions Cω(S) and the family of linear
operators Lt ∶ Cω(S)→ Cω(S):

[Ltw](x) =
∞
∑
j=1
∣Tj(x)

′∣t ⋅w(Tj(x))

The operator is called the transfer operator for the iterated
function scheme.
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Spectral radius and dimension

Let ρ(Lt) denote the spectral radius
of Lt.

dimH(A)

ρ(Lt)

t

1

Lemma (after Bowen and Ruelle, from 1980s)

The map t↦ ρ(Lt) is strictly monotone decreasing and the
solution to ρ(Lt) = 1 is t = dimH(A).
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Approaches to the spectral radius ρ(Lt)

The so-called “periodic points method” or “dynamical zeta
functions method” (Jenkinson and Pollicott, 2002) is to
consider a real analytic function

ζ(z, t) = det(zLt − I)

and to compute the largest zero of ζ(1, t).

Instead, we attempt to compute an approximation to the
eigenvector of Lt corresponding to ρ(Lt).

Useful fact (after Ruelle–Grothendieck):

In the case we consider, the operator Lt is nuclear and ρ(t)
is an isolated eigenvalue.
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Step 3: Estimates on ρ(Lt)

Lemma

Let t0 < t1.

1 If there exists a (positive) polynomial f ∶ S → R+ such
that

inf
x

Lt0f(x)

f(x)
> 1 Ô⇒ then ρ(Lt0) > 1.

2 If there exists a (positive) polynomial g ∶ S → R+ such
that

sup
x

Lt1g(x)

g(x)
< 1 Ô⇒ then ρ(Lt1) < 1.

Corollary

If we can find f, g as above then t0 < dimH(A) < t1.
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Now in pictures...

Given t0 < t1, to show that dimH(A) ∈ [t0, t1] if suffices to
... guess (or construct) two positive polynomials
f, g ∶ S → R+ such that

S

Lt0f

f

S

Lt1g

g

Lt0f ≥ f Ô⇒ t0 ≤ dimH(A) Lt1g ≥ g Ô⇒ dimH(A) ≤ t1

It only remains to construct such functions f and g, which
is the final step.
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Chebyshev interpolation method

We could just try and guess the functions f and g (and
hope we get lucky), but a more systematic approach is to
use a bit of interpolation theory.

Fix a natural numbers m (e.g., m = 12).

We can introduce
1 pj,k(x) ∈ C

ω
(S) — the Lagrange polynomials

(1 ≤ j, k ≤m ), and
2 xj,k ∈ S — the Chebyshev nodes (1 ≤ j, k ≤m )

so that pj1,j2(xk1,k2) = δ
k1
j1
δk2j2 , for 1 ≤ j1,2, k1,2 ≤m
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The nodes
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A basis function
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Step 4: Cooking up test functions

Given t consider the m2 ×m2 matrix
At(j, k) = (Ltpj1,j2)(xk1,k2) for 1 ≤ j1,2, k1,2 ≤m.

Let wt = (w
1,1
t ,⋯,wm,m

t ) be the (left) eigenvector for
the largest eigenvalue.

Finally, set fm,t(x) =
m

∑
j,k=1

wj,k
t pj,k(x).

The matrix A is a finite rank approximation to Lt.

I learned this method from a 1984 paper by K. I. Babenko,
Demonstrative Computations In The Problem of Existence
of a Solution of the Doubling Equation, Soviet Math. Dokl,
Vol. 30.
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Step 5: Verification

To apply the “min-max” principle, we need to confirm that
1 fm,t > 0; and

2 supx
Ltfm,t(x)
fm,t(x) < 1 (or infx

Ltgm,t(x)
gm,t(x) > 1 )

Fortunately, fm,t is a polynomial, so its derivative can be
computed with arbitrary precision, this allows us to verify
the first inequality.
To verify the second inequality, we differentiate

(
Ltfm,t

fm,t

)

′

=
(Ltfm,t)

′ ⋅ fm,t − (fm,t)
′ ⋅Ltfm,t

(fm,t)
2

It turns out that

(Ltfm,t)
′ ⋅ fm,t − (fm,t)

′ ⋅Ltfm,t → 0 as m→∞

exponentially fast.
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A test function
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The hard part

We need to compute the eigenvector of the matrix:

At(j, k) = [Ltpj1,j2](xk1,k2) =
∞
∑
n=1
∣Tn(x)

′∣t ⋅ pj1,j2(Tn(xk1,k2))

This requires evaluating the infinite sum to a high precision.
Recall:

T2k+1 = f1 ○R ○ f
k
1 T2k = f1 ○R

2 ○ fk
1

where R is rotation and f1 is Moebius. Thus the elements
of the sum depend on the parameter n analytically!
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Contributions

Exponential convergence of Chebyshev – Lagrange
approximation in multiple dimensions, with explicit
constants

Adaptation of min-max idea for faster convergence (in
comparison with binary subdivision)

Effective and efficient estimates for terms in
Euler–Maclaurin formula that allows to evaluate the
infinite sum.
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