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Abstract

In the present work we develop an approach to the classical kinematic fast dynamo problem
for flows [32] in the real 3-dimensional space. We suggest a fluid flow that may possibly
generate a magnetic field which energy grows exponentially fast with time in the present of
slow diffusivity. In order to verify the construction we study a discrete system and prove that
an analogous statement holds true for the Poincaré map of the provisional flow and vector
fields in the plane.

This problem falls into the framework of open dynamical systems with random holes.
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1 Introduction

1.1 A problem of magnetohydrodynamics

The subject of magnetohydrodynamics is evolution and interaction of motions of an electri-
cally conducting fluid and an electromagnetic field. Typical examples of electrically conduct-
ing fluids that dynamo theory is dealing with are the liquid layer of the core of the Earth
or convection zones of stars, although we will be studying very simplified models. Dynamo
theory studies the mechanism of generation of magnetic fields in electrically conducting flu-
ids as a phenomenon of magnetohydrodynamics [25]. The classical kinematic fast dynamo
problem [32], [36] is dating back to 1970-s and concerns the evolution of a magnetic field in a
conducting fluid flow in the presence of small diffusion, or, in other words, when the magnetic
Reynolds number is large. The magnetic Reynolds number R, is a dimensionless parameter
that is used to describe the relative balance of magnetic advection to magnetic diffusion. It
is proportional to the electric conductivity and the velocity of the fluid and to the length of

a characteristic fluid structure. The kinematic dynamo equations read
0B

— =(B-V)v—(v-V)B AB
(B (0 V)B+e -

V-v=V-B=0,

where v is the known velocity field of the conducting fluid filling a certain compact domain M.

We will be assuming that the vector field v is tangent to the boundary OM; B is the magnetic
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field, and € = RLS is a parameter corresponding to the speed of diffusion through the boundary

of M. The case of slow diffusion corresponds to an almost perfectly conducting fluid.

Definition 1. The action of the velocity field v on the magnetic field B described by the
system (1.1) is called dynamo action. A divergence-free C! vector field v with compact
support is called a kinematic fast dynamo if the magnetic field grows stronger exponentially

fast with time.

Dynamo action and chaotic motion turn out to be closely related. It has been shown by
Klapper and Young [19] that the growth rate of the magnetic field is bounded by topological
entropy of the fluid flow. Kozlovski [21] has shown that the growth rate is related to the
topological entropy, Lyapunov exponents, and topological pressure. The limit chaotic motion,
corresponding to the perfectly conducting liquid (¢ = 0), causes the magnetic field B to inherit
the complexity of the Lagrangian chaos.

It turns out that in dynamo theory the magnetic field reflects closely the motions of the
fluid, just as the swirls of cream in a cup of coffee reveal the pattern of eddies stirred by
spoon. In other words, the changes of magnetic field keep the track of the movements of
the fluid, and one can reconstruct the geometry of the flow from the magnetic field. If we
consider a magnetic field as a collection of magnetic lines, the fast dynamo corresponds to
the growth of an average line length in a flow and thus stretching and folding properties of
the flow.

The Lorenz force causes a feedback action of the magnetic field on the velocity field.
When the magnetic field is small, one can neglect this action. Whence the full nonlinear
system of magnetohydrodynamics may be reduced [10] to the system (1.1) in the case of an

incompressible fluid.
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The full pre-Maxwell system of magnetohydrodynamics may be written as

Ampere’s Law V x B = pud,
B
Faraday’s Law VxFE= —8—,
ot
Ohm’s Law J=0(E+vxB).

The magnetic field is divergence-free:

V-B=0.

(1.5)

In the equations above B(Z,t) is the magnetic field, E(z,t) is the electric field, J(z,t) is the

current, u is the magnetic permeability in the vacuum, o is the electrical conductivity, and v

is the velocity field of the fluid.

We can substitute (1.4) into (1.2) and apply the curl operator to both sides. Then we get

the induction equation

0B
— —Vx(vxB)—eV’B =0,
ot
where
€ = — = magnetic density.
no

We may expand
Vx(vxB)=B-Vv—v-VB+(V-B)v—(V-v)B,
and recall the incompressibility condition V - v = 0. Together with (1.5) we get
Vx((vxB)=(B-V)v—(v-V)B.
Finally, we substitute it to (1.6) and obtain (1.1):
%—fz(B-V)v—(v-V)B—i-aAB:O.
The following question is well-known as ”The Kinematic Fast Dynamo Problem”.

— 3 —

(1.6)
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Problem 1. Whether or not there exist a divergence-free velocity field v with a compact
support suppv = M such that the energy E(t) = HB(t)H%l(M) of the magnetic field B(t)
grows exponentially with time for some initial condition B(0) = By with supp By = M, and

for arbitrary small diffusivity €? In other words [!], does kinematic fast dynamo exist?

The exponential growth of the magnetic energy is equivalent to

1
lim lim —ln/ |B(z,t,e)|dz >0 (1.7)
R4

e—=0t—o0 t

The main interest is related to stationary velocity fields v in two- and three-dimensional
domains M.
Looking at the heat equation one may deduce [34] that the exponent of the Laplace operator

is acting on vector fields by convolution with the heat kernel:

1 ( |z —t?
2e2

(exp(eA)v)(2) = /

———ex
rd (V2me)d

)v(t)dt

1.1.1 The main result

We suggest a fluid flow on a 3-dimensional manifold immersed in R3, that may possibly
generate a magnetic field which energy grows exponentially fast with time in the present of
slow diffusivity; and therefore give a positive answer to a long standing Problem 1. The flow
is chaotic and structurally stable. In order to verify the example we show that an analogous
statement holds true for the Poincaré map of the provisional flow and vector fields in the
plane. The main result is the following

Theorem 9. There exists a volume preserving piecewise diffeomorphism F': R? — R? such

that for some vector field By in R?

1
lim lim —In|[(exp(eA)F,)" BOH£1 > 0.

e—>0n—ocon
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The map F may be realised as a Poincaré map of an incompressible fluid flow filling a compact

domain in R? (an immersed 3-dimensional manifold with a boundary).

1.1.2 Discrete problem

The Problem 1 has a discrete analogue, where the flow action is replaced by a diffeomorphism,
and dissipation is represented by action of exp(¢A). The Kinematic Fast Dynamo problem

for diffeomorphisms has been stated by Arnold [I] in the following form.

Problem 2. Does there exist a volume-preserving diffeomorphism g: M — M of a compact
manifold M such that the energy of the magnetic field B grows exponentially with the number
of iterations of the map

B — exp(eA)(g«B) (1.8)

for some initial vector field By and for arbitrary small diffusivity &7

In other words,

1
lim lim —ln/ |(we * g«)" Bo(z)|dz > 0, (1.9)
R4

e—>0n—oon

where w, is the d-dimensional Gaussian density with isotropic variance e:

e 1 2|2
we(z) def W exp(—%); (1.10)

where g, is induced action on vector fields and * stands for convolution. Nowadays the
discrete analogue is a problem of particular interest itself and maps have become a popular

model for fast dynamos [6], [13], [14], [30].

1.2 Brief history

While the realistic dynamo problem is still open, the non-dissipative case, corresponding to

perfectly conducting fluid (¢ = 0 in the equation (1.1)), is easy. It is well known [33], [14]

— 5 —
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that non-dissipative kinematic fast dynamos exist on all manifolds.

Theorem. On an arbitrary n-dimensional manifold any divergence-free vector field with a

stagnation point with a unique positive eigenvalue is a non-dissipative kinematic fast dynamo.

The case of realistic dynamo action € > 0 is not so simple. There is numerical evidence
of dynamo action in helical flows [6], ABC flows [16], and Mobius flows [31]. Yet, there is
no rigorous mathematical argument for these examples nor for flows in R? in general. In
particular, there is no continuity of the spectrum of the corresponding operator as € — 0.

The only constructions known are discrete dynamos in two dimensional surfaces with non-

trivial first homology group Hi(M,R).

Main features of these examples are coming from the cat map on the torus [3]. Consider
T 21 T
g: T? - T2, g: — mod 1.
y L 1) \y

The expanding direction at all points is given by eigenvector By = (1+2\/5) with eigen-

value \ = %

. Therefore, the constant magnetic field B = By grows exponentially with

number of iterations of the map g:
Bn = (9+)"Bo = A"Bo;  [|Bnll = A"[| Bol|-

Added diffusion doesn’t spoil the example, since an average of a constant field is the same
constant field.
This example has been generalised in [24] to arbitrary diffeomorphisms of the torus. Later,

a more general result has been established [1].

Theorem. Let g: M — M be an area-preserving diffeomorphism of the two-dimensional

compact Riemannian manifold M. Then g is a dissipative fast dynamo if and only if the
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induced linear operator g1 on the first homology group has an eigenvector A with |A| > 1.

The dynamo growth rate is independent of :
o1
lim —In||B,|| = In|A|
n—oo n
for almost any initial vector field By. (Here B+ = exp(eA)g.By.)

The argument exploits duality between vectors and one-forms on the surfaces and commu-
tativity between the Laplace-Beltrami operator and the exterior derivative. Therefore, it is
not possible to extend it to higher dimensions.

On the negative side, there are antidynamo theorems, specifying geometric properties of
the manifold M where flows with fast dynamo action are impossible. A very early result [1 1]
states that “A steady magnetic field in R? that is symmetric with respect to rotations about a
given axis cannot be maintained by a steady velocity field that is also symmetric with respect
to rotations about the same axis”. This result has been generalised [22], [20] and it is now
understood that the symmetry of the magnetic field alone is not compatible with exponential

growth.

Theorem. A transitionally, helically, or azially symmetric magnetic field in R? cannot be

maintained by a dissipative dynamo action.

Our goal is to construct a 3-dimensional flow, that will resolve Problem 1 positively. A
possible model is discussed below. In order to study the flow, we begin with Poincaré map.
Theorem 9 (p. 162) shows that the inequality (1.9) holds true with g chosen to be a simplified
Poincaré map of the flow. Although simpler than the flow itself, the Poincaré map is still
difficult to study. Therefore we begin with a simple one-dimensional map, which would be
a reduction of the Poincaré map, and show in Theorem 6 (p. 94) that the inequality (1.9)

holds true for this one-dimensional case.



1.3 PROVISIONAL FLUID FLOW

1.3 Provisional fluid flow

The following model for the fluid flow on a 3-dimensional manifold, displayed in Figure 1.1,
has been suggested by Dr. O.Kozlovski. Topologically, the manifold is equivalent to a solid
3-dimensional body whose boundary is a sphere with three handles. The vector field has two
lines of saddles ¢; and ¢5, which are orthogonal to each other and do not intersect. Light blue
two-dimensional surfaces consist of separatrices of the saddles. Blue dashed lines with arrows
represent solid tubes 71,4 with cylindrical boundaries that connect two surfaces. Dark blue
arrows stand for the velocity field of the fluid flow, and red arrows is the stationary initial
induction field Byg. We assume that the fluid flow is stationary outside of a neighbourhood
of the manifold and its velocity tends to zero rapidly near the boundary. Blue boundaries
mark “the dynamo manifold”, where the exponential growth of the initial induction field
takes place.

The induced mapping between the sections {7, 01, 4}, is shown in Figure 1.2. In particular,
we see that any point that leaves the dynamo manifold due to diffusion is being attracted
to the unstable manifolds of the saddles S; and S;. In addition, we see two heteroclinic
connections clearly. To complete the construction one has to define gluing between the green
surfaces o1, 4 by tubes, and to make sure that unstable separatrices of two periodic saddle
points S7 and S5 eventually enter the tube 73. This will guarantee that all trajectories, that
leave the manifold due to diffusion, either return back shortly, and the frozen into the fluid'
magnetic field doesn’t change much, or go into a long tube 73, which causes large return time.

An alternative would be to make unstable separatrices to be attracted to periodic cycles of

!'We say that a vector v field is frozen into a moving fluid if £ 4 v x B = 0, which corresponds o > 1 in the
Ohm’s law (1.4). In practice, it means that when a surface consisting of magnetic field lines is moved by

the flow, it changes, but none of the field lines become orthogonal to the surface.
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Figure 1.1: Dynamo manifold with the fluid flow (blue) and magnetic induction field (red).

The labels S7 and Sy mark periodic saddle points.

a huge period. This seems to be possible, although we are still working on the details.
We also would like to point out, that any small perturbation of the presented 3-dimensional
flow possess fast dynamo action as well. Therefore, once this example is verified, we will be

able to show that dynamo flows are generic.

1.4 Poincaré map

In order to study the flow, one can consider a global Poincaré section m, and the first return
map F. The intersection between the plane 7w and the dynamo manifold has four connected

components. Three of them are intersections with the tubes 7y, 79,73 and another one is
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“a square” which is shown in Figure 1.1. The restriction of the Poincaré map onto the
square is representative for studying the flow action; and deserves a special consideration. In
particular, it is an unfolded' Baker’s map and demonstrates chaotic properties. Since near
the intersection with the separatrices of the saddles #5 the first return time is huge, a proper
2-dimensional model for the Poincaré map would be a map with a Z-shaped hole, as shown
in Figure 1.3.

Outside of the square the first return map F' has the following properties.

1. It is piecewise continuous and bijective.

2. It is area preserving.

3. The Euclidean norm of the differential is uniformly bounded ||dF|| < 1+ p for a small

w>0.
4. The Hessian is small ||[d?F| < us for a small us > 0.

In addition, we shall impose an artificial condition in order to guarantee that the map outside
of the unit square doesn’t “bend” too much. This condition in principle should be replaced
by a statement similar to Yomdin’s Lemma on volume growth [35].

Consequently, as a first step we may try to show that the unfolded Baker’s map itself is a
fast dynamo in the presence of slow diffusion through the boundary. This is the main result

of the present work (Theorem 9 p. 162).

'In literature two different maps are being referred to as “Baker’s map”. By unfolded we mean the one that

doesn’t change orientation of the vector field. A precise definition is given by (1.11).
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1.5 Principal obstacles and general strategy

In the absence of diffusion (¢ = 0) we may choose the initial magnetic field By to be collinear
with the stretching direction of the Baker’s map on the square and then transfer it out all
over the dynamo manifold using the fluid flow. The added diffusion makes the energy of the
vector field to dissipate through the boundary as a solution of the heat equation. Baker’s
maps were suggested as a model for kinematic fast dynamo long ago ([13], for example), and
a numerical evidence was found for the exponential growth of magnetic energy [12]. However,
there was no rigorous analytical argument in the presence of diffusion.

In order to be more specific, let us introduce a shorthand notation for the unit square
O: ={(z,y) eR?| 2| < 1, |y| < 1}.

and consider the unfolded Baker’s map

(

(F2y+1), ifzed, -1<y<0,

P(z,y) =\ (2 2y —1), ifze0,0<y<1, (1.11)

F(,y), if (2,y) € B2\ O

\

where F': R?\ 0 — R?\ [ is an area-preserving piecewise diffeomorphism with uniformly
bounded Jacobian [|OF|| < 1+ p (as the Euclidean norm of a linear operator) and such that

any point has not more than d < M preimages with respect to FM for some large M. Our

goal is to show that there exists a vector field By such that
e—=0n—oon

1
lim lim —ln/ |(exp(eA)P,)"Bo| > 0. (1.12)
R2

It is sufficient to construct two cones C7 and C5 in the space of essentially bounded vector

fields with finite £1 norm such that for some § > 0 and any sufficiently large m

(exp(eA)P)™(C1) € C2 € C1 and |[(exp(eA)P)™ |ey || = (1+ )™
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The argument is based on the following ideas.

Noise instead of diffusion. The idea to replace the diffusion by noise added to the system
has been used by Klapper and Young in [19]. One can introduce a “small perturbation” of
the original map

Pti = P + t
and associate a composition of small perturbations to any sequence € £, (R?) by
P =P, 0P, ,0...0P.

Then by the Noise Lemma 2.2.1 with t= 0,tm—1,---,01:

(exp(eA)P)™v(z) = /2( %E(tl)we(tg) o We(tm—1)(exp(eA) PElv) (2)dtidts . . . At 1,
R2(n—=

(1.13)

where w; is the two-dimensional Gaussian kernel with isotropic variance e, defined by (1.10).

It follows that it is enough to construct a pair of cones C'y and Cs such that for arbitrary

sequence of small vectors ¢

exp(eA)PI(TT) € Co € €1 and [[exp(eA)PL |e, || > (14 6)™

The choice of the norm. By definition, a cone is a convex subset which is invariant with
respect to multiplication by a non-negative real number. The cones we will be dealing with

have a general form
Cone (vg, ay) = = {dvy, +w | [lw] < d27%||vg||,d € R*}.

We say that the cone Cone (v, aq) is smaller than the cone Cone (v, ag), if a1 > ag > 0.

We do not require here that Cone (vy, a;) N Cone (vg, ag) # .
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In order to construct a pair of cones, it helps to choose the norm in a proper way. The
diffusion represented by convolution with the Gaussian kernel means that the energy of a
vector field that changes direction rapidly cannot grow very fast due to cancellations [14].

It is not unreasonable to suggest therefore that piecewise constant vector fields will grow
rapidly. Following this idea, we introduce a class G(m, J) of partitions of the real plane with

the following properties.

1. The unit square [J contains at most 4™ and at least 4! elements of the partition; the

interior of an element of the partition does not intersect the boundary of the square.

2. Any element of the partition contains a square with side length %27” and is contained

in a square with side length 2m*1.

3. Any square with a side 6 may be covered by at most N5 = 22™*152 clements of the

partition.

To any partition Q of the class G(m,J) we associate a weighted £1 norm on the space of

vector fields by (cf. Subsection 4.2.2):

lollne, &S 2o [ ol

where 7, represents orthogonal projection onto the expanding direction of the Baker’s map.
The supremum norm of a vector field v we denote by ||v]|~ def sup |v|. Finally, on the space
of essentially bounded vector fields with finite £1 norm, we introduce a new norm, combining
the two

def _
Joll = max(f[vlla,z, 27/ supo])

Canonical partitions. We would like to approximate the operator Ptlj: by a linear operator

between two suitable subspaces of piecewise constant vector fields with a simple-looking
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matrix. In order to do that we construct a pair of so called canonical partitions Q' and Q2 of
the class G(m, d), associated to a sequence of perturbations  (Subsection 4.2.3) and introduce
two subspaces X1 and X2 of piecewise constant vector fields associated to partitions Q! and
02, respectively. On every subspace of piecewise constant vector fields we choose a normalised

basis

{x?;ij def m(é)xmj; Xb, = m(?)m“}i’mz, (1.14)
where 7, represents the orthogonal projection onto the contracting direction of the Baker’s
map. The construction of canonical partitions rely on the study of small perturbations of
the doubling map. It is easy to observe that the Baker’s map and the doubling map are
closely related, and the former is just an extension of the latter. The canonical partition for
the sequence 7 is set to be a direct product of two canonical partitions associated to suitably

chosen perturbations of the doubling map.

The first approximation. Once two partitions are chosen, we define a linear operator

A Xq1 — X2 by its matrix elements so that

/Q Prlv = Agv for all QF, € Q% and any v € Xq1.

2 2
kl le

The choice of partitions allows us to establish the following facts about the matrix of the

operator A; in canonical bases (1.14).

1. There exists a small number 0 < 7; < 0.01 such that sup|aff| < 2™ (Proposi-
tion 4.3.2).
15

2. There exists an 13 < a < 1 such that for all [t < 27™* we have a decomposition

Ay = By @ C;. The matrix elements of the operator B, satisfy (Proposition 4.3.1)

#{(i,5,k,0) | (6,4) €0, (k1) €0, bl # 1} < 2¢5-m
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and the matrix of the operator C; is small

ZZ|C | < 100m(1 + p)*m27m,

where y comes from the upper bound on the Jacobian of F'lga\r.

Using the inequalities above, we deduce that for all sufficiently small |[{| < 27 we have
(Lemma 4.3.19)

HAt _AOH < 2(2%-}—71—04)771;

where A( corresponds to the zero sequence t = 0. Afterwards, we establish the following

facts

1. There exist two cones C; C Xq1 and Cy C X2 such that Ay (Cp) C Cy and Cy is much

smaller than C (Theorem 8 p. 141).
2. The operator A; is a good approximation to Py, (Corollary 2 of Proposition 4.3.3):
| exp(A) (P — Av|lgz < 22 (2+)m sup diam (Q2)||v||az where 6 = 27",

(1.15)

The second approximation. The goal is to get rid of dependence of partitions Q' and Q2
on £ and to show that for any partition Q3 of the class G(m, ) there exists a linear operator

D: X — Xqs3 such that for any 6 = 27™* and any |t| < 0 the following properties hold true:

1. There exists a cone C3 € X3, smaller than the cone C1, such that (Proposition 4.4.4):

D exp(dA)A:(Ch) C Cs.

2. The norm of the operator D exp(dA).A; grows exponentially with m: for any v € X1

we have (Lemma 4.4.4):
1D exp(6A) Apvllgs > (227 — 23™) [[v]|gn.
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3. The operators D exp(6A).A; and exp(dA)A; are close. There exists a small o > 0 such

that for any v € X1 we have (Lemma 4.4.1):

(D exp(6A)A; — exp(6A)A vz < 2%772)0™ ||v]g. (1.16)

Combining the first (1.15) and the second (1.16) approximations, we get an invariant

2m

5 and derive from it an invariant cone for the operator

cone for the operator exp(dA)
(exp(0A) P, )*™.

It may seem at first sight that the examples chosen are too simple since they are linear.
However, it appears that they are sufficiently complicated to analyse and the same approach

is applicable to non-trivial perturbations, since most estimates are based on distortion prop-

erties and the distortion is easy to control for perturbations of hyperbolic maps.

1.6 Outline

The work presented has three chapters. In chapter 2 “A proof of the fast dynamo theorem”
we give sufficient conditions (Invariant Cone Hypothesis 1) for a piecewise C? transformation
of R™ to be a fast dynamo. In the following Chapters 3 and 4 we construct measure-preserving
piecewise-C? transformations £: R — R and 7: R? — R?, respectively, that satisfy the
Hypothesis. As mentioned above, the arguments in the two-dimensional case rely on some
parts of the analysis of the one-dimensional system.

We begin the Chapter 2 with a few general constructions; we give a definition to small
random perturbations (Subsection 2.1.1), introduce a norm in the space of vector fields, and
fix the type of cones we are interested in. Then we explain how to reduce the system with
diffusion to a system generated by a small random perturbation of a certain map. Finally,

in the Section 2.2, we prove the fast dynamo theorem for maps satisfying the Invariant Cone
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Hypothesis.

The Chapter 3 we start with a few definitions, that introduce the central elements of
the construction. In particular, we define a class of partitions G(m) of the real line with
a certain “uniform” property (Definition 4, p. 34); and a norm in the space of essentially
bounded integrable functions we will be using throughout (Definition 3, p. 26). In addition,
we introduce a transfer operator, that we will use to define an induced action of a piecewise
diffeomorphism on functions (Definition 5 p. 35).

In Section 3.2.1 we consider a so-called toy dynamo operator between two linear spaces
A: X7 — Xs in the most abstract way, i.e. in terms of its matrix coefficients. We show
that for any toy dynamo operator there exist two cones Cy C X7 and Cy C X5 such that
A(C1) € Cy; and Cy is much smaller than C;. This is the content of Theorem 3 p. 45.

In Section 3.2 we show that a toy dynamo operator approximates a transfer operator,
induced by a large iteration m of a small random perturbation of the so-called dynamo map
(Subsection 3.1). The dynamo map is an expanding map on the unit interval complemented

by reflection outside. More precisely, given 1 < s9 < 2 < 51 < 3, we define (3.3)
siz+ s — 1, if—1<x<%—1;
U(z) = sox + 1 — 89, if%<x<1;

-, otherwise;

and associate a small random perturbation to any sequence £ € (- (R). Essentially, the
toy dynamo operator is given by the transition matrix between two partitions of the class
G(m) associated a small perturbation 62” of the map ¢. Namely, we see that a;; = 1 if
E?(Qzl) N Q? = Q? and (7" |QZ1 is increasing. Figure 1.4 shows a few iterations of the map
without perturbation (§ = 0) and with the largest possible perturbation (£ = ). We see that

transition matrices should coincide in many places for Q7 Q? C [-1,1].
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In Subsection 3.2.2 we introduce a canonical partition Q¢ of the class G(m), associated to
a small perturbation £&. The partition has the following property. For any interval I with
E’g([) C [—1,1] for all 0 < k < m there exists an element of the partition Qf such that I C Qf
In addition, the partition is “uniform”: any interval of the length § contains not more than
Njs elements of the partition.

In Subsection 3.2.3 we show that the operator Bg may be very well approximated (The-

orem 4 on p. 62) by a toy dynamo operator T defined on the space of piecewise constant

functions associated to Qf. For any essentially bounded and absolutely integrable function f,

5360

(€8 = Ty exp(02)fll2 < (5 o

)" mils .

Here we can choose parameters s1, s of the map ¢, and a constant « such that the approxi-
mation is good enough: namely || 7| = 2™ and

si

21/2+a52 <2

In Section 3.3 we construct an invariant cone for the operator exp(dA)¢7; exp(dA) in
the space of essentially bounded absolutely integrable functions. In order to do that, we
show that the image of the Weierstrass transform with Gaussian kernel with isotropic vari-
ance 0 = 27 > sup \le] may be well approximated by step functions on a partition Q' of

the class G(m). Namely, for any partition Q2 of the class G(m) we have (Lemma 3.3.2):

max(sup 2], sup [22])

| Dox W5 f — Wsfl1 < 5

1
17112 < <=l £l
2

Based on this simple idea, we construct an invariant cone in the space of essentially bounded
integrable functions “around” the cone in the space of piecewise constant functions.
In chapter 4 we construct a transformation 7: R?> — R? that satisfies Invariant Cone

Hypothesis 1. Informally speaking, we take a certain iteration of an unfolded Baker’s map
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on the square and complement it by a non-expanding area preserving map outside. The
argument runs in a similar way to the one-dimensional case; and according to the general
strategy described above in Subsection 1.5.

In the beginning we fix notation related to mappings of R? and vector fields. In particular,
we define (4.3) the Gaussian kernel Ws and the Weierstrass transform operator on vector
fields.

In Section 4.2, we define the dynamical system we will be working with. It is easy to see
that the energy of the vector fields that change direction rapidly does not grow exponentially
fast. We are going, as before, to replace diffusion by small random perturbations, and we
have almost no control on the map outside the square. Therefore we need to introduce a
delay in return time artificially. One of possible solutions is to use a tower construction.

In Subsection 4.2.1 we define the phase space X to be a tower of M floors, which is a union

of the real plane R? and M — 1 copies of it with the central square cut off:
X ({0} x R U ({1,..., M — 1} x (R*\ 0)),

where [0 = [—1,1]2. We also define a map F: X — X, to be, generally speaking, Baker’s
map on the square [J and some area-preserving map transferring points outside of the square

to a different floor.

wr | Fo(2),0), if n=0and z € O;
F(z,n) = (4.5)

(Frt1(2),(n+1)mod (M — 1)), otherwise.
(See p. 97 for definition of the maps F,, n = 1,...,M — 1.) We also introduce small per-
turbations F¢ of the map F. Afterwards, we define the map P: R? — R? we will be dealing
with as a large iteration of the map Fg.
In Subsection 4.2.2, we introduce (4.11) a norm on the space of vector fields we will be

using to construct invariant cones. It is similar to the norm we were using in one dimensional
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case, but we “weight” £1 norm only in expanding direction. A linear operator we define to
be an action induced by Pg in ordinary way (4.10).

In Subsection 4.2.3 we exploit similarities between Baker’s map, its inverse, and the dou-
bling map, and construct a canonical partition for the Baker’s map as a direct product of
two partitions for suitably chosen small random perturbations of the doubling map.

In Section 4.3 we introduce a subspace Xq1 of piecewise constant vector fields associated
to the canonical partition Q'. We define the basis on X1 to be Vo UV, where

def 1 def 1
R S IS S SN S
@ \ﬂx(Q}j)\(O)XQilj i€, jer @ \ﬂx(Q}j)](l)XQilj i€, jeL

The vectors that have only X9, components, are parallel to the contracting direction of the
Baker’s map and vectors that have only Xqy components, are parallel to the expanding di-
rection of the Baker’s map. Using the operator P, we define an associated linear operator A

between Xq1 and a suitable subspace of piecewise constant vector fields Xn2 and such that

J

via its matrix elements. It is natural to write the operator A as a direct sum of four linear

Pg*uz/ Av (4.16)
Q

2 2
kl kl

operators A =S5@® SU US & UU, where
S8 (Var) = (Vae)s SU: (V) — (Vge)s US: (Vi) = (Vie)s UU: (Vi) — (V).

The growth of the energy is guaranteed by the operator UU, and we will study it separately
in the next section. We conclude this section with construction of a pair of cones C7 C X1
and Cy C X2, such that A(C7) € C5 and the cone C; is much smaller than Cs.

In Subsection 4.3.1 we establish that the matrix of the operator UU demonstrates properties
similar to the ones of “toy dynamo operator” we studied in the Chapter 3. Namely, its central
part, corresponding to the elements from the unit square, has a plenty of 1’s, and the absolute

value of elements is majorated by a small power of 2 (Propositions 4.3.1 and 4.3.2).
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In Subsection 4.3.2 we justify the choice of the operator A, and show that operators WsA
and VV(;Pg2 are close on the subspace of piecewise constant vector fields Xg1. The estimations

are based on the fact that ¢ is chosen so that

max(sup |, (25|, sup |7y (Q5)]) < 6

and the construction of canonical partitions.

In Subsection 4.3.3 we construct a pair of cones for the operator A, the larger cone
C; C Xq1 and a much smaller cone A(C1) C Cy C Xg2. We use the decomposition
A=85®SU dUS § UU, and exploit simplicity of the matrix UU along with upper
bounds on other operators.

The Subsection 4.4.1 repeats the Section 3.3 of the one-dimensional Chapter 3 with obvious
modifications adjusting the arguments to dimension two. In particular, the length of the
intervals of the partitions in the upper bounds is replaced by the diameter of the elements.

In Subsection 4.4.2 we construct of an invariant cone for the operator W s Pg*W 5.
2m 2m
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Figure 1.2: The mapping between the sections m,01 .. 4, induced by the fluid flow;
A = 9 (Ag_1), By = ®"(Bg_1). The points S and Sy are periodic saddles;

blue and red arrows show stable and unstable manifolds, respectively.
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(2520 1)

BN

Figure 1.3: (a) Unfolded Baker’s map, that appears as the first return map to the section ;

(b) Doubling map with a hole; and (c) a small perturbation of the doubling map

with a hole.
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Figure 1.4: First four iterations of a small perturbation of the doubling map with a hole of
the width h: (a) the case of the zero sequence; and (b) the case of the constant

sequence & = €.
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2 A proof of the fast dynamo theorem

In this Chapter we give a proof for the fast dynamo theorem for maps satisfying certain
hypothesis. Later, in the Chapter 3 we construct a one-dimensional map satisfying this
hypothesis and in the Chapter 4 we prove that its two-dimensional extension also satisfies
these conditions. The two-dimensional map may be realised as a Poincaré map of a smooth

stationary vector field in R3.

2.1 Basic constructions

In this Section we introduce objects central for our investigations: small random perturbations
of a dynamical system and a norm in the space of vector fields. We also specify the type of

cones in the space vector fields we are interested in.

2.1.1 Small random perturbations

We construct a random dynamical system using skew-products. Let X be a real manifold

and let f: X — X be a transformation. We consider its extension

o~

FrXxR" 5 X T, &) Y ) + Q). (2.1)
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Let ¥ C loo(R™) be a shift-invariant subset of two-sided bounded sequences of vectors in R".

We introduce a skew product over the Bernoulli shift

~

ox XX Y% X (0 x )& 2) E (0(9), f(=,£1))). (2.2)

The induced transformation on fibers we denote by

def o

fer X = X, fe(z) = f(2,€(1)). (2.3)

Its iterations are given by

~

FE) T ) €0)). (2.4)

Remark 1. The following identities follow from the definition of the map fe.

FE = Fey © Few—1) 0 - - © feq); (2.5)

FR = U = fah o fdy oo Fadys (2:6)
f:n_(]g), if n <k;

feR=frofit=fFof = (2.7)
ng  ifn>k.

Definition 2. We call the map f¢ a random perturbation of the map f associated to the

sequence £ €Y.

2.1.2 Norm in the space of vector fields

Piecewise constant vector fields are proved to be very useful to us. We define a norm in the
space of essentially bounded and absolutely integrable vector fields @, using partitions.

The norm we are about to introduce is related to the map f. Since topological entropy is
an upper bound for the growth rate of the energy, the system has to be chaotic. We shall

assume therefore that the map is hyperbolic and choose an n,-dimensional unstable manifold.
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We let 7, to be projection along the unstable foliation onto the stable manifold. We denote
by An, the n,-dimensional Lebeague measure on the unstable manifold.

Let us fix a large number m > 1. Its role will be clarified in the next Subsection.

Definition 3. A norm in the space of essentially bounded and absolutely integrable functions,
oo

associated to a partition Q(m) = |J ©; of R™ is given by
j=1

9—num

17l = max(3 5y | @i,z supl 1); (28)

j
where the choice of v depends on n.

The first term we refer to as the weighted £i-norm and write

Woer: =35, @ L @

Nnu 7Tu Q;

it depends, of course, on the partition chosen.

We denote by ®q the subspace of ®, consisting of piecewise constant vector fields associated

to the partition €.

2.1.3 Cones in vector fields on R"

We reserve a notation for a cone of the radius r with the main axis vg in the space ®q:

Cone (un,r.2) ©n = dvg + 0] ¢ € @a. [(0)0 =05 el < drlfnll}.  (29)

We extend the cone Cone (vg, 7, 2) to include general functions from the main space:

—

Cone (v9,7,2,9) “ { f =1+ g, 1 € Cone (v0,7,2)., llgllo < ellnlle }- (2.10)

We say that the cone Cone (vo,rl,el, Ql) is smaller than the cone Cone (’U(],’I“Q,82, QQ) and

—_—
write Cone (vo,rl,el,Ql) < Cone (’L)(],’I“Q,&Q,QQ), if 71 > 79 and &1 > €9; we do not assume

here that Cone (vo,rl,el, Ql) n Cone (Uo,T2,€2, QQ) #* O,
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2.2 Fast dynamo theorem

In this Section we set the hypothesis and give a proof of the fast dynamo theorem 1.

The first step the Noise Lemma 2.2.1, which suggests to replace the operator (exp(dA) fi)"
in our considerations with the operator exp(dA)f/. for some sequence t.

We begin with a simple observation that the exponent of the Laplacian operator!' in R,
is the convolution with the Gaussian kernel, in particular

m2

1

exp(0A)v = ws * v, where ws(x)

The latter operator is also known as the Weiertstrass transform Ws(v) o (ws * v); this
notation we use throughout.

The following statement is generally known, but we give a proof for completeness.

Lemma 2.2.1 (Noise Lemma). For any map f: R™ — R™ and for any vector field v in R™

we have

ng*(W(;f*)m_lv(m) = /Rn(mn ws(t1)ws(t2) . . . wg(tm_l)(W%fé—?*U)(x)dtldtQ coodto1,
(2.11)

where 0t = (0,t1,t9, ..., t;m_1) € R™.

Proof. Observe that f~'(z —t) = f;'(x), because fi(xz) = f(z) +t. By straightforward

'A: v — d?%v in the case of the real line.
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calculation,

Wi fo(Wsf )™ o() = W fo(Ws )" 2 W fov(w) =

— Wy £ Wst" [ O f)(a - )t =

n

=Wy L (W)™ [ ws(t) () )t = .. =

n

Ws /Rn(ml) w5(t1) cee wé(tm—l)(f*ftl* ... ftm,l*v)(x)dtl oodty—1 =

2

/ w(t) - wa (1) (We S 0) (£)dty .. Ay,
Rn(m—1) 2
[ |

Corollary 1. For any map f: R™ — R", any vector field vg in R™, and for any k = kgm > m

W fo(Ws )~ Wauo(w) =

ko
= / we(t1)ws(ta) . .. wé(tkfko) (Wg fOL?*Wg> vo(x)dtidis . .. dtk—r,. (2.12)
RF—Fo 2 2
We shall put the following conditions on the map f.

Hypothesis 1 (Invariant Cone). There exist an m > 1, a partition Q(m), a vector field vy,
and four numbers ro(m) <K ri(m), e2(m) < e1(m) < 1 such that for any sequence & with

[1€]lo0 < 0

— —

W fii W C/o\ne(vo,rl,el,Q) — Cone (vg, r2,€2,2) C Cone (vg, 1,€1,2) (2.13)
2 2
Moreover, there exists 0 < v < 0.01 such that for any field v € Cone (vo,71,€1,9)
2" 2ol < [Ws fi7, Wsvlla < 2057 |ullg. (2.14)

We construct a map f: R — R satisfying this hypothesis in the Chapter 3 and a map
f: R? — R? satisfying this condition in the Chapter 4.
We choose 6 = 27, a partition Q = Q(m) = [J;, the vector field vg > 0, and fix four

dimension parameters of two cones rq, 72, €1, and €9 such that the Hypothesis holds true.
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Lemma 2.2.2. In the notations introduced above, for any v € Cone (vo,r1,€1,2)

/{M ws (tn) - ws (b )(Ws fEW s v)dty -dt 1 € Cone (vg, €*r, %e9, Q) .

(2.15)

Proof. By the Hypothesis assumption, we know that for any |t| € [—d,d]™ and any vector

field v € Cone (vo, 71, €1, Q)
Wifﬁfwiv:dvo—i-wt—i-gt S (%;e(vo,rg,sg,ﬁ),
2m 2m

where ¢, € ®q, ||¥i]|la < dra]|volla and ||g:||a < dea||vollq. Observe that € is independent on

t. Therefore,

~ (/(S (t )dt) L v0<1 - 3>m71 > e 20y, (2.16)

-6

§\°ﬂ

for m large enough. Since ¢, € ®q for any ¢ € [—4, 5]
/ ws (t1) ... ws (tym—1)Pedty ... dty, 1 € Pq,
[~o8)m ™ m
and we calculate €-norm.
H/ ws (t1)...ws (t m—l)wtdt1---dtm—1H <
[—6,6]m—1 m Q

<Z)\ )/[Myn ) %(tl) % tm—1) / |ty (z \dgg)dtl codt,g <

9—num

N 7Tu

< sgp Vel < drallvolla.

Similarly,

45
m m

H/ ws (t1) . ws (1) gedty . .. dby_ 1” < des|vol|a-
[—8,8)m—1 Q
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Observe that

1
/ / ws (t1) ... ws (typ—1)Ye(x)dty ... dty—1da =

—1J[-5em-1 ™ m
=0.

:/[ - ws (t1) ... ws (tm—1)dty ... dbm—1 - / i (z
5om—1 m m

Summing up, for any v € Cone (vo,€1,71, )

/\ ) )
5 .dt;,_1 € Cone (vo,e ro,€ ag,Q) .
m

/[ } 1w£(t1). .w (m 1)W ft*W(svdtl
4,0]™ m
[ |

Lemma 2.2.3. In the notations introduced above, assume in addition that 27"e™™ < go(m).

Then

W%f*(ng*)mle%: &)\ne(vo,rl,el,Q) — Cone (vo,e2r2,e2sg,Q) C Cone (vg,71,£1,)

Moreover, there exists 0 < v < 0.01 such that for any field v € Cone (vy, 71,1, )

2" ol < W s fuWaf )" W s vl < 205" o]l

Proof. By Lemma 2.2.1 for any v € Cone (vg, r1,2)

W%f*(Wif*)m*W%v =

=/ ws (t1)...ws

Rm— 1 m m

:(/ / )H ws (6)(W_s W s 0)dE.
Ro-\[ggm=t - Jsgmet/ G

By Lemma 2.2.2 we know that for any v € Cone (vo,71,€1,82)

At =

( mfl)(Wi f[fWiv)dtldtg ..
(2.17)

/ H was ( W ft*W 5 v)dt € Cone (vo,e T9, € eQ,Q)
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We estimate the first term
H/ H ws ( Wa ft*WavdtH
Rm-1\[-5,8)m=1 S5 ™

2 Ny m— N i
< Z)\nu (mu (2 /Rm N 1;[ % » (/Qj‘W%ft*W%v(x)‘dm>dt§

m—
< sup | W4 TWMQ/ \dF.
AUE HE LY S J[[l 2t
We shall find an upper bound for the integral:
m—1
/ ws (t)dT <
Rm=I\[=g,0]m—t 55 ™
+00 +o00
§2m</ w s dt +2m/ / ws (t1) ... ws (byp—1)dty ... dtpy—1 <
) m 5 5 m—1 m m

< 9Me=m? | ome™m,

We may also recall that there exists 0 < v < 0.01 such that for any v € Cone (vo,71,€1,82)
we have sup, [W s fiiW s vllg < 2097 |jv]|q. Therefore
2m 2m

m—
sup [We W s ollg / H w s (£5)dE < 2050 2= Fllo.
t 2m 2m Rm— 1\[ 66]m =1 m

We need to verify 20H0™ . 9me=™ « 2m~5¢y which is equivalent to 276~ « g,

For the second inequality we recall the second condition of the Hypothesis

Vo € Cone (vo, 71,61, 9): W fEW s vllg > 2772 ||u]|q-
2m 2m

Then

m—
H/ ws ( W5 ft*WavdtH
[—6,0]m—L j=1 m
m—1
> inf |[W.s fiiW.s v|a / ws (t;) > 2" 2 2|ullg.  (2.18)
te[-5,6m " 2m 2m [0t sy ™
Taking into account

H/ . H wa (6)(W o W5 )| < 2mesllulo,
Rm-1\[-55m=1 5y ™
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we get the result. |

Theorem 1 (Fast dynamo theorem). Let f: R® — R™ be a piecewise-C? transformation
satisfying the Invariant Cone Hypothesis and an additional condition (%)m < 9. Then
there exists an essentially bounded vector field v, with absolutely integrable components such

that

lim lim llmH(exp(éA)!)"*)"vHL1 > 0,

d—0n—ocon
Proof. 1t follows by straightforward calculation that WsWs = Wys for any number § > 0.
The Theorem follows from Corollorary 1 of Lemma 2.2.1 and Lemma 2.2.3 with v = W vg.
2m



3 Fast dynamo on the real line

This Chapter is dedicated to the construction of a transformation ¢: R — R satisfying the

Invariant Cone Hypothesis 1, p. 28. In perspective, the operator ¢, corresponds to the induced

action on vector fields on the unstable manifold of the Poincaré map of the provisional flow.

The unstable manifold is one dimensional and the settings are the following. Vector fields

on a one-dimensional real manifold may be identified with functions R — R; and an induced

action on vector fields on R is given by a transfer operator (£,v)(y) = 21 dl(z)v(z),
zel~1(y)

where £: R — R is a piecewise-differentiable function.

The main result is the following

Theorem 2 (Invariant cone). There exist a measure preserving piecewise-smooth transfor-
mation £: R — R, a cone C' in the space ® of essentially bounded absolutely integrable vector
fields on R, and a norm || - || in ® such that for an m > 1 large enough and any sequence

€]l < 0 with 6 =27™ for % < a <1 we have

2

— — 1
W EgWQL:C%C; VfeC: ||W%621W2if\|21||€1”||\|f\| (3.1)

3.1 Notation

In this Section we fix notation we use throught the proof of Invariant Cone Theorem 2.
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The following letters are reserved for constants: «, 5, v, 71, %, S1, So. The admissible
range of values will be specified later.

Given a subset I C R™ we denote by |I] its Lebesgue measure. We say that two sets I; and
I, are 0-close and write |I; — I| < ¢ if I; belongs to the d-neighbourhood of I or I belongs
to the d-neighbourhood of I;. Otherwise, we write |I; — I3| > §. The indicator function of a
set I we denote by x7.

Let 0;; be the Dirac delta function:

1, ifi=j

(52‘3‘ =

0, otherwise.
The supremum norm of a sequence of real numbers £ € ¢ (R) we denote by ||£|| = sup |¢x/.
keN
Whenever supremum or infimum are taken along the whole range of values, we omit the

range.
We write x < y when z is exponentially small compared to y, namely, there exist a small
number 0 < € < 1 such that x < 275"y.

Let § = 27™ be a small real number with % <a<l.

Definition 4. We say that a collection of intervals Q = {Q;};cz makes a partition of the

class G(m, 4,51, 82), if UQ; =R, ;NQ; = @ if i # j, and the following conditions hold true.

1. The interval [—1,1] contains at least 2! and at most 2™ intervals of the partition,

and {£1} are the end points of some intervals of the partition.

2. The length of intervals €2; is bounded away from zero and from infinity

11
=<l <2+ o).
ms? st sy



3.1 NOTATION

3. Any interval I C R of the length |I| = § contains not more than

Ns = 2m+1510gsl 2 _ 2m(1—a log,, 2)+1

intervals of the partition.
4. Any interval of the partition 2; C R\ [-1 —md, 1 4+ md| has length |Q;| =27,

We write G(m, d, s1, s2) to indicate dependence on m, §, s1, and sy; we will abuse notations
and omit m, §, s1, or so, when it leads to no confusion and the dependence is of no importance.

We number intervals of a partition 2 in the natural order, starting from 2y > 0. We set
Ay, to be the most left interval of € inside [—1,1], and Qy, to be the most right interval of
Q inside [—1, 1].

Here we deal with essentially bounded absolutely integrable functions on the real line. We
refer to the space @ = L1(R)NLs(R) as the main space. “Any function” refers to a function
from the main space always.

Given a partition Q@ = {Q;};cz of the class G, we denote the associated space of step

functions by ®q and address the basis {XQj }jez as the canonical basis of ®gq.

Definition 5. We associate a weighted transfer operator f,, acting on the main space, to a

map f on the real line by'

(fed)(@): = > sgndf(y)e(y). (3.2)

yef~1(z)

3.1.1 The dynamical system

Here we define the system we will be studying. We have specified the phase space to be the

space of essentially bounded and absolutely intgrable vector fields on R. Now we define a

! Transfer operator is a bounded linear operator. In this case, it is chosen to be one dimensional analogue
of induced action on vector fields by area-preserving transformations. Transfer operators with negative

coefficients have been considered, for instance, in [15].
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transformation and a norm. We also fix the type of cones we will be dealing with.

The transformation of ®. Let s5 < 2 < s1, be two real numbers such that log i—; =x K1

and let § = 27 be a small real number with % < a < 1. Consider the map ¢: R - R
s1z+ s — 1, if—1<x<%—1;
l(z) = Sox + 1 — s9, if%—1<x<1; (3.3)

-, otherwise.

and define its extension 7: R2 — R by Z(CE, y) = ¢(x) + y. We associate a small perturbation
¢ to any sequence & € oo(R) and [[{||oo < 0.

The map £ outside the unit interval is not important to us and we chose a simple map that
changes direction of the vector field, to make it non-trivial. The exact form is not relevant
here. We associate a transfer operator to a map ¢ according to (3.2). We will be studying

the action Eg: b — .

Norm in the space of vector fields. Piecewise constant vector fields have proved to be
very useful to us. We define a norm in the space ® of essentially bounded and absolutely

integrable vector fields on R, using partitions.

Definition 6. A norm in the space ®q of essentially bounded and absolutely integrable

oo
functions, associated to a partition 2 = |J ©; of R, is given by
i=1
I£lle = max (3 o7 |1 (@)l 272 sup 1), (3.4)
jez P JQ;

The first term we refer to as the weighted £1-norm and write

277’”
Iflocs: =3 2 /Q f(@)lda,
J J

JEZL

it depends, of course, on the partition chosen.
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This definition agrees with general definition in Subsection 2.1.2 with o = 1/2.
The subspace of ®, consisting of piecewise constant vector fields associated to the parti-
tion © we denote by ®q. Observe that for any step function ¢ = }_ cjxq, € ®q we have
JEZ
that

[élle = max(277" 37 fes]. 27/ sup ). (3.5)

JEZ
Cones in vector fields on R. We reserve a notation for a cone of radius r with the main

axis xj-1,1) in the space ®q of piecewise constant functions, associated to a partition €Q:

Ny
def
Cone (r, Q) 2{77 =dxi1y +e e = cxa; Y ¢ =0 ll¢la < dr}- (3.6)
= =N

We extend the cone Cone (7,2) to include general functions from the main space:

— def
Cone (1,,) = {f =n-+g,| n € Cone(r,Q), |gla < EHnHQ}. (3.7)

This definition agrees with general definition in Subsection 2.1.3.

3.2 Transfer operator as a dynamo operator

The plan is to choose suitable subspaces of ® and approximate the operator ngk by an operator
with a simple matrix. The latter we call a generalised toy dynamo operator.

Afterwards, we prove that there exists a map £: R — R such that for any small perturba-
tion ¢7* with l€lloc < 0 we can find a generalised toy dynamo operator A: & — ® and two
partitions Q! and Q2 of R such that A: ®g1 — P2 and ([ (€5 — AYWs|| < 277 (gl + (1Al

for some v > 0.

3.2.1 Generalised toy dynamo operators

Here we give a definition and show that any generalised toy dynamo operator A possess a

pair of cones Cp,Cy C ® such that Cy < Cy and A(C1) C Co (but Cy ¢ Cy).
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Let A be a linear operator acting on the main space. Assume that there exists two partitions
O, Q2 of the class G such that A: ®g1 — ®q2. Here and below we denote by Nl1 and N}
the indices of the first and the last intervals of the partition Q' inside [—1, 1], respectively;
and let N2 and N? be the indices of the first and the last intervals of the partition Q? inside
[—1,1], respectively. In other words, the sets Q2 x le with N7 <i < N2 and N} <j < N}
make a partition of the unit square.

We define several sets of indices in order to describe the properties of the operator A
important to us. Let a;; be coefficients of the matrix of A in the canonical bases of the
subspaces ®q1 and Pqpe.

Accelerator:
Ar: ={j e {N} ... N} #{i € {N?,... N} | aj; = 1} > 2™ — Ng}. (3.8)
Inflow diffusion:
Din: = {(ir7) € {NZ ..., N2} x {N},o o NI} agy # 1. (3.9)
Outflow diffusion:

Dous: = {N? —mN5,..., N>+ mNs} x {N} —mNs,...,N} +mN;s}—
—{NZ,... N3} x {N},...,N}!}. (3.10)
Indifferent subspace:
Sp: =7Z?\ {N} —mNs,...,N? +mNs} x {N} —mN;s,...,N} +mNs}. (3.11)

We are interested in linear operators A such that the following conditions hold true for the

matrix coefficients in the canonical bases.

(D1) max|a;;| +1 < m2(§—;)m;
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(D2) #Dy, < més?™;
(D3) for any pair (i,7) € Sp we have a;; = 0 whenever |i — j| > mNs;

(D4) #Ar >2m2,

Definition 7. We say that a linear operator A: £1(R) N Loo(R) — L£1(R) N Lo(R) is a

generalised toy dynamo if there exist two partitions Q' and Q2 of the class G such that

A(®g1) C P2 and the conditions (D1)—(D4) hold true in the settings introduced above.

Remark 2. All theorems and the main result hold true for an operator A that satisfies

conditions (D1)—(D4) with right parts of the inequalities multiplied by polynomials in m.

When we have several partitions, e.g. Q' Q2 and Q3 of the class G we refer to the norms

associated to the partitions by || - |1, || - |l2, and || - ||3, respectively.

We will need the following fact.

Remark 3. For any s; < 2 < s9, satisfying (log s1 — log 52) < 1, and 6 = 279" there exists

a number 0 < v; = 2(1 — ) < 1/4 such that

53m
m25 . ﬁ < 2mfyl.
2ms)

for m large enough.

Lemma 3.2.1. Let A: ®q1 — P2 be a generalised toy dynamo and let ¢ =

step function. Then

N2 N}
SN el - ayl < 2nGF|g),.
i=N? j=N}

Proof. By straightforward calculation,

(3.12)

> Cixar be a
JEZ J

N}
S el —ail= Y el - 11— ay| < sup |l —ai;| - #Di - sup|ej| <

i=N? j=N} (.7)€Din
m
51

- m
59

-m2osam . 2m/2||¢\|1 < 2m(3/2+%)”¢”1-
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Definition 8. Let Q! Q2 be two partitions of the class G(m). We define the kernel of

A*X[-1,1)F Par — P2 to be the set
1

Ker A"x(_1,1): = {(b € O | / Ag(x)dx = 0} =
-1

N?
= {tb =D Gl Y0 > aielf] = 0}- (3.13)

JEZ i:Nl2 JEZ

Proposition 3.2.1. Let 2" < so < 2. Then for any two partitions of the class G and a

generalised toy dynamo A: g1 — e
Do = X1, ® Ker A"x 1,1
In other words, for any ¢ € P there exist 1 € Ker A*x|_1 1) and d € R such that

¢ =dx-1,1 T ¥ (3.14)
Proof. Let xj_1,1] = ZjeZ uiXa, where u; = 1 for Nl1 < j < N} and u; = 0 otherwise. Let
¢ = ZjeZ ciXar € ®Po1 be a step function. We want to find a function 1 € ®q1 such that
J
1 € Ker A*. By definition of the kernel 8, using (3.14) we write

/.Aw dx—/.Atp dx—1,11)( dx—/ Za” du]XQ2( )dx =

1,JEL

Z Zam ;i — dugj) |Q2| = 0.

i=N? JEL

We want to solve the last equality for d. It is sufficient to show that for any generalised toy

dynamo A we have that

N7
D) ujaylQF] £ 0.

i=N7? JEL
By straightforward calculation,
N2 N} N? N}
0|07 = Q2 =2(N = N + 1)|Q3).
UjQiz|se; | = Aij2ti| = T 1) (aij —
i=N? jEL j=N}'i=N} j=N}'i=N}
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Using conditions (D1)—(D4), we estimate the last term as follows

N}

> Z (ai; — DI = (ay — 1)|QF| < #Din - sup |a;; — 1| - sup Q7] <

j= le N2 Din

<S2m 26 ﬁ 2( —-m —-m
<s1"m '572”' sy A+ sy ™).
N2
We see that Z > ujaq;|€2] # 0 under condition that
i=N? jEL
Smm2s L g(srm 4 som) < (D - N} 3.15
S1M70 - S (577 +s3) < 2N, 1) (3.15)

2

Recall that, since Q! is of the class G, we have N} — N}! > 2m~1. We also know from (3.12)

that there exists 1 < 1/4 such that

S3m
m25 . ﬁ < 2mfyl.
2msy

Therefore (3.15) holds true under condition that 27 < so < 2. [

Lemma 3.2.2. Let n = dx_11] + ¢ € ®q be a step function such that |[1|| < dr for some

r < 1. Then n € Cone <%7Q)

Proof. We would like to write ¢ = Bx(_1,1] + 1, where 1/1 > Cixe, and z ¢; =0. Let us
_]GZ _Nl

assume that ¢ = _ ¢;jxq,, then
JEZ

Ny Ny Ny
D oeixa, =B xo;+ Y Gxa;.

J=Ni Jj=N, Jj=N;

Ny
implies ¢; = ¢; — f and consequently ) (¢; — ) = 0. Thus we have an upper bound for |5|:
J=N

8= [ N cj\ < gy O lesl =20l < 2.
JEZ

Therefore we deduce that

n:(d‘F,B)X[171}+1Z€C(|d||6||5| )CC(liQ Q)
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Definition 9. Given Q' and Q2?, two partitions of the class G, we define a linear operator
E: D1 — P2 by the matrix

1, if N7 <i<N?and N! <j <N},

E;; = (3.16)
dij, otherwise.
Remark 4. The operator £ is a generalised toy dynamo.
Lemma 3.2.3. Consider a function ¢ € Ker E*x(_1,1)- Then [[E¢ll2 < [|¢][1-
Proof. Let ¢ € ®q1 be a step function. We may write ¢ = ) ¢;xq1, then
=/ 7
N;
Ep=3 e+ (D + D e
j:Nll j<Nll ]>N}
N;
and the condition ¢ € Ker £*x(_y ;) implies ) ¢; = 0. Therefore
j:Nll
€l = [ (32 + D2 Jexaz|, = (32 + X2 )lesl < el
j<N!  j>N} J<N} >N}
|

Proposition 3.2.2. Let s; be small enough so that logy s; < 64/63. Let Q' and Q2 be

partitions of the class G. Consider a generalised toy dynamo operator A: ®q1 — Pq2. Then

for any ¢ € 1

I(A = &)o|l> < 2mW/ZM) gy,

where v1 satisfies the inequality (3.12).
Proof. Let ¢ = ZjeZ cixor € ®q1 be a step function with the unit norm
J
¢l = max(Qim Z ’cj‘7 27m/27 sup ‘Cj’) =1,

JET
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which implies >, 7 |cj| < 2™ and sup |¢;| < 2™/2 By straightforward calculation,

(A-&)p = ZZCJ a;j — Bjj XQQZ

€L JEL
N2
= Z cjlaij — Dxaz + Y ¢jlaij — 8ij)xaz + Y ¢j(ai; — 8ij)xaz-
i=N? j=N} Dout Sp

Observe that

#Dout < (4m?NF + 2mNs(N? — N?) + 2mNs(N} — N})) =

= 2mNs(2mNs + N* — N2 + N} — N}).
Therefore, using ||¢|l1 < 1, Lemma 3.2.1, definition of the set Doy, and condition (D3),
[(A=E)dllgy 00 <

NZ N}
<2(3 Y el -lay =1+ el lays — 6@]|+Z|c]| lasj = 3l) <

Z'ZNlQ jZNll Dout

<27m (27”(3/24'“/1) + sup |¢;| - sup |aij| - #Dout + Z |cj| - mNs - sup |a;]) <
z

m
< gm1/24m) 4 9=m/22L Lo N (9mNg + N2 — N2 + N} — N}) + mNs L

m

51

o
59 Sa

By straightforward calculation we see that for s; small enough so that logy s1 < 64/63

m m m 2m
ST Ny < 5L pgm(i-atog, 2) o ST 051" gy
S5 S5 sgr2m
Therefore, under the same condition, since Ng < 2™,
sm
9-m/2 21 | m2NE < 2™ . mNj - 9—m/2 ~ gm(l/24+m)
sy’

Finally,

ol=m/2y N 5L (N2 - N2 4 NT - Ny < SL
miNg m ( r l+ r l)—

“Loom/2 g Ny < 2m (/2
52 52

Summing up,

(A= &)l < 3-2mI/Zm),
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Now, for the maximum norm, we have that

(A = &)l §maXZZ‘Cj"‘aij—Eij!XQ2 <Z]c]\ —1m
zeR
JEL i€l JEL 52
Thus 27™/2||(A — €)||ee < 2m(/2471), n

Lemma 3.2.4. Let Q' and Q2 be two partitions of the class G. Let £: ®q1 — g2 be
a linear operator with the matriz defined by (3.16) in the canonical basis. Then for any
function ¢ € g1

I€ol2 < 2™ élli  and [ Exi-1yllz = 277
Proof. Let ¢ = ZjeZ cjXal € ®q1 be a step function of the unit norm. Then, by straightfor-
J
ward calculation,

N2 N}
E0=2 D cillixar =D > exer+ D eidixa, =

1EZ _]GZ 1= N2_] Nl DoutUDin
T
= E CiX[-1,1] (E + E >CjXQj;
j=N} j<N}  j>N}
so the weighted L£1-norm is

N}
1E€A2,e, =277 - ‘ Z il - (N? = NP) + 2_m< Z + Z )|Cj| < 2™ 4 1.

j=N} J<N}  j>N}

The upper estimate for the supremum norm is easy:

N,
1€l = max( D epyoan@) + (X0 + 3 e, @) <27
j=N} J<NP  j>N}

Hence ||E¢]]2 < 2™||¢||. Obviously,

EX-1ll2 = €8Iz, = 27™(Ny — N (N = Nf) > 272



3.2 DYNAMO OPERATOR

Let us consider two cones Cone (1,91) C @1 and Cone (2(71_1/2)7”,92) C ®g2 in corre-

spondence with general definition p. 37:

Ny
Cone (1,021 © {6 =dx 1+ v v =Y cixas > ¢ =0 [vlh <dfs  (3.17)

JEZ Jj=N;

Cone <2(71_1/2)m, Qz) def

Ny
{o=dxn+v1v=3cixan 3 =0 pls <m0V} (318)

JEL J=N;
Theorem 3. Assume that m is large enough so that the inequality (3.12) holds true for some
0 <1 < 1/4 and all sufficiently small ». Additionally, assume that logy s1 < 64/63. Let Q!
and Q2 be two partitions of the class G. Then for any generalised toy dynamo A: ®g1 — P2
we have A: W — Cone (27”(“/1_1/2),{22); Moreover, for any n € Cone (1,91) we

have || Anll2 > (N7 = N [lnll > 2™ [ln]].

Proof. Let ¢ € Cone (1, Ql) be a step function, ¢ = dx[_11) + ¢, where ¢ = > ¢iXqt, with
b 4 Z j
N} 7€
Y] <dand ) c¢j =0. We may write
j:Nll

Ap=(A—=E)p+Ep =dEx_11) + (A—E)p + E.
Obviously, ||¢||1 < 2d, thus by Proposition 3.2.2
I(A=E)lla < A= E||-[|g]ls < d2mC/2rm)H,

By Lemma 3.2.3, |||z < |[¢|l1 = d. Therefore ||(A — £)¢ + EY|lo < d2mI/2H+ g so
we conclude

Agb = JX[_LH + d(.A — E)X[_Ll} + ("4 - 5)¢ + 5¢,

where d > d2™=2 and ||d(A — EXj—1] T (A=E+EY|l2 < d(2m(/2+71)+1 4 1), Theorem

now follows from Lemma 3.2.2.
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|
Now we proceed to approximation. First of all we shall show that with any sequence £ we
can associate a pair of canonical partitions of the class G. Then we approximate the operator

(¢, by a generalised toy dynamo (Theorem 4, p. 62).

3.2.2 Canonical partition for the perturbation (7"

In this section we construct a partition of the class G(m) associated to the sequence &. Later
we will refer to it as the canonical partition of the map EZ”.

Recall Definition 4 of the partition G:
Definition 4. We say that a collection of intervals 2 = {;};cz makes a partition of the

class G(m, 0,51, s2), if UQ; =R, ;NQ; = @ if i # j, and the following conditions hold true.

1. The interval [—1,1] contains at least 2™~ ! and at most 2™ intervals of the partition,

and {£1} are the end points of some intervals of the partition.

2. The length of intervals €2; is bounded away from zero and from infinity

1 11
= <) < 2(—m + _m)'
mSl 51 52

3. Any interval I C R of the length |I| = § contains not more than

Ns = 2m+1510gsl 2 _ 2m(1—a log,, 2)+1

intervals of the partition.

4. Any interval of the partition €2; C R\ [-1 —md, 1 4+ mé] has length |Q;| =27,

We fix s; and sg in the definition of the map ¢ (3.3) and a sequence £ € (o (R) with a norm

el < 5= 27me.
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The map /¢ is piecewise linear and so any iteration is a such. Let

(k)

—o00=a; < agk) (k)

<.o<ayg =400 (3.19)

be all the points of discontinuity of the map 6’5. Define the corresponding partition of the real

line al®) = U;V:’“O ag.k), where ag.k) = (ag.k),ag.i)l) are the partition intervals. Observe that for

) _ 4

any k we have that {1} are the endpoints of some intervals of the partition. Let a, =

(k)

and a,, = 1.

We shall modify the partition a™ and obtain the canonical partition for the map EZ”.

Definition 10. We call a branch E?(agn)) of the map (¢ main, if for any 0 < k < n we have

that £5(al™) c [~1,1].

(%)

Definition 11. We call a main branch Kf(aj ) of the map Elg long, if

Lemma 3.2.5. The map 62” has at most 2m(=a)+L ain branches that are not long, where

[e] ; ol [
a1 < g5y 8 chosen such that s < 2%,

Proof. Let '™ be a domain of a main branch which is not long, that is \Em(a(»m) N[=1,1]|< 2.
J €\ 52

Since Eém) (a§m)) is an interval, a connected subset of R, we conclude |[¢7"(a; M) +1] >1— é

or ]62”(aj+1(m)) —1>1- é Without loss of generality we may assume that the first holds

true. By definition, ag.m) is a point of discontinuity. Therefore, for some k < m we have

that Kf(ag-m)) = —1 4+ &(k); hence we deduce that Kém)(ag.m)) = Kgnfk(—l + ¢(k)). So we

conclude Mgnfk(—l +&(k)) + 1] > 1 — L, and, consequently, k& < m(1l — a;) + 1. Indeed,

827

if k> m(1l — o)+ 1, then m — k < mag — 1, and it follows that

2 2
PR+ 6(R) + 1] <sP o< = =2 —.
S1 S9
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Since the map Elg has at most 2* main branches, we conclude that there are at most 27(1—1)+1
points a§m) such that Elg(a§m)) =—-1+¢&(k).

Summing up, the map 62” has at most 2(1=)+1 main branches that are not long. |

Lemma 3.2.6. Let 1 <k < malog,, 2 and let (a,b) be the domain of a main branch of the

map E’g. Then

k

sy —1 2
ok 1| <62 <=
@) +1] <ot <=5,

sk—1 2

< — —9.
82—1 S1

() — 1 <6
Proof. By induction in k. The case k = 1 is obvious. Recall that a®*) ¢ a(*+t1) and

a0\ a®) = (0K (—1), .7 (1), 7 (2/51 — 1)}

Therefore for z € a*) we have

€Ig+1(m) = €0k(§)€’§(x) = slﬁf(x) +s51—1=¢&k+1), if \Elg(x) +1]<2/s1 =9
E’ngl(:c) = fgk(g)flg(x) = SQEIE(JU) —so+1—-&k+1), if |€§(m) —1]<2/s1 =9

In the first case we know that, by induction assumption,

k1

[ (@) + 1] < s1llE(z) + 1+ |6k +1)[+1 < 32715.
1 —
In the second case,
1) k(o shtl 1
16 (2) = 1] < solle(x) =1 + €k +1)[+1 < T J.
5 —

Corollary 1. Let 1 < k < malog,, 2. Then for any domain (a,b) of a main branch of the

map E’g we have that % -1=1- % € E’g(a, b).
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Proof. By assumption, Elg(a) < f’g(b) and from Lemma 3.2.6 it follows that

2 2 2
k k
B S O R .
55((1) < S1 5 < 51 < S9 5<€£(b)

Corollary 2. Let 1 <n < malog,, 2. Then any main branch of the map E? 1s 0-close to one
of the ends of the interval [—1,1]: in other words, either 1 —§ € {¢(a,b) or § — 1 € {¢(a,b),

or both.

Proof. By induction in n. The case n = 1 is obvious. Observe that (a,b) cannot be an
interval of continuity of the map 6? for any k < n. Therefore 6?71 is either continuous at a,
or at b, or at both end points. In any case (a,b) belongs to an interval of continuity of E?il
satisfying conditions of Corollary 1 of Lemma 3.2.6. By definition of /¢, we see that either
E?il(a) = % —1lor E?il(b) = % —1. Without loss of generality assume that f?il(b) =2 _1

Then we see that (7 (a,b) D (§(n),14&(n)) 1= 4. Similarly, E?il(a) = % — 1 implies that

Lemma 3.2.7. The map 6’5 for any 1 < k < malogg, 2 has exactly 2k long branches.

Proof. By induction in k. The case k = 1 is trivial. It follows from Lemma 3.2.6 and
Corollary 1 of Lemma 3.2.6 that any long branch of the map 6’5 contains at least two long

branches of the map Blg_l. |

Corollary 1. The map fg” has at least 2™2 long branches, provided 2o logs, 2 > 1.

m—malog, 2

Proof. If 2allogg, 2 > 1, then m—malog,, 2 < malog, 2 and therefore the map P,

has at least 2™ ™1%8s1 2 Jong branches for any 7 € £oo(R) with ||| < 8. Let n = o181 2¢.

1—alog,. 2 log,. 2
Then we can decompose f? = EZI( @08 )E?a %e1 7, According to Lemma 3.2.7 the map
1 2
Ezm %1% has at 218512 Jong branches. By definition of a long branch, its image is
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at least % long; using Corollaries 1 and 2 of Lemma 3.2.6, we deduce that for any do-

1 2
main (a,b) of a long branch we have that either (—1 + 0,—1 + %) C E? 085y (a,b) or
2.y mlogs, 2 i (1,2 - 2 _
(1—-25351-6) Cd, (a,b). Moreover, any of two intervals (-1, = — 1) and (& — 1,1)

m(l—alog,, 2)

(1=alogs; 2)=1 1516 hranches of the map le .

contains exactly 2"

We can find an upper bound for the length of a domain of a long branch of the map

1-alog,, 2
d,n( 408 ): it easy to show by induction in number of iterations that any long branch

(a,b) has a domain of the length at least

—m(l-alog,, 2) —m(l-alog,, 2)

1—a)l 2 —m(l-al 2
|b—a|:(2—571n( @) logy, 5)s, — 2, m(1—alog,, 2)

—0>s5

Therefore any of the intervals (—1 + 4, % —1) and (£ — 1,1 — §) contains at least

S1

m(1—alog,, 2)

2m(17a log,, 2)-1 _ sy 5=

2m(17a log,, 2)-1 _ 2m(log2 s1—2a) > 2m(17a log,, 2)-1 _ 9

1—alog,. 2
long branches of the map E?( *Bs1 ).

malogg, 2(2m(17a log,, 2)-1 _2)

Therefore, the composition has at least 2 long branches, which

malog,,

comes as 2™~ — 2 2> 2m=2 a5 promised. |

Canonical partition construction. Let us consider the set of end points of domains of long

branches

Dy: = {z |z is an endpoint of a domain of a long branch of the map £} U {£1} =

={-1=d <dy<...<dy=1},

N
and define a partition Q = J Q; of the interval [—1,1] by Q; = (d;,d;j41); j=1,...,N.
j=1
Let us denote by U.(2;) a neighbourhood of €2; of the size €.
We shall set ¢ = (2s7*) 7L, If for some ; = (d;,d;1), containing a long branch of the map

(¢, there exist points of discontinuity of the map £ in a neighbourhood U.(95) N [—=1,1],

then we extend the interval €2; to include all these points.
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Let ) = (d},d}, ), 7 = 1,...,N be a new collection of intervals. If there exist two in-

tervals (d}, d; ;) and (dj

0 g +2,d9 43) containing long branches of the map £, and such that

djve — djy1 < (msT)™!, then we replace the interval (dj,dji1) in €' with the interval
(dj; djy2)-
Now the length of any interval of the partition €', containing a long branch, is not more than

2(s;™ +s,™). Assume that there exist two intervals (d},d}, ) and (d}, ,,d}, ;) containing

long branches of the map ¢7", such that d;» 4o — d;» 41 > sy, then we split the interval
(d11,d}, ) into intervals of the size s,™, allowing one of them to be longer, or smaller, if

necessary. More precisely, let ) = (d},d}, ) be an interval of Q' that doesn’t contain a

long branch. Let n := [s5"(d’

i1~ d;)] be the number of “whole” intervals of the length

sy " that could fit inside (d},d;.q). If (d} 4

—dj) —nsy' < s;™, we split the interval
(d},d 1) into n intervals; adding the intervals (dj + ks ™, d; + (k + 1)s;,™), 0 < k < n
to the partition €. Otherwise, we split the interval (d},d} ) into n + 1 intervals, adding
(d + ks ™, di + (k+1)s3™), 0 <k <nto .

The intervals (agm), —1) and (1,a§$j), do not contain any long branches, and we define

the partition there as described above. Finally, we define the partition on (—oo, agm)) and

(am, +00) splitting them into equal intervals of the length 27,
We have obtained a partition of the real line, that satisfies Conditions (D2) and (D4) of

Definition 4. We have to check other conditions of Definition 4.

Lemma 3.2.8. The partition constructed satisfies Condition (D3). Any interval I C R of

m(l—alog,, 2)+

the length § contains at most Ny < 2 Uintervals of the partition.

Proof. The statement holds true for any interval I C R\ [agm),a%j] of the length 4. Assume
that I C [agm), am], and |I| = J. Then there are two possibilities:

1. the interval I contains a long branch;
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2. the interval I doesn’t contain a long branch.

Consider the first case. Observe that for any kp < m and for any interval Iy C [—1, 1] of the

length |Io| < s7* such that 6’5([0) C [-1,1] for all k£ < ko, the map 620 is one-to-one on Ij.

(Easy to check by induction). Since for any long branch a§m) we have 1 — % € Q(aﬁ-m)),
we conclude that ko: = [—logydlog, 2] = [amlog,, 2| and then we see that the map 6’20

is one-to-one on any interval Iy of the length less than ¢ such that 6’5([0) C [-1,1] for
all k < kg. Thus any interval of the length § contains at most 2 %0 long branches of the
map EZ”. Consequently, any interval I with |I| < § contains at most 270 < Nj intervals of
the partition with a long branch inside.

Assume now that the interval I of the length |I| = ¢ contains some intervals of the partition
that do not contain a long branch inside. Let Iy C I be a maximal by inclusion subinterval
not containing a long branch. Then by construction of the partition, it contains at most
one interval of the partition € of the length less than s;™. Since the interval I contains at
most 270 long branches, it may contain not more than 2™~ %0 + 2 intervals Iy without a
long branch inside. Therefore, the interval I contains not more than dsy* + om—kot+l ~ N
intervals of the partition.

In the second case, an argument similar to the one above shows that an interval I of the
length || = ¢ and without a long branch inside contains not more than ds5'+1 < Ny intervals
of the partition.

Lemma 3.2.9. The partition constructed satisfies Condition (D1) of Definition j. The
interval [—1,1] contains at least 2™1 and at most 2™ — 21812 L 5™ intervals of the

partition.
Proof. By Corollary 1 of Lemma 3.2.7, the map 62” has at least 22 long branches, provided
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s1 is chosen such that 2alogg, 2 > 1. Every long branch belongs to exactly one of intervals
of the partition, and the escaping set of measure md contains at most mdsy* intervals. |

Summing up, we conclude that the construction leads to a partition of the class G, as
desired.

We shall refer to the resulting partition €2 as the canonical partition of the map E?.

Lemma 3.2.10. Any interval of a canonical partition Q0 has at most two main branches of

the map f?.

Proof. If an interval €); of the partition contains more than one main branch, one of the main
branches is not long. Let it be algm). Then by Definition 11 {f?(al(gm)) N[-1,1| < 2
(m)

Now we repeat the calculation of Lemma 3.2.5. The end points of the interval a; " are the

points of discontinuity of the map Ezn. Then there exists two numbers ny < m and ny < m

such that (¢ (a (m)) = —1+4+¢(n1) and E?Q(a,(ﬁ_)l) 1 —&(n2). Therefore,

Mm( )—i—l] (gt (1 +&(n1)) + 1] < 5770

|2 (@) = 1] = |€02 (1 = €(na)) — 1] < s5"26.

Since by assumption |€2”(algm))| < 2, we deduce 2 — §(s5' "2 + s77"M) < % The latter is

equivalent to §(s§' "2 +s7"") > 2 which implies that either ds3'"* > L or ds""" > L,

or both. Hence we get an upper bound on nq or ne, respectively:

nig < mg: :m<1— >—|—10.

log, s1
Therefore one of the end points of algm) is an end point of the main branch of the map 6?
with n < myg. Observe that all main branches of the map £{" are long. Any interval of the

length s; ™ contains at not more than one main branch of the map EZ”O. Therefore the dis-

tance between short main branches of the map £ is at least 570 > 2(s7 " +s,™) = sup ],



3.2 DYNAMO OPERATOR

and any interval of the partition contains not more than one short main branch of the map

EZ”. Therefore, any interval of the partition contains at most two main branches. |

3.2.3 Approximating (7, by a generalised toy dynamo operator

Here we prove the main result of this Section, Theorem 4, which establishes the existence of

a generalised toy dynamo operator, a close approximation of £¢; for arbitrary 1€ ]loe < 6.

Construction. Let a partition Q2 of the class G be given. Let €§m be as above, and let a(™ be
a partition of the real line by its points of discontinuity and let Q! be the canonical partition
of the map £¢". Introduce the joint partition: am uQl = {d;};jcz. We assume the natural
numbering: [do;di] 2 0 and d; < dj4; for any j € Z. Define the image of the joint partition
by

. _ : m
{bj D= yilglioﬂg (y)}jEZ'

Then on the interval (dj,d;4+1) the map £ is given by

b — bt btdig — b d
Mgy =L T T j+1], di <x<djyi.
I3 ( ) dj+1 _d_] dj+1 —d] J j+1

We define an approximating map @g to be

Zm(m) _ Lb;+1J - [b;r] - [b;qderl - Lb;+1de
¢ dj1 — d; dji1 — d; ’

dj <x < dj+1;

where |z stands for the closest to = point of the partition 92, which is smaller than z; and
[2] stands for the closest to 2 point of the partition 2, which is larger than x. In particular,
branches of the map Z? are not longer than branches of the map EZ”.

We define an operator 7: ®q1 — P2 by

(To)x): = Y sendff(y)o(y). (3.20)

yely " (z)
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Lemma 3.2.11. The operator T is a linear operator between two subspaces of step functions

associated to the partitions Q' and Q% (see p. 26 for definition): T: ®q1 — $ge.

Proof. Linearity is obvious. It is sufficient to show that for any interval le € Q! of the first
partition,

(Txap(@): = > sendf(y)xay(y) € Poz.
yel, " (z)

and lim Zm(y) = [bF], therefore all points

By definition of £7*, we see y_l)ig_o o (y) = [b5] y i b ]

of Qi C ©? have the same number of preimages with respect to 62” for any interval Qz
Moreover, Zg m(Qi) does not contain any point of Q' inside, as it is piecewise monotone on a

subpartition Q' U a(™. |
Definition 12. We introduce the k-escaping set

By ={ze[-1,1]|3In <k (z) & [-1,1]} (3.21)
Lemma 3.2.12. In the canonical bases of o1 and P2

Sm
sup #{z € le | 8" (x) =y} < m2—1m.
yeQ? 52

Proof. Observe that the map is one-to-one on any interval I C [—1,1] \ E,, of the length
|| < 2s7™.
Given an element Q}, consider a maximal by inclusion interval I C E,, N Q}, such that

|I| < s;™. We shall show that

max #{z €I | b (r) =y} < 3mss. (3.22)
yeR

There are two possibilities:
1. the map E? is continuous on I C E,, N Q};
2. the map 62” is not continuous on I C E,, N Q}
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In the first case the map £¢|; is a bijection and (3.22) holds true.
Now consider the second case: the map 62” is not continuous on I C E,, N Q} We may

find the smallest kg such that f’go (I) ¢ [-1,1]. Then
ko ko—m ko—m
()N [=1,1] (-1, -1+ ") Ul —s""1).

def 14ma
Let mg = Togys: 2.

It follows by induction in k that for any ky < k < mg the im-

age 6’5 (I) N [—1,1] may be covered by two disjoint intervals in particular,
I N[-1,1] C (=L -146 + sy ™) U1 +6 — sy, 1),

k . k .
where 61 = Y slffjfj and 02 = > sgfjfj with |5,i’2| < slf_k°+16, and —1 + % 4 f’g(I) for
J=ko J=ko
all kg < k < mg. In particular, for any x1,z9 € I such that Elgo(xl) e(—=1,—1 4 s and

Elgo (z2) € (1 — s¥7™ 1) we have for all k < mq:

|08 (1) — L (x2)| > (1 + 67 — ST (140 sy =228 (62 —6)) > 1.

gmo —ko

hoe 1S a bijection on any of the intervals (—1, —1 4+ s%°~™) and (1 — s¥07™ 1),

The map

Therefore, we deduce that the map ﬁgmo is a bijection on I. It follows that the image ﬁgmo (I)
consists of not more than 3my intervals each of which is not longer than s7"°"". Let n = ¢™0¢
and consider the map £;""™°. We claim that it is a bijection on any interval I C R of the

length |I| < sino*mfg’. Indeed, if £7'~™ is continuous on I, then it is a bijection. Assume

that for some kg < m — mg the map fgo is not continuous on I. Then
(1) N [1,1] € (1 =14 570 tom 4 g) U (1 - spothom=s 5o,
and for any kg < k < m —my

Ef] N[-1,1] C (=1; -1 + s¥"15 4 811n0+k—m—3) (1 —sh = Sgn0+k—m—3; 1).

By straightforward calculation we see that provided s; < 22¢

—m— 1
sTOHﬁ m=3 4 S]f+15 < —.
s1
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mo—m—3

Therefore for any interval I of the length |I| < s7 and for any two points xq1,x0 € 1
with 1 # x2 we have that Ef](:cl) # Ef](:cg) forall 1 <k < m—mg. We see that the image £*
may be covered by not more than 3mgs? intervals of the length s’lno_m_g. Hence we conclude

that for any interval |[I| < s;™

sup#{x eI | {F(x) =y} < 3moss < 3mss + 3.
yeR

Since by Lemma 3.2.10 any interval of the partition contains at most two main branches,
the set QN E,, is a union of not more than two intervals, which may be covered by 2 + 22%
2

disjoint intervals of the length s;"". Therefore

r;leaﬂéc#{x c Q| ' (r) =y} < 3m8%(81)m< m2(8—1>m.

52
|

Corollary 1. In the canonical bases of a1 and Pqz the matriz of the operator T satisfies

condition (D1):

- < m?2 51 m.
max |7 +1<m <52>
Proof. Recall the definition of the operator 7:
(Te)): = > sendlf(v)o(y)- (3.20)

yely ™ ()

Then for ¢ = xq1 we have
J

(Te)(@): =D mjxez(@)=> > sgnd??(y)m;(y)x(zg(wb

iE€EZ €L yez‘gmw)
=3 > sendf(y)xex(x); (3.23)
€L yefgm(m)ﬂﬂ;
therefore
Tij = Z sgn d??(y).

7—m (02 1
yel, " (27)NQ;
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The definition of the map Zg guarantees that 7;; are well-defined; in particular

I7ij| < #{x € O} | £'(2) = y € O},

and the right hand side is independent on the choice of y. Obviously,

sup#{z € Q} | (' (z) =y € 02} <sup#{z € Q) | ('(z) = y € O3},

Corollary 2. We have the following upper bound for a total number of preimages of a point

rzeR:

zeR

sup{y € R | €'(y) =2} < 2m?(=2)" (3.24)

(3.25)

Proof. By definition of a partition of the class G, the interval [—1,1] contains not more than

2™ intervals of the partition; and intervals [—1—md; —1] and [1; 1+md] contain not more than

mNg intervals of the partition each. Finally, both maps are bijections on the complement to

[—1 —md, 1+ md].

Lemma 3.2.13. Let Q' be the canonical partition of the map 62”. Let Q2 be another partition

of the class G. Then

#{(i,7) € O QF C [, 1] N2 (Q N Ep)} < m?0s7™

Proof. We shall prove that

> 198l <
Dip?

(m)
Clj CEm

then the Lemma will from from the lower bound on the size of the elements of partition.

> e

(™) < s75;
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Indeed, by induction one can show that

k k
koq®)y < 51— 2
E 14 (a;7)] < 31—25'

a;k)CEk

The case k =1 is trivial. Then we proceed

DRt b [ SN 17 1" e | IS N 1/ i |

Cl;k)CEk a§k71)CEk,1 ag.k)CEk\Ek,l
k—1 k—1 k k
sy —2
< 596 2 + 2k =21 6.
1 — 2 S1 — 2

Corollary 1. Let Q' be the canonical partition of the map 62“. Let Q2 be another partition

of the class G; and let ZZ” be a map defined as above on p. 5. Then
#{(i,j) € 0| Q2 C [-1,1] N QL N Eyp)} < m2osim

Proof. The inequality for the map Z? follows from the fact that images of all branches under
adjusted map Z? are shorter than the images of the same branches under the original map

e |

Proposition 3.2.3. In the canonical bases of ®q1 and P2 the operator T defined by (3.20)

s a generalised toy dynamo.
Proof. We have checked the condition (D1) already. We should verify the following conditions.
(D2)  #Dy, < 3m25s3™;
(D3) for any pair (¢, j) € Sp we have that 7;; = 0 whenever [i — j| > mNs;
(D4)  #Ar>2m2,
where
Ar: ={je{N'...N'} | #{i e {N}...N} | 7j =1} > 2™ — N5 };

Din: = {(i,5) € {N}... N2} x {N} ... N}} | 7i; # 1}



3.2 DYNAMO OPERATOR

To verify the condition (D2): #Dj, < 352™m?2§ we shall show that > Dy, Q2| < 3s7'mé and

—m
51

then taking into account |Qf| > we get the result. Let E,, be the m-escaping set as

defined by (3.21) above.

We introduce three subsets of the set Dj,.
Din': = {(i,4) € Din | 7 C [=L, 1\ Q) \ Em)}
— complement to the images of the main branches;
Din?: = {(i,5) € Din | 97 C [-1,1] NE(Q} N Eyy))
— image of the points that were mapped outside [—1, 1] and back;
Din: = {(i.5) € Din | OF C [=1,1] N (5 \ Em)}

— image of the points that were inside [—1, 1] in first m iterations.

We claim that Dj, = Di,! UD;,? UDy,?: indeed, for any pair of indices (i,j) € Dy, we
have that le N Ep # @. We shall show that > p 1 Q2| < s7'mé, >.D,.2 Q2| < s7"mé, and
#Din?’ < s%mm%.

We start with Dj,' and recall the original partition a(™) by the points of discontinuity of

the map £¢". Let J (Din}) be the union of intervals with indices corresponding to Dy,

JOw): = |J @\ Ew).

j: (ivj)eDinl
We may write then
S <2 #™ caDu) - Y [@E™) <t ST i Eel™));
]Din1 a;m) CJ(Dinl) a;m) c [7171]\Em

and we shall show by induction in k that

ST )] < sh k2, where ¢l < 27,

ol [~ 1,1\E;
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The case k = 1 is trivial. Let 6*) be the canonical partition of the map E’O‘“. This parti-
tion has 2* elements in [—1,1]. There exists a correspondence between the sets of indices

:{i € Z | agk) c (-1,1)} — {2k ...,2F — 1} that satisfies dﬂk | (k)— daek | # and
"'(J)

7(j1) # 7(j2) for all j; # jo. In particular, sgn df5 | ¢ »= sgn dfo o) -

T(J)

(k)

We split the intervals a;’ into two groups:

BY: ={je{=2%...,28 1} | j = 1(i) for some i € Z};

By = {2k . 2k _1}\ BN

We also see that Ek(b§k)) — [~1, 1] for any interval of the partition b®*).
S g = (X D)l S jEh) =
5 T(_] E\My
o) C[1,1\ B, jeBY  jeB j’“)C[—Ll}\Ek
(k k
= > lebE) N @+ D 1565 <
jEBE jeBS
1 (k=1 1 k- 1 (k=1
sty T eFTINET @+ 2P 12 Y e e ) <
jeBY ! jeBET!
< 51<2k—1 -3 1 a (j))|) toks <
Byt

< sh(k—1)6 + 286 < sVk6.
Therefore we deduce that

ot ST k)] < s m27me where €] < 27
0" [~ 1,1\ B,

Since there are not more than 2™ main branches, and the length of intervals of the partition Q2

is bounded [Q?| < 2(s;™ +s7™), we get

omtl _ Z |Z’g(a§k))| < ST em2TMY 42 (s 457 < 2mdsTh;

¥ [~ 11\ By

provided sy < 2 < s; are chosen such that s;sp > 217 which is possible.
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The inequality for the set Di,? follows from 1 of Lemma 3.2.13.

Finally, for the set D;,®> we observe that (i,7) € Dj,® if and only if there exist two

m) (m)

i C le such that for any k& < m we have zk(a(m)) C [-1,1] and

main branches a; ¢lag

J1 0

@g(a§T)) C [-1,1], and t?’g”(axn)) N Zg”(agn)) NQ? # @. Since both axn) and ag»;n) are

belong to the same element of the partition we conclude that either |€?(a§:n))| < % or

wgm(ag»;n))! < % By Lemma 3.2.5 there are at most 2"™(1=®1) main branches with this prop-
erty. Without loss of generality we assume the latter. Then by definition of @g we have

7 (al™)] < Z + 2(s3™ + s;™). Hence #Dy,* < 27000285 Tt follows that

(1-a) 21Vs

#Diy = #Din!t + #Din2 + #Dp% < 257 md + 2™ < 357™ms,

as required.

The condition (D3) follows from the fact that the map @gb is linear and on the compliment
R\ [-1 —md, 1+ md] (in other words, the complement consists of two pieces of continuity),
and, moreover, it is given by Zgn(x) = = + b on these set. Therefore, 7;; = 0 whenever
li —j| > b- Ns6~1. Obviously, |b] < md, so we get 7;; = 0 whenever |i — j| > mN;.

[

Now it only remains to show that the generalised toy dynamo, constructed from the map Zzn,

is a good approximation to the operator 621.

Theorem 4. Let Q2 be a partition of the class G. Consider a sequence & € loo(R) with
1€l < 27™ and let Q' be the canonical partition of the map tg*. Then for the opera-
tor T = Zg: O — O defined by (3.20) and for any essentially bounded integrable function
g € L1(R) we have

3
51

g = TWiglls < (5i2;) -l
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Proof. Let ||gllo, = 1 and let f = Wsg. Then || f]leo < |lglloe < 2™/2, since

lolh = max (2 Y / )lde,27/2 sup g(@)]) < 1.
| zeR

By definition, we write

Tia)= > sen(f) W) f): (3.26)
Gfgm(x)

(Bf@)y = sen(t) W) f) (3.27)
yel; ™ (@)

We begin with weighted £i-norm.

68 ~ T fl = m/m g f@)de <

JEL

< (/1m5+/+w>|”ff — 0 f(2)|da+ (3.28)

mé
81 / /1+ \Tf ) — 02 f ()| dz+ (3.29)
1—-mé

+27m Z o / T f(x) — (8 f (x)|da. (3.30)

We estimate all three terms separately. By the very definition, on the infinite intervals
(1 +md,+00) and (—oo0, =1 — md) the map (7" is given by ('(z) = (=1)™(z + in: £35))-
Therefore, the map ?2” is one to one on each of the intervals (—oo, —1 —md) and (1 + 6, +00);
moreover,

g™ ((—00, =1 —=md) U (1 +md, +00)) C (—o0,—1) U (1, +00).

Observe that for the last point ay € R of the last point of discontinuity of the map E? we

have, using Lemma 3.3.3:

+00 +00 oo 5 771]\](S
/ f@)lde = / (Wsg)(@)ldz = Z 2 / Wig(@)ldz < [[Wiglli < T2
an an |Q 825
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The first difference we estimate by the sum of absolute values.

+oo o / !/
[ Y @ oiwm- X (@) s -

d ~ _
el @) yel; ™ ()

| pmen - segranfer <o [+ [ i@ =

+md

2(/1+/m1+/1aN+/a:m>yf(m)ydx,

where a1 and ay are the first and the last points of discontinuity of the map £g". Summing

up,
Foo N, N,
[ s @ -Ts@lds < ambsup| 1+l < 4(mozn 2+ T2 gl < 8702 (331)
1+mé 550 5540
Similarly,
—1—mé mN(;
[ @ - Tr@e <87 (3.32)
—00 2

Summing up (3.31) and (3.32), and taking into account that |f|l; = 1, we get an upper

bound for the first term (3.28):

(/IM +/1+°° Y F () = T ()l < 16?7]);5. (3.33)

—00 +mé 2
Now we use a rough upper bound to estimate the second term. Since by Corollary 2 of
Lemma 3.2.12 any point has at most 2m2(28%)m preimages with respect to @g or 62”; and

taking into account ||f|leo < 2™/2.

14+mé 1+mdé
|- Tis@ < [ @)+ T <
< sup (|6 F@)| + TS @))md < (3 m*2™ 3] <

< m2m/2-e) ()7,
2

Therefore we get an upper bound for the second term (3.29):

<%>m(/11+ma + /_imé) (€2 = T) f(x)|dz < m2m/2=) (s—%)m (3.34)

52
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The third term (3.30) is a little more complicated. We split the sum into two terms: long
branches and all other intervals. Let a™ be a partition of R by the points of disconti-
nuity (cf. (3.19)) and let a™ = (a,(lm),a,(w)l) be its intervals. Let a,, = (— 1,a£:f:zl) and
dn, = (@, ~;,1) be the most left and the most right intervals of the partition inside the in-
terval [—1,1]. Let E,, be the m-escaping set as defined by (3.21) above. By definition of ¢«

and T,

g-m Z |Q2|/ 02 f(z) — T f(2)|dz =

Let us introduce two functions
. . m\/
h(jx): ZXxR =R h(jx)= > sen(f) )x o @) f W)
J
and
h(Ga): ZxR—Ry  hGa)= > sen(l) @)x o @)@

Then we see that

and

ShGa) = Y sen(E) () f(@);
JEZ Z}Eng(l‘)

both sums are well-defined, because they have finite number of non-zero terms, since by

Corollary 2 of Lemma 3.2.12 the total number of preimages of a point is not more than
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m32mt1gm s  Therefore we may write

2

N,
T 27m
2 Z ) 1@ - Trwle = 3 o
i=NZ ' ?

(h(j, ) —ﬁ(j,x))(dx _

i JEZ
(™
(Z+Y+x%) > g 2h<j,x>—ﬁ<j,x>(dx=
J<nl(m) j= n(m) §> (m) i=N? o
<Z Z Z Z ‘Qg h(j, ﬁ(j,x)(dx. (3.35)
j<ni™ oM CEn o™ ¢En n{m) i=N?

First we estimate the finite sums:

(X T)5 5,

h(j,@) = h(j,2)|dz <

<nf™ joni =N
]\/vl1 N,}+mN(5
(X + X)X Z,QQ/m o) + 3G, 2)|dz <
k=N/-mNs  k=Np o™ cql i=N}

< 2mh, . <2y (Z) gl < 2m (=51 )" (3,36
< 2mNj - sup |75] - sup | f[ < 2m 6<5> 9l < m(m) ; (3.36)

for all s1 > 2.

Observe that for any domain of a main branch agm) ¢ Ep and y,5 € ag»m), such that
g (y) = Z (9) we have that sgn(¢f")'(y) = sgn(@\?)’@) = L and (¢")'(y) > s5'. As before, let
a§m) = (a(.m),ag-?j:)l). Then

1

Hence for any f € Ws(L£1(R)) we see that

) - F0)] < - sup(Wagy < 1lleo < 27
= ng 9 > S%m& = 583,%

Summing up, since the total number of main branches is not more than 2, we get for the

first term of (3.35):

9—m 1 23m/2 21/2—1—04 m
< <817> (3.37)

h(j,z) — h(j,z)|dz < d
192 /‘ Jrw) = h(j2)] T= 2] ), e 52
(m)¢E i= N2 (3
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To estimate the last term, we introduce two sets of indices

DE {(s,t) 0| Q2 C [-1, 1N NEn)}:

DY {(s,t) 0|02 C [-1,1]NEQ NEn)}.

By Lemma 3.2.13 and its Corollary 1, we see #D < m2§s3™ and #IA? < m?§s3™. Observe

that
(@™ x 02) | af™ ¢ By, 02 € 220 N [-1,1])} €
J i/ 1T my 2 €\7) ’
{(Q} x Q%) | (s,t) €0, Q2 C [-L1 NP N Ep) )
along with
(@™ x 92) | o™ € By, 02 € 2™ N [-1,1])} €
J ¢ J my 2% €\") ’
{(Q xQ0) [ (s,0) €0, Q C LY N2 N B}

. Hence we calculate an upper bound for the second term of (3.35):

Z Z ‘92’/ ‘hjy ?L(j,m)‘dmg

m)CE = N2

<o msuplf] 30 fjm ( Z @+ 3 (i) de <
" (x)

ol™ C By, =N} el ™ (x)

<2 ™suplg| Z |QQ|/ |Tijlde < 27" sup |g| - sup | 7] - #(DUD) <

(i,j)eDUD
3
S1\™m S m
> 2m HgHoo . <5> . m258%m < m2 . <21/27-110452> . (338)

Now we collect the four estimates (3.33), (3.34), (3.36), (3.37), and (3.38) together and get
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for any function g with ||g||; = 1:

168 Wsg — CWsgllz, 02 <

(1/2—a) o2 1/24a 3
< 16mN6 m(72 51>m+2(7812 3 )m—i-2m2<781 >m <
82 (5 59 32 21/2+a$2

3

2 51 m

for m large enough and so < 2 < s1 chosen such that 818% > 9l/2+2a

Now we turn our attention to the supremum norm. We may write

supl(L /(o) = S (@) =sup| D7 sen(@) W)~ X sen(e) W)I ()] <

yef ™(z) yeégm(:v)

oY @ e - Y @) 0iw)| <

i€Z yeé m( ynQt yels " (x)NQ}

N mN5

<Y+ Z )Y @0 - X se@)wiw)|+

Ns ye?gm(m)ﬂﬂg yeégm(m)ﬂﬂll

N}+mN5

> (X swm@'wiw- Y sgn(ﬁ?)'(y)f(y)ﬂ- (3.40)

NE=mN; yel, ™ (x)nQ} Yyl ™ (2)N0

Observe that

N}+mN5

(X @ wiw- Y s wiw)|<

N}E=mN; yel, ™ (2)nQ} Yl ™ (2)N0

sup
xr

Nl+mNs Nl+mNs

<2swp o Hyel” (2) N} sup | f(y)] < 2sup > Iz sup 1 (u)] <

N!—mNs ¢ N}—mN;
N} +mN5

< sup |75 Z SU1P|f(y)|- (3.41)

Np—mnN; S5

Our goal is to estimate the last sum from above via weighted £1-norm. Recall that f = Wsg.
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By definition of the weighted £; norm, we see

N} +mNs 9-m
[Wsgll > Z |Ql| ]ng[
N}-
N1+mN(5 NlerN(g
=2 Z |Ql|/ Wesgl — sup|W(;g|> Z 2" msup|W(;g|
N - N} —mnNj Q;
in particular,
N}-f—mN(; N}—i—mN(; 1
o—m Z sup |Wsg| < [|[Wsglli +27™ Z <sup\ng] — F/ \W5gy>, (3.42)
N} —mNj i N}—mNs Q} €25 O}

We know that for any bounded, continuous, absolutely integrable, and piecewise differen-

tiable function f: R — R and any finite interval I
1 /
s~ L (o] < 171
1 1] Ji i

N,}+mN(5 N +mN5

Sup |W59| = IWagl
|Q | Jo

N mN

/ (d—\Wag \‘</‘dx/w5 (x — t)|g(t |dt‘dx<//‘dw5 |g(t)|dtdx:

= [1atol [ =45 =D awar < X [ttt < 5 s - ol 049

Hence, substituting (3.43) to (3.42), and using Lemma 3.3.3

Therefore

‘W(;g “dx<

N,}+mN(5

> sup [Wsg| < 27 [[Weglly + ————

sup]Ql\ 2MmNs 2™
gl < 5) gl <
Ni—mnN, S

325

2m+1N
< s lllr (3.44)

Finally, taking into account ||g|lo, = 1, we substitute (3.44) to (3.41) and get for the second

term of (3.40)

N}Y+mN;
—-m m\/ m\/
2| 3 (X @)@ - Y (@) @im)| <
© NI emNs yel,m @)na! yele ™ (@)ne}

2771/2-‘1-1]\[(S _ 2m2N5 <21/251>m

m — 2
550 1) s5

< sup |74 (3.45)
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def

Let us define A(z) = (x —s; ™", x+ ;). We have the following upper bound for the first

sum in (3.40):

N}!—mN5 +oo

sup
X ~
Nf=mN;  yel; ™ (@)nQ}

<sup  sup |f(y1) = fly2)| < sup
z€eR yhyQEA(l‘)

Summing up (3.45) and (3.46), we get in (3.40)

( _Z + )( S sen() W) fy) -

ly1—y2|<255™

272 sup| (. f () — L f ()] < ==

(by straightforward calculation).

3.3 Invariant cone in P.

2m2N5 <21/281

53

> s Wfw)] <
yezg’”(m)mﬂg
sup |f] _ 2"/
— < < .
|f(y1) — f(y2)] < 255y = 2087 (3.46)
m 1 S? m

In this section we construct an invariant cone in the space of essentially bounded and abso-

lutely integrable functions ® for the operator W_s_ 621 W s , which is independent of the choice
2m 2m

of [|€]l <. We exploit the properties of the Weierstrass transform that we prove below.

3.3.1 Discretization and the Weierstrass transform toolbox

Here we prove a few estimates showing that the image of the Weierstrass transform with

Gaussian kernel of a large variance compared to the size of elements of a partition may be

very well approximated by a step function on the partition.

Definition 13. Given a partition 2 of the class G we define a linear discretization opera-
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tor Dgq:

Dq: L1(R) N Loo(R) — @o N L1(R) N Loo(R);

1 .
Dq: f+— E djxa,, dj = 5(max f(x)+ min f(z)). (3.48)
: 2\ 0, Q;
JEZ
Definition 14. The Weierstrass transform Wy is a convolution with the Gaussian kernel
with variance 62

1 a2
271'5 267 (3.49)

Lemma 3.3.1. Let f: R — R be a differentiable function. Then

Ws: f+— ws x f, where ws(x) =

o df(z
If = Dafllo,c, <27™! A J(@) (3.50)
Proof. Indeed, by straightforward calculation,
27m
If = Daflloc =) o= [ 1f(@) = Daf(@)lde <
k€eZ ‘Qk‘ Q
<y [ £ (0) i )]l =
<2mZ|maXf mlnf
keZ keZ
:2m/‘df(x)‘d
R dx
|

Lemma 3.3.2. Let Q' and Q2 be two partitions of the class G(m,d,s1,s2). Let D1 be a
discretization operator and let Wy be the Weierstrass transform defined above. Then for any
bounded integrable function f

masx(sup [ Q4] sup |23]) 1
|DaxWaf = Wl < L2 Al < —
2

Remark 5. The dispersion § in the Gaussian kernel is the same ¢ as in the definition of a

partition of the class G.
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Proof. We begin with estimation of the Lo-norm. Let D1 Wsf = ZjeZ d;jXqr. Then
J

| Den Wa f — Wisf —sup(/ wsle — )7 (0t~ 3 dyxen ()] =
JEZ

= 1sup max/Rw(g(x—t)f(t)dt—min/Rw(;(x—t)f(t)dt <

kez! ol o

1 d
< Z — <
< gmp(1ob1 sl [wsta - st <

< sup 2} sup| / sl — 1) f (| <
zeR'JR X

_ (zft)2
—e 252
t=—o00

t=-+o0
) <
X

< sup [0} sup |/ (@)] sup —— (e~ 5
< sup sup | f(x)| sup e

k z€R 2w

24

< sup THfHoo-

Now we proceed to the weighted £1-norm. Using Lemma 3.3.1 we get

o [1d
[DarWsf — Wsfll1 <2 1/‘d—W5f(x)‘d:c =
rR!'AT

:2m1/‘%/w5(x—t)f(t)dt‘dx§2m//‘%‘-]ﬂt)\dtdx:

=2t [ gl [ =D ear = 2 EZ/ e < 22 g

Lemma 3.3.3. Let Q' and Q? be two partitions of the class G(8,51,52). Then an upper

bound of the norm of the Weierstrass transform is given by

mN5

N,
[Wafll2 < 2m-sup Q5] - =l < =2 11 (3.51)

Proof. We estimate the norm of the operator Ws on step functions first. Let ¢ € ®q1 be a

step function on Q!. Assume that ¢ = ¢jXo and [|@]|qr = 1, that is
JEL

max(Qfmz lejl, 27™/2 sup \cﬂ) =1,

JET

which implies

Z lej] < 2™, sup|cj| < o2,
JEZ
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Then

Wso(x Z/ cjws(x — t)dt.

JEL

So we calculate

Wsdlloz,c, = Z c]  ws(@ =) dt‘dx <
ke 7 |
oL
< ws(z — t)dtdx =
%% 2m|92| 22 Ja!

|CJ|/QIZ|Q| QQ@U{;x—t)dxdt
_Z|CJ| ( DY )ﬁ Q2w5(x—t)dxdt.
k

JEZ ; Q7 —Qf[>ms Q7 —Qf[<ms
We know that

1

1
@ 0 ws(z —t)de < —.
k

0

We also observe that for any ¢ € le

—m

1 1 t—md “+o00 e
—t)dz < —t —t)dz )dz < .
Z w(g(x Jdz < inf |QF \(/ ws (@ )+/ ws(z — 1) x) inf |3

|Q2 Ql‘> (5’ k;‘ t+md

Therefore, taking into account that 27™ ., |c;| <1,

JEZ

||W§¢HQ27£1 ZZ |2CT]n| <1nf|$2 mN6>|Ql| < sup|Q |< f_|g | mé\[6>
k€Z jEL

Now we consider arbitrary function f € £1(R) N Loo(R) with || f|l1 = 1. Then

2_
Wiflloz.e, = o0
H HQ ,,Cl |Q%| QQ

ws(x — t)f(t)dt‘d:c <

keZ Z Q;
1
<2m2/ |f(t |Z 2/ ws(z — t)dedt =
jez kez| Kl Jaz
1
-9 Z/ |f(t) + Z >|Qz| o ws(z — t)dzedt <
JEZL |92 Ql\> 5 197 |<ms k
_ -m 3mNg
<2™m dt <
Z (mf‘Q] ) > -
JEZ
-m 3mN5
< ol ( ¢ )
< sl e T s
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In the last inequality we take into account that

1£llor . = 2—m§j o / Dldt < 1.

Now we recall that inf |QJ1| > 51" /m and therefore, for s; < e

efm

81)m
(2 1
inf |QF| (e <4

while

Ns

; _ 2m(17a10g31 2+a) = om.

Therefore we conclude

3mNjs
5

IWsflloz,z, < 2sup |-

The upper bound of the supremum norm is easy.

W £l —sup‘/w(; (x —t)f(t)dt <sug|f(x)|.
Te

Lemma 3.3.4. Let Q be a partition of the class G(s1,s2,0, m) where the parameters s; and

0 =27 satisfy the inequality logy s1 < 2a then
IWsx(—1,1] — X[—11]lle < 272 (3.52)

Proof. Obviously, sup [Wsx(_1,1)(z) — x[=1,1)(z)| < 1. Now we have to find an upper bound

for [[Wsx(-11] — xj-1.11ll2,2: -
IWsx(-1,1 — X[-1,1lle.c: = |Q | / ‘/w(s z —t)x—1,)dt — x-1,(z ‘dﬁﬂ =

We split the sum into two parts: over the intervals inside [—1, 1] and the rest

:iz—m (1—/ w(s(az—tdt)dx—F(Z Z 2 m/ /w5 (r — t)dtdz. (3.53)

j:Nl| J| @ J>Nr <N | ]|
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We begin with the first term of (3.53), that is the sum of the intervals of partition inside the
interval [—1,1].

N, 1

Z % o (1—/_1w5(:v—t)dt)dx:

J=N;
N;+mNg Nr—mNg Ny

:< Z T Z + Z >|2§_2—: Qj(l—/lw(g(az—t)dt)dx. (3.54)

j=Ni  j=Ni+mN; j=N,—mN; -1

We estimate each term separately. The first term of (3.54) has only mNs elements:

N;+mNg 9—m 1 Ni+mNs —m 1
— 1-— / ws(z — t)dt) dzr < = <1 — / ws(t + 1)dt) dz <
jzj:vl 121 Q; ( -1 ]zj:\,l 1€2;] Q; -1

< m2_mN5(1 - /0 i wg(t)dt).

We have the following upper bound for the second term of (3.54), since for |t| < 1 —md the

integral fil ws(z — t)dz is close to 1:

Nr—mN; 9—m 1
Z ol <1 - / ws(z — t)dt)dx <
j=nermng 1] Jo; -
Nr.—mN; 9—m 1
< 3 - <1 —/ ws(1 —mé—t)dt>dx <
N 1Sl e 1
2—mé
< 27™(N, — N, — 2mNp) (1 _ / wg(t)dt).
—md
The third term of (3.54) has only mN; elements, so we write
Nr —-m 1
Z 29— (1 - / ws(x — t)dt)d:c <
j=N,—mN; 141 Jo, -1
N 9—m 1 2
< 3 = <1 —/ ws(1 — t)dt)d:c < mNs2™™ (1 - / w(g(t)dt).
j=Ny—mNj ’Qj‘ Q; -1 0

Putting all three inequalities together, we get the following upper bound for the first term
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of (3.53):
N om 1
j;\[l m /Qj <1 - /1 ws(x — t)dt)dx <
< 22]:1‘5 (% +5> + ( %) <1 = /_1;5 wg(t)dt) <
< 22],\;‘5 (% +6)+(1- %) </:5 ws(t)dt + /;:5 ws(t)dt) <
<5 (3+0) (-3 () < 5

Recall that N5 < gm(1-alog,, 2) by definition of the partition of the class G. Therefore we

complete the estimation of the first term of (3.53) :

N'r 2—m 1
3 o (1 —/ ws(z — t)dt) do < 2 mel0By 2 < 9-m/2, (3.55)
j=N; NI -1

Now we proceed to the upper bound for the second term of (3.53).

(Z Z ’Q‘//w(;x—tdtdm<

J>Ny, <N

1+m(5 1—-md
< w(;:n—tdtd:c—l— / / / ws(z — t)dtdx <
lnf ’Q ‘ /1 md /1 / 1+md )
< ws(t dt—i—/ / x—i—tdxdt—i—/ / s(x — t)dadt <
2m lnf ‘Q ’ / +m5 +m5
S ERURY A [
< —— s(t — 1)dtdx + s(t — 1)dtdx <
2™ inf |Q | +m5 +m5

2mo
< 2
— 2minf ‘Q]‘

+ 2e7 ™.

We observe that

2md 2msy?
_Z 4 9m - 201
ot [] ¢ gma)

-m 27m/271
under condition that s; < 21/2+®_ Therefore, we get the following upper bound for the second

term of (3.53)

(Z+Z |Q|/ / ws(z — t)dtdz < 27271, (3.56)

Jj>Nr <N

Summing up (3.55) with (3.56), we get (3.52). [
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Proposition 3.3.4. Let Q' and Q2 be two partitions of the class G(5). Let e, = 2m(=1/2),

Let ¢ € Cone (61, Ql) be a step function. (See p. 37 for a general definition of cones). Then
1
|Dee Wadls > 7161 (3.57)

Proof. By Lemma 3.3.3 above, for any ¢ € Cone (51, Ql),

mN5
W, < .
[Wsoll2 < T [él1
By Lemma 3.3.2,
[Da2Wsx[-1,1) — Wex(—1,1llec < 2. (3.58)

We can find an upper bound for the weighted £;-norm using Lemma 3.3.1,

o d
D2 Wsx(—1.1] — Wexj—1ullaz.c, <271 | |—=Wix(-1,1(z)|dz =
R dx

1
d
:2_m_1/ | / qpusle —1)dtfde =277 / [ws(@ +1) = ws(z — 1)|de < 27", (3.59)
R'J -1 R

Therefore

Doz Wsx(—11) — Wex(—11ll2 < 2™/, (3.60)
Using Lemma 3.3.4,
IWaxi—vallar > lIx-valla = Wax-1, = Xj—1ylle > 1= 27772

Consider a step function n = dy[_1 1) + ¢ € Cone (51, Ql), with ||¢||; < d. By Lemma 3.3.2

1 om(1—1/2)
W5t — Da2Wstpll2 < TH¢H1 <d————; (3.61)
s5'0 55'0
and by Lemma 3.3.3
mN; Ny2m(11—1/2)
W, < <d——; 3.62
Wbl < 2l < a~n— (3.62)
summing up the last two (3.61) and (3.62) together
Ns+1
|Dos Wit < dzmn /2 22
§2
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We have the following upper bound for the error of approximation for a function from the

cone Cone (£1,Q?), using the inequality (3.59), (3.60), and (3.61),

[Ws¢ — Do2Wis¢ll2 < d[Wix(—1,1] — DazWsx(—1,1)ll2 + [[Ws¥) — Da2Wsi)[l2 <
gm(m—1/2)

< d<21—m/2 4 —
2

). (3.63)

We may also write using and Lemma 3.3.4 and (3.62)

[Wsglle = [|dWsx (1,11 + Wstll2 = d[Wsx—1,1ll2 — [[Wsell2 >

> d([Ix—11ll2 = IWsx=11] — X[=1,9]l2) = Ws¥0[]2 >

1

m(y1—1/2)
> d(§ _9—m/2 _ N2

m
550

). (3.64)
Hence we deduce from (3.63) and (3.64)
[1D2Wséll2 > [[Wsdll2 — [[Ws¢ — Da2Wsél|s >
> d(1 _gmm/2 _gt-m/2 _ gmin-1/2) (Ns +1) 1)).
- \2 550

We can simplify and write, dividing by d,

1
1Do2Wséll2 > 2 lé]l1-

3.3.2 Constructing an invariant cone

We shall construct an invariant cone around the cones for the discretized operator 7. First
we extend the cones from ®q: to ¢ and obtain a pair of cones for Ws7; which depend on the
choice of the first partition and hence on the sequence £&. Then we get rid of this dependence

using estimates from the previous Subsection.
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Proposition 3.3.5. Let Q', Q2, Q3 be partitions of the class G(5). Let T: ®q1 — P2 be a
generalised toy dynamo. There exists a number % < a < 1 such that for § = 2™ we may

choose 9 def 1 + a(l —log,, 2) < 1/2, and then for any n € Cone (1, Ql) we have

(3.65)

om(y2+1/2)
DqsWsT : Cone (1,(21) — Cone [ ———. O3

83"
1Dos W5 Tlls = 2 2||n]lx (3.66)

(See p. 37 for definition of the cone).

Proof. We define an operator £: &1 — P2 as before in (3.16). According to Theorem 3
p. 45, we know that 7 : Cone (1,91) — Cone (27”(“_1/2),92). Consider a step function
n = dx_11 + ¢ € Cone (1,91). Then Tn = d(N} — N})X[q,l] + 1)1, where the norm is

bounded |91 ]2 = [|E% + (T — E)nll2 < d2m01/2+7), We may write
DosWsTn = DaosWs(d(N,} — N )x(—1,1) + 1)

Using Lemmas 3.3.2 and 3.3.3

mN(; +1
| Doz Withi |3 < [[Wsthi ||z + || Doz Wsyr — Wit ||z < WH%HQ <
9

< gom(t/z4m)MNs +1.
- m

82

(3.67)

So we conclude using Lemma 3.3.4 that

[DasWsx[-11] — X[-1,1]ll3 <

< [1DasWix(—1,1) = Wax(—1lls + [IWsx(—1,1 — X~y lls <3-27% (3.68)
Then we may write

DasWi(d(N; — NN x-1,1) = d(N} — N )x(1,1) + 2,
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where 19 € ®gs and (3.68)
a3 < d(N} — N DosWix(—1,1) — X[-1,1lls < d(N} — N})2t=m72,
Hence
DesW5sTn = DasWs(d(Ny — N})xi-1,y +91) = DasWathy + d(N;y — N )x(-1,1) + ¥,

where using (3.67)

[DasWothr + 2|3 _ [[¥2lls + 1DosWsnlls _ g1-my2 n 20 H/2m N + 1 <
d(N} — Nll) - d(N} — Nll) - N} — Nll spto T
2(‘/171/2)m+3]\f5
55'0

S 21—m/2 _|_

Substituting § = 27°™ and Ny = 21721985 2) o get q9: =4y + a(1 —logg, 2) and get

om(12+1/2)

m
Sa

D3sWisTn = dx(_1,1] + 13, where [[¢3]| <d -
[ |

Definition 15. We extend the operator £ defined between two spaces of step functions
by (3.16) to bounded integrable functions. Given a partition Q! of the class G we consider a

map go: R — R by

14+ 2220 if g < 2 < b for some interval (a,b) = le C [-1,1]

“a—b
go(z) = (3.69)

x, otherwise.

and introduce a linear operator £: L1(R) — Loo(R) defined by:

> ). (3.70)

yegy ' (x)

Lemma 3.3.5. For any bounded integrable function f

m Qm(3/2+“/1)
/R 07 f ()| = / Ef@)ldz+ 2 £
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Where 0 < 1 < 1/8 is chosen such that

S3m
m5 . ﬁ < 2mfyl.
2ms])

Remark 6. The statement of Lemma 3.3.5 and the argument below hold true for the map @\?

as well.

Proof. Let a™: = {—c0 = aém) < agm) < ... < ag\?zzl = 400} be a set of points of

—

discontinuity of the map ﬁgfk, and let ajm) = (ag-m),ayj:)l) be intervals of the partition. We can

Let us introduce a set of indices of long branches
Il(m) def {1 <j<N| ag»m) is a domain of a long branch of the map Egn}

split the integral into two

/ngzf(x)mx: (/_1_m6+/1+oo)|€gf(x)|dx+/1+mi 0 £ ()] d.

—00 +md —1-m
m
To estimate the first term we recall that £} (z) = (=1)"z+ 3_ (j) for v < a(()m) and x > aE\T).
j=1

m
Since ||€[lo0 < &, we see that | > &(j)| < md and write
j=1

(/f T /1+w)‘€gf(ﬂc)!dx:< / T /1+OO>\ 2 sl W) w)de =

—00 +md —00 +md

yel " (x)
—1-mé 400 m
= ( / _F / +m5)‘(—1)mf((—1)m(x—;f(ﬁ))‘dx _
— </1m5 +/1::5) ‘f((—l)m(:v — ig(j))) ‘d:c <

J=1
-1

([ [wme= ([ [TYerwas
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Consider the second term.

1+md 14ms
/ NS @)]de = / > s ) )| =

—1-m —1-md yEng(x)

1+ms , N
= /1 5‘2 sgn(fgm)/(fgm(x) n agm))f(fgm(x) N ﬂ§~m))‘dx _

-/ HM\(Z + Z)sgnﬂg c"@) Nl (™ () 0 o™ de <

—1-md

1+md .
/1m5‘ Z Sl ()N ajm )‘dﬂH—
jer™

IN

1+mé
+/1 5‘ Z Sgn(fgm)/(fgm(x) n agm))f(ggm(x) N agm)) dr <
" eI

m)

a |90(Q )| m m
<3 [ 1o g sl Y e

Y : j )
Jj=N; J jel

< z/ O a4 supl 0 s - sup 93] 40

Z/ | £ (y)|d(g0(y Z/ (95" mQ)\dm_/_llygf(m)ydx.

So we may proceed

1+mé 1
[ @l <2 [ i@+ suplf@)] - sup ] -sup 9] #(Ds) <

—1—m

in)-

<2 [ [ef(@)ide + 27l ()" smPssin
R 52

3m
Recall that mé - 2237” < 2™ so we may conclude
2

m(3/2+1)

1+md
[ s <2 [ les@iar + E 0

—1-mé
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Lemma 3.3.6. Let Q', O2, and Q3 be partitions of the class G. Let T be a linear operator

on the main space such that T: ®q1 — Pq1 is generalised toy dynamo. Assume that

2m(3/2+71
/ T f(@))de < / Ef@)lde + 2 Al

3m
where 0 < v1 < 1/8 is chosen such that mé - 2‘:,}35” < 2™ Then for any essentially bounded

and absolutely integrable function f
N,
IWsT £lls < 5m= 11 £ (3.71)

Proof. We shall show that there exists a polynomial é such that

N5
IWsEflls < = QEm)lI £l
and the Lemma will follow. By direct calculation, substituting Ny = 2m0~%18s2) anq

0 = 27" we see that

om(3/2+m) N
- <Z
sh? )

under condition that 2'/2+7+eloss, 221 < o 5o for so < 2 sufficiently large, or, in other
S1

words, for s = log {1 small enough.

By definition of the norm we calculate,

AW Z/ o

JEL

N} NY+mNs

HED S )/Ql mdw( DS )/1|{é§f|dy' (3.72)

j=N!-mN;  j=N} j<N'-mN; j>Ni+mnNs *%

We estimate each of three terms separately. For the first term we have the following lower
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bound, using |Q}| -dgo(y) = 2 for any y € le C [-1,1].

Z/Ql |Q1 - /'f

dy— Z/ y)|dgo(y

j=N}
1 /!
= - Z / z) NQ)|dz > = / |(Ef)(x)dx
J N} 2/
Thus for any function f
1
| ief@ds <2 (373

Consider the second term of (3.72) now:

N} Nl+mNs

D S I LU M L ULTE

j=Ni-mN;  j=N}
1 /—1 /1+m6
> + EN(y)|dy
o .t ) )IEnw)

Thus

</1 +/Hma)’(5f)(y)!dy < 2™ - sup Q] - [ f ] (3.74)
—1—mod 1 B ’

We have for the remaining term of (3.72)

(X« > ) S ([ T[T e o

j<N}-mNs j>Ni4+mnN; 79

Summing up the three inequalities (3.73), (3.74) and (3.75) together, we get

/R E£(@)ldy < 2742 £ (3.76)
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Taking the last inequality (3.76) into account, we estimate the norm

[WsE flls =2~ mz

|Q3| s /w6($—t)(5f)(t)dt dz <

_ 1 / /
<27y — ws(x —t)|Ef(t)|dtdr =
jze; 23] Jas Jr

L
_2m2/ eral Y o+ Y )|Q—13|/Qaw5(x—t)dxdt§

/ ws(x —t)|Ef(t)|dtdz =

keZ \9379}6|>m5 Q30 |<mé J
e m mNg
<2—m( )/ EF(H)dt <
4mN5
1111

Taking into account

2m(3/2+ 1

/ ITF(8)dt < / EFONE+ 2

we calculate in a similar way

—m

IWsT flls < 27 (=

mN5
R s )/ITf(t)|dt§

Ny 2m(1/2+'yl)
<25 (y )
<5 (4m+ S I
Ns
< 5m=—=||fll;
for 0 < v; < 1/8 and m large enough. |

Recall general definition of cones associated to a partition  (p. 37):

Ny
Cone (1, ) :{77 =dxigtele=> cxa; Y. ¢ =0l < d?"}- (3.6);
Jez J=Ni
~ def
Cone (r,,9) “ { f =1+ g, n € Cone (r,2)., llgla < ellnllo } (3.7).



3.3 INVARIANT CONE IN &.

Theorem 5. Let Ws be the Weierstrass transform defined by (3.49). Let Q', Q2, and Q3
be three partitions of the class G. Let a linear operator T: L1(R) — Lo(R) be such that
T(Pa1) C Pqe2 is a generalised toy dynamo. Then for any m sufficiently large and 3 = log z—;
sufficiently small there exists 3 < a < 1, ro(m) < 1, ea(m) < e1(m) < 1 such that
W(ST(C/OEB (1,61,91)) c Cone (rg,eg,Qg) with § = 27™%, Moreover, the norm of any func-

tion f € Cone (1,e1,Q") grows exponentially fast ||W5T fll3 = 22| f|.

Proof. By Theorem 3 on p. 45 we know that 7 (Cone (1,92')) C Cone (2m(71*1/2), Q%). Con-
sider a function n = dx[_1,1) + % € Cone (1, Ql), such that f_ll &y = 0. By Proposition 3.2.2,
for any step function ¢ € ®g1 we have [|(T — &)pll2 < 2™(/247)||p||;. Using Lemma 3.2.3,

we calculate

ITnll2 = diTx-10ll2 = T2 = dllEx -1 + (T = E)x—ylle = (T = E) + Ell2 =

d

> d(N} — N — 24(2m/247) 11) > 5(1\5} — N} >d2m3 (3.77)

Consider a function f = n+ g € @(1,81,91), where n € Cone (1,(21) as above is a
piecewise constant part; and ||g||1 < de;. We may write WsT f = WsTn+ WsTg.

We shall show that for § = 27 large enough compared to the size of particles of the
partition, Ws7T f may be approximated by a step function from ®q3. We write each term as

a sum of a step function with remainder, and estimate the Q3 norm of every term. Let

WsTn = ¢1+ g1, where ¢1 = DaWsTn, and g1 = WsTn — DqzsWsTn; (3.78)

WsTg = ¢2 + g2, where ¢2 = DosW5sTg, and go = WsTg — DasWsTg. (3.79)

Using Lemma 3.3.2 and Proposition 3.2.2 we estimate the % norm of the first remainder

term ||g1]|-

[Tul _ 24N} = N}) _ d2"

= [|W — D3 W, <
lg1ll3 = IWsTn — DasW5Tnl|3 < a8 = TR < S

(3.80)
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since
1Tnlle = (T = Enlla + |Enll2 < d2m/27) L g(N} — N} < 2d(N} — N}).

We also know that || Tg|l2 < s{*||g|/1, therefore we have the following upper bound for the

second remainder term ||gz||3:

T, dsT
92|l = [[W5Tg — DasW5Tglls = ” ,5”2 < B (3.81)
550 s5'0

Since 7n € Cone (2(71_1/2),92) we may apply Proposition 3.3.4 to estimate |[|¢1||3, us-
ing (3.77)

1 _
lp1lls = [ DosWsTnlls > ZHTnHz > d2m .

Finally, for ||¢2|l3 we get, using Lemma 3.3.6

lf2ll3 = [|DasWsTglls < [[WsTglls + [WsTg — DasWsTgllz <

N, € STt
< sm=lgl + llgo| < d=(5mNs + ). (3.82)
2

We would like to find a number 0 < 73(m) < 1 such that for some dy

¢1 + ¢2 = dox[—1,1) + ¥ With [|¢[]3 < dora; (3.83)
and two numbers 0 < g2(m) < €1(m) < 1 such that the following inequality holds true

g1 + g2l < doea. (3.84)

We apply Proposition 3.3.5 p. 79 to the function n € Cone (1, Ql), and get

- om(y2+1/2) -
¢1 = DasWsTn = dx|_1 1 + t1 where [[¢][3 < dT and 2™7°d < d < 2™d. (3.85)
2

with 72: = v, + a1 —log,, 2). Using the inequalities (3.82) and (3.85) above we write

€ s 1
[¥lls = llg2 + ¥ulls < dgl <N5 + S—1m> + d2m(72+3/2)8—m. (3.86)
2 2
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Therefore the condition (3.83) on 7y holds true if

%1 (N5 + z—lm) < rp2m3, (3.87)
2
om(y2+3/2)
7 < 192m3, (3.88)

We can find a lower bound on dy from (3.83), using upper bound for ||¢||3 from (3.86)

dox(—1,1ll3 = llp1 + d2 — ¢lls = lldx (1,1 + ¥ + b2 — ¢ll3 >
> [ldx—11lls — %1 + @olls — [[¢lls > d2™* = 2[|y|l5 >

> d2m™t — dry2™ > d2m2) (3.89)

for all ro < 1/2.
We can find an upper bound for ||g; + g2|| summing up (3.80) with (3.81). Then the second
inequality (3.84) on 2 will follow from

2m 51811n m—2
o <2
sy 0sh

£a. (3.90)

We claim that the three inequalities (3.87), (3.88), (3.90), and conditions of Theorem 3 on

: _ 15 _1 _ S _ 2 _ 4 _ s 1o
p. 45 hold true with o = 35, v1 = §, 72 = 61, and &1 = 73, £2 = 1y, if 5e = log $* < 5 is

small enough. In particular, we get
W;sT (Cone (1,73,9")) C Cone (rg, 73, Q%)

for 75 = 651. The condition on the norm [WsT flls > 2™75||f|l1 follows from (3.80), (3.81),

(3.86) and (3.89). u

Corollary 1. Under the hypotheses and in the notations of Theorem 5 on p. 86, we have for

1
ro = 064

Ws T Cone (1,73, Ql) — Cone (7"2,7"%, Q%) (3.91)

Vf € Cone (1,73,9Q') W5 Tflls > 275 £ |11 (3.92)
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Proof. The theorem follows from Propositions 3.3.4 and 3.3.5 and Lemma 3.3.6. If we replace
0 in the Gaussian kernel by %, we shall multiply the upper bounds in the inequalities by
polynomials. Since the estimates are based on comparison powers of 2, the results still hold
true. |
Theorem 2. (Invariant cone) There exist a measure preserving piecewise-smmoth transfor-
mation f: R — R, a cone C in the space ® of essentially bounded absolutely integrable vector
fields on R, and a norm || - || in @ such that for an m > 1 large enough and any sequence

[€]loe < 6 with 6 =27™ for 12 < a < 1 we have (3.1)

_ — 1
Waf0Ws:CoC;  YoeT: |Wa faWs fll > 71500 ol

Proof. We choose the transformation to be f = ¢, and pick up a partition 2 of the class G.

Our goal is to show that there exist four numbers r2(m) < ri1(m) and ea(m) < £1(m) < 1

such that
W(ngiW(;I &)\ne(rl,el,Q) — C/O\Ile(T’Q,€2,Q) C &)\ne(rl,el,Q) . (393)
Vf € Cone (ry,e1,9Q) : [|[WsliiWsflla > 2772(| f|le- (3.94)

Let Q! be the canonical partition of the perturbation EZ”. First of all, we shall find a number
r1 such that for any n € Cone (rq, Q) we have D1 Wsn € Cone (1,Q1).

N
Since n € Cone (r1,2), we may write n = dx|_1,1) + ¥, where ¢ = >~ ¢jxq;, > ¢j = 0;

JEZ =N,
and ||[¢||g1 < dry. Then
DaiWsn = dDo1 Wix (1,1 + D1 Ws1p.
Using Lemmas 3.3.2 and 3.3.3 we get
D Wil < [Wswih + Do Wath = Wiy < dry ™52 < an 20



3.3 INVARIANT CONE IN &.

and for the supremum norm we have ||Dq1 Wst)|loo < ||¢)]|co- Summing up,

2m N
dsor

[ Dar Wstpl[1 < dr (3.95)

Using Lemma 3.3.4, we calculate

Do Wsx(=1,1] — X[—1,1]l1 <

< Den Wsx1.1) — Wax_1ylh + IWsx_1y — X1ylh < 287725 (3.96)

which implies dDo1Wsx(—1,1) = dx[—11] + Y1, where ¥ € g, [[91]1 < d2'=™/2 Hence
DorWsn = dx|-1,1) + Dar W9 + 1, where

2mNy
0sy’

| Do Wsth + 1|1 < drq + d2'=m/2,

By Lemma 3.2.2, p. 41, in order to guarantee D1 Wsn € Cone (1, Ql), it is sufficient to choose

the parameter r1 <1 such that

2m N 1
dsy ry’
Let us set
def 55?
= ——. 3.97
" 4m N ( )
We can also notice using Lemma 3.3.2, that
|(Des W5 — Wa)lh < ——d d (3.98)
J— —Aqar = . .
o1Ws 5771_5?5 1 AmN,
Taking into account that D1 Wsn € Cone (1,9') and (3.98) we conclude
— 1
DqiWsn + (D1 Ws — Ws)n € Cone <1, m, Ql> . (3.99)

Let T: ®g1 — P2 be a generalised toy dynamo, approximating the operator ¢7., constructed
as described in Theorem 4 on p. 62. By straightforward calculation we see that the cone

Cone (1, m, Ql) satisfies the assumptions of Theorem 5 on p. 86 for any %—2 <a<l:

4 1N < gmlalogs, 2-1)  gmla=1) ~ 9=%3 _ 535
mNs
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Therefore, by Theorem 5,
Wi T (D Wsn + (Do Ws — Wi)n) € Cone (56%,51—16&) .
We may write for any partition Q3 of the class G and for any f € Cone (7“1, €1, Ql)
Wslg W f = Wl Ws(n + g) = WsT Doa Wen + WsT (Ws — Dot Ws)n+
+ DosWisliiWsg + Ws((g — T)Wsn + (Id — D3 )WslgiWsg.  (3.100)

We are interested in the coefficient in front of the term x|_; ), which corresponds to the

“cone axis”. Let £: &1 — P2 be a linear operator defined by (3.16), p. 42. Then

WsT Doy Wen = W5T (dx(—1,1) + 1) = Ws(T — E)(dx(—1,1) + 1) + WsE(dx|—1,1) + Y1) =
= Ws(T — E)dx[—11] + 1) + WsEP1 + d(N} — Nll)(WéX[—Ll] = X[=1,1])F

+d(N} = N xe10 = d(N} = NYxo1 + v (3.101)
where
g = Wis(T — E)(dx(—1,1) + ¥1) + WsE1 + d(N} = NN (Wax(-1.1] — X[-1,1])>

and its norm may be bounded using Lemmas 3.2.2 p. 41, 3.2.3 p. 42, 3.3.3 p. 72, 3.3.4 p. 74,

and Proposition 3.2.2 p. 42:

[alls < [Ws(T = E)(dx (1,1 + ¥1)lls + [Ws&rlls + |d(N,} = N Wsx—11 — X-1,1) I3 <

< d2m(1/2+%>?—]1ff + 27?];7:5 +d2m 12l < g 2m 3 (3.102)
52 52

1

for a suitable choice of s5 < 2 < s1 and 1 = 3

By Theorem 4 p. 62 we get, using Lemma 3.3.3

m mN5 m
HW(S(fg* - T)Wg?]”g, < —Sm5 . ||( T~ T)W577H2 <
2
m2N5 S‘% m 9 S% m
. < _ST ™ ‘
sp6 (21/2+a52> [0l < dm N5(21/25%> (3.103)
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Using Lemmas 3.3.2 and 3.3.3 we obtain, taking into account that ||g||q < deq,

||€21W69||3 deq 2s1\m mNjg m3Ns /2s1\™
1d — D) Wslm Wsglls < < % 2(_) . < 2d —<—>
It 3 ) WislgiWsglls < e AL g =2 g
(3.104)

Combining (3.103) and (3.104), we have the following upper bound for the sum of the last

two terms in (3.100)

[Ws (e — T)Wsnll + [|(Id — Das)Wsl,Wsgl| <
13 13

3 m
m_Ns(ﬁ> (3.105)

52 s3

3
s m
< dm?Nj <—1 > + deq
217253 2

Applying Lemma 3.3.3 and Theorem 4 p. 62 again, we get

mNg m? N s‘z’m
Ws(0m — TYW, < —2||(E — TYW < - <
IWa(eg ~ TWagls < "G 168~ TIWaglls < "o - ey rlolls <

3
S m
§delN5m2(—1 > .
21/252

By Lemma 3.3.6, taking into account Lemma 3.3.3,

2

N N,
IWsTWagll < 5m=—3[Wig|| < 5derm® =285
2

Hence summing up the last three inequalities we obtain:

[Das Wil Wsglls < |(Id — Das) Wil Waglls + [[Ws (¢ — T)Wsglls + [[WsT Wiglls <

3 3 2
m N(S 281 m 2 81 2 F)
<de Tt () N () o+ Sdem? S <
Ns s /2 g2m s
34V0 1 2 °1 2
< d&lm 5—2 —S%m <@ + 6 2m/2 —|— Ngs—m>

We see that for s = log z—; sufficiently small and « is as chosen above,

2
(5) ()"
5 (21/2 <1and N(2) >0

Therefore, we may write

N2
| Ds Wil Wiglls < deym? 5255?. (3.106)




3.3 INVARIANT CONE IN &.

Therefore we deduce from (3.101), (3.106), and (3.105) that in order to get the inclusion
Wgﬂ?lef € Cone (rg,e9,) we need to make sure that for some 1 > ¢ > e the following

inequalities holds true:

N2
2dry(N} — N} > deym? 5235m; (3.107)
2
1 9 83 m 3N5 281
2des(N! — N1) > dm Ng(m) +dey ( = ) (3.108)
2

We know that N} — Nl1 > 2m~1 therefore we may choose £, = 53 and get in the first
inequality

L m?N} | m2om2(i-alos,, 2) | 2 gmil+2a(l-log,, 2))
9 > 032 ——°2— =32 =3 — .
T 4622msp 45 - 2—2am . m 4

sy’
It holds true, if we set ro = 55, as in Theorem 5 on p. 86. Comparing it with the value of

= 4an ; we see that ry <7y provided logy sz + alog, 2 > agi + 1L

It remains to check for the second inequality that

3 2
87 \™ , 2 m“Ng/si\m
> m*Ni( ) (%) -
g9 > m*~Ns 27253 + 432 w2\ (3.109)
We see immediately that we may choose s; and s; such that 25 > log > 5= and then
3 3 2 1+«
2 5T \™ 2 51 m_ 1 m“Ns (s1\™ _ 5.1 (812 mo 1
()= g PR () s (2
m-Ns 23/252 m 2. gl/2rals,2) = 102 \53) = m 53
Hence we conclude that for r; = 4;; o 2= 564 €1 = 63 and €9 = 521 we have
WslgWs: Cone (r1,e1,Q") — C/o\ne(rg,ag,Q) C C/o\ne(m,al,Q). (3.93)
The second inequality on the norm
-2
HW&E Ws |Cone(r1 €1,92) HQ > 2"
follows from (3.107), (3.108) and (3.101) immediately. [
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Corollary 2. Under the hypotheses and in the notations of Theorem 2 p. 33, let us choose

m

ds 1 1 1
four constants ri = m, r9g =064, g1 = 032 and g9 = 621. Then we have

WiégiWi: (%?6(7“1,51,9) — (%EG(TQ,EQ,Q) C (%?6(7“1,51,9)
Vf € Cone (ry,e1,9) : HW%EEZW%fHQ > 22| f|q.

The constructive proof of the existence of an invariant cone is complete. Fast Dynamo

Theorem now follows as described in the Section 2.2.

Theorem 6 (Fast dynamo on R). There exist a measure-preserving piecewise-C? transfor-

mation £: R — R and an essentially bounded, absolutely integrable vector field v such that

| n
lim lim Eln”(exp(éA)f*) v”lll > 0,

6—0n—o0

The map ¢ may be realised as an induced action of the Poincaré map of the provisional fluid

flow on the unstable manifold.



4 Fast dynamo on the real plane

This Chapter is dedicated to the construction of a piecewise diffeomorphism 7': R? — R?
satisfying the Invariant Cone Hypothesis 1, p. 28. In perspective, the map T is the Poincaré

map of the provisional fluid flow. The main result it the following

Theorem 7. Let ||£]|0 < 0 be a sequence of real vectors. There exists a partition Q0 of R?

and four numbers r1(m) < ro(m) and e1(m) < ea(m) such that

W s Pg*WL: Cone (r1,¢e1,) — Cone (r3,e2,) C Cone (r1,e1,Q).
m 2m

2

HW%PéW% |Cone(r1761,Q)H > 2"

(See p. 100 for definition of a cone in the space of vector fields).

4.1 Notation

The following notations will be used throughout.

We denote the unit square in the plane R? by [J = [—1,1]2.

The Jacobian of a function F' we denote by dF’, and by |dF'| we denote its determinant.
For a function of two variables, by 9, we denote the derivative in the first variable and by

0y we denote its derivative in the second variable. Similarly, for any point z € R? we denote

by z, and z, its first and second coordinates.
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The indicator function of a set X we denote by yx. In particular, xg is the indicator
function of the square [—1,1]2. Given a subset X C R? and a partition = {4} i j)ez2 of
the plane R? we abuse notations and write (i,j) € X for );; € X. We denote by 7, and m,

the natural orthogonal projections

7. RZ 5 R T2 (2, 2y) = 2o, (4.1)

T R2 =5 R Ty (22, 2y) = 2y- (4.2)

The length of a vector v we denote by |v| and the n-dimensional Lebesgue measure of
a subset A € R” we denote by |A|. For any sequence of vectors & € /o (R?) we denote
by & € {o(R) and &, € l(R) two sequences of z- and y-coordinates of elements of &,
respectively. We denote by X5 the subset of sequences with ||€||o < 6.

The two dimensional Gaussian kernel ws is specified by

dof 1 _ 2%+

wé(x’y) = 27_(_526 2% (43)

The Weierstrass transform is a convolution operator with the Gaussian kernel. For any

absolutely integrable function f it is given by

Wy f(2) % s 5 f(2) = /[R ws(z — (). (4.4)

For a vector field v = (v, v,) with absolutely Lebesgue-integrable components v, and v, the
Weierstrass transform is defined by Wsv = (ws * vg, ws * vy).

The space of essentially bounded vector field in R? with absolutely integrable coordinates
we denote by X.

The supremum norm of a matrix A is supremum of absolute values of its elements, we
denote it by || A~ def sup;; |Aij|. The matrices we are dealing with will be bi-infinite.

The following letters are reserved for real constants: M, My, 1, p2, o, y1,2.34 > 0. Suitable

intervals of values will be specified later.
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4.2 The dynamical system

Here we introduce the dynamical system we will be studying. It consists of the phase space X;
the norm, which is the maximum of weighted £; and L, norms; and the transformation of
the phase space, which is an action, induced by a piecewise diffeomorphism of R2. To define

the piecewise diffeomorphism we use a tower construction.

4.2.1 Action on vector fields

A tower of M floors. Let M > 1 be a large natural number; and let 0 < p; < 0.1,
0 < p2 < 1 be two small real numbers.

Let Fy be the Baker’s map on the unit square

wr | (GG =122 +1), i 2, <0;
Fo(zz,2y) =
(3(2 +1);22y — 1), if z, > 0.

Consider M — 1 maps Fy,...,Fy_1: R?\ O — R?\ O with the following properties

1. each Fj is a smooth map;

2. each Fy is area-preserving: |dFy| = 1;

3. the Euclidean norm of the differential is uniformly bounded ||dFy|| < 1+ puq;

4. the Hessian is small ||d?F}| < 2.

5. all Fj are polynomials, most are linear, some are not; the product of degrees of
all of them is bounded by a small number d, which is independent of M. In par-
ticular, dir < 95%. This condition holds true, for example if Fj, = Fj, for all
1 <k <j< M-—1. We use this a strict assumption only to claim that for any
point z € R? #{m;(F1o...0Fy(2))} <dand #{m,'(Fio...0 Fy(z))} <d. This

bound is required in Proposition 4.3.2 only.
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We build a tower X C R? defined by

x <R2 X {0}) U((m?\m) < {1,2,..., M — 1})
with coordinates (z,n), where z = (24, 2,) € R? and n € {0,1,..., M — 1}. We will abuse

notations and identify O x {0} € X with 0.

The choice of piecewise diffeomorphism. We are ready to introduce a map F: X — X

defined by

et (Fo(2),0), if n=0and z € [J;
F(z,n) = (4.5)
(Frt1(2), (n+ 1)mod (M — 1)), otherwise.
Consider an extension F': X x R — X
(Fo(z) +w,0), if n=0and z € J;

F((zn),w) € (Fy-1(2) +w,0), ifn=M—1; (4.6)

(Frt1(2),(n+1)), otherwise.

Given a sequence ¢ € ¥ C £ (R?), we define a small random perturbation F¢ of the map F,
as described in Subsection 2.1.1. Then the zero floor R? x {0} is invariant with respect to FgM
and we may consider the M’th iteration as a map FgM : R? —» R2. We denote by Fp: X — X

the map corresponding to the zero sequence & = 0.

Remark 7. The inverse map Fgl is given by

(Fy (= — €4),0), if 2 € O+ ¢F and n = 0;
ng (Z,TL) = (F]\_j,l(z—gk),M—l), ifZ€D+fk andn:();l (4.7)
(F7Y(2),n —1), otherwise.
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Also observe that the inverse Baker’s map is given by

» ) (225 +1 — 285 3(z, - )—%55), if z, < &F, and 2 € (O +¢€h),
Fyl(s - €)= (1)

(22, — 1 — 2k (2, + 1) - %55), if 2, > &k and 2z € (O +&F).
Let mg > 1 be a large natural number. We set m = 4Mmy and choose a small real number
§ = 27™* with 12 < o < 1. The subset of sequences in /o (R?) with [|{[| < 6 we denote

by ¥s. Given a sequence £ € X5 we may define a map
P:: R? — R? Pe(2) = F{'(2,0). (4.9)

The map Pe defines induced action on the space X according to

(Pevv)() = dPe (P ' 2)u(Py

< '2). (4.10)

The number of iterations m remains fixed throught the manuscript. We assume it to be

sufficiently large so that all inequalities hold true.

4.2.2 The choice of the norm in X

In this Subsection we introduce a norm in the space of vector fields in R?. We also give a
general definition of a cone in X.
Given a partition Q of R?, we define an associated weighted (£2, £1)-norm of a vector field v
on the plane by
def 2—m
Ioloe, * 3 oy f,
Observe that ||v|jq,z, is finite if the ordinary £i-norm is finite and the size of elements of

partition is bounded away from zero:
9—m 9—m 9—m
lolloe =3 = [ 1< mreay L P = mry e
' ; 17y (i) Ja, inf 7y (€2;)] Jr2 inf |7, (Q)] "
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The supremum norm of a vector field v we denote by ||v||so ey sup |v|. We denote by X the

space of vector fields on the real plane with finite £ and supremum norms.

Definition 16 (Norm). We introduce a new norm in X, associated to the partition €,

combining the two:
def —m/4
[vlle = max([|v]la,c,, 27" sup|v] ). (4.11)

This definition agrees with the general definition in Subsection 2.1.2 with o = 1/4.
The subspace of piecewise constant vector fields associated to the partition 2 we denote

Xq. We reserve Greek letters for piecewise constant vector fields. We shall call the basis

s déf 1 1 U déf 1 0 }
ey e hesixh, ® e )

the canonical basis of the subspace Xq.
Whenever we are dealing with several partitions Q', Q2. and 3, say, we omit  in the
norm index and write || - ||1, || - ||2, and || - ||3, respectively.

We have for the norm of a piecewise constant vector field v = >_ vy’ szij + v X%U:
(]

g 9—m/4 g
v|a > max<27m VY|, ————sup [v¥Y ),
1 I
in particular,
la=1 = Y |yl <2 and suply,| <27i™ (4.12)

Invariant cones. By analogy with one-dimensional part, cones of a special form in the spaces
X and Xq play an important role. We reserve notation for a cone of radius r with main axis

X0 in the subspace of piecewise constant vector fields associated to the partitions Q! and Q2

Cone (r,Q") déf{n =dV)xo+¢ o€ Xa, |l <dr Z(pﬁ] = } (4.13)
0
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We extend the cone Cone (’I“, Ql) to include general functions from the main space:
Cone (r,e,2") & {f =n+v|ne Cone (r.0"), llolls < el }. (4.14)

This definition agrees with the general definition in Subsection 2.1.3.

4.2.3 The canonical partition

In this subsection we introduce the notion of canonical partition of R? associated to a sequence
of perturbations ¢ € £, (R?) as a direct product of a pair of canonical partitions of R and list

the main properties.

Definition 17. The k’th escaping set for k € Z is defined by

k
Ey déf{zGDcX | TT xo(Fi =) :o}. (4.15)
j=0

Obviously, By, C Fg11, if k> 0; and Eyy C Ey if £ < 0.
Lemma 4.2.1. Let £ € 35 C £o(R?) be a sequence of small vectors in the plane. Define a
sequence ¢(€) of the length m by ¢! = —2¢2m 2 = —2¢=2m=1  om — _2¢m+l . Let p

and pe, be two random perturbations of the doubling map p defined by (3.3) with s1 = s = 2.

Then the following diagrams are commutative.

Pl Pe 2
O\ E_p ——5 R2 O\E, — R
B
P Pe,
R R R — R

Proof. Straightforward from definition. The Baker’s map preserves the horizontal and vertical
foliations, so the second diagram is trivial. For the first diagram, recall that by definition

(Subsection 4.2.1) P-! = (F

A o) = Fglngl...F*1

¢m - Using (4.8) and (4.7), we conclude

that the corresponding sequence ¢ for the doubling map associated to Pgl is as defined in

supposition of the Lemma. |
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We associate a chain Y1, Y2, ... of partitions of R? to a sequence & € X;.

The first element Y! is defined as follows. Let Y% = {Tf = [2%”, Z;r—ml] }, i € Z, be a partition
of R into equal intervals and let T% = {T;‘L}jeZ be the canonical partition of the map pg.
Then

Tl T T T T
- { ij }a ij zs X ;L
To define partition Tk, consider a sequence

gl — _2§2km7§2 — _2§2k;m—17 L. 7gm — _26(2]9—1)771

Let T#¢ be the canonical partition for the perturbation pI" of the doubling map, and let T

be the canonical partition of the perturbation p, ¢ of the doubling map. Then Y* is given
Yy

by

TF = {1y}, Yo =05 x Ty,
Definition 18. We say that a partition Y of the plane R? is a partition of the class G(m,§),

if there exists a sequence & € %5 such that T = Y* for some partition Y* from the chain of

partitions associated to &.

Definition 19. A rectangle (zx — %‘, Ze + %”) X (zy — %’, zy + %) with centre at z and sides

l; and I, we denote by Rec,(l;,l,). Whenever location of the centre of the rectangle is of no

importance, we omit z and write Rec(ly,ly).
Lemma 4.2.2. Any partition X of the class G(m,d) has the following properties

4m=1 clements of the partition.

1. The unit square [0 contains at most 4™ and at least

2. For any element Y;; of the partition T we have two rectangles

Rec(—, —) CTY; C Rec(21_m,21_m).
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3. Any square with a side 6 may be covered by at most N5 = 4™1=0+L elements of the

partition.

Proof. Follows from the properties of the canonical partition for perturbation £ of the doubling

map. |

4.3 Matrix, approximating the operator P-..

In this Section we assume that a sequence of vectors 1 € fo(R?) is fixed and we study
the associated operator Pg* on vector fields on R?, defined by (4.10), where the map P, is
given by (4.9). Our goal is to show that for any sequence 7 there exist a pair of subspaces
Xq1, X2 C X and a linear operator A(n): Xg1 — Xq, with a simple matrix, approximating
Pg* |z, well enough. Given the operator A(n), we construct a pair of cones C1 C X1 and
Co C Xq2 such that A(Cy) C Cy; Oy < Cy and || A |, > 2™~ 1. We begin with the choice of
the operator A.

Let T be a chain of partitions associated to the sequence 7 € L5={¢ € £oo(R?) | [|€]|00 <6}
Let Q' = Y% and 92 = Y*t! be two consecutive partitions from the chain Y. We intro-
duce two subspaces Xq1 and Xq2 of piecewise-constant vector fields in X, associated to the
partitions Q! and Q2, respectively. The subspace Xg1 has the (canonical) basis

def 1 1 u  def 1 0
Xor = —— a1 (0)Xa s Xl = 7= 7ory\1/Xats
Q}j |7TI(QI )|(O) Q; ol |7Tx(921j)|(1) Qj

and the (canonical) basis of the subspace Xq2 is

o def 1 u  def 1

Xz = —rar(0)Xaz:  Xaz = —or(D)Xaz
B me ()0 P Q31

both bases have Z? elements.
Let & def o?™E=1p (see definition of the chain Y in Subsection 4.2.3, p. 101). We would

like to approximate the operator Pg*: X — X by a linear operator A: Xqg1 — X2 chosen so
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that the averages along the elements of partition Q2 are equal for any field v € Xg1:

Av = / Pg*l/. (4.16)
9 a0
We write down the action of the operator A on Xq1 in matrix form
.A(ngxf)}j + Vijxg%j) = Z 1/27 SSMXQQ + SUMXQQ ) + y” (USMXQQ + UUMXQQ ), (4.17)

where the four matrices SS, SU, US, and UU are specified as follows, so that (4.16) holds

true (see Lemma 4.3.14 on p. 128 for details).

1
st = / 02(P2)o(2)dz; (4.18)
j |m(9}j)|.|wy DN e2azpray, ¢
sug / 0x(PE)y(2)dz; (4.19)
’ﬂ—l’( z] ’T"y kl ’ le
Usy = / y(PE)2(2)dz; 4.20
K m(Q}j)\-ywy I o2z o (P¢)e(2)dz; (4.20)
UUZ.k,l dﬁf / (PQ) (Z)dz. (421)
j |70 (L Z] |7Ty kl )| oL €y

We observe that

Nk <X§211j> — (Xf)gj>§ SU: (Xfy}) — <X?212j>; Us: (X%}) — <X§zgj>; UU: <X?211j> — <X?212j>-

The matrix UU is the most important as it is responsible for the largest eigenvalue of the

operator A. We will study it in a great detail in the next Subsection.

Lemma 4.3.1. The map PQ2, corresponding to the zero sequence & = 0, gives the following
matrixz elements for any quartet (i,j,k,1) € O x O UUZ]}I =1; SSZ»Z = 2—4m, SUikjl =0;

USfjl =0.

Proof. Each partition of the chain, associated to the zero sequence, is a partition of the
unit square O into 2212 equal squares with side length 2. Therefore we have that

QL = [, 5] x [5he, 551] and 02, = [, 55 x [oh, 5],
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The preimage of an element Qil C O of the partition Q2 under Py 2 is equal to 2™ disjoint

rectangles Rec(2,273™) in 0. Thus |P§2(Qil) N Qllj| = 274m_ The derivative of PQ2 on [ is

given by the matrix
dP(z) = for all z € .
|
Definition 20. The matrices, corresponding to the map Pf, we denote by SOS, SOU7 UO S, and
UOU , respectively.
Remark 8. Immediately by definition we see that for any quartet (i,j,k,l) such that
(i,7) € O and (k,1) € R?2\ Oy s or (i,5) € R?\ Oy and (k,1) € O we have
UUK = SUM = UsH = S5t = 0 (4.22)
In addition, given ||dFy|| < u1, from definition of Fj p. 97, we have

max (|UU oo, 18U loc, 1US |0, 15 1loc) < (1 + p1)*™. (4.23)

Remark 9. The condition on the Euclidean norm ||dF|| < p; implies that there exists a

constant M such that for any two partitions Q' and Q2 of the class G(m, ),

?ug#{(k, [) € R?\ Oupms | P2 (QR) N Q5 # @} < My~ (m + 1), (4.24)
2y

Therefore for any pair (k,1) C R?\ Oj4,,s there exist not more than My - (1 4 u1)?™ pairs

(i,j) c R? \ U ms such that
kl Ukl U kl UUkl /

Remark 10. Recall the notations introduced in the beginning of Section 4.3. There exists a
constant Mo, independent of m, such that for R := Momd(1 + p1)>™ + 1 and for any quartet

(i,7,k,1) where (i,j) € O and (k,I) € R?\ O or (i,j) € R?\ Og and (k,l) € O
SSk =0, SUM =0, USK=0 UUF=o0.

L/ LV LV o
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Definition 21. The domains of continuity of the map Pg we call (P, §)-domains.

We split (P, &)-domains in P{Q(Qil) N Qilj C Oin “good” and “bad” parts:

(AG kl dEf{A C Py (Qil) N Qz‘lj | Ais a (P,§)-domain, and Vn < 2m: F{(A)

(AB M def{A - 22)N Qilj | Ais a (P,§)-domain, and 3n < 2m: F{(A
Then we may write for (¢,7,k,1) € O x O,
UUk;l (UUG)k‘l (UUB)ICZ

177

where UUY, UUP € Mat(2™,2™) are given by

def 1 1 9
(LU & - > [ ), e
! |7Tm(911])| |7Ty(9%1)| A%G N $

def 1
G A Y [ o,
I ’ﬂ.ﬂﬁ( zg)‘ ‘”y AEAB

c O}; (4.25)
) ¢ O}. (4.26)
(4.27)
(4.28)
(4.29)

We define three more pairs of matrices SUB+SUC = SU, USP4+USC=US, SSB+55¢ =SS

in a similar way.

4.3.1 Properties of the matrix UU

The submatrix UU: (x¢1 ) — (xg2 ) corresponds to a mapping between two subspaces of
ij ij

vector fields parallel to the expanding direction of the Baker’s map and associated to two

different partitions. It is also responsible for the norm of the operator A. Our goal is to

establish the following two facts about the matrix UU.

Proposition 4.3.1. The following inequalities hold true for the elements of the matriz UUC

i the canonical bases.
1. |UUY ]| = sup [UUJ| < 4;

2. #{(UUO # 1} < 24373,
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Proposition 4.3.2. There exist a constant v < 0.01 such that for M and m sufficiently

large and for p1 sufficiently small
max([|SSloc, [|US oo, 15U loo, 1UV[o0) < 274,

(Recall Condition 3 on Fy: ||dFg|| <1+ p1 in the Euclidean operator norm,).

By definition, the matrix UU® is related to subsets of the survivor set [1\ Es,,. To study
the set O\ E9,,, we introduce a simplified system, since the map outside of the unit square
is of no importance.

1 def

Consider a circle S' and a cylinder C LR x gt {(z,y), z € R, y € [-1;1)}. Define a

map h: C — C by
(

(3(20 —1),22y + 1), if —1<2,<0,-1<2,<1;
def
h(2) = 9 (A(ze +1),22y — 1), #f0<z, <1, —1<z,<1; (4.30)

z, if |z,| > 1.

Let h: C x R2 — C be an extension given by
(320 = 1) + wa, (22y + wy)mod2 — 1), if —1<2, <0, 1<z, <1;
h(z,w) = 1 (L2 + 1) + wa, (22 + wy)mod 2 — 1), Hf0< 2 <1, =1 < 2, < 1;

(22 + Wz, (zy + wy)mod 2 — 1), if |z, > 1.

(4.31)

Using the extension ﬁ, we define a small perturbation h¢, as described in Subsection 2.1.1.
We denote the central part of the cylinder by ® def {z € C: |zz| < 1}. By rectangle in ®
we understand a subset Rec(ly,l,) = I, x I, where I, C [~1;1) and I, C S\ {1} are two

intervals with |I,| = I, and |I,| = [,.
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Lemma 4.3.2. Given a sequence £ € X5, with § = 27, for any 1 < k < ma — 3 there

exist k rectangles 1] ’5 e ’I“Z’£ C ® such that

k
{z€®|5|1§j§k::hé(z)¢®}c ’I“jg.
j=1
Moreover, rf’g C Rec(276,2179) for all 1 < j < k and for any a € R? with |a] < § the map

k
h; ' is continuous on the union of the rectangles | r;
7=1

kg

Proof. By induction in k. Indeed, the conditions z € ® and hg(z) € © are equivalent to

|72 (he(2))| > 1 and z € 0. The latter means

wr | CLiLH 261 x (=1;0) C (=1; =1 +20) x (=1;0), if& <0,
zert € (4.32)

(1—2¢51) x (0;1) C (1 —26;1) x (0;1), if & > 0.
Thus the statement holds true for k£ = 1. Let us add to the induction assumption the following

inclusion which is trivial for k = 1:

k
e c (1 -276;1) x (~1;1) U (—1; —1 4 256) x (~1;1). (4.33)
j=1

We may write

{ze@]ﬂjgk—i—l:hé(z)%@}c

C{zeo|h(z)¢elu{ze0|I1<j<k+1:hi(z)¢0}C

k
Criv{w=ha(z) CO [T <<k bl (w) g0} Criuhg < T;c,o@))_
j=1
Therefore we may set Tkﬂg ¢ and killgdefh (kg(i))ﬂDforj:L...,k. Since hal is

continuous on every ( ko (€) — YN0, the sets ’I“k+ £ are rectangles. Using supposition (4.33)

we conclude
k
nat (U ) cng (=250, 1) U (=1, -1+ 25)) x (-1,1)) ¢
C ((—1,—1+2F18) U (1 —2%6,1)) x (=1,1), (4.34)
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L e
and therefore h ! is continuous on J 7’

g — a for any |a| < 0.
j=1

Finally, one can check by straightforward calculation that for all 1 < j < k we have

hl (177 ®)) € Ree(29116,217).

51
|
Corollary 1. For any sequence & € X5 there are 3Tm rectangles T§7T§7"'7r§m/4 C © such
that
3m 3m/4
I
{z€®]31<]<—h } Urw
3m/4
and the union | 7“5 C O may be covered by at most m>22™§ rectangles Rec(27°™/*,273m/4),
7j=1
Proof. By Lemma 4.3.2, there exists 3Tm rectangles rf, e ,rgm 1 CO such that
A 3m/4
{ze@\ﬂlgjgk:hé(z)¢®}c U 7"]5.;
moreover, f C Rec(275,2'7). Therefore, each r§ may be covered by at most
m2((25m/4 . 2_]5) . (23m/4 . 217_]') + 2m/4 . 227]' + 23m/4+j+15) S 22mm35
rectangles Rec(#, #) Since there are 3Tm rectangles rf, . ,’I“gm/4 their union may
be covered by not more than 22™m?*§ rectangles Rec(2_5m/4, 2_3m/4). |

We may identify a rectangle on the cylinder I, x I, C ® with a rectangle on the plane

I, x I, C O C R? since we agreed that I, C S\ {1}.

m/4
Lemma 4.3.3. Under the hypothesis and in the notations of Lemma 4.3.2 the set | T;n/4’£
j=1

may be covered by at most 2°™m33 elements of a partition of the class G(m,§).

Proof. By definition, all elements of a partition of the class G(m,d) are rectangles. By

the second part of Lemma 4.2.2, Rec(:-=,2-") C Q;; C Rec(2'~™,2!"™). Therefore any
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rectangle Rec(2¥6,2'~%) may be covered by at most

m2(2k+m5 . 21+m—k + om+2 2—k + 2m+k+15) < m222m+25

elements of the partition. Then all ¢ rectangles may be covered by at most 22mm36 elements.

We lift the map h: C — C to the plane R? and obtain

2

Let H: R? x R?2 — R? be an extension given by

(

Z 4+ w,

\

(3(z0 — 1),22, + 1),

(3(2s +1),22, — 1),

(%(zw —1),2z, + 1) + w,

(3(20 +1),22y — 1) + w,

[ |
itzel, -1< 2, <0;
ifzel,0< 2, <1; (4.35)
if z ¢ [O.
if zeOand —1< 2, <0;
(4.36)

itzeOand 0 <z, <1

if z ¢ .

Given a sequence £ C X C £oo(R?) and extension fI, we define a small perturbation He, as

described in Subsection 2.1.1.

k .
Remark 11. Observe that z € Ej if and only if [] XD(Hg (z)) = 0; where Ej is the k’th

escaping set defined by (4.15), p. 101.

7j=1

Remark 12. Let p be the doubling map defined by (3.3) with s; = s9 = 2. Let £ and ¢ be

two sequences defined as in Lemma 4.2.1. Then for any k& > 0 the following two diagrams are

commutative.

Hk
O\ By, —— R?

4 al

R 2, R
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Recall the settings, introduced in the beginning of the Section 4.3, p. 103. Let T be a
chain of partitions associated to the sequence n € ¥5. Let Q' = T* and Q% = T*+1 be two

2mk

consecutive partitions from the chain T, and let £ = ¢°""7 be a shifted sequence.

Lemma 4.3.4. The number of elements of the partition Q' inside the square O possibly

escaping in the first 7 iterations is bounded by 9% 1.

9m
#{oh col31<k < T Hi©)) ¢ D) <25

Proof. By Lemma 4.3.3
#{olcol31<ks
which is equivalent to
#{ﬂ%j cO31<k< %: m(HE Q) € [-1; 1]} < 2™ . m?s.

Recall the doublin map p defined by (3.3) with s; = so = 2. Let plgy be a small perturbation
as in Lemma 3.2.7. Then the map pg, p]gy has exactly 2¥ long branches for all k& < ma.

Therefore we get an upper bound

m
#{0h cOIVI<h< 2 m(HEQY) € [151] and

m
J1<k< —
- T4

cmy(HE() ¢ (11} <

m m m
<2 #{Q} c[-1;1) |31 <k < e p]gy(le) ¢ [_1;1]} < 9Pm/4+1

By supposition on «, we know that 22m3§ < 257/4, (In other words, assume that for some
Qj C [~1;1] we have pfy(le) C [-1;1] for all k¥ < ko and pIES(Q}) ¢ [~1;1]. Then Qj is a
subset of the domain of a long branch of p’gy for all k < ko; and the subset of the domain of
a main branch that may escape at the iteration k is an interval, i.e. a connected set, of the
measure at most 277§, which contains at most 2™ %§ intervals of the canonical partition of

the perturbation of the doubling map pg) |
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Remark 13. In Lemma 4.3.4 above, an alternative upper bound would be 21 . Cs, where
Cj is the maximum number of intervals of the canonical partition for the doubling map in the
interval of the length 6. In our case all intervals have the length |m, ()] < 217™, therefore

2m§ > C5 > 2m1§,

Lemma 4.3.5. There exists at least 22™ — 29M/442§ clements Qilj C O of the partition Q*

such that Hf(Q}]) COforalll<k<m and
—-m m m/4
Ree(27/ |, ()], 274wy (2)]) = HEH@) € O

Proof. By Lemma 4.3.4 we know that there are at most 297/4*2§ elements of the partition Q!
such that H?/4(Qilj) ¢ 0. We shall show now that there are at most 2°™/* clements of Q!

such that Hg(Q}]) COforall1 <k <7, and yet
m/4 —-m m
H(94) 2 Ree( 274 ma (9], 27/ |y (2] )

m/4 . m/4 —m m
If H, / (Qzlj) is connected, then H, / (Qzlj) = Rec(2 /4|7Tm(QZ‘1j)|,2 /4|7Ty(Qi1j)|)' Thus

m

without loss of generality we may assume that H ¢ / 4(Qilj) is not a connected set. The latter

implies Hé(Q}]) N{zy = 0} # @ for some 1 < k < m/4. Recall the doublin map p defined
by (3.3) with s = s9 = 2. Let p’gy be a small perturbation as in Lemma 3.2.7. Since by
supposition Hg(Q}]) C Oforall 1 <k < 7, we conclude that le i= Wy(Qle) belongs to a

/4

main branch of the map pg . We know that the map plgy has at most 2¥ main branches,
and if {0} € plg; (le), then {0} ¢ plg; (le) for all k1 < ko < 2. So there are at most 2™/4+1
elements Q} such that {0} € plgy (le) for some 1 < k < 2. Thus there are at most 2>/
elements Q%j such that Hf(Qllj) N{y =0} # @ for some 1 < k < 7 and Hf(Q}J) C O for all

1<k<

=3

Corollary 1. There exists at least 22™ — 29™/4§ clements Q%j C O of the partition Q' such
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that ng(QU)) COforalll <k <% and
—-m m m/4
Ree(27m/my ()], 27 m, ()]) = F{ (@) € O
We need the following fact about small perturbations of the doubling map p.

Lemma 4.3.6. For any § < k < ma—2 the perturbation of the doubling map pg" with 1€ 1| oo

(m)

has at most 2872 main branches such that their domains a; " satisfy |pg) (a; (m) )| < 2—2mkg,

Proof. Let ag.m) = (ag.m), a§ +)1) be the domain of a main branch of the map pg such that

I (al™)] < 2 — 2mkg,

‘We shall show that the interval a§ m) | is not contained in a domain of a main branch of the

map p’§+2.

Assume for a contradiction that for some % < k < ma — 2 there exists a main branch

(m)

of the map plg"'z. By assumption, a; (m)

and ajyy are points of discontinuity of

S o

a§k+2)
the map pgn Since p5 2 is continuous on a§k+2), we deduce that there exist ki, ko > k + 2
such that p5 a (m)) =0 and p 2( yﬂ) = 0. Since pg’(a; (m )) is an interval, we see that either
\pgm(a ™) ) 41| > 2m=F=15 or lpg* (a J+)1) 1| > 2m~k=15. Without loss of generality, assume
the first. Then

PP a™) = pr R (0) = pp R (=14 £k + 1),

and, therefore, \pgm(aﬁ%) + 1] < 2m=F1+15 Thus k; < k + 2. We deduce that the map p?”

(m) ).

is not continuous on a; We know by Lemma 3.2.7, that for any 1 < k < ma the map plg

has exactly 2 main branches and the Lemma follows.

Lemma 4.3.7. There exist at least 22™ — 23™ clements of the partition Q' in the unit

square [J such that for some Ql - Ql we have H”(Q1 yc O foralll <n<m and
HP(Q;) = Rec(27™|m,(Q))],2 — 22 9).
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Proof. Let n = Um/4(§) and let r?, 1<5< 3Tm be rectangles covering the escaping set Ezm of
4

the map Fgm/4, defined according to Corollary 1 of Lemma 4.3.2. According to Lemma 4.3.5

there exist at least 22 — 21™+2§ elements of the partition Q! such that H, g(QZl]) C O for all

1 <k <72, and there exists a rectangle Rec(Q_m/4|7Tm(Qi1j)|, 2m/4|77y(§2ilj)|) = H?/4(Qilj) cO

It follows from Corollary 1 of Lemma 4.3.2, that among these elements of the partition Q'
/4 3m/4

one can find at least 22 — 21™+25 — 22m 45 clements that satisfy Hm (Q1 n(uy ri) = 2.
j=1

3m/4
The condition H, /4(91 )N ( U r!) = @ implies ﬂx(Hg(Q}])) C[=L;1] forall 1 <k <m,

J
7j=1
and it follows that |my(H{"(Q2 i)l = 27wy ()] Therefore, Hg(Qzlj) ¢ 0O for some
T <k < m if and only if ﬂy(Hg(Qllj)) ¢ [-1;1]. By construction, Q} = ﬂy(Qilj) is an
element of the canonical partition of the map pgj. By Lemma 4.3.6 with k = 4, there map
pg, has at most 2272 main branches such that ]pg (a; (m) )| < 2—2%4. For every QU, such
that Wx(Hg(Qzlj)) C [-1;1] and Wy(Qilj) contains the domain agm) of a main branch of the

map p{’ with |pg ( )| > 2—27%§, there exists a rectangle Q def m(Qllj) X ag»m) C Qilj with

the property Hg(fulllj) C Ofor all 1 <k < m, and, moreover
HZ(QL) D HP (L) © Rec<2*m\ﬂx(9gj)y, 92— Qm/25).
Therefore, there are at least 22™ — 2ImA25 _ 92mypdy  g3m2 > 22m _ 23m+3 elements of
the partition Q! such that for some (vlzlj C Q%j which satisfies Hf((vlzlj) COforall1 <k <m
we have
HP () = Rec(27™|my (Q;)],2 — 2% 6).
In other words, the map H g“ has at least 22™ — 25™+3 main branches. |

Corollary 1. There exist at least 2*™ — 2543 elements of the partition Q2 such that for

some QZQJ - Q?j we have H;,fg(flgj) cOforall<k<m and
H; (%) = Ree(2 — 2% 8,27 m, (02)]).
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Definition 22. The rectangles Qzlj and Q?j, constructed in Lemma 4.3.7 and Corollary 1 of
Lemma 4.3.7 we call domains of the long branches of the maps Pr and P;,,}g, respectively.

Their images we call long branches.

Lemma 4.3.8. For any element Qilj of the partition Q', the set Qilj \ E,, is a union of
(disjoint) rectangles. The number of rectangles is equal to the number of main branches of

the perturbation pg of the doubling map p.

Proof. We split the argument into several steps.

Claim 1. The projection wy(Q%j \ E,) is a union of domains of main branches of the small
perturbation pg of the doubling map. First we shall show that the image of the projection
PE, (ﬂy(Qllj \ En)) C [-1;1] for all 1 < n < m. Indeed, assume for a contradiction that for
some 1 < n < m we have pg, (Wy(Qilj \ En)) € [—1;1], and n is the smallest number with
this property. Since the horizontal lines {y = const} N0\ E,,_1 are invariant under H g, we
may conclude that H g(Q}j \ E,,) ¢ O, which is a contradiction. Therefore Wy(Qle \ E,)isa
subset of the domain of a main branch. Let an interval (a,b) D Wy(Qle \ E,) be the domain
of the main branch. We shall show that Q} x (a,b) C Qilj \ E,. Assume that there exists
z € O} x(a,b) such that H{(z) ¢ Ofor some 1 <n < m. Since my(H}(2)) = p?y(zy) € [-1;1],
we conclude 7, (H{'(2)) ¢ (—1;1). Observe that, the lines {z = const} N\ E,—; are invariant
with respect to HY, we get Hg(zw,wy(Qilj \ En)) ¢ O, which is a contradiction. Therefore
(a,b) C ﬂy(Qllj \ E,,) and hence ﬂy(Qilj \ E,,) is a union of domains of main main branches.

Claim 2. The set {y = const}N(;;\ Ey,) is connected. Indeed, assume that there are three
points z,u,w € {y = const} N (Qllj \ Ep,) such that z; < uy < wy, with z,w € Qllj \ E,, and
u ¢ Qzlj\Em Then there exists 1 < n < m such that H{'(u) ¢ [, and we may assume that n is
the smallest number with such property. Then by invariance of {y = const} N Qilj \ E,—1 with

respect to Hy', we conclude that either H'(z) ¢ O or H¢'(w) ¢ U, which is a contradiction.
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Claim 3. For any two points z,w € Q%j \ Ep, such that z, and w, belong to the same
domain of a main branch of p’, we have (22, wy), (Wy, 2y) € Qilj \ Ep,. Indeed, assume for a
contradiction that (z,,w,) & Q}j \ Ey. Then choose the smallest n such that H (2, wy) ¢ 0.
It follows that either m, (H{ (24, wy)) € [—1;1] or mu(H{ (22, wy)) & [—1;1], or both. Without
loss of generality suppose that projection of the image 7, (H, ?(Z;c, wy) € [—1;1]. Then due to
invariance of {z = const} NO\ Ey,—1 we have m,(H (z)) € [—1; 1], which is a contradiction.

Summing up, we conclude that the set Q}j \ E,, is a union of rectangles and the number

of rectangles is equal to the number of main branches of the map pg in le

Corollary 1. In the notation of Lemma 4.2.1, the set Q?j \ E_p, is a union of (disjoint)
rectangles for any element Q?j of the partition Q?. The number of rectangles is equal to the

number of main branches of the perturbation p* of the doubling map p.

Lemma 4.3.9. There exist at most 2*™§ quartets (i,7,k,1) such that Hng(Q%l) N Q}j has
more than one (P,§)-domain A that satisfies H{(A) C O for all 1 < n < 2m. For any

quartet (i,7,k,1) the set ngm(Qil) N Qilj has at most four (P,&)-domains with this property.

Proof. Let A be a (P, ¢)-domain in Hng(Qil)ﬂQilj such that H(A) C Oforall1 <n < 2m.

Then

#{A C Hng(Qil) N Qilj | H?(A) COforalll1 <n<2m}=
=#{AC H;Z’E(Qiz) n H?(Qzlj) | HY(A) COforall —m <n <m} =
= #{A C (% \ E—m) N (Q;\ En) }.
By Lemma 4.3.8 and Corollary 1 of Lemma 4.3.8, both sets Qzl \ E_,, and Qilj \ E,, are

unions of rectangles, and the number of rectangles equal to the number of main branches of

the corresponding doubling maps on the associated intervals. By Lemma 3.2.5 there are at
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most 2™§ intervals €; or €; that contain two main branches. Thus there are at most 24§
quartets (i, j, k, 1) such that €; or €; or both contain two main branches of the maps p!" and
pg, respectively; and the Lemma follows. |

Using Lemmas 4.3.7 and 4.3.9 and Corollary 1 of Lemma 4.3.7, we get

Corollary 1. Let Y be a chain of partitions associated to the sequence n € X5. Let Q' = Tk

2m(k—1)

and Q2 = Y*+1 be two consecutive partitions from the chain Y, and let £ = o n be a

shifted sequence. Then

1. There exist at least 22™ — 22™F3 clements Q%j such that for some (vlzlj - Q%j we have
270
Pe($hij) = Rec(27"mp() 2 = 2%6)  and Py, =
? 0 2m

2. There exist at least 22™ — 23™+3 clements Q?j such that for some Qzl C Qil we have

2m 0

Pg_l(éij) = Rec (2 - 2%6, 27m|77y(9ij)|) and dP_l Qi]’

3

0o 2™
3. There exists at most 2*™5 quartets (i, j, k,1) such that the set P{Q(Qzl) N Q}j contains

more than one (P,&)-domain A that satisfies dy(Pg)y‘A: 22m,

Proof. Observe that for any 1 < k < 2m and for any z € O\ Ey we have ng(z) = Hg(z) [

Lemma 4.3.10. The area of a good (P,§)-domain A is very small. More precisely, we have

an upper bound |A| < 2274m,

Proof. Recall the definition of good connected components (4.25) and observe

(AG)f]l ={A C sz(Qzl) N Q%j | Ais a (P,¢)-domain, V1 < n < 2m : F(A) ¢ O} =

={AC P{Q(Qil) N QZIJ) | Ais a (P,§)-domain, V1 <n < 2m: H'(A) C O}.
We shall show that for any A € A% the area |A| < 272m . |7Tx(Qllj)| -y (93] Indeed,
consider the image A’ = P;(A). Since P is area-preserving, |A’| = |A|. Since P:(A') C O3,
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the length |m,(A)] < 27™ - |m, (922,)]; and P;,,}g(A’) C Q%j implies |7, (A")| <27 . |7Tm(Qzlj)|
Thus

A = A" < 272y ()] - |y ()] < 2274, (4.37)

Corollary 1. The matriz SSC is small. More precisely,

> Y| < 2t
[

Proof. By straightforward calculation, using Lemma 4.3.10,

gg\sscm_zz Ql Z/a (P2),(2)dz <

AEAG

S oy e 2,7 s

ACAC

2
|7Ty ka

1
< 4272 (L) - [y (2,)]) - 274 < 94-2m
ZZ |7 ( Ql ‘ﬂ'y(Qil)’ ( |72 (S2i5)] - 17y (o)1) <

Now we are ready to prove

Proposition 4.3.1. The matrix UU% has the following properties
L [|[UU% < 4

2. #{(UUC)E £ 1} < 2456,

Proof. By Lemma 4.3.9, for any (4, j, k,1) € Ox we have #(AG)% < 4, and by Lemma 4.3.10

we know |A| < 2727 . |7, (O} )| |y (Q22,)]. We calculate

(WUDHI < D AL [0,(P)y] - ma (DI Imy ()] <
Ae(AG)H

<4 (272 e ()] - |y (Q)]) - 227 - e (Qi)1 7 [y (Qi) 7 = 4.
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To prove the second part, we recall that by Lemma 4.3.7 there are at least 22™ — 93m-+3
elements of the first partition Q}j such that for some Qij C Q}j the image is a rectangle
Pg(f)ij) = Rec(27™|m,(2i5)]),2 — 2% §) and H?(QU) C Ofor all 1 < n < m. Similarly
by Corollary 1 of Lemma 4.3.7, there are at least 22™ — 22m+3 clements Q%l such that for
some small rectangle y C Q3, the preimage Pgl(flkl) = Rec(2 — 2% 6,27™|m, (Q;)]) and
Hg"(flkl) C Ofor all 1 < n < m. Then there are at least (22™ — 93m+3 _ 2%7”5)2 pairs

Ql

1> Q% such that P:(Q4) N Pgl(flkl) # & which correspond to (UUG)ff #0. If (AG)Z! has

only one element, then it is A = Pe(€y;) N Ple () and [A] = 272 - |m,(QL)] - |7y (QF)]-

Therefore

1 1
— 5 / 27 = 1.
‘ﬂ-ﬂ?(Qij)‘ |7y ()] Ja

Gkl _
(UU™)i5 =

Summing up, there are at least 24™ —25m+15 elements (UUG)Q? = 1. By Lemma 4.3.9 the set

(AG)Z? has more than one connected component for not more that 24§ quartets (i, j, k, 1).

Therefore at most 24§ elements satisfy 1 < (UUG)?]Z < 4. The other elements are zeros. W
Now we proceed to the supremum norm of the matrix UU. Our goal is to prove the

following

Proposition 4.3.2. There exist a constant v; < 0.01 such that for M and m sufficiently

large and for u sufficiently small

max([|SSloc, [[SU oo, 1US oo, [UT o) < 274™.

We define two functions on the unit square

2m
tn: 00— N tin(2) = > xa(F(2); (4.38)
=0
2m 1
tex: O— NN [1; M] tex(2) = #{1 < n < 2m: F{(2) € O and F¢'(2) ¢ U}, (4.39)
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Given a sequence 1 € {0, 1} we define a subset of the unit square [J

A, « {zeO: X0(F¢'(2)) =1, for all n € {0,1,....2m} }.

Note that some of A, may be empty and they are not necessary connected.
o e 2ZmEM o
Lemma 4.3.11. There are at most Jp2e 2+M  non-empty disjoint subsets A, C [.

Proof. We know the total number of sequences that correspond to the points with tex = s:

40 € {0,131V | tux (1) = 5} = <2m —(s- ”M).

S

Observe that the number of disjoint subsets A, C A is equal to the number of different

sequences, which we can estimate in the following way. It is well known that (2: ) > (’;) for

all 1 <k <2nand 1< s <k. The equality 2m — (s — 1)M = 2s has the solution sy = 2;”:;\24

so we conclude (2m7(3371)M ) < (28300) for all s > sp = 2;”:;\2/[ Using the Stirling formula, we

calculate

2s 250)2%0 Am+2M
< 0) < const - (2s0) — const - 2250 = const - 2 2+M

S0 s%so

We also may write for all s < sg

<2m ) (Ss_ DM) - s!(;izm—_(is—_lil)\iyjls)! < (2m — (s =DMy (7).

By straightforward calculation

(;18<(2m— (s — 1)M)e>8

for all s € (15s0), because

2m — (s —1)M

S S0

In

1 S0 S
2 2m—(sop—1)M =~ 2m—(s—1)M’
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We conclude that for s < s

(e — s0 m
<2m (s 1)M> < (QSO)SOTO = (2e¢) 22++1vjlw.
s 5

Summing up,

i 2m — (s —1)M <m(2 )2gn++1vzlw
—(2e .
- M

Given a sequence j € {—1,0, 1} we define a subset of the unit square

A, et {z € O: xa(FF'(2)) - sgnmy(F{(2)) = gn for all n € {0,1,...,2m} }.

Note that some of A, may be empty, and they are not necessary connected.
Definition 23. We introduce to projections of the tower to the zero floor:

e X = X 7z(z,n) = ((24,0),0);
Ty X = X my(z,m) = ((0, 2y),0).

def

Lemma 4.3.12. Given a quartet (i,j,k,l) and a subset B, = A,N Qilj ﬂPgQ(Qzl), there are

at most 637 disjoint subsets A, such that A, N B, # @.

Proof. Consider a first half of the sequence ¢ of the length m, the subsequence 11,19, ..., .

It may contain not more than 7; “blocks” of 1’s. We shall show by induction in number of

blocks that
1. There are not more than 637 different sequences Ji, ..., Jm such that A, N B, # @.
2. The projection of the image m,(P¢(B,)) may be covered by not more than 63 intervals
of the total length not more than 2.

In order to use induction, we need to study the original map F': X — X of the tower X
defined on p. 98; we also recall that by definition Py = Fg”: R? — R2.

Given a sequence 1, there are two possibilities.
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Case 1. All blocks of 1’s in 2 are not longer than ma — 1.

Case 2. There are blocks of 1’s in ¢ of the length ma or longer.

Case 1. Assume that all blocks of 1’s in the sequence @ are not longer than ma — 1.
The base of induction. Assume that there is only one block of 1’s. Then there exist two
numbers 1 < t; < s1 <m, s1 —t; < ma:

L, ift <k < si
U =

0, otherwise.

We deduce that Wy(Pgl_l(Al)) belongs to a union of domains of main branches of the per-

s1—t1
ali=1g,

s1—t1
ot1=1g,

turbation p of the doubling map p. We know by Lemma 3.2.7 that the map p
has exactly 217! main branches, all of them are long and their domains have the length at

least 201751 > 27™ In addition, since
diam(B,) = diam(A, N Q%j N P{Q(Qzl)) < diam(Q%j) <22 m

we conclude that there exists an interval I C [—1;1] such that ﬂy(Fgl(Bl)) C I and' the

length [I| < 227™ . (1 + pp)ft=1 < 27™m@ < 201751 Thus the interval I may intersect not

s1—t1

pi1-1g and therefore there are not more
Y

more than 2 domains of main branches of the map p
than 4 sequences i, 1 < k < m corresponding to the sequence 7, 1 < k < m. In addition,
we observe that the image Wy(Fg '(B,)) may be covered by 4 intervals of the total length not
more than 27 - 25174 . (1  pq)™.

Now assume that there are n blocks of 1’s. Namely, there exist

1<) <s51<ta<s9<...<tp, <5, <M (4.40)

'We may safely assume that 2% > 1 + p;.

— 122 —



4.3 APPROXIMATING MATRIX

such that t;11 — s; > M and s; — t; < ma — 1, where

1, ift; <k<s; fori=1,...,n;
1 = (4.41)

0, otherwise .

Sn—tn

pin—lg has exactly 25"~ main

Since s, — t, < ma, by Lemma 3.2.7 the doubling map p
branches, all of which are long, and their domains have length at least 2!» =", By induction

assumption, the set Wy(anfl(Bz)) may be covered by 4”1 intervals of the total length

n—1
2—m . H 28k—tk . (1 4 Ml)m S 2—m X 2m—(sn—tn)—M(n—1) — 2tn—8n . 2—M(n—1).
k=1

Therefore it may intersect not more than min(2-4"~!,2%2~t) domains of the main branches

Sn—ln

in—lg: Consequently, there are at most 4" different sequences 7 of the length m

of the map p
and the projection of the image wy(an(Bz)) may be covered by 4" intervals of the total

n
length 27 - [T 2%~ - (1 4 pg)™ < 27M0=D (1 4 g™,
k=1

Case 2. There exists a subsequence of 1’s of the length ma or longer. Then there is only

one subsequence with this property (since a > %) There are two possibilities.
(2A) In the notations introduced in (4.40) and (4.41) above, s; — t; > ma.

(2B) In the notations introduced in (4.40) and (4.41) above, s, — t, > ma for some n > 1.

s1—t1

ph1i-lg has at least 2517172 long branches, and their domains have

In the case 2A, the map p
length at least 212751, At the same time the projection of the image Wy(Fgl_l (B,)) is contained

in an interval I of the length |I| < 27 - (1 + p)"* < 22751, By Lemma 3.2.7, the distance

s1—t1

between any two domains of the main branches of the map Pysi-ig

which are not long, is at

least 2(@—1) > 901=51 Therefore the interval I may intersect not more than three domains

s1—11

Ry Thus we conclude that there

of main branches (two long and one more) of the map p
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are not more than 6 different sequences j,, ... 7s,, corresponding to the sequence #,, ..., .
The induction step then follows as above, giving 61 sequences.

In the case 2B, the map ps’,fn_t’f5 has at least 2°»~*»~2 long branches, and their domains
have length at least 2/»~%». Then by induction from the Case 1, we know that there are
gn=1 < gm(1=)=M gequences corresponding to the sequence 11, ... ,ut,—1 and the image of
the set ﬂy(Pgnfl(BZ)) may be covered by 4”71 intervals of the total length not more than

Sn—tn

2tn=sn=M Ve see that the total number of long branches of the map p in—lg is greater than

the number of intervals covering the image

gma—2 > 4m(1—a)—M

and the total length of intervals is shorter than a domain of any long branch. Therefore, each
of the intervals may intersect not more than three domains of main branches, and we get at
most 6 - 4°=! different sequences. In addition, we notice that the image Ty (F¢"(B,)) may be

4k=1 intervals.

covered by 6 -
To complete the proof of the Lemma, we need to calculate number of different sequences
Jm+1s - -+, J2m such that A, N B, # &. We would like to apply the argument above to the

inverse map F;,,Cré = P(;,}g. Let us consider the image P¢(B,) C 2,. Define a sequence 7/,

associated to the iterations of the inverse map P,m& 1.

L i F () €O+ &k, 2 >k

72— {=1,0,1}" B(z) =< _1 i pok+1 (2) € O+ 2mti=k 5 < g2m—k, (4.42)

I o2m— k&'

0, i Fl(2) g O gtk
We see that

j;c(sz) = Joam—k+1(2) for all 0 <k < m.

— 124 —



4.3 APPROXIMATING MATRIX

We may associate the sequence 7' to main branches of the doubling map p.,, defined as in

Lemma 4.2.1 p. 101, in the following way.

{fe=1for 0<t;1 <k <to<m, t; <tp} <

1
{7‘('33 2m t1 z)) in a domain of a main branch of p tlfl }

Indeed, if, say, j;, = 1, then by definition, F' Qf}ftllg(z) € O+ &mtl=h and 2, > &mh,

Consequently, F' 2m — 15( z) € O for all t; <1 < t9, and therefore wm(PO_Qf}L_tl_lf(z)) is in a

to—t1

domain of a long branch of p 3,2, 1

In the case t; = to = 1, i.e. a block of the length 1, we get two sequences corresponding to
a given 3¢, = 1 and j = —1, similarly to the previous case.

62m/M

It follows that to any sequence ¢ of the length 2m correspond sequences J.

2m+M
Corollary 1. Among all sequences j, there are at most 2m 65T (2e) 2+M pairwise disjoint

segments A, such that P{Q(Qzl) NOQLENA #2.

Now we are ready to prove
Proposition 4.3.2. There exist a constant 71 < 0.01 such that for M and m sufficiently
large

max([|UU |oo, 15U [0, 1US oo, 155 ]l ) < 274,

Proof. Recall the definition of the matrices, for instance

UUF = /
Y |7Tm( zlj |7Ty kl| 07N

(Pg)y(z)dz

and the other three are defined using another three partial derivatives, according to (4.18)—

4.20). Consider a vertical line segment A, = {z, = ¢} N P72(02) N QL. Recall that
13 kl ij
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according to condition 5 the composition of maps outside of the unit square Fj, o...0 Fj,,,
where i1,...,ip € {1,..., M} is a polynomial of degree at most d. Since Pg is smooth
on each A, N A, and Pg(A] NA,) C Qil. We can estimate the length of the image using

condition 5, p. 97:

IP2(A, N AL)| < diam(Q3) - d T < 250 (4.43)

since the preimage with respect to any of the orthogonal projections m, and m, has at most

2m
d™ connected components.

max(/A fay(Pg)y(Z)’dz,/A\(%(Pg)y(z)\dz,/Alay(Pg)x(z)]dz,/A\896(1352)36(2)’(13) <

< |P2(A, N AY)] < dFF diam(03)).
Therefore
oy, BRI PO P PO ) =
- /ny(g;j)/cmax(‘ay<P5)y<z>\7’@C(P?)y(z)h!%(P?)x(z)!,@(Pﬁ)x(z)\)dzdc:

ij

[y om0 P 02 PO 9, (P ) 100 (PR ) e <
Ty A,CA. 7

2 m m m
< 22 (20) 5 6% - diam(0}) - d ¥ - |, ()]
Finally,
/2 max (|0, (PZ)y(2)], 102 (PE )y (2)], 10y (PE)a (2)1, |02 (PE)s(2)])dz <
P, (Q}j)rmﬁl

2 m m
< I ()] - (my ()] - S7(20) 550 - 65 - .

ij
We can choose p; and pg sufficiently small so that for m and M large enough and for some

71 <0.01

2 2m+M m m
_m(ge) syl S (S o < gmm,
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Lemma 4.3.13. The sum of elements of the matriz \(UUB)ff] with (i,j,k,1) € Ox O is at

most 22™ . 8m.

Proof. Indeed, recall that for any A C A? there exists 1 < n < 2m such that an(A) ¢ O

and thus

A= Ais a (P,¢)-domain| F*(A) ¢ O for some 1 < n < 2m
| FE (A

ij kl (AB)le 17kl

={zelO|31<n<2m: F(z) ¢0} =: B.
We get |B| < 8md by induction in number of iterations and conclude
IHICEHE / 10y (P2)y(2)]dz < 22" 8.
ij
[

Remark 14. It follows from the condition 3 on the map F' (see p. 97) that partial derivatives
are essentially bounded ||(9y(P£2);,3||Oo < (1 + p)®™, ||0.(P, ) oo < (1 + p)?>™, and, finally,

|0 (P, ) lloo < (1 + w)®™. Thus by the same argument as in Lemma 4.3.13 we get

ZZ| (USBYH] < (1 + p)*™ms; (4.44)
ZZ\ SUBYH| < (14 p)*™ms; (4.45)
DD TUSSEYE < (1 4 )P ms. (4.46)
O o

4.3.2 The operators W;.A and W; P, are close on X

We keep the notation introduced in the first paragraph of this Section.
Let T be a chain of partitions associated to the sequence n € 5. Let Q' = YT* and

02 = Tk*+1 be two consecutive partitions from the chain Y. Let £ = def g2mlk=1)y (cf. Defi-
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4.3 APPROXIMATING MATRIX

nition of the chain Y in subsection 4.2.3, p. 101). Let A: Xq, — Xq, be a linear operator,
approximating the operator P, g*’ defined according to (4.17).

In this section we establish the following

Proposition 4.3.3. The operators Ws A and W5P2* are close. Namely, for any v € Xq1,

4sup di 02
4 sup diam (O3
HW(S(Pg* _ A)I/HOO < sup lgm( k:l) . 2(2+’y1)m; (448)

where vy is defined by Proposition 4.3.2.
We start with

Lemma 4.3.14. For any element Q3, of the partition Q?, and for any v € Xq,

Pg*l/ = Av.
9 9

Proof. Let v =73, V?X;zl + 22 foxgl . Then

Pg*u(z) = dPg(P{Qz) . V(Pg2z) =

= Z y”dPg XQl (szz) + Z V;deg(Png)X%l (Pg2z) =
ij

= Do (0u(P2)(P2) + 0u(PE), (P 2)) - e, (P72 +
+ 50 (0,(P2)a(PC22) + 0,(P2), (P 22)) - e (P;22).
— x\38;5
We may integrate

1
191 Jo

1 —2
EXGI] “Xa, (P "z)dz =

’7T$(QZ

am(Pg)x(Pﬁz) .

1 1 / 2 1 kl
0y (PE)y(2)dz = ———=—=955;
T m @) Ty ()] T ,jl r@znal me Q)]
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Similarly,
1 w1 9 L 1 »
iy = Oy(P&)e(Pe2) =g Xt (P “2)dz;
Q)] 7103 ez, TS T QL)
1 SUlcl 1 a (PQ) (P_QZ);XQl (P_Zz)dz
Rt = ] oy, PP e (Fe 7o)
1 1 1

UUkl

e UUN = 0y (P2)y (P 22) — o xen (P 22)d.
(27 T IR o, e T e e

So we may write

1 . 1 . 1
P2 dz — i~ (ggkl 4 [7gkl E : i~ (SUM L UUrY.
02 Jog, TV Zl.j g ) 2 (Y 0

Observe that for any Q%l, by definition of the operator A (4.17) on p. 104,

1 g
— E( U(SSH kl }/ ij (SR kl
) . Av m Qiz ( v (S +USH) + > Vi (SU;; +UU;; )).

Lemma 4.3.15. For any partition Q of the plane R? into rectangles we have

4 sup diam(§2;5)
) '

maxw5 (z —t) — min ws(z —t) ‘dz<
R2 t€Q;; ted;;

Proof. Given a compact convex subset A C R2, let v(A) be the longest line segment con-
necting the points where the function ws(t) achieves its maximum and minimum in A. By

straightforward calculation

—t)— mi —t) = t)— mi t) < Vws(t)|dt.
{féls%fjw‘s(z ) tglé%wa(z ) tergggzwa() te%liﬂnzwé()—L(QZ]z)| ws(t)]
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Thus

‘maxw(;(z—t)— min ws(z — t)|dz < / / |Vw;(t)|dtdz =
(Qij—2)

R2 Z] tEQU

:/ / |Vw5(t—z)|dtdz:/ |Vws(t — z)|dzdt =
R? J(Q45) 7(Q;) JR2

/ / |Vw5 ‘dzdt < diam(€2;;) / |Vw5 )‘dz =
. —zx—zy
:dlam(Qij)/RgW”Z%_'_Zg'e 252 dz <

722722

. 1
< diam(£2;) /R? W(|zm| + |zy]) - € 27 dz <

. | 2| _z ‘y’ _Z
<d Qs 2dz, 2d <
< diam( j)< Rw263e 262 dz; + Rw253e 25 zy> <
< 4dlam(Q,j)
- ™

Lemma 4.3.16. Let f: R> — R? be a bounded integrable function. Assume that for any
element Q%j of a partition Q' of the class (m,§) we have fQij f=0. Then for any partition

02 of the class (m, 6)

sup dia (Ql)

[Wsflloz,c, < anfnm o (4.3.16.1)
sup diam(ng)

W5 flloo < 85—/ llo- (4.5.16.2)

Proof. By straightforward calculation

IWaflle, = /R | /R gz~ 1) 1)z = /R DS / (=~ )]

We recall | _q,; f(z— t)dt = fQ t)dt = 0 and so [, o, [z fZ—Qij wg(s)dsdt = 0.
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Hence we conclude

W fllo2,c, <

inf |7Ty(Qil)| R2

< i@ L 2.
mf‘”y kl’ R2 Ql,

27m

Z /Z_Q}. <w5(t)

sz

dz <

i/
=1 ws(s)ds
|Qij| 2=
l
— wg(s)ds
’Q}]’ z—Q}j

)f(z —)dt

‘ . |f(z —t)|dtdz <

S CE I — Nf(z = t)|dtdz <
< S o 2 g 5, 00— i o] 11— 0 <
S TF — mi : — f)|dtdz =
B mf‘”y w) /R? Z‘ser?agl wa(s ser?—lgb i) /zQ}j e pldids
- - t)|dtdz =
T /Rz\mg s(s) =~ in wilo)| - | o
S o - )|dtdz <
- 1nf|7ry /RJngZlaél w(s seg“?ll ws(s)] /Qllj |f(¢)|dtdz <
2—m 4diam(€2;
< Sy 2 \ ])/ (ol <
m |7Ty( kl)| r ™ Q4
sup ‘ﬂ'y(Q%j)’ 4 sup diam(Q1 )
S 1 2 ’ HfHQl L1
inf |, (23] ™o
by Lemma 4.3.15.
Similarly for the supremum norm
sup [Ws f| = w(;(z —t)f dt‘ w5 z—1t)f (t)dt‘ —

= sup
z

< sup |f|sup E ]Q
zZ ..
ij

< sup | f|sup E |Qllj|
zZ ..
ij

sup diam (1.
o) [ Ve < I gy g
]R2

< sup | f| sup diam(

Z(/Q1 ws(z —t) — ﬁ . ws(z — s)ds)f(t)dt‘ <
ij ij ij i

gsupz:/ﬂ1 |tré13{)<w5(z—t)— min ws(z — t)| - [ f(t)|dt <

teQ

|max ws(z —t) — min ws(z — t)|<

1
ij tEQ

- sup |V,ws(z —t)] - diam(Qilj) <
teQl.

ij
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Lemma 4.3.17. Let Q' and Q2 be two partitions of the class G(m, ). Then for any sequence
€ € 5o (R?) we have

I(PEv)ll2 < 222w,

Proof. Upper bound for the supremum norm is obvious. Indeed, we have for the first

coordinate

)|dz =

. {am(Pg)y(Pg%)us(szz) + ay(Pg)y(Png)l/u(Pg2z)|dz =
2\39:(P52)y( 2)vs(2) + 8y (PE)y (2)va( |d2<22m+1/ vs(2)| + [vu(z)ldz. (4.49)
For the second coordinate we have got
IPE:Ney = [ |(PRw)u)|d =
0P (P 20w (P 22) + 0y (PE)a (P 22w (P 22) |z =
RQ{(?I(Pg)x(z)Vs(z) + dy(Pg)x(z)yu(z){dz < 92mAl /R2 lvs(2)] + |vu(2)|dz. (4.50)
Therefore
|1P2vlla = Z‘ S GEA] / |PLv(z)|dz < - f‘ G )’HPMHEI < m22" |y,
[

Lemma 4.3.18. In the notations introduced in the beginning of this subsection 4.5.2, p. 127,

the following inequalities on the norm of operators hold true for M and m large enough.

[UUvl g2 2, < 4-22™||v|1, (4.3.18.1)

max([[SUvullaz,2,, [IUSVs 02,2, 195vslla2,2,) < 272 ([l (4.3.18.2)
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where the constant 7o satisfies

9 3
1<’Y2=Z+’Y1+210g2(1+u1)—04<5. (4.51)

Proof. Let v, = Z XQI € &1 be the y-component of a field with the unit norm

ol = max (37 ] 1y (€7)], 247 sup o) = 1,

ij

therefore we will be assuming that 3 |v7| < 2! and sup |vif | < 2~ ™. We write down the
ij

formal action of the operator UU on v,
UUn = 5 S U0ty — 3 (008 Dty + Sy +
K T HeOHT ki
* (Z Z+Z Z) Uzl;l”;jxgil + Z Z UUEZVZEX%. (4.52)

R2\O O O R2\O R2\OR2\O

We estimate the norm of each of the four terms separately. Recall that by the choice of the

basis X;‘ZQ oz Xez, (1 (9) and therefore

\ﬂz(ﬂ )
27m

u — u :2_m
g oo = T o, o

227 <L

HZZ(UUZ@Z 1)” X92 02,0, _Z‘Z UUkl %
0O o
<2—mZZ\UU’€l |- |V <27 msup\VZJ’ZZ‘UU];l_”g
<2177m ZZ‘ UUG UUB)M—” <
e = E (4.53)

using Lemma 4.3.13 and the second part of Proposition 4.3.1.
The second part of (4.52) has the following upper bound, since Wi < om,

ij
ij . u __ o—m ij
1% =2 ‘ v
(DIPITLE N B )
O O O O

< 22m . 2m . 21—m < 22m+1.
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The last sum has only finite number of non-zero terms and can be estimated via the supremum
norm. Recall Remark 10: for R = My(1 + p1)*™ - mé + 1, any quartet (4,7, k,[) such that

(i,5) € O and (k,1) € R2\ Og or (i,j) € R?\ Or and (k,1) € O
Sst =0, SUF =0, USH =0, UU=o0.

LV LV v LV

Therefore

H < IIDIEDD Z)UUZEZVZEXQQ

R2\O O 0 R2\O @4
=2 X+X Y Jougvingy |, <
Op\O O O Or\D ’
(XXX Y ) swluUl| suplp2 <
O\0 O O Op\0

< 4(R2 _ 1)m424m .omm 27%m . 217m <

< MymP620nTDm (1 4 p1)2m (4.54)

We have for the last term, using the bound (4.24) (p. 105)

kl 0] — kl 2
|2 > vt | < D W12 sup [UUK - M (0 ) <
R2\O R2\OJ R2\OJ

<2l 2T My (L )P = My 2 (L )T (4.55)

Summing up the last four together, we get an upper bound ||[UUv,| 2 £, < 22+2m
Now we proceed to the last inequality (4.3.18.2). We would like to show that there exists

a constant 7, satisfying (4.51) such that for M and m large enough:
max (|[SUvullqz £, 1USVs o2 £, 19SVsllaz £,) < 272 [Vlln g, -

We shall show that it holds true for the matrix SU, the argument for the matrix US is

similar.
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As before, we may assume for the first component of the vector field v, € ®1 that!

ij

and, consequently, 3" [v¥| < 271 and sup || < 2~ M. We recall the definition of “good”
]

and “bad” connected components (4.25) and (4.26) :
(AG ki def{A P 22)n Q}j | Ais a (P,&)-domain, V1 <n < 2m : F#(A) c O}
(AB M def{A P 22)n Q}j | Ais a (P, §)-domain, 31 <n < 2m: F{'(A) ¢ 0.
We may write, similarly to (4.27)

(SUY = (SUC) + (SUP),

where

1
Gh\kl., __ § :

|7 (£2;5)] |7Ty ACAG

1
(SUPL: = T -y /‘9 (P2)y

|2 (€2;5)] |7Ty ) ACAB

Obviously, (SUG)Z! =0. Wealso recall B ={z € 0|31 <n <2m: F{(z) ¢ U} and observe

that

Z I(SUP) ’fly</ 100 (PE)y(2)|dz = 2™ - 8mé.
O

We may write the action of SU on v
S = S st = S0 iy
kl ij
b3 Y S + 3 Y SU + Y Y Ul

R2\O O 0 R2\O R2\OR2\O

We denote the space of essentially bounded, absolutely integrable, piece-wise constant functions, associated

to the partition Q' of R by ®q1.

— 135 —
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We have the following upper bound for the first term, corresponding to the central part of

the matrix

HZ Z(SUB Zl ;JXQQ Q2,04 - ZZ‘ SUB kl 2T <
[ O O
< sup |yP]- 2730 N |(SUP)E| < 227ms 27 im 27 < 2% ma.

Repeating the estimates (4.54) and (4.55) above, since [|SU||co < [|[UU||oc < 27"™ and using

the upper bounds [|vs||c < 2-1™ we obtain

<
927['1

H(Z PIEDIDIEDD Z)SUZEZVEXQ%I

R2\0 O 0 R2\O R2\OR2\O

< sup|SUR| - sup [v7] - (1 + 1) (My + Mam®5 - 23™) <

< MM 23MIM(] )2 MymBS < 2 25 (1 4 11g)2™ - Mam®O.
Summing up altogether, we get
|SUvslq2 £, <270 - 2T™ (1 + p1)2™ - MamP5 + 25 mé < 2™,

Similarly, |[USv,|| < 272™. It only remains to show that for 7o =71 + 2 4 2logy(1 + p1) —

and for M and m sufficiently large
1SSvs||q2 g, < 272 (4.56)
Recall Corollary 1 of Lemma 4.3.10:

> ISy < 2t
o O

We can get an upper bound for the central part

[ s, = NS 127 <
[

<suplp|- 27 Y N J(SSD ] < 24P LQTAMm L 9T <y 9Bm/2,
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Repeating the estimates (4.54) and (4.55) for the matrix SS and taking into account an upper

bound ||SS]|ec < 27" from Proposition 4.3.2, we get

(E T+ S+ % ¥ st

R2\O O 0O R2\O R2\OR2\O

QQVCI -

< sup|SUH | - (1 + 1) ?™(M; + MpmP23™6) < 20042 - (1 4 p1y)>™ - Myms.

Thus

155vs]lge ¢, = H;;SSZZV?XW 0L,

< 2(71-{-%)771 . (1 + Ml)Zm . M2m55 + 23—3771/2 < mem
|

Corollary 1. Under the hypothesis and in the notations of Lemma 4.53.18, the norm of the

operator ||Allgz < 22™+2. Namely, || Av|s < 22™2|v|;.

Proof. Recall the definition (4.17) of the operator A: Xq1 — Xq2
Av =3 Aiixgy +vixi) =
ij

—ZZ< (SSH NG + SUENE: ) + v (USK Gz +UUENG ),
ij

The upper bound for £i-norm follows from the parts 4.3.18.1 and 4.3.18.2 of Lemma 4.3.18.
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Now we proceed to the supremum norm.

sup [Av(z)| =
( I (SSExXen (2)+ SUE X (2)) + vil (USHIxGs (2)+ UUE xGs (2 )))‘ =
ij
1 ” kil kl ij kl ki
Slnf’ﬂ'm Q) ’bup‘;< 553 +SUU)+VU (USU +UU”))‘ =
1

(1880 + 1SVl + US|l + NUT o) - (320w + 1)) <

< .7
B lnf’ﬂ—$(9zl)’ ij

< QM. 4. onm gm < 92H(2t)m

The Corollary follows from the definition of the norm on p. 100. |
The result we were seeking follows immediately

Proposition 4.3.3. The operators WsA and W(;Pg* are close. Namely,

4supdiam(Q3,) sup ’ﬂ—y(Qilj)‘
0 inf |m, (7))

4 sup diam (%))
)

IWs(PE = Aoz 2, < 222" wly; (4.57)

IWs(Pg, — Al < - 2CF [y (4.58)

Proof. Follows from Lemma 4.3.14, Lemma 4.3.16, the first and second parts of Lemma 4.3.18,

and Corollary 1 of Lemma 4.3.18. |

Corollary 2.

8 sup diam(Q%,)

S gy,

IWs(Pé, — A)vllz <

4.3.3 A pair of cones for the operator A

In this Subsection we construct two cones C; C X1 and Cy C X2 such that A(a) c Oy,
Cy < O, and || A |¢, || > 2™~ L. This is the main result of Section 4.3, which is presented in

Preliminary Dynamo Theorem 8 below.

— 138 —
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Lemma 4.3.19. The operator UU is a small perturbation of the operator UU. Namely
|(UU=UT|z < 200 72075]v].

Proof. We begin with (02, £1)-norm. Consider a vector field v € Xq, with ||, = 1. We

may assume that > i | < 2™ and sup [ | < 2 ™ Then
ij

kl ki, ij . u
(U= UUW|ge.z, = HZZ UUk — UU D0 | =

_Z‘ZZ vUk - U’“l i
= ZZ‘UUH Ukl || 27m+
<Z IIEDIDIEDD Z)WU“ UUH| - || - 27m

R2\O O 0 R2\O R2\OR2\O

2—m<ZZ\UU’“ UUK| - || 27 <
Z

We have for the first term

SO |uuk - vU - || 2 = ZZ\UU“ |- || 2mm <
o 0O

<||UU|loo - #{(i, 5, k,1) € Ox O UUL # 1} -sup /|- 27 <

< gmm, 24%7715 . 2—%m LM < 2(2%+'y1—04)m.

Recall Remark 10: for R = Ma(1 + p1)?™ - mé + 1, any quartet (4,7, k,[) such that (i,) € O

and (k,1) € R?\ Og or (i,7) € R?\ Og and (k,1) € O
SSZI =0, SU{}I =0, USfjl =0, UUZ@Z =0.

Since UOU;“]Z =0 for all (i,4,k,1) € Ox (R?\ O) U (R?\ O) x O we may write for the second
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term
(Z Y+ )|UU{§! - UOUf; V] |y (2] =
R2\O O O R2\O
= (S ) WU 1] Imy(@2)] =
R2\O O 0 R2\O
= (X > > )l | Iy ()] <
DR\D O DR\D

<27 {(4,5,k,0) € Ox (Og \O)U (Or\O) x O} - [[UU || - sup [7] <

< ol=m. 247”(1 + M)?m - MymP§ - 2nm . 9—qm < m29(F+r—a)ym

where 7o = % + 7 — a+ 2log(1l + p1). Finally, for the last term we calculate

> S(oul - vus] W] e <2 S (v + [0 - g <

R2\OR2\O R2\OR2\[

<272 (14 )| UU oo S 0] < (14 )P - 20

R2\0)

Summing up,

[(UU= UUW||g2.z, < m?2C2545]u]);.

The upper bound for the supremum norm is easy:

KL prprkly, ijou
(UU= UUW||oo = supuzz UUk - UUij)ouXQil(z)H <
ij

supZ‘UUl}l — UOUZ@ . ‘I/f” <

~ inf ]7735

< - 2|UU]oo Z ‘VZ]‘ < 9(m+2)m+1
inf |7,(QF))] ”

Then

max(|(UU — UUY|lgz.c,, 2 3™ [(UU — UU)|loo) < 2541510

Let T be a chain of partitions associated to the sequence 7 € ¥5. Let Q! = T#, Q2 = Tk+1

and Q% = YT#+2 be three consecutive partitions from the chain Y. Consider the sequence
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13 ey o?m(F=1y (See definition of the chain YT in subsection 4.2.3, p. 101). Let A: X, — Xq,
be a linear operator, approximating the operator P, f*, defined according to (4.17). Consider
Cone (1,91) C X1 and Cone (2(%+71*°‘)m,92> C Xq2; defined according to the general

definition from p. 100.
Cone (1,91) € {v = (O)xo+ ¢, v € Q1w <d. vl =0} (4.59)
0

Cone (2(+m=m 02) L1y, = (O)yey 4y, e 0, [[pp < d2 4 ™y =0},
O

(4.60)
Theorem 8 (Preliminary Dynamo Theorem). In the notations introduced above for arbitrary

partition Q3 of the class G(m,d),
A: Cone (1, Ql) — Cone <2(%+71—a)m’ Q2)

Proof. Consider a piecewise constant vector field v € Cone (1,91). By definition of the
Cone (1,Q'), we may write v = (9)xo + %, where [[¢] < d and S = 0. We deduce
]

lvsll = ||¥s]] < d and ||1y]] < d. Moreover, since

/UUz/zu /ZZUUfl e, _Z/Z W Xpe, =
:%:w /le Z%ZWQ |—2m+12¢. (4.61)

We conclude that the condition [UUt, = 0 is equivalent to
]

> wi=0 (4.62)

g
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4.3 APPROXIMATING MATRIX

By definition of A we write

Av = AWy, +vilxy) =
ij
=2 Z( 7 (SSHxig, + SUK X ) + i (USHxin, + UUE NG )) =
ij
s St )
ij

+ZZ (Ul - Ukl WXQQ +ZZUUQZIV;JXQQ. (4.63)

By Lemma 4.3.19 we know

< 221tn—ag, (4.64)

Iyt -,

Using the third equality of Lemma 4.3.18, we get (recall v =1 + 2% + 2logy(1 4+ 1) — @)

55 (5t ot i ) <902

v

The supremum norm estimate is similar to the supremum norm of A

(42 (35t () + SUE () + 15U () <

]

; sup‘Z( (S8 4 SUE + WUsklﬂ <
kl

~ inf \ﬂx

1

< —— : i) 4 1) <
< ) (18 Te + 150l + 1Sl - (S8 + 121) <

ij

<M. 4.onm gmg < 92+(2tm)myg

Thus

s sty o0y

[

< max(22H(ETm 3. 9mmyg — 3. 9mg (4.65)
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4.3 APPROXIMATING MATRIX

We expand v,, = dxo + ¥, and observe, using Lemma 4.3.1 and equality (4.22)

UUxo=>»_ Y. UUlxaz, = 2°" X0 (4.66)
[

By definition of the (Q2, £1)-norm,

2—m Xaz,(2)
X — b4z =27,
‘ Rillaz,c, |70y (S211)| 2, |7T:,3(Qil)|
Using (4.62), we calculate the norm
kl kl 2] u
HZ ZUU v X92 02,0, HZZ UUijwiix Q?,c1+ (4.67)
ij

(S Y+ 3 X Juvsuin,

R2\O O O R2\O R2\OR2\O 2L
+2 Z Z |UUM |7Ty(le)|
R2\O R2\(J

<27™(1 4 p)*™  sup ]UUZ]] sup [ < 27 (1 4 pg )P 2™ g2 M2 <
R4\OxO

< d2732 (1 4 py)?m oM, (4.68)

We shall estimate the supremum norm as well

sup
4

S sup UKL i, ()] < g |Sup‘ZUUM i <
KoY x kl i

sup |UUE - ST | < d(1 + p)>m - 22,

ij

< 71 5
|771(le)|

Then

T,

<d- max(273m/2(1 + pp)?™ 20 (1 4 )P 23m/2) = d(1+ p)>™ - 252 (4.69)
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4.3 APPROXIMATING MATRIX

Now we substitute (4.64), (4.65), and (4.66) to (4.63) and obtain Av = d2?™yg+!, where

Pl = ZZ( 2 SSkZXQQ +SUleQQ ) +VUUSleQQ >+

tj

+Y > (vUf - UU"” Jvid xia + Z Z UU’%U Xz, (4.70)
Kkl i ij

with the norm (recall v2 = 1 + 5 + 2logy(1 + p1) — ).

[tz < d272™ 4 @2RTHn ™ 4 g(1 4 yPmem < goltGitm-aim o

< d|UUXg]ge - 203 0=m,

We would like to write 1/1; as a sum 1/1; = bxg + ¢ with fD UU¢ = 0. We may choose

Jo U U%
f[] UUXD

b= (4.71)

Using (4.66) we get |5 UOUXD = 22m+2 Using (4.70) we get
vy = ZZu“SU’“xgz + ZZ (VUK — Uk Y X, + ZZUUW P (472)
Apply (4.61) to 1,
/q,z) — gmt ZZ (SUELT 4+ (UU — UUM) i 4+ UM i)
ij

We may obtain an upper bound

‘Z Z UUkl¢ij

\/Dw;( §2m+1<‘§iZjSU£l vid| + ).

From Lemma 4.3.19 it follows that

> S wul - vu)
kl ij

< gm . R tm—a)mg

>l - v
Kl ij
Using (4.68) we deduce

DRI

<d(+ p)?m27F 2 (1 4 p)Pm
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4.4 AN INVARIANT CONE IN X

From the third part (4.3.18.2) of Lemma 4.3.18 we get

‘Z Z SUZ@ZV?

ij  kl

< 9(y2+1)m g

Summing up the last three together, we get
‘ / w;‘ < 3d. 2B tn-—am, (4.73)
O

We conclude that the ratio (4.71) is bounded by b < (lgtn—a)m o 92m
Therefore Av = d(22™ + b)(9)xo + (ﬁ% ) € Cone <2(%+Vl_o‘)m, Qz) and || Av| > d2?m 1.

4.4 An invariant cone for the operator W s P2W ;5
2m 2m

The main goal of this Section is to get rid of the dependence of the sequence in the Pre-

liminary Dynamo Theorem. We exploit properties of the Weierstrass transform, and con-

struct an invariant cone for the operator W_s PAW s , which is independent of the choice
2m 2m

of [lt|| <6 =277

4.4.1 Discretization and the Weierstrass transform toolbox

In this Subsection we establish the fact that the image of the Weierstrass transform may
be very well approximated by piecewise-constant vector fields associated to some canonical
partition.

Two-dimensional discretization operator on vector fields on the real plane, associated to a
partition §2, we define by

Dg: L(R?) N Loo(R?) = X Dov = S (d¥ s, +dixy, ), (4.74)
i
where

e 1 g1
dii & 7/ vs and dY = 7/ V.- (4.75)
17y (22i5)] Ja |7y ()] Ja

iJ iJ
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4.4 AN INVARIANT CONE IN X

In this section we assume that Q', Q2, and Q3, are three arbitrary partitions of the

class G(m,d), defined on p. 102. In particular, all three partitions satisfy Lemma 4.2.2.

Lemma 4.4.1. Let v € X be a bounded vector field with absolutely integrable components
in R%. Then there exists a constant v3 > 0, that depends on & and on the size of partition
elements, such that

||W6V—DQ2W6V||2 271y

Onemaychoose%:l—%—i—%%— a—|—210g2m<1—a—|—71.

Proof. We shall show that the inequality holds true for any bounded and integrable function

f: R? = R first. We may write by definition

Waf(2) = [ wst = 00t

and for the discretization operator we have that
Dq2Ws f(z / /w(;s—tftdtds-xu z) =
Z |y ( 12])‘ Q2 JR? ( 1) ng( )

:/RQ ’/ ws(s — 1)ds - xoz (<)
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4.4 AN INVARIANT CONE IN X

Therefore, (22, £1) norm may be bounded as following:
IWaf = DeaWifllgn.c, = 3 s [ [Waf(2) = WsDga f ()] dz =
7 i |7Ty(Qij)| Q2

_Z‘”y

/R2 f(t) <w5(z —t)— ; ‘Qll’ " ws(s — t)ds - Xgil(2)>dt‘dz <

@) Jor
<[ (t)‘;m \/ stz - rﬂlzl\ L, (e = X (2]t <
/ |f(t)|dt - SHPZ| ) Sz w5(2—t)—%:|9—1]2§l| Qilwg(s—t)ds-xﬂil(z)‘dzg

< [ it WP T ] ym Moo ‘”‘S(z_”_@ g, 17 T O0e[2 S

dz. (4.76)

max ws(z — t) — minwg(z — t)
z

Imz

< [ Ir@at- supz|
y

We have to find an upper bound for the last term:

max wg(s — t) — min ws(s — t) ‘dz<
5692 SEQ

"2 @l o

ez,

<2 supz e ()] - [ ma ws (= = #) - Zrélgln ws(z — 1) <
ij

<2 Supz |7 (€2 U |d1am(Q?j)| - sup |Vows(z —t)| =

zGQ%
|d1am(Q2 )|
=2""gsup — . sup |V ws(z —t)|- |Q | <
t ; |7Ty(92')| 2€Q%;
diam(©2)]
<27 sup ———=2 . sup sup |V, ws(z —t)| - \Q | <
i ‘”y(Qz')’ t szzeﬂ
‘dlam 2—m \dlam(Q?)]
<27 msup / |V ws(z \dz< sup o= (4.77)
[y ( [y (€35)]
Therefore substituting (4.77) to (4.76) we conclude
sup |, (Q25)] diam(Q?
W5 — D Wil g, < om0 g IKRRCROL o arg)
4 ko |my ()]
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4.4 AN INVARIANT CONE IN X

Similarly, for the supremum norm

HDQQW(SVS - WéysHoo =

/]12{2 ws(s — t)vg(t Z |Q ] R2 - t)dtdzxglgj (s)

= sup
S

= sup sup / ws(s — t)vg(t)dt — / / ws(z )dtdz‘ =
] SEQZZj R2 ‘Qm’ Q2 R2
= sup|max / ws(s — t)vs(t)dt — min / ws(s — t)ys(t)dt‘ <
ij seQ seﬂfj R2
< sup/ IV | ws(s — t)v(t)dt|ds, (4.79)
(©2) R2

where W(ng) is a line segment connecting the points of maxima and minima of the integrand

in QZQJ We proceed therefore

| D2 Wsvs — Wsvglloo < sup dlam(Q sup‘V / wg(s — t)us(t)dt‘ <

< sup diam(Q?j) - sup |v| -sup/ ‘sz(;(s - t)‘dt <

t2—12
< sup diam(Q%) - sup |v| - / 254,/t2+t2 e a7 dt <

sup diam(Q?j)

< o 4,
< | (430)

We put (4.78) and (4.80) together, and conclude that we may find a constant 3 > 0 such

that

msup ’Wy(Q%j)‘ |diam(Q2,)| msup diam(Q?j)
- s . Sup 2 s
0 ko ()] 0

max( ) =27 "M,

Remark 15. It follows from the properties of partitions of the class G(m,d), Lemma 4.2.2,

that v3 < 1 — « and it may be chosen arbitrary close to 1 — «.

— 148 —



4.4 AN INVARIANT CONE IN X

Lemma 4.4.2. Let Q be a partition of R? the class G(m,d). Then
[Wsxa — DaWsxalla < 27™/%; (4.4.2.1)
[Wsxo — xolle < 27™/4 (4.4.2.2)

Proof. We start with the first inequality. The upper bound for the supremum norm is trivial.

Indeed, observe that for any non-negative integrable function f and any element (2;;

1
swf =g [ £
Qi |QZJ| Qij

and, consequently,

sup‘f ’Qw’/ f‘<sup]f].

Therefore
sup/w5 (z —t)d Z / /w5 (z — t)dtdsxa,; (2 )‘
z 1Jo €251
= sup sup ‘/ ws(z — t)dt — / / ws(s — t)dtds
ij 2€Q;; |Qw|

Now we consider (£, £1)-norm. Let k be such that e* > 2™ and k < m. Introduce three sets

< sup sup‘/w(; (z—1) dt‘<1
ij z€Qy;

of indices:

ri: ={(i,§) € Z° | Qi C Oi_ps};
ro: ={(4,5) € Z* | Quj C O1ynsy Quj & Dh_ps};

ry: ={(i,j) € Z° | Qij ¢ Di1xs}-

We split the sum of integrals in three parts:
Z / ws(z — t)dt — Z 1 / / ws(s —t)dtdsxq,;(2)
|y ( le! o 7 9241 Jo,, Jo

Z‘ﬂyg ‘/ / (/ ws (2 dt—@/ﬂu/mwg(s—t)dtds‘dz

= (%:—i—%:—i—%:)ﬁgiﬂ/ﬂij‘/mwg(Z—t)dt—ﬁ/gﬁ/mwg(s—t)dtds‘dz. (4.81)

dz =

— 149 —



4.4 AN INVARIANT CONE IN X

We estimate the three sums separately.

Observe that for any (i,7) € 1 and any z € Q;; C Oy_gs

kE ok
1 >/ ws(z —t)dt = / t)dt > / / t)dt,dt, / / wy(t)dt > 1 — 4=k
O “kJk

Therefore

1
Z / ‘/ ws(z — t)dt — / /w(;(s—t)dtds
|y (i) 1 Ja,, Jo

1 / i g—m e
E — 1—4e ‘dzgi, E 4e7 74| <
[y ()] / 194 Q,-j( ) inf [y (Qi;)| 4 =l

(1 — ké)?
= 2mekinf ’Wy(Qij)‘

dz <

< supdiam|€;;]. (4.82)

Observe that for any (i,7) € ro and any z € Q;;

1
sup ‘/ ws(z — t)dt — —/ / ws(s — t)dtds‘ <
e €% Ja,,; Jo

< sup VZ/ ws(z — t)dt‘ -diam(€2;;) < sup /‘Vzw(g(z —t)|dt - diam(€;;) =
m

ZEQ,'J' ZEQU O
 (za—te)?—(zy—ty)*
o, / 254\/ zy —ty)?-e 207 d - diam(§2;;) <
2€8Q;;

1 oty ty)? Adiam(€;;)
< S —t —t,]) - 252 dt - di 0;) < ———7
= ZSE%I?J /D 1254 (’Zw z| + |2y y’) € fam(§2;;) < 25

Therefore
1
Z/ ‘/ ws(z — t)dt — —/ / ws(s —t)dtds - xq,;(2)|dz <
Y Qi /0 ’Qw‘ Q;; JO
4 sup diam(£2;5)

< 16k sup diam(§2;5).

0

SZKLAM < (1 +k6)* — (1 — k6)?) 3

(4.83)

Finally, for the third term we cut rg into squared annuli

ain: = {(i,5) € r1,] Qij C Oip(egn)ss Lij € Oig(hgn—1)5)-
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4.4 AN INVARIANT CONE IN X

Obviously, U al, = ry, and z Q4] < 26 + §2(2k + 2n — 1). Therefore,

n=0 aipn,

[ | Lt e g [ st - s
—ZZ/ (/wa dt—@/gij/mwg(s—t)dtds

n=0 aip

1
= E g €251 - sup‘/ ws(z dt—Q—/ /w(;(s—t)dtds <
’ ij’ Q5 /0O

n=0 aip 2€8%;

< Z Z €25 - diam(€2;5) - sup / ‘Vzw(;(z - t)‘dt <

n=0 ai, 2€8; JO

dz =

dz =

2
<ZZ]QU\ diam(€2;5) - 6 e < 4supdiam(€;;). (4.84)

n=0 aijp

Substituting up (4.82), (4.83), and (4.84) to (4.81):
HW%XD - DQW%XDHQ < 32msup diam(£2;;5).
We conclude, using the second part of Lemma 4.2.2: €Q;; C Rec(2'—m 21—m)
[Wsxo — DaWsxolle < max(32m sup diam(€;;), 27™/*) = 27/4,

Now we consider the second inequality (4.4.2.2). Obviously, |[Wsxo — xallee < 1. We

proceed to the weighted (€2, £1)-norm. We shall show that

126

|7y ()] (4.85)

2—m
IWsxo = vollae, = ———/ymw—mm .
' %: |7y (25)] Ja; 2m inf

By straightforward calculation
Z / [Wsxo — xal = Z / ‘/w(g (z —t)dt — xo(z ‘dz<
|y (€2i5))] |y (€25)]

§27 / ‘/w(;z—tdtdz+/‘/w5z—tdt—l‘dz). (4.86)
inf |7, () R2\0)

Recall the error function

2 22
erf(z): :/0 \/—Ee*de;
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4.4 AN INVARIANT CONE IN X

and its antiderivative

—z

/erf(z)dz = zerf(z) +

VT
We estimate each of two terms of (4.86) separately.
/ (21— ;1)2d Y
20 T 1=
\/2775
1-t 22 1 ol
vas 1
/ / 6 262 dx1dty —/ * —6_$%d$1dt1 =
1— t1 —1J=1h ﬁ

V26
1Yy (a2 T2
2 2 2 R o
25/1</ —ﬂe ldxl—i—/ ﬁe 1dx1>dt1—
1/t 1—t 1+t
= _ rf< )—|—erf( >dt =
2/_1 V26 v2s )t

5 V2/68 0
= %</0 erf(z)dz — /\/5/5 erf(z)dz) =
6_22 \f 6_22
- et S e )

_ 2erf<\/75) + \/25(62/52 1) > (2-8)(1— e ¥,

Therefore for the first term of (4.86) we have

/D‘/DW(Z_t)dt_1‘d2:/m(1_/mw5(z_t)dt)dz=

_ (w1 —t1)?

2
52 daydty) <4 - (2021 —e )2 <45 (487
e mdh) <4- (2021 ) <45 (487)

We claim

/ / ws(z — t)dtdz < 84. (4.88)
r2\0.JO

Indeed, using approximation erf(z) =1 — == f ©e=t?qy > 1 — e 7 for large x,

1 +o00 1 (x1—t1)2 1 1 +o0
/ / ST dxdt; = —/ \/iﬂefx%dwldh =
_1J1 V2o 2/ 1J)n

V26

IS 1[0 1 e”
_1—5/1erf< NGT >dt1—1—1—5/ﬁ/(serf(z)dz—1+§<zerf(z)+7)‘ﬁ/(s—
1/ 1 V2 /2y e oy 5 e
=15 (=) - ﬁ>§1‘(1‘6 )t v St
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4.4 AN INVARIANT CONE IN X

Therefore,

+o0 +oo
/ / / ws(z — t)dtdz < 46%;
1 1 O
oo pl pl pl
/ / / / ws(z — t)dtdz < 20.
1 —1J-1J1

The claim (4.88) follows and hence the inequality (4.85). |

and, similarly,

Lemma 4.4.3. Let Q' and Q? be two arbitrary partitions of R? of the class G(m,d). Then
An upper bound for the norm of the Weiertstrass transform is given by

2N

IWavll2 < sup [y ()] - sup |72 ()] - m* =7

vl

Proof. Consider a function f € £1(R?) N Loo(R?) with ||f[lq1 = 1. Then

Z‘ ,/rfr<1 sup /] < 2%.
y

By straightforward calculation

Wsfllaz,c, = LN / wg(z—t)f(t)dt‘dzg
1 Z.erwymz)\ o |2 oy

1
<2 / |f ()] _— / ws(z — t)dzdt <
%: Ql, ; |7Ty(QZ2j)| 02
m 1
<27 Z/ + Z >7|7Ty(92‘)| QZ.w(s(z—t)dzdt.
|Q 92 >ms |k, Q%[ <ms i/l IS
(4.89)

We have to estimate two sums separately. We know that ||ws||cc < 5%; thus

1 |72 (23]
Ty (] Jog, 0 700 =
ij

Therefore, since for a fixed QF,, the total number of elements of another partition Q2; ; satisfying
\Q?j — Q4| < md is bounded by m?Ng:

N

1
Z — ws(z — t)dz < sup ]7735((2@2])] -m? . 52

4.90)
5 (
‘Qllgl_ﬂ?j‘<nu5 ‘ﬂ-y(Ql_])’ ngj
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We also observe that for any ¢ € Ql%;l

E 71 5 ws(z —t)dz < ————— 1 5 / ws(z —t)dz < ————— 46_m2 .
QL -2 [>mé |7Ty(Qij)| 0z inf |7Ty(Qij)| R2\O1 416 inf |7Ty(Qij)|
ij
(4.91)

Substituting (4.90) and (4.91) to (4.89) we get

_ 4e™™ N
w, =27 | ——— S(O2)] - m2=2 )dt <
IWs e, =273 /Q ) rf<>\(mf,ﬂy(%)‘+suprw< 2 mi)dt <

Ns
< SUP|7T:B(QZZJ’)| - sup |y ()] 'm25—2||f||91,cl-

The upper bound of the supremum norm is easy

IWafllow = sup) [ wstz = 07 (00dt] < sup |7(2).

2€R2 2€R2

The upper bound for the vector fields follows immediately.

4.4.2 Constructing an invariant cone

In this Subsection we use approximations we obtained earlier and two cones constructed for
the operator A (Section 4.3, Theorem 8) to get an invariant cone in the space X for the

operator W s Pg*W 5 . The main result is Theorem 7. We shall prove two Lemmas first.
2m 2m

Lemma 4.4.4. There exists y4 > 0 such that for any v € Cone (2(%+7170‘)m,§21> and for

arbitrary partition Q% of R? of the class G(m,d):
[Do2Wsvl2 = (1 =277 ][v[)1.
(See p. 100 for a general definition of a cone in X.)

Proof. Let v € X2 be a bounded and integrable vector field. Then similarly to one-
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4.4 AN INVARIANT CONE IN X

dimensional case, by Lemma 4.4.3

IWsv|az,p, = — / ws(z — t)v(t)dt|dz <
m o ; |y ()] 0z | Jre

Ns
< sup |m, ()| - sup |7TI(Qz2j)| 'm45—2 vl g,

By Lemma 4.4.2 we know that

IWs(9)xa — D2 Ws(9)xolla <27%.

Now we find a lower bound for the norm of ||Dq2W5(9)xnllg2. Observe that the integral

over the unit square [ ws(z)dz > 1 — e~ 1/8%

_m /g2
1D Ws(9)xall = 1Ws(9)xall — IWs(D)xo — D Ws(Qxall = 1 - 2% — eV,
Consider ¥ € Xq1, with [|¢]; < dQ(%J“”*a)m, JoUU, = 0. Then by Lemma 4.4.1
IW s 9 — DgaWs l|s < d - 205+m—s=em, (4.92)

where v3 =1—a + 21(’%; and thus by Lemma 4.4.3

|Do2Ws |z < [[Werhllo+d- o(FHr—13—a)m

m?Njs

= +d-2litms—a)m (4 93)

< d - sup ‘Wy(Q?])’ - sup ’Wm(Qzl_])‘ ’

We use Lemma 4.4.2 and (4.92), to estimate the approximation error for the field Wisv:

IWsv = DoeWs vlla <d|Wa (?)x0 — Do2Wa (§)xalla + [Ws ¢ — Do2Ws 9|2 <

< d2~™4 4 . oG m—am.
Observe that by Lemma 4.4.3, since |[¢| < 2%*'71_0‘,

IWavle=[dWs(Y)xa+Walz > [dWs(])xolls — W]z >

—m2/82 N;
> d(1 = e 1) —up (O8] - sup [ro(2h)| - Gl >
2
N,
> d(l - e_m2/62) — dsup |7Ty(9123)| - sup |7Tm(Qllj)| 2(%+y1)mm5 5.
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Summing up altogether

|D2Ws vla > |[Wa vy — [[Wav — DopWs vy > d(1— 274 — e=m/0%)

m?Ns

— d<sup |7y (07 5

)| - sup |y ()] - oG4m)m 4 2(%4”‘/1*“{3*&)7}1).
We know that |[v| <d(1+ 2(’71+%*a)m). Hence
| Doz Wsv|| > (1 —2774™)||y|,

where 4 > 0 has been chosen such that

m?Njs

)1 sup s ()] - 200 + 2litmmmsme)m < g,

sup |y (£2
|

Remark 16. It follows from Lemma 4.2.2 and Remark 15 that we can choose the constant -4

tObeO<’)’4<i—’)’1<%.

Proposition 4.4.4. Let T be a chain of partitions associated to the sequence n € 5. Let
Ql =TF and Q2 = T**1! be two consecutive partitions from the chain Y. Let & def g2mlk=1)p
Consider a linear operator A: Xq, — Xq,, approzimating the operator Pg*, defined according

to (4.17). Let Q3 be another partition of the class G(m,J).
DgsW s A: Cone (1, Q1) — Cone (2774, Q%) .
(See p. 100 for definition of a cone and the chain Y.)

Proof. According to Theorem 8 p. 141, A: Cone (1, Ql) — Cone <2(%+7ro‘)m, Qz). We may

write then

Av =22 (O)xa+ 4, ¥ € Xa,, Y]z < d2@Ttm=0m Syl =,
(]
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By straightforward calculation
DosW s Av = 22 Dy W (@)xo+ DosWs .
Using Lemma 4.4.1
|DasWs b = W wlls < 2757 [g]; < d2atmseim,

Thus introducing ~4 defined by Lemma 4.4.4 and using Lemma 4.4.3,

[DasWa il < [Wathlls +[[DasWs i =W g3 <

2 N5

< 2020 sup |y ()| - sup m ()] - m*

By Lemma 4.4.2 we deduce
[1Das W (7)xo = (§)xolls < g~m/4
Thus we may conclude
d22mD93W%((1))XD = d2?™(0)xo + ¢ € X3,

where |||z < d23™/2. Together with (4.94) we get the result.

+ d2Citn—mmam < go2—ya)m.

(4.94)

Theorem 7. Let Q be a partition of R? of the class G(m, d); and let ||¢]|oo < & be a sequence

of real vectors. There exists 71(m) < r2(m) and e1(m) < e2(m) such that

W%Pf*W%: Cone (r1,e1,) — Cone (r2,e2,Q) € Cone (r1,1,).

W5 PEW s lconetrs cren | 2 277

(See p. 100 for definition of a cone in the space of vector fields).

Proof. Let Q! be a canonical partition for the map Pg. First of all we shall find a number

r1 such that for any n € Cone (r1,Q) we have Do, W s n € Cone (1,91). We may write
2m

n=(9)xo+ ¢, with Y4 =0 and [[¢]lq < dri. Then
DWW s n=(9)DenW s xo+ Dor W s 9
2m 2m 2m
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and using Lemmas 4.4.1 and 4.4.3, we calculate

1Dt W s 9l < [[Wstplls + [[Den W s ¢ = W s 9fl1 <

Ns N,
< (2*7?”” o2 2mpa 0 )Hzpuﬂ < 5drim'27" = (4.95)
Using Lemma 4.4.2, we calculate
1D W s xo = xolh < < ol-m/, (4.96)

which implies Dor Ws(9)xa = (9)xo + 11, where 91 € Xg1 and [[¢y]1 < 2'7™/4. Hence

Do Ws n= (2))(5 + Do W s xo + 11, where
2m 2m

Ny
‘|D91W2LXD+¢1H1 < drl( 49—2m =

4 ol- m/4)
In order to guarantee Do, W s n € Cone (1, Ql) it is sufficient to choose r; such that
2m

Ny _ 1

mio—2
2 méz_—

We set

def 22m52

= —. 4.
1 4m4N5 ( 97)

We can also notice using Lemma 4.4.1 that
||D91Wi77 - WL"?HI < dr27 7™,
2m 2m

Taking into account D1 W s 1 € Cone (17 Ql) we deduce W n € Cone (17 ry2773m, Ql). We
2m 2m

also observe that by Lemma 4.4.3 for any v =n+g € Cone (ri,e1,9) we have

N 16e;

HW s gH < 4€1m 22m52 = mTy“l =:é&1.

We will be assuming that &1 > 712773, Then without loss of generality

W s : Cone (r1,e1,9) — Cone (1,57,9). (4.98)
2m
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Let A: X1 — X2 be a linear operator approximating Pg* and defined by (4.17), p. 104. Tt

follows from Theorem 8 p. 141, that A: Cone (1, Ql) — Cone (2(%+7ro‘)m, Ql> C Xq2; more-

over, the norm is growing exponentially with number of iterations ||A |gone(1,01y || = 271

In particular, we see that for any vector field v € Cone (1, Ql),
3_a)m
[Avll2 = JAC($)xa + 9)ll2 = dIAG)xollz — [A]e > d2 (1 — 201 H5=m)

Consider a vector field v = v + g € C/()Ea(l,gl,Ql), where v € Cone (1,91) C X1 is

a piecewise constant part with the norm ||v|; < d and ||g|y < &1d. Then by linearity

Pg*v = Pg*y + Pg*g. By inequality (4.3.17) of Lemma 4.3.17,
P2.glla < m22™F2||g|l1 < mdei2*™t2, 4.99
Ex
By Proposition 4.3.3 for v € Cone (1, Ql) C X

HWQA(PgQ* Ao <8

WQWYLHV‘M < d2mtis, (4.100)

We have decomposition
Wis PPv=Ws PPv+Ws PLg=W, (P2, — Av+Ws Av+ W Pig.  (4.101)
2m 5* 2m 6* 2m 6* 2m 5* 2m 2m 6*
We write W Av and W5 Pg*u as a sum of piecewise-constant part and a remainder
2m 2m

W s Av =11+ g1, where v; = DoW s Av € Xq, and g1 = W s Av — DoW s Av; (4.102)
2m 2m 2m 2m

Win*g:VQ + go, where vy = DQWLsz*g € Xq, and gngin*g — DQWLPg*g.
2m 2m 2m 2m

(4.103)
We estimate all four terms separately.
Using Lemmas 4.4.1 and 4.3.18, since ||v||; < d, we get
lgrle = W s Av — DaW s Av|la < 277" ||Av]q < d2®779)™, (4.104)

— 159 —



4.4 AN INVARIANT CONE IN X

By Lemmas 4.4.1 and 4.3.18, using ||g||1 < de1, and (4.99)

lg2llo = |W_s Pi.g — DoW s Pi.g
2m 2m

o < 27| Pgllg < mde28)m T, (4.105)
Finally, using (4.99) and (4.105),

[vallo = HDQW%Pﬁ*gHQ < |[Pgllo + HW%PgZ*g - DQW%P;«QHQ <
< mdg 222 (14277, (4.106)

We now need a lower bound for the norm of vy defined by (4.102). By Theorem 8 p. 141 we

have Av € Cone (2(%+7ro‘)m, Ql>, and Lemma 4.4.4 is applicable:
lllo = DaW s Avllg > (1—27") - lAvlz = d2?™ (1 =201 -00m) (1 —27%™). (4.107)
We need to check that
v+ vy = DQW%AV + DQW%Pg*g € Cone (12,9Q); (4.108)
and to verify the inequality
lgrlle + llgzlle + 1W s (P& — Avlla < [l + vallo - 22. (4.109)
Consider a vector field v = (9)xg + ¢ € Cone (1,Q') with [|¢[|; < d and %:Q/)ff = 0. Using
Theorem 8 p. 141 we write Av = d22m(?)xg + ¢, where ¢ € X2, and |[|¢]]2 < 925 +m—a)m
For the first inclusion (4.108), we expand DoW i Av as following.
DaW s Av = DoW s (@22™(9)xo + @) = dQQmDQW%((l])XD +DoWs ¢ =
= d2°™(9)xo + d22m<DQW%((f)XD — W (P)xo+Ws (§)xa— (?)XD)ﬂL
+(DQW%Q0—W%QD)+W%QD.
We see that by Lemma 4.4.2
a2 [DaW s (9)xo = W5 (§)xalle < 2™ (4.110)

7
d2*™ [W s (§)xo — (Dxolle < d27™ (4.111)

— 160 —



4.4 AN INVARIANT CONE IN X

3

By Lemma 4.4.1 again, since ||¢l|s < d2(2it7n—)m
IDaW s o — Ws gllq < d2®itm—s—am, (4.112)
2m 2m
Therefore we may write

DoW s Av = d2?™(9)xo + ¢ € Xq, (4.113)

where
¢ = d2" (DaW s (9)xa — (9)x0) + DaW s ¢ € Xo;

with the norm that can be bounded using (4.110), (4.111) and (4.112)

Iglle < d2*™(|[DaW s (§)xa — (P)xole + [DeW s ¢ = W gllo + W s ¢llo <
2m 2m 2m 2m

N,
< (28 o2 (379 gup |y (O3] - sup [ (@) - 2 2 ) ) <

< 4d-2@%m - (4114)
Thus using (4.113) and (4.102), (4.103), we write
DQWQL.AV + DQW%P;:YLQ =1 +ry= d22m((1])X|:| + ¢+ vs. (4.115)

Then the condition (4.108): v + vy € Cone (12,€2,9) is equivalent to ||¢ + 2o < dre2?™.

We see using (4.114) and (4.106) that

¢ +m2lla < [I9lla + lello < 4d - 2379™ 4 4dme; 22™ (14 2717 =

= 4d2*™ (2774 + mep (1 +271™))  (4.116)
Now recall the second inequality (4.109)
lorlle + llgzlle + 1W_s (PE, — A)vlla < ezl + vala. (4.117)
We know already from (4.100), (4.104) and (4.105),
lanlla+ lgella+ W (P2 = Al < d227 (277 4 52770 420004 < 3500,
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Using (4.107) and (4.106), we deduce, taking into account Remark 15 and Remark 16

73<1—aand74<%—71,anda:%—2:

11 + val| > d22™ (1 — 26 Hm=e)my (1 — 971m) _ g92m e (14 27%™) >

Z d22m(1 _ 2(%"’71—0’)771 _97am _ 5’.12—’)/3777/) 2 d22m (1 o 5’712—%) (4118)
Therefore (4.108) and (4.109) would follow from

3612775M < gy (1 — £12734) (4.119)

27V L 4 E127™ < g, (4.120)

Recall now that ¢; = 4€1m222],\,£—562. We may choose the following parameters for the cones
ro = 2_’”1_7CY = 2_%, g1 = 2_’”1_Ta = 2_%, and g9 = 2_2’”1_Ta = 2796 . It is clear that
ro L 1y = % and the second condition on the norm follows immediately from (4.115),
(4.116), and (4.117).

|

The proof of the existence of an invariant cone is complete. The fast dynamo theorem in

dimension two follows as shown in Section 2.2. It is the main result of the present work.

Theorem 9. There exists a volume preserving piecewise diffeomorphism F: R? — R? such

that for some vector field By in R?

1
lim lim — In||(exp(eA)F,)" By, > 0.

e—>0n—oon

The map F may be realised as a Poincaré map of an incompressible fluid flow filling a compact

domain in R3 (an immersed 3-dimensional manifold with a boundary).
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