Polina Vytnova joint work with Caroline Wormell

University of Surrey and National Australian University

November 2023

Science is what we understand well enough to explain to a computer. Art is everything else we do.

D. Knuth

Goal:

• Develop a numerical method for computing the Hausdorff dimension of a parabolic limit set;

• Provide theoretical foundations on the level of computer-assisted proofs;

Model example:

the Apollonian gasket, the oldest fractal set.

The question of Apollonius

Theorem (Apollonius)

Given three circles tangent to one another, there exist exactly two circles that are tangent to all three.

The question of Apollonius

History 00000000

Theorem (Apollonius)

Given three circles tangent to one another, there exist exactly two circles that are tangent to all three.

Student of Euclid, Originally from Perga, 260–190BC; First to study conic sections.

The question of Apollonius

Theorem (Apollonius)

Given three circles tangent to one another, there exist exactly two circles that are tangent to all three.

Student of Euclid, Lived in Perga, 260–190BC; First to study conic sections.

Problem

Identify the two circles (find their radii and centres).

History

000000000

The world during Apollonius' time

Solution(s): from 1643 to 2002

Theorem (Descartes)

The curvatures of the circles satisfy:

$$c_1^2 + c_2^2 + c_3^2 + c_4^2$$

$$= \frac{1}{2} \cdot (c_1 + c_2 + c_3 + c_4)^2$$

Solution(s): from 1643 to 2002

Theorem (Descartes)

The curvatures of the circles satisfy:

$$c_1^2 + c_2^2 + c_3^2 + c_4^2$$

$$= \frac{1}{2} \cdot (c_1 + c_2 + c_3 + c_4)^2$$

(In a letter to the Princess Elisabeth of Bohemia.)

History 000000●00

The correspondents

History 0000000●0

Frans Hals, National Galery of Denmark, Copenhagen; Gerard van Honthorst, Ashdown House, Oxfordshire.

Hyperbolic positioning is used

- to describe the orbits of planets in the solar system (Newton)
- to locate the source of a signal based on the different times the signal is received at three different locations (WW1)
- in modern GPS systems: "gasket anthenna"

Image credit: Chalkdust, 11/2020

When ingeneers and physicist are done with a topic, mathematicians take it on!

Approach

Bounded gaskets: Examples

d-dimensional Hausdorff measure

- Given a d-dimensional set, we want to estimate its volume (think about the area of a piece of paper, d = 2) provided we only know how to measure distances
- Naive idea: we can cover it by sets A_n and consider a $\sum_{n} \operatorname{diam}(A_n)^d$.
- This is bad: the area is likely to be bigger than $\operatorname{diam}(ball)^2$.
- Take many tiny balls: better bound, but still low.

Hausdorff dimension

Definition

d-dimensional volume of a metric space X is smaller than V if for all $\varepsilon > 0$ there exists a countable cover $X = \bigcup_n A_n$ such that (1) diam $(A_n) \le \varepsilon$ for all n; (2) $\sum_n \operatorname{diam}(A_n)^d < V$.

- Vary V continuously from $+\infty$ to 0.
- Spot the moment when the claim "d-dimensional volume smaller than V" fails.

 $H^d(X) := V$; d-dimensional Hausdorff measure.

- $H^0(X) = \#X$; Increase d continuously from 0 to $+\infty$.
- Spot the moment when $H^d(X) \neq 0$.

The critical value of d is called the Hausdorff dimension of X.

Let r_n be the sequence of radii, counting multiplicities.

Define the critical exponent by

$$\delta = \inf \left\{ t \mid \sum_{n=1}^{\infty} r_n^t \text{ is finite} \right\}.$$

Then $\delta = \dim_H(\mathcal{A})$.

This is one of the first known fractals — sets of non-integer Hausdorff dimension

What is in dimension?

Conjecture (Bishop)

Among all sets X whose residual set $R^2 \setminus X$ consists of round disks, the Apollonian gasket has the smallest Hausdorff dimension.

- There are only finitely many circles of radius bigger than a given number t := NC(t).
- Lee-Oh, 2012: There exists $\eta > 0$ such that for any bounded Apollonian packing,

$$NC(t) = \operatorname{const} \cdot t^{-\alpha} + O(t^{\eta - \alpha})$$

where α is the Hausdorff dimension of the packing.

Hausdorff dimension estimates

Consider an Apollonian gasket \mathcal{A} derived from three equal circles; denote $\alpha := \dim_H(\mathcal{A})$.

- David W. Boyd, 1973: $1.300197 < \alpha < 1.314534$.
- Peter B. Thomas and Deepak Dhar, 1994: $\alpha = 1.30568672910...$
- Curtis T. McMullen, 1998: $\alpha = 1.305687...$
- Roberto De Leo, 2014: $\alpha = 1.3056867...$
- Zai-Qiao Bai and Steven Finch, 2018: $\alpha = 1.3056867280498771846459862068510...$

Theorem (V. & Wormell, 2023 (?))

The estimate by Bai and Finch is accurate to all decimal places given.

... more estimates

Theorem (Vytnova & Wormell)

 $\dim_H(\mathcal{A}) = 1.3056867280498771846459862068510408911060$ 2644149646829644618838899698642050296986 4545216123150538713280792466882421869101 $967305643608453036083 \pm 10^{-140}$

"I am ashamed to tell you to how many figures I carried these computations, having no other business"

Isaac Newton (on computing 15 digits of π during the Great Plague in 1666.)

Step 1: Introduce a dynamical system

Idea.

To compute the Hausdorff dimension of a bounded set $X \subset B \subset \mathbb{R}^2$ we want to realise it as a limit set of an iterated function scheme.

More precisely, we want to find a countable family of uniformly contracting maps $\mathcal{T} = \{T_i\}_{i \in \mathbb{N}}$ such that $T_i(B) \subset B$ for all $i \in \mathbb{N}$ and X is the limit set for \mathcal{T} : $x \in X \iff$

there exists $y \in B$ and a sequence $\{j_n\} \subset \mathbb{N}$ such that

$$x = \lim_{n \to \infty} T_{j_n} \circ \ldots \circ T_{j_2} T_{j_1}(y)$$

In fact, since all T_i are uniformly contracting, i.e. $|T_i'| < 1 - \varepsilon$ for some $\varepsilon > 0$, the limit is independent on y.

Iterated function scheme for the gasket

Approach

are not uniformly contracting!

Indeed, since

$$f_1(z) = \frac{(\sqrt{3}-1)z+1}{-z+\sqrt{3}+1}$$

Approach

we get $f'_1(1) = 1$, $|f'_2(1)| = |f'_3(1)| = 1$.

Idea

We apply inducing to replace the IFS $\{f_1, f_2, f_3\}$ with an IFS $\{T_k, k \in \mathbb{N}\}\$ with countable number of uniformly contracting maps with the limit set of the same Hausdorff dimension.

Inducing

Find $S \subset \mathbb{D}$:

 $\dim_H(S \cap \mathcal{A})$ $= \dim_H A$ $f_{111}(X)$

> The first return map to $S \cap \mathcal{A}$ is uniformly expanding.

Inducing — II

For $k \in \mathbb{N}$

Approach

$$T_{2k+1} = f_1 \circ R \circ f_1^k$$

$$T_{2k} = f_1 \circ R^2 \circ f_1^k$$

Infinite IFS of uniformly contracting maps on a square S. Dimensions of the limit sets are the same.

Step 2: Introduce the operators

Idea.

The estimates on the Hausdorff dimension of the limit set of an iterated function scheme of uniform contractions come from the study of (associated) bounded linear operators.

Given the maps $T_i: S \to S$, consider the Banach space of real analytic functions $C^{\omega}(S)$ and the family of linear operators $\mathcal{L}_t: C^{\omega}(S) \to C^{\omega}(S)$:

$$[\mathcal{L}_t w](x) = \sum_{j=1}^{\infty} |T_j(x)'|^t \cdot w(T_j(x))$$

The operator is called the transfer operator for the iterated function scheme.

Spectral radius and dimension

Let $\rho(\mathcal{L}_t)$ denote the spectral radius of \mathcal{L}_t .

Approach

Lemma (after Bowen and Ruelle, from 1980s)

The map $t \mapsto \rho(\mathcal{L}_t)$ is strictly monotone decreasing and the solution to $\rho(\mathcal{L}_t) = 1$ is $t = \dim_H(\mathcal{A})$.

Approaches to the spectral radius $\rho(\mathcal{L}_t)$

The so-called "periodic points method" or "dynamical zeta functions method" (Jenkinson and Pollicott, 2002) is to consider a real analytic function

$$\zeta(z,t) = \det(z\mathcal{L}_t - I)$$

and to compute the largest zero of $\zeta(1,t)$.

Instead, we attempt to compute an approximation to the eigenvector of \mathcal{L}_t corresponding to $\rho(\mathcal{L}_t)$.

Useful fact (after Ruelle–Grothendieck):

In the case we consider, the operator \mathcal{L}_t is nuclear and $\rho(t)$ is an isolated eigenvalue.

Step 3: Estimates on $\rho(\mathcal{L}_t)$

Lemma

Let $t_0 < t_1$.

① If there exists a (positive) polynomial $f: S \to \mathbb{R}^+$ such that

$$\inf_{x} \frac{\mathcal{L}_{t_0} f(x)}{f(x)} > 1 \implies then \ \rho(\mathcal{L}_{t_0}) > 1.$$

Approach

2 If there exists a (positive) polynomial $g: S \to \mathbb{R}^+$ such that

$$\sup_{x} \frac{\mathcal{L}_{t_1} g(x)}{g(x)} < 1 \implies then \ \rho(\mathcal{L}_{t_1}) < 1.$$

Corollary

If we can find f, q as above then $t_0 < \dim_H(\mathcal{A}) < t_1$.

Now in pictures...

Given $t_0 < t_1$, to show that $\dim_H(\mathcal{A}) \in [t_0, t_1]$ if suffices to ... guess (or construct) two positive polynomials $f, q: S \to \mathbb{R}^+$ such that

Approach

$$\mathcal{L}_{t_0} f \geq f \implies t_0 \leq \dim_H(\mathcal{A}) \qquad \mathcal{L}_{t_1} g \geq g \implies \dim_H(\mathcal{A}) \leq t_1$$

It only remains to construct such functions f and g, which is the final step.

Chebyshev interpolation method

We could just try and guess the functions f and g (and hope we get lucky), but a more systematic approach is to use a bit of interpolation theory.

- Fix a natural numbers m (e.g., m = 12).
- We can introduce
 - ① $p_{i,k}(x) \in C^{\omega}(S)$ the Lagrange polynomials $(1 \le j, k \le m)$, and
 - 2 $x_{i,k} \in S$ the Chebyshev nodes $(1 \le j, k \le m)$

so that
$$p_{j_1,j_2}(x_{k_1,k_2}) = \delta_{j_1}^{k_1} \delta_{j_2}^{k_2}$$
, for $1 \le j_{1,2}, k_{1,2} \le m$

The nodes

Approach 0000000000

A basis function

History 000000000

Step 4: Cooking up test functions

- Given t consider the $m^2 \times m^2$ matrix $A_t(j,k) = (\mathcal{L}_t p_{j_1,j_2})(x_{k_1,k_2})$ for $1 \le j_{1,2}, k_{1,2} \le m$.
- Let $w_t = (w_t^{1,1}, \dots, w_t^{m,m})$ be the (left) eigenvector for the largest eigenvalue.
- Finally, set $f_{m,t}(x) = \sum_{j,k=1}^{m} w_t^{j,k} p_{j,k}(x)$.

The matrix A is a finite rank approximation to \mathcal{L}_t .

I learned this method from a 1984 paper by K. I. Babenko, Demonstrative Computations In The Problem of Existence of a Solution of the Doubling Equation, Soviet Math. Dokl, Vol. 30.

Step 5: Verification

To apply the "min-max" principle, we need to confirm that

- **1** $f_{m,t} > 0$; and

Fortunately, $f_{m,t}$ is a polynomial, so its derivative can be computed with arbitrary precision, this allows us to verify the first inequality.

To verify the second inequality, we differentiate

$$\left(\frac{\mathcal{L}_t f_{m,t}}{f_{m,t}}\right)' = \frac{(\mathcal{L}_t f_{m,t})' \cdot f_{m,t} - (f_{m,t})' \cdot \mathcal{L}_t f_{m,t}}{(f_{m,t})^2}$$

It turns out that

$$(\mathcal{L}_t f_{m,t})' \cdot f_{m,t} - (f_{m,t})' \cdot \mathcal{L}_t f_{m,t} \to 0 \text{ as } m \to \infty$$

exponentially fast.

A test function

History 000000000

The hard part

We need to compute the eigenvector of the matrix:

$$A_t(j,k) = [\mathcal{L}_t p_{j_1,j_2}](x_{k_1,k_2}) = \sum_{n=1}^{\infty} |T_n(x)'|^t \cdot p_{j_1,j_2}(T_n(x_{k_1,k_2}))$$

This requires evaluating the infinite sum to a high precision. Recall:

$$T_{2k+1} = f_1 \circ R \circ f_1^k$$
 $T_{2k} = f_1 \circ R^2 \circ f_1^k$

where R is rotation and f_1 is Moebius. Thus the elements of the sum depend on the parameter n analytically!

Contributions

- Exponential convergence of Chebyshev Lagrange approximation in multiple dimensions, with explicit constants
- Adaptation of min-max idea for faster convergence (in comparison with binary subdivision)
- Effective and efficient estimates for terms in Euler–Maclaurin formula that allows to evaluate the infinite sum.