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Abstract

In the present work we develop an approach to the classical kinematic fast dynamo problem
for flows [32] in the real 3-dimensional space. We suggest a fluid flow that may possibly
generate a magnetic field which energy grows exponentially fast with time in the present of
slow di [udivity. In order to verify the construction we study a discrete system and prove that
an analogous statement holds true for the Poincaré map of the provisional flow and vector
fields in the plane.

This problem falls into the framework of open dynamical systems with random holes.
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1 Introduction

1.1 A problem of magnetohydrodynamics

The subject of magnetohydrodynamics is evolution and interaction of motions of an electri-
cally conducting fluid and an electromagnetic field. Typical examples of electrically conduct-
ing fluids that dynamo theory is dealing with are the liquid layer of the core of the Earth
or convection zones of stars, although we will be studying very simplified models. Dynamo
theory studies the mechanism of generation of magnetic fields in electrically conducting flu-
ids as a phenomenon of magnetohydrodynamics [25]. The classical kinematic fast dynamo
problem [32], [36] is dating back to 1970-s and concerns the evolution of a magnetic field in a
conducting fluid flow in the presence of small di [udion, or, in other words, when the magnetic
Reynolds number is large. The magnetic Reynolds number Rq is a dimensionless parameter
that is used to describe the relative balance of magnetic advection to magnetic di[udion. It
is proportional to the electric conductivity and the velocity of the fluid and to the length of

a characteristic fluid structure. The kinematic dynamo equations read
L1

%:(B- OV (v- DB+ eAB
Fu- =8 -0

where v is the known velocity field of the conducting fluid filling a certain compact domain M.

(1.1)

We will be assuming that the vector field v is tangent to the boundary 0M; B is the magnetic
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1.1 A PROBLEM OF MAGNETOHYDRODYNAMICS

field, and € = Ris is a parameter corresponding to the speed of di [udion through the boundary

of M. The case of slow di[udion corresponds to an almost perfectly conducting fluid.

Definition 1. The action of the velocity field v on the magnetic field B described by the
system (1.1) is called dynamo action. A divergence-free C! vector field v with compact
support is called a kinematic fast dynamo if the magnetic field grows stronger exponentially

fast with time.

Dynamo action and chaotic motion turn out to be closely related. It has been shown by
Klapper and Young [19] that the growth rate of the magnetic field is bounded by topological
entropy of the fluid flow. Kozlovski [21] has shown that the growth rate is related to the
topological entropy, Lyapunov exponents, and topological pressure. The limit chaotic motion,
corresponding to the perfectly conducting liquid (¢ = 0), causes the magnetic field B to inherit
the complexity of the Lagrangian chaos.

It turns out that in dynamo theory the magnetic field reflects closely the motions of the
fluid, just as the swirls of cream in a cup of coled reveal the pattern of eddies stirred by
spoon. In other words, the changes of magnetic field keep the track of the movements of
the fluid, and one can reconstruct the geometry of the flow from the magnetic field. If we
consider a magnetic field as a collection of magnetic lines, the fast dynamo corresponds to
the growth of an average line length in a flow and thus stretching and folding properties of
the flow.

The Lorenz force causes a feedback action of the magnetic field on the velocity field.
When the magnetic field is small, one can neglect this action. Whence the full nonlinear
system of magnetohydrodynamics may be reduced [10] to the system (1.1) in the case of an

incompressible fluid.



1.1 A PROBLEM OF MAGNETOHYDRODYNAMICS

The full pre-Maxwell system of magnetohydrodynamics may be written as

Ampere’s Law =M,
oB
Faraday’s Law = T
Ohm’s Law J =o(E +v xB).
The magnetic field is divergence-free:
B =0.

(1.2)
(1.3)

(1.4)

(1.5)

In the equations above B(X, t) is the magnetic field, E(X, t) is the electric field, J(X, t) is the

current, W is the magnetic permeability in the vacuum, ¢ is the electrical conductivity, and v

is the velocity field of the fluid.

We can substitute (1.4) into (1.2) and apply the curl operator to both sides. Then we get

the induction equation

‘2—?— [XXv x B) — & [?BI=0,
where
€= L _ magnetic densi
T g ty.

We may expand

[X(v=xB)=B. [x3v [B¥ ([B)—([WB,

and recall the incompressibility condition = 0. Together with (1.5) we get

[X(v x B) = (B - OV} (v- DB

Finally, we substitute it to (1.6) and obtain (1.1):

oB

HZ(B' Dyl (v- DBI+eAB =0.

The following question is well-known as ”The Kinematic Fast Dynamo Problem™.

— 3
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1.1 A PROBLEM OF MAGNETOHYDRODYNAMICS

Problem 1. Whether or not there exist a divergence-free velocity field v with a compact
support suppv = M such that the energy E(t) = (t)I;Z_J(M) of the magnetic field B(t)
grows exponentially with time for some initial condition B(0) = By with supp By = M, and

for arbitrary small di [udivity €? In other words [1], does kinematic fast dynamo exist?

The exponential growth of the magnetic energy is equivalent to

1 1
lim lim ZIn  |B(z,t,€)|dz >0 (1.7)
t Rd

€50t- o0

The main interest is related to stationary velocity fields v in two- and three-dimensional
domains M.
Looking at the heat equation one may deduce [34] that the exponent of the Laplace operator

is acting on vector fields by convolution with the heat kernel:

1

1] 1 E||
v(t)dt

z—t?
exp —

2g2

EPEN@) = Moo

1.1.1 The main result

We suggest a fluid flow on a 3-dimensional manifold immersed in R3, that may possibly
generate a magnetic field which energy grows exponentially fast with time in the present of
slow di [Ldivity; and therefore give a positive answer to a long standing Problem 1. The flow
is chaotic and structurally stable. In order to verify the example we show that an analogous
statement holds true for the Poincaré map of the provisional flow and vector fields in the
plane. The main result is the following

Theorem 9. There exists a volume preserving piecewise di [edmorphism F : R? — R? such

that for some vector field Bg in R?

lim lim %In [(@xp(eA)F )’ Bo L[] > 0.

£€-0N-o00



1.2 BRIEF HISTORY

The map F may be realised as a Poincaré map of an incompressible fluid flow filling a compact

domain in R3 (an immersed 3-dimensional manifold with a boundary).

1.1.2 Discrete problem

The Problem 1 has a discrete analogue, where the flow action is replaced by a di Ledmorphism,
and dissipation is represented by action of exp(eA). The Kinematic Fast Dynamo problem

for di Ledmorphisms has been stated by Arnold [1] in the following form.

Problem 2. Does there exist a volume-preserving di Ledmorphism g: M - M of a compact
manifold M such that the energy of the magnetic field B grows exponentially with the number

of iterations of the map

B 3 exp(eA)(9B) (1.8)

for some initial vector field By and for arbitrary small di [udivity €?

In other words,
n ]
im lim o In [(we CgD'Bo(z)|dz > 0, (1.9
Rd

|
e€-0N-oo

where we is the d-dimensional Gaussian density with isotropic variance €:

|:||Z|2 1

def
WE(Z) - ( Es)d

where gis induced action on vector fields and [3tands for convolution. Nowadays the
discrete analogue is a problem of particular interest itself and maps have become a popular

model for fast dynamos [6], [13], [14], [30].

1.2 Brief history

While the realistic dynamo problem is still open, the non-dissipative case, corresponding to

perfectly conducting fluid (¢ = 0 in the equation (1.1)), is easy. It is well known [33], [14]
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1.2 BRIEF HISTORY

that non-dissipative kinematic fast dynamos exist on all manifolds.

Theorem. On an arbitrary n-dimensional manifold any divergence-free vector field with a

stagnation point with a unique positive eigenvalue is a non-dissipative kinematic fast dynamo.

The case of realistic dynamo action € > 0 is not so simple. There is numerical evidence
of dynamo action in helical flows [6], ABC flows [16], and Mdobius flows [31]. Yet, there is
no rigorous mathematical argument for these examples nor for flows in R3 in general. In
particular, there is no continuity of the spectrum of the corresponding operator as € - 0.

The only constructions known are discrete dynamos in two dimensional surfaces with non-
trivial first homology group H1(M, R).

Main features of these examples are coming from the cat map on the torus [3]. Consider
LI 1 1 LI 1

di.

9: T? - T2,

(@]
I
3

y 11 vy
- - - - - - - -\/7 - -
The expanding direction at all points is given by eigenvector By = (1+2 5) with eigen-
v_
value A = 3+T5 Therefore, the constant magnetic field B = By grows exponentially with

number of iterations of the map g:
Bn = (gD'Bo = A\"By; (B}, (= A" By [

Added di[dion doesn’t spoil the example, since an average of a constant field is the same
constant field.
This example has been generalised in [24] to arbitrary di Ledmorphisms of the torus. Later,

a more general result has been established [1].

Theorem. Let g: M - M be an area-preserving di Ledmorphism of the two-dimensional

compact Riemannian manifold M. Then g is a dissipative fast dynamo if and only if the
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induced linear operator grjon the first homology group has an eigenvector A with |A] > 1.

The dynamo growth rate is independent of €:

lim lIn Bl [ In|A|

n-oo N

for almost any initial vector field Bg. (Here Bn+1 = exp(eQA)gBn.)

The argument exploits duality between vectors and one-forms on the surfaces and commu-
tativity between the Laplace-Beltrami operator and the exterior derivative. Therefore, it is
not possible to extend it to higher dimensions.

On the negative side, there are antidynamo theorems, specifying geometric properties of
the manifold M where flows with fast dynamo action are impossible. A very early result [11]
states that “A steady magnetic field in R3 that is symmetric with respect to rotations about a
given axis cannot be maintained by a steady velocity field that is also symmetric with respect
to rotations about the same axis”. This result has been generalised [22], [26] and it is now
understood that the symmetry of the magnetic field alone is not compatible with exponential

growth.

Theorem. A transitionally, helically, or axially symmetric magnetic field in R? cannot be

maintained by a dissipative dynamo action.

Our goal is to construct a 3-dimensional flow, that will resolve Problem 1 positively. A
possible model is discussed below. In order to study the flow, we begin with Poincaré map.
Theorem 9 (p. 162) shows that the inequality (1.9) holds true with g chosen to be a simplified
Poincaré map of the flow. Although simpler than the flow itself, the Poincaré map is still
di [Ccult to study. Therefore we begin with a simple one-dimensional map, which would be
a reduction of the Poincaré map, and show in Theorem 6 (p. 94) that the inequality (1.9)

holds true for this one-dimensional case.



1.3 PROVISIONAL FLUID FLOW

1.3 Provisional fluid flow

The following model for the fluid flow on a 3-dimensional manifold, displayed in Figure 1.1,
has been suggested by Dr. O.Kozlovski. Topologically, the manifold is equivalent to a solid
3-dimensional body whose boundary is a sphere with three handles. The vector field has two
lines of saddles [11and [>] which are orthogonal to each other and do not intersect. Light blue
two-dimensional surfaces consist of separatrices of the saddles. Blue dashed lines with arrows

represent solid tubes 11 . 4 with cylindrical boundaries that connect two surfaces. Dark blue

arrows stand for the velocity field of the fluid flow, and red arrows is the stationary initial
induction field Bg. We assume that the fluid flow is stationary outside of a neighbourhood
of the manifold and its velocity tends to zero rapidly near the boundary. Blue boundaries
mark “the dynamo manifold”, where the exponential growth of the initial induction field
takes place.

The induced mapping between the sections {m, a1 .4}, is shown in Figure 1.2. In particular,

we see that any point that leaves the dynamo manifold due to dil[udion is being attracted
to the unstable manifolds of the saddles S; and S,. In addition, we see two heteroclinic
connections clearly. To complete the construction one has to define gluing between the green

surfaces 01 .4 by tubes, and to make sure that unstable separatrices of two periodic saddle

points S; and S, eventually enter the tube t3. This will guarantee that all trajectories, that
leave the manifold due to di[tdion, either return back shortly, and the frozen into the fluid*

magnetic field doesn’t change much, or go into a long tube T3, which causes large return time.

An alternative would be to make unstable separatrices to be attracted to periodic cycles of

1We say that a vector v field is frozen into a moving fluid if E + v < B = 0, which corresponds ¢ [Lih the
Ohm’s law (1.4). In practice, it means that when a surface consisting of magnetic field lines is moved by

the flow, it changes, but none of the field lines become orthogonal to the surface.

—8—



1.4 POINCARE MAP

Figure 1.1: Dynamo manifold with the fluid flow (blue) and magnetic induction field (red).

The labels S; and S, mark periodic saddle points.

a huge period. This seems to be possible, although we are still working on the details.
We also would like to point out, that any small perturbation of the presented 3-dimensional
flow possess fast dynamo action as well. Therefore, once this example is verified, we will be

able to show that dynamo flows are generic.

1.4 Poincaré map

In order to study the flow, one can consider a global Poincaré section 1, and the first return
map F. The intersection between the plane m and the dynamo manifold has four connected

components. Three of them are intersections with the tubes 11, T2, T3 and another one is

—9—



1.4 POINCARE MAP

“a square” which is shown in Figure 1.1. The restriction of the Poincaré map onto the
square is representative for studying the flow action; and deserves a special consideration. In
particular, it is an unfolded® Baker’s map and demonstrates chaotic properties. Since near
the intersection with the separatrices of the saddles [21the first return time is huge, a proper
2-dimensional model for the Poincaré map would be a map with a Z-shaped hole, as shown
in Figure 1.3.

Outside of the square the first return map F has the following properties.

1. It is piecewise continuous and bijective.

2. It is area preserving.

3. The Euclidean norm of the di[erkntial is uniformly bounded [dF [ 1 + p for a small

pH=>0.

4. The Hessian is small [d%F = p, for a small p, > 0.

In addition, we shall impose an artificial condition in order to guarantee that the map outside
of the unit square doesn’t “bend” too much. This condition in principle should be replaced
by a statement similar to Yomdin’s Lemma on volume growth [35].

Consequently, as a first step we may try to show that the unfolded Baker’s map itself is a
fast dynamo in the presence of slow di[udion through the boundary. This is the main result

of the present work (Theorem 9 p. 162).

LIn literature two di erent maps are being referred to as “Baker’s map”. By unfolded we mean the one that

doesn’t change orientation of the vector field. A precise definition is given by (1.11).
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1.5 Principal obstacles and general strategy

In the absence of di[udion (¢ = 0) we may choose the initial magnetic field By to be collinear
with the stretching direction of the Baker’s map on the square and then transfer it out all
over the dynamo manifold using the fluid flow. The added di [udion makes the energy of the
vector field to dissipate through the boundary as a solution of the heat equation. Baker’s
maps were suggested as a model for kinematic fast dynamo long ago ([13], for example), and
a numerical evidence was found for the exponential growth of magnetic energy [12]. However,
there was no rigorous analytical argument in the presence of di [udion.

In order to be more specific, let us introduce a shorthand notation for the unit square
L= {(x,y) CBF | |x| <1, |yl < 1}.

and consider the unfolded Baker’s map
L1

—
—1

(I
1 oy+1, ifx CIL 31 <y<0,

P(x,y) = ><—*'—1,2y—1|,:I if x CIO<y <1, (1.11)

YY), if (x,y) CRP\ 1

M
pas

where F: R?2\ [d R?\ [slan area-preserving piecewise di [Bdmorphism with uniformly
bounded Jacobian [dF < 1+ p (as the Euclidean norm of a linear operator) and such that
any point has not more than d [_Mlpreimages with respect to FM for some large M. Our

goal is to show that there exists a vector field By such that

1
lim lim EIn %exp(sA)PEH‘BOa 0. 1.12)

e-0Nn-oco N Rz

It is su [cieht to construct two cones C; and C, in the space of essentially bounded vector

fields with finite L; norm such that for some & > 0 and any su [ciehtly large m

(exp(eQA)P"(C1) € C2 C C1 and [EXp(EA)PDT" |, [ (1+3)™
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The argument is based on the following ideas.

Noise instead of di[usion. The idea to replace the di[udion by noise added to the system
has been used by Klapper and Young in [19]. One can introduce a “small perturbation” of
the original map

Pi: =P+t

and associate a composition of small perturbations to any sequence t CIH(R?) by
me: = Ptm °Ptm_1 °...°Pt0.

Then by the Noise Lemma 2.2.1 with £=20, ty—1, ..., t1:

1]
(exp(eQ)PD"V(2) = Rz(n_Vy)a(tl)Wa(tz) -+ We(tm—1)(exp(EA)P ) (2)dt1dtz . . . dtm—y,

(1.13)
where w; is the two-dimensional Gaussian kernel with isotropic variance €, defined by (1.10).
It follows that it is enough to construct a pair of cones C; and C, such that for arbitrary

sequence of small vectors £

exp(eA)PC1) C C, C C; and [ekp(eA)P e, [= (1+35)™

The choice of the norm. By definition, a cone is a convex subset which is invariant with
respect to multiplication by a non-negative real number. The cones we will be dealing with

have a general form
Cone (vk, ak) : = {dvx +w | DM= d27 %« [} [d R},

We say that the cone Cone (v, a1) is smaller than the cone Cone (v, a>), if a; = ay, > 0.

We do not require here that Cone (v, ;) n Cone (vo, 0) B @.
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In order to construct a pair of cones, it helps to choose the norm in a proper way. The
di [dion represented by convolution with the Gaussian kernel means that the energy of a
vector field that changes direction rapidly cannot grow very fast due to cancellations [14].

It is not unreasonable to suggest therefore that piecewise constant vector fields will grow
rapidly. Following this idea, we introduce a class G(m, d) of partitions of the real plane with

the following properties.

1. The unit square [cdntains at most 4™ and at least 4™~ elements of the partition; the

interior of an element of the partition does not intersect the boundary of the square.

2. Any element of the partition contains a square with side length %2'“ and is contained

in a square with side length 2M+1,

3. Any square with a side & may be covered by at most N5 = 22M*152 elements of the

partition.

To any partition Q of the class G(m, d) we associate a weighted L; norm on the space of

vector fields by (cf. Subsection 4.2.2):

[
I

Vig] —
T @l o,

VI,

where 1y represents orthogonal projection onto the expanding direction of the Baker’s map.
The supremum norm of a vector field v we denote by VI J def sup|v|. Finally, on the space
of essentially bounded vector fields with finite L1 norm, we introduce a new norm, combining
the two
" 1 1
% max ooigh,, 2 ™4sup|v| .

Canonical partitions. We would like to approximate the operator Pt%]by a linear operator

between two suitable subspaces of piecewise constant vector fields with a simple-looking
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matrix. In order to do that we construct a pair of so called canonical partitions Q' and Q? of
the class G(m, 3), associated to a sequence of perturbations £{Subsection 4.2.3) and introduce
two subspaces Xg1 and Xq2 of piecewise constant vector fields associated to partitions Q! and
Q2?, respectively. On every subspace of piecewise constant vector fields we choose a normalised

basis

1 1
def

s def def 1

|70 (Qij)| (1-14)

m(%)XQij; X0y (DXay .
where 11y represents the orthogonal projection onto the contracting direction of the Baker’s
map. The construction of canonical partitions rely on the study of small perturbations of
the doubling map. It is easy to observe that the Baker’s map and the doubling map are
closely related, and the former is just an extension of the latter. The canonical partition for
the sequence tis set to be a direct product of two canonical partitions associated to suitably

chosen perturbations of the doubling map.

The first approximation. Once two partitions are chosen, we define a linear operator

At: Xg1 - Xg2 by its matrix elements so that

1 1
Py = Aw for all Q2, [QF and any v [Xk.
Q2 Q2

The choice of partitions allows us to establish the following facts about the matrix of the

operator A; in canonical bases (1.14).
1. There exists a small number 0 < y; < 0.01 such that sup|a¥/| < 2¥*™. (Proposi-
tion 4.3.2).

2. There exists an % < a < 1 such that for all |t] = 27™% we have a decomposition

A¢ = By LCd The matrix elements of the operator By satisfy (Proposition 4.3.1)

L P Kl L i
# (L4.k 1) | G,)) CIO k1) C8 21 <2070

— 14 —



1.5 PRINCIPAL OBSTACLES AND GENERAL STRATEGY

and the matrix of the operator C; is small

%;ﬂ 100m(1 + p)2m2—ma,

101

where p comes from the upper bound on the Jacobian of F |2\ —

Using the inequalities above, we deduce that for all su [ciehtly small |t] < 2~™@ we have
(Lemma 4.3.19)

[B — Ag (& 22 +y2—om.

where Ag corresponds to the zero sequence t = 0. Afterwards, we establish the following

facts

1. There exist two cones C; [X}h1 and C, [X}2 such that A«(C1) [CC} and C, is much

smaller than C; (Theorem 8 p. 141).
2. The operator A¢ is a good approximation to Py=(Corollary 2 of Proposition 4.3.3):
Cekp(3A) (P Agv [of < 227 C+OM syp diam(Qf)) (Tad, where § = 27

(1.15)

The second approximation. The goal is to get rid of dependence of partitions Q! and Q2
on t and to show that for any partition Q3 of the class G(m, 3) there exists a linear operator

D: X - Xgz such that for any 6 =274 and any |t| < ¢ the following properties hold true:

1. There exists a cone C3 [Xlys, smaller than the cone C1, such that (Proposition 4.4.4):
D exp(0A)A(C,) [CE.

2. The norm of the operator D exp(8A)A; grows exponentially with m: for any v [Xly:

we have (Lemma 4.4.4):

]
[Dexp(3A)Aw g3 = Ghm _ pgm Il
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3. The operators D exp(dA)A¢ and exp(dA)A; are close. There exists a small y, > 0 such

that for any v [ Xlh: we have (Lemma 4.4.1):
(D exp(dA) A — exp(BA) AV [3 < 2@7Y2)M [T, (1.16)

Combining the first (1.15) and the second (1.16) approximations, we get an invariant
cone for the operator exp(éA)P% and derive from it an invariant cone for the operator
(exp(BA)P ™.

It may seem at first sight that the examples chosen are too simple since they are linear.
However, it appears that they are su [ciehtly complicated to analyse and the same approach
is applicable to non-trivial perturbations, since most estimates are based on distortion prop-

erties and the distortion is easy to control for perturbations of hyperbolic maps.

1.6 Outline

The work presented has three chapters. In chapter 2 “A proof of the fast dynamo theorem”
we give su [cieht conditions (Invariant Cone Hypothesis 1) for a piecewise C? transformation
of R" to be a fast dynamo. In the following Chapters 3 and 4 we construct measure-preserving
piecewise-C? transformations IR — R and T: R? _ R?, respectively, that satisfy the
Hypothesis. As mentioned above, the arguments in the two-dimensional case rely on some
parts of the analysis of the one-dimensional system.

We begin the Chapter 2 with a few general constructions; we give a definition to small
random perturbations (Subsection 2.1.1), introduce a norm in the space of vector fields, and
fix the type of cones we are interested in. Then we explain how to reduce the system with
di [udion to a system generated by a small random perturbation of a certain map. Finally,

in the Section 2.2, we prove the fast dynamo theorem for maps satisfying the Invariant Cone
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Hypothesis.

The Chapter 3 we start with a few definitions, that introduce the central elements of
the construction. In particular, we define a class of partitions G(m) of the real line with
a certain “uniform” property (Definition 4, p. 34); and a norm in the space of essentially
bounded integrable functions we will be using throughout (Definition 3, p. 26). In addition,
we introduce a transfer operator, that we will use to define an induced action of a piecewise
di Ledmorphism on functions (Definition 5 p. 35).

In Section 3.2.1 we consider a so-called toy dynamo operator between two linear spaces
A: X; - Xj; in the most abstract way, i.e. in terms of its matrix coe [ciehts. We show
that for any toy dynamo operator there exist two cones C; X4 and C, [XL such that
A(C1) € Cy; and Cy, is much smaller than C;. This is the content of Theorem 3 p. 45.

In Section 3.2 we show that a toy dynamo operator approximates a transfer operator,
induced by a large iteration m of a small random perturbation of the so-called dynamo map
(Subsection 3.1). The dynamo map is an expanding map on the unit interval complemented

by reflection outside. More precisely, given 1 <s; <2 < s; < 3, we define (3.3)
1

§+sl—l, if —1<x<§—1;

[(X) = e+ 1—s,, if§<x<1;

X otherwise;

and associate a small random perturbation to any sequence § [ILJ(R). Essentially, the
toy dynamo operator is given by the transition matrix between two partitions of the class
G(m) associated a small perturbation [} of the map [ Namely, we see that aj; = 1 if
[E'_“l(Qil) n sz = sz and [2‘] |Qi1 is increasing. Figure 1.4 shows a few iterations of the map
without perturbation (¢ = 0) and with the largest possible perturbation (¢ = ). We see that

transition matrices should coincide in many places for Qil,sz 141, 1].

— 17 —
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In Subsection 3.2.2 we introduce a canonical partition Q% of the class G(m), associated to
a small perturbation &. The partition has the following property. For any interval | with
['gII) 31, 1] for all 0 < k < m there exists an element of the partition Qf such that I Ijﬁ
In addition, the partition is “uniform”: any interval of the length 6 contains not more than
N; elements of the partition.

In Subsection 3.2.3 we show that the operator [g}j'nay be very well approximated (The-
orem 4 on p. 62) by a toy dynamo operator T defined on the space of piecewise constant

functions associated to Q%. For any essentially bounded and absolutely integrable function f,

g ml

21/232

[T T) expA)f 1= m [F1]

Here we can choose parameters s;, s, of the map [Jand a constant a such that the approxi-

mation is good enough: namely [T 2™ and

si

—— < 2.
21/2+0(S2

In Section 3.3 we construct an invariant cone for the operator exp(8A)[F}exp(8A) in
the space of essentially bounded absolutely integrable functions. In order to do that, we
show that the image of the Weierstrass transform with Gaussian kernel with isotropic vari-
ance d =2~™M% [sup |Qj1| may be well approximated by step functions on a partition Q! of

the class G(m). Namely, for any partition Q2 of the class G(m) we have (Lemma 3.3.2):

max(sup |Q}, sup |QF]) 1
Mo W5 — W5 F [ = 6’ 1 Lk s SAEy
2

Based on this simple idea, we construct an invariant cone in the space of essentially bounded
integrable functions “around” the cone in the space of piecewise constant functions.
In chapter 4 we construct a transformation T: R? - R? that satisfies Invariant Cone

Hypothesis 1. Informally speaking, we take a certain iteration of an unfolded Baker’s map

— 18 —
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on the square and complement it by a non-expanding area preserving map outside. The
argument runs in a similar way to the one-dimensional case; and according to the general
strategy described above in Subsection 1.5.

In the beginning we fix notation related to mappings of R? and vector fields. In particular,
we define (4.3) the Gaussian kernel W5 and the Weierstrass transform operator on vector
fields.

In Section 4.2, we define the dynamical system we will be working with. It is easy to see
that the energy of the vector fields that change direction rapidly does not grow exponentially
fast. We are going, as before, to replace diludion by small random perturbations, and we
have almost no control on the map outside the square. Therefore we need to introduce a
delay in return time artificially. One of possible solutions is to use a tower construction.

In Subsection 4.2.1 we define the phase space X to be a tower of M floors, which is a union

of the real plane R? and M — 1 copies of it with the central square cut o]
def T ,1 ] ) 1
X = {0}yxR {1,..., M =1} x (R°\ O]

where [=1[—1,1]°. We also define a map F: X — X, to be, generally speaking, Baker’s
map on the square [Cadd some area-preserving map transferring points outside of the square

to a di[erknt floor. L

F(z),0), ifn=0and z 11

A

def

F(z,n) = (4.5)

FH+1(2),(n+1mod (M — 1)), otherwise.

P

(See p. 97 for definition of the maps F,, n =1,...,M — 1) We also introduce small per-
turbations Fz of the map F. Afterwards, we define the map P : R? - R? we will be dealing
with as a large iteration of the map Fe.

In Subsection 4.2.2, we introduce (4.11) a norm on the space of vector fields we will be

using to construct invariant cones. It is similar to the norm we were using in one dimensional
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case, but we “weight” L, norm only in expanding direction. A linear operator we define to
be an action induced by PE2 in ordinary way (4.10).

In Subsection 4.2.3 we exploit similarities between Baker’s map, its inverse, and the dou-
bling map, and construct a canonical partition for the Baker’s map as a direct product of
two partitions for suitably chosen small random perturbations of the doubling map.

In Section 4.3 we introduce a subspace Xq1 of piecewise constant vector fields associated
to the canonical partition Q. We define the basis on X1 to be VS CVR, where

de 1 1 1] def 1] 1 1]

Vo = @l % sy Ve T @iy Xl g

—+

The vectors that have only Xqg, components, are parallel to the contracting direction of the
Baker’s map and vectors that have only Xay components, are parallel to the expanding di-
rection of the Baker’s map. Using the operator Ps;jwe define an associated linear operator A

between X1 and a suitable subspace of piecewise constant vector fields Xq2 and such that

] 1
PZv = Av (4.16)
i i

via its matrix elements. It is natural to write the operator A as a direct sum of four linear

operators A =SS [UB [UJU, where
SS: M5 [ M5 L1 SU: M5, [ (M5, G1 US: Mgy O M3, G UU: Mg, O M. [

The growth of the energy is guaranteed by the operator UU, and we will study it separately
in the next section. We conclude this section with construction of a pair of cones C; [X}h:
and C, [X}2, such that A(C;) € C, and the cone C; is much smaller than C,.

In Subsection 4.3.1 we establish that the matrix of the operator UU demonstrates properties
similar to the ones of “toy dynamo operator” we studied in the Chapter 3. Namely, its central
part, corresponding to the elements from the unit square, has a plenty of 1’s, and the absolute

value of elements is majorated by a small power of 2 (Propositions 4.3.1 and 4.3.2).
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In Subsection 4.3.2 we justify the choice of the operator A, and show that operators WzA
and WaPz2 are close on the subspace of piecewise constant vector fields Xq1. The estimations

are based on the fact that 9 is chosen so that
max(sup [ (Q5)1, sup [my (Q5)) 31

and the construction of canonical partitions.

In Subsection 4.3.3 we construct a pair of cones for the operator A, the larger cone
C1 [Ag: and a much smaller cone A(C;) [CQ, [Hg2. We use the decomposition
A = SS [SU [UB [OU, and exploit simplicity of the matrix UU along with upper
bounds on other operators.

The Subsection 4.4.1 repeats the Section 3.3 of the one-dimensional Chapter 3 with obvious
modifications adjusting the arguments to dimension two. In particular, the length of the
intervals of the partitions in the upper bounds is replaced by the diameter of the elements.

In Subsection 4.4.2 we construct of an invariant cone for the operator W s PEZH_.L}/L.
2m 2m
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Figure 1.2: The mapping between the sections 1,071 4, induced by the fluid flow;
A = OA1), Bk = ©oTBy_1). The points S; and S, are periodic saddles;

blue and red arrows show stable and unstable manifolds, respectively.
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12y —1

S

12y +1

N

(a) (b) (©)

Figure 1.3: () Unfolded Baker’s map, that appears as the first return map to the section T;

(b) Doubling map with a hole; and (c) a small perturbation of the doubling map

with a hole.
1 I o S
1—=2he4d-HAd-H-H-|FEHa-lLLd 1—2h+etra4-ltr111-T1- 01
0¢ = H=H ois 5 O¢r - [ =T ul& —
Jh—14dd-bddd bbbty 2h+e—1¢F1-- A=t 1-FH -
€] (b)

Figure 1.4: First four iterations of a small perturbation of the doubling map with a hole of
the width h: (a) the case of the zero sequence; and (b) the case of the constant

sequence & = &.



2 A proof of the fast dynamo theorem

In this Chapter we give a proof for the fast dynamo theorem for maps satisfying certain
hypothesis. Later, in the Chapter 3 we construct a one-dimensional map satisfying this
hypothesis and in the Chapter 4 we prove that its two-dimensional extension also satisfies
these conditions. The two-dimensional map may be realised as a Poincaré map of a smooth

stationary vector field in RS,

2.1 Basic constructions

In this Section we introduce objects central for our investigations: small random perturbations
of a dynamical system and a norm in the space of vector fields. We also specify the type of

cones in the space vector fields we are interested in.

2.1.1 Small random perturbations

We construct a random dynamical system using skew-products. Let X be a real manifold

and let f: X = X be a transformation. We consider its extension

K <R" -, X 164 8) ¥ £(x) + £(1). (2.1)

— 24 —
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Let = CTIHB(RM) be a shift-invariant subset of two-sided bounded sequences of vectors in R".

We introduce a skew product over the Bernoulli shift

oxEExX o 5 xX (0 x B, z) € (0€), i £(1))). (2.2)

The induced transformation on fibers we denote by

o X - X, f:(2) & 1 (1)), (2.3)

Its iterations are given by

def

(@) = M), E(K). (2.4)

Remark 1. The following identities follow from the definition of the map ;.

fE = Tego © Tegen) ° - = Ty (25)
K="t =f L of o of L (2.6)
3 1 2 k)’
; TR £
K ifn<k;
k= o = ofp= O @7)
T(‘I.“('E‘), if n > k.

Definition 2. We call the map fz a random perturbation of the map f associated to the

sequence & (2]

2.1.2 Norm in the space of vector fields

Piecewise constant vector fields are proved to be very useful to us. We define a norm in the
space of essentially bounded and absolutely integrable vector fields ®, using partitions.

The norm we are about to introduce is related to the map f. Since topological entropy is
an upper bound for the growth rate of the energy, the system has to be chaotic. We shall

assume therefore that the map is hyperbolic and choose an n,-dimensional unstable manifold.
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We let mty, to be projection along the unstable foliation onto the stable manifold. We denote
by An, the ny-dimensional Lebeague measure on the unstable manifold.

Let us fix a large number m [Iits role will be clarified in the next Subsection.

Definition 3. A norm in the space of essentially bounded and absolutely integrable functions,

associated to a partition Q(m) =  Q; of R" is given by
i=1

| — ¥ L] (]

Nnym

[FIgl= max S — [FO)|dx, 27 sup |f| ; (2.8)
(@) g

where the choice of a depends on n.

The first term we refer to as the weighted L;-norm and write

[FIg] 1
 — W

L, = -~ f g |

) j ez (Tu(©5)) le (x)ldx

it depends, of course, on the partition chosen.

We denote by @ the subspace of @, consisting of piecewise constant vector fields associated

to the partition Q.

2.1.3 Cones in vector fields on R"

We reserve a notation for a cone of the radius r with the main axis vp in the space ®q:

o - L] 1
Cone (vg, I, Q) = n=dv+¢|d [Py, (FrP)vo=0; [ligl<drivgl 1 (2.9)

We extend the cone Cone (vg, r, Q) to include general functions from the main space:

o def 1 1
Cone(vo,r,g,Q) = f=n+g,|n CCone(vy,r,Q), [glgl< elnlgl . (2.10)

_—— O J _— |
We say that the cone Cone vg,r1, €1, Q! is smaller than the cone Cone Vo, Iy, €, Q? and

. _— O [ ,l
write Cone vp,r1,€1,Q" L[CCdne vg,rp,€,Q° ,if ri > rp and €1 > &; we do not assume

_— O _— @& |
here that Cone vo,r1,€1,Q n Cone vg,ry,6,Q0% B 2.
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2.2 Fast dynamo theorem

In this Section we set the hypothesis and give a proof of the fast dynamo theorem 1.

The first step the Noise Lemma 2.2.1, which suggests to replace the operator (exp(dA)f)}
in our considerations with the operator exp(dA)f{}-for some sequence t.

We begin with a simple observation that the exponent of the Laplacian operator® in R",

is the convolution with the Gaussian kernel, in particular

1
exp(dA)v = ws [, where ws(X) = #ﬁ exp — 55

The latter operator is also known as the Weiertstrass transform Ws(Vv) def (ws [M); this
notation we use throughout.

The following statement is generally known, but we give a proof for completeness.

Lemma 2.2.1 (Noise Lemma). For any map f: R" - R" and for any vector field v in R"

we have

1

nglﬂvéfc‘um_lv(x) = ) W (t1)Ws (t2) - - - Wo(tm-1) (W2 Fg ) 0Qdtadta . .. dtm—,
Rn

(2.11)

where 0t = (0,t1,tp, ..., tm—1) CIRIM,

Proof. Observe that f~1(x — t) = f, (x), because fi(x) = f(x) + t. By straightforward

1A: v - d?v in the case of the real line.

27 —
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calculation,

W FrWs FOT™v(x) = W FrWsFl"2WaTvix) =
1
= ngiﬁNafl:hm_z ws (D (Frv)(x — t)dt =
-
= ngiﬁNafl:hm_z o Wy (t) (fe, ) OQdt; = ... =
1

0.2

Wa(tr) . Wy (tm-1)(Frfiy o0 Fi )0t Aty =

RN(M—1

Wé(tl) . -Wé(tm—l)(Wéfé_Tt] (X)dt]_ .. dtm—1.
Rn(m—l) 2

L1

Corollary 1. For any map f: R" - R", any vector field vo in R", and for any k = kem [Cml

W FrfWsFOf ' Wavo(x) =
2 2
1 ]

= e Wé(tl)Wé(tz) .. .Wé(tk_ko) W%for—rt“%/% Vo(X)dtldtz cen dtk—ko- (2.12)
RX—Ko

We shall put the following conditions on the map f.

Hypothesis 1 (Invariant Cone). There exist an m [I h partition Q(m), a vector field v,
and four numbers ro(m) [rgdm), (M) [£:dm) [T 3uch that for any sequence & with
Eld <)

W%fé—?&vg . C/O\ne (Vo, Iy, €1, Q) — C/O\ne (Vo, I, &, Q) |:C_—/DF6 (Vo, I, €1, Q) (213)

Moreover, there exists 0 <y < 0.01 such that for any field v CCone (vo, r1, €1, Q)

22 WTgl< W f W v [pl< 20"V)™ WIg) (2.14)

We construct a map f: R - R satisfying this hypothesis in the Chapter 3 and a map
f: R? - R? satisfying this condition in the Chapter 4.
We choose § = 27™9, a partition Q = Q(m) =  Q;, the vector field vo = 0, and fix four

dimension parameters of two cones ry, rp, €1, and &, such that the Hypothesis holds true.
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Lemma 2.2.2. In the notations introduced above, for any v ECl/oﬁa(vo, r,€1,Q)

1 O O

m e 2 2
Wg(tl)...Wg(tm_l)(Wiftl—_\;ﬁVLV)dtl...dtm_l [Cone Vg, €72, € €,Q .
[_5.5]m_1 m m 2m 2m

(2.15)

Proof. By the Hypothesis assumption, we know that for any |t| [[36,6]™ and any vector

field v CCone (Vo, r1, £1, Q)
Wziftmﬂvziv =dvo + P + gt I:CI/OH?(VO, rz, €2,Q),

where yy C®h, O} [gl< dr, vd [gland [gdlgl< de, [vd [q] Observe that Q is independent on
t. Therefore,

L1
Ws (tl) .. Ws (tm_l)Vodtl - dtm_l =
[-3,5m—1 m m
ESE I Y e [ o B

=V w s ()dt =vo 1—— =e %vy, (2.16)
-3 m

for m large enough. Since Yy [Pk, for any t []36,0]™,
1

53 W% (tl) .. -W%(tm—l)wtdtl Ce dtm_l mg,

and we calculate Q-norm.

gl W s (t]_) .. W35 (tm_]_)LlJtdt]_ oo dtm—1 @S

[-3,3m—1 m
[ oknum - 54 ]
Ay (Mu(Q))) Ws (t1) ... Ws (tm—1) [We()|dx dty ... dtm_1 <
jrzd M (Tt ( J)) [—§,3m—1 m = o,

< sup i [pl=< dr, [V [g]
t
Similarly,

%I wis (t1).. .W% (tm—1)gedty ... dti—1 @S de, Dyg [g]

[_5’5]m—l m
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Observe that

[
Ws (tl) .. Ws (tm_l)llJt(X)dtl - dtm_ldX =

-1 [-8gm—1 ™
] -

= Ws (tl) .. Ws (tm_l)dt]_ C dtm_l : LIJt(X)dX =0.
[-§,6m—1 m m -1

Summing up, for any v [Cone (Vo, €1, 1, Q)

- ] ]

Wo (t1)...Ws (tm1)W 5 FPW 5 vdt; ... dty_1 CCone vo,e2rs, e2e5,Q .
[—5,5]m_1 m m 2m 2m

L1

Lemma 2.2.3. In the notations introduced above, assume in addition that 2YMe™™ [£,(m).

Then

— — [ ] _—
W s FrWsFD" W s : Cone (vo, r1,€1,Q) — Cone Vo, ery, e%e5,Q C Cone (vo, 1, €1, Q) ;
2m 2m
Moreover, there exists 0 <y < 0.01 such that for any field v I:Cl/cﬁe(vo, r, €1, Q)

2™ [yTgl< m%fﬂvéf@m—lw%v [ol< 2™ [yTg]

Proof. By Lemma 2.2.1 for any v [Cone (vo, 1, Q)

W s Fr(Ws Fp"'W s v =
2m m 2m

= Ws (t1)...ws (tm—l)(WZL ftmd\/ziV)dtldtz v dtm—g =
1 m m m m

RM—
n=l L] Mt
- + W ()W s FIW 5 V)dE (2.17)

L e S A

By Lemma 2.2.2 we know that for any v ECl/oFe(vo, r,€,Q)

L] m O

o~ [
A Wg(tj)(W%f{nlﬂvziV)dt [Cone Vo, €°ry, %5, Q .
—5,5]m— =1 m m m
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We estimate the first term

g ) W (t; m _%
g(tj)(WZLftlﬂVZLV)dt QS

RMIN[-8,8]M1 g

— DR mET—y @@ Sl
= A (@) ws (tj) 5 FIW s v(x)dx dt<
j nu(T[u( j)) Rm—l\[_éié]m—l j=1 m Qj 2m >m

- ) —
<sup W s f{PW 5 vigl ws (tj)dt.
t 2m 2m Rm—l\[—é,é]m_l j=l m

We shall find an upper bound for the integral:

L] i —
W (tj)df =
RM—1\[—§,5]m—1 i=1 m
He L] L [
<2m w s (t)dt +2m Ws (t1)...Ws (tm—1)dty ... dtj—1 <
5 m 5 [—5,5m—1 m m

—m2 —
<2Me™ 4+ 2me™™M,

We may also recall that there exists 0 <y < 0.01 such that for any v I:(m(vo, ry, €1, Q),

we have sup; W s FPW s vIgl< 2*Y)M [Tl Therefore
2m 2m

L] mpr—j

sup W 5 fIW 5 vIgl w s (tj)dt < 2™ . ome ™™ [FIg]
t 2m 2m m

RM-IN[-3,3]m 1 [y

We need to verify 20*Y)M . 2me™™ [2™M 3¢, which is equivalent to 2Y™*6e™™ [£;1

For the second inequality we recall the second condition of the Hypothesis

[V1C-Chone (Vo, r1, €1, Q): (W 5 FIIW 5 v[gl= 2" 2 [VIg]
2m 2m

Then

H e
Ws (tj)(Wiftm iV)df%Z
[—5,5]m_l J:]_ m 2m 2m Q
- 4 e —
> inf m%f{“dv%v ol W () = 2M—2e72[yIgl (2.18)

Ctssm [—5,5]m—1 j=1

Taking into account

H e =
Wg(tj)(Wziftnll_\:f\/ziV)dt 5 < ZmEZIIIEI

RM-IN-8,3]™ 1 [y



2.2 PROOF OF THE MAIN RESULT

we get the result. —1

Theorem 1 (Fast dynamo theorem). Let f: R" — R" be a piecewise-C? transformation

satisfying the Invariant Cone Hypothesis and an additional condition %I%I [E21 Then
there exists an essentially bounded vector field v, with absolutely integrable components such
that

lim lim 1In%><p(6A)f|3g”v%|>0,
d-0Nn-co N 1

Proof. It follows by straightforward calculation that WsW;s = Wy for any number 3 > 0.
The Theorem follows from Corollorary 1 of Lemma 2.2.1 and Lemma 2.2.3 with v =W 5 vq.
2m

L1
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3 Fast dynamo on the real line

This Chapter is dedicated to the construction of a transformation IR - R satisfying the

Invariant Cone Hypothesis 1, p. 28. In perspective, the operator [dgorresponds to the induced

action on vector fields on the unstable manifold of the Poincaré map of the provisional flow.

The unstable manifold is one dimensional and the settings are the following. Vector fields

on a one-dimensional real manifold may be identified with functions R - R; and an induced

action on vector fields on R is given by a transfer operator (C)(y) = dIX)v(X),
x LY(y)

where IR - R is a piecewise-di [erkntiable function.

The main result is the following

Theorem 2 (Invariant cone). There exist a measure preserving piecewise-smooth transfor-
mation [ZJR - R, a cone C in the space @ of essentially bounded absolutely integrable vector
fields on R, and a norm [=1[dh & such that for an m [—Idarge enough and any sequence

[E1d <3 with 3 =2"™% for 2 < a < 1 we have

— — 1
W%M%ZC—»C; mm:M%M%fEZE@jEﬂj (3.1)

3.1 Notation

In this Section we fix notation we use throught the proof of Invariant Cone Theorem 2.
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The following letters are reserved for constants: a, B, v, Y1, », S1, S2. The admissible
range of values will be specified later.

Given a subset I [CIRT we denote by |I] its Lebesgue measure. We say that two sets I; and
I, are d-close and write |11 — I2| < & if 13 belongs to the 3-neighbourhood of 1, or I, belongs
to the d-neighbourhood of 11. Otherwise, we write [I; — I2] > 8. The indicator function of a
set | we denote by X;j.

Let dj; be the Dirac delta function:
L1

ifi=j

.)-—

g otherwise.

The supremum norm of a sequence of real numbers ¢ CTI(R) we denote by ET= i|ﬁk|.
N
Whenever supremum or infimum are taken along the whole range of values, we omit the
range.
We write x [y When X is exponentially small compared to y, namely, there exist a small

number 0 < € < 1 such that x < 27&My,

Let d = 2™ be a small real number with % <a<l.

Definition 4. We say that a collection of intervals Q = {Q;}j rznmakes a partition of the

1
class G(m,9,s1,s2), if  Q; =R, QinQ; =@ if i 8 J, and the following conditions hold true.

1. The interval [—1, 1] contains at least 2™~ and at most 2™ intervals of the partition,

and {£1} are the end points of some intervals of the partition.

2. The length of intervals Q;j is bounded away from zero and from infinity

1 L4 4 B

ms?"
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3. Any interval 1 [CRlof the length |I| =& contains not more than

N = 2m+16|0951 2 _ 2m(1—o(|ogSl 2)+1
intervals of the partition.

4. Any interval of the partition Q; CIRI\N[—1 —m), 1+ md] has length |Q;| =27,

We write G(m, 9, s1, Sp) to indicate dependence on m, §, s;, and sy; we will abuse notations
and omit m, 93, s, or sy, when it leads to no confusion and the dependence is of no importance.

We number intervals of a partition Q in the natural order, starting from Qo 1 We set
Qn, to be the most left interval of Q inside [—1, 1], and Q, to be the most right interval of
Q inside [—1,1].

Here we deal with essentially bounded absolutely integrable functions on the real line. We
refer to the space @ def L1 (R) n Lo (R) as the main space. “Any function” refers to a function
from the main space always.

Given a partition Q = {Q;}jrzmof the class G, we denote the associated space of step

functions by ®q and address the basis {Xq; }j rzaas the canonical basis of ®q.

Definition 5. We associate a weighted transfer operator facting on the main space, to a

map T on the real line by*

1
(Fr)(x): = sgndf (y)e(y). (3.2)
y LET(x)

3.1.1 The dynamical system

Here we define the system we will be studying. We have specified the phase space to be the

space of essentially bounded and absolutely intgrable vector fields on R. Now we define a

ITransfer operator is a bounded linear operator. In this case, it is chosen to be one dimensional analogue
of induced action on vector fields by area-preserving transformations. Transfer operators with negative

coe cients have been considered, for instance, in [15].
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transformation and a norm. We also fix the type of cones we will be dealing with.

The transformation of ®. Let s, <2 < s;, be two real numbers such that log 2—; = 11

and let 6 = 27™9 pbe a small real number with % < a < 1. Consider the map IR - R

1
§+sl—l, if—1<x<%—1;
()= Cop+1—s,, if 2 -1<x<I; (3.3)
X otherwise.

and define its extension E3R? _, R by [&d y) = [(X) +y. We associate a small perturbation
[e]to any sequence { CTU(R) and [E1d < 9.

The map [Qutside the unit interval is not important to us and we chose a simple map that
changes direction of the vector field, to make it non-trivial. The exact form is not relevant
here. We associate a transfer operator to a map [f) according to (3.2). We will be studying

the action F}® - ®.

Norm in the space of vector fields. Piecewise constant vector fields have proved to be
very useful to us. We define a norm in the space ® of essentially bounded and absolutely

integrable vector fields on R, using partitions.

Definition 6. A norm in the space ®q of essentially bounded and absolutely integrable

s
functions, associated to a partition Q =  Q; of R, is given by
j=1

C5=m ] 1
[FIgl= max m 0 [ ()|dx, 27 ™2 sup || . (3.4)
jrzatt

The first term we refer to as the weighted L;-norm and write

Co=m ]
ok, = o  [FOoldx,

it depends, of course, on the partition chosen.
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This definition agrees with general definition in Subsection 2.1.2 with a = 1/2.
The subspace of @, consisting of piecewise constant vector fields associated to the parti-

—1
tion Q we denote by ®o. Observe that for any step function ¢ = CjXq; [@q we have
jza

that

(1 C— -
[pIgl=max 2™  |cj|,2 ™2 sup|cj]| - (3.5)
jrza

Cones in vector fields on R. We reserve a notation for a cone of radius r with the main

axis Xj—1,17 in the space ®q of piecewise constant functions, associated to a partition Q:

def 1 I 1 Nr 1 1
Cone(r,Q) = n=dx—10+¢[d=  cjXg; ¢j = 0; [ligl=dr . (3.6)
i =N

We extend the cone Cone (r, Q) to include general functions from the main space:

/\ def 1 1]
Cone(r,g,Q) = f=n+g,|n Tone(r,Q), [glgl< elnlgl . 3.7

This definition agrees with general definition in Subsection 2.1.3.

3.2 Transfer operator as a dynamo operator

The plan is to choose suitable subspaces of ® and approximate the operator ng@y an operator
with a simple matrix. The latter we call a generalised toy dynamo operator.

Afterwards, we prove that there exists a map IR — R such that for any small perturba-
tion ['g_“l with [E1.d < & we can find a generalised toy dynamo operator A: ® - ® and two
partitions Q! and Q2 of R such that A: ®q1 — ®52 and EC[Ig}j—A)Wé = 2‘Vm(IIg[}ﬁ CAD]

for some y > 0.

3.2.1 Generalised toy dynamo operators

Here we give a definition and show that any generalised toy dynamo operator A possess a

pair of cones C1,C, [C®lsuch that C, [CCiland A(C;) [C} (but C, I C]).

37 —
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Let A be a linear operator acting on the main space. Assume that there exists two partitions
Ql, Q2 of the class G such that A: ®q1 - ®g2. Here and below we denote by N and N}
the indices of the first and the last intervals of the partition Q' inside [—1, 1], respectively;
and let N? and N2 be the indices of the first and the last intervals of the partition Q? inside
[—1,1], respectively. In other words, the sets Q7 x Qf with N? < i< NZ and N! <j <N}
make a partition of the unit square.

We define several sets of indices in order to describe the properties of the operator A
important to us. Let aj; be coe [ciehts of the matrix of A in the canonical bases of the
subspaces ®o1 and Og2.

Accelerator:
I-:I 1 1 - 2 2 m ]
Ar: = J OING, . NGH#{ EINS, . NP @ =13 =27 — N5 . (3.8)
Inflow di [udion:
D-'—I:'I' 2 N2} < {N} N} --all:l 3.9
in: = (1,]) O3NS, ... ,NFF < {N, ..., N} aj . (3.9)
Outflow di [udion:
Dout: = {N# —mNs,..., N2+ mNz} < {N} —mNs,...,N} + mNz}—
—{NZ,...,NZ} < {N},...,N1}. (3.10)
Indi Cerknt subspace:
Sp: =Z?\{N# —mNs,...,N? +mNz} > {N} — mNs,...,N}! + mN;}. (3.11)

We are interested in linear operators A such that the following conditions hold true for the

matrix coe [ciehts in the canonical bases.

L1
(D1) max|ajj|+1<=m? & I%I;
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(D2) #Din < més2™;
(D3) for any pair (i,j) CSp we have aj; = 0 whenever |i — j| > mNjg;
(D4) #Ar=2m"2,

Definition 7. We say that a linear operator A: L1(R) n Lo(R) - Li(R) n Lo (R) is a
generalised toy dynamo if there exist two partitions Q! and Q2 of the class G such that

A(®o1) [C@}2 and the conditions (D1)—(D4) hold true in the settings introduced above.

Remark 2. All theorems and the main result hold true for an operator A that satisfies

conditions (D1)-(D4) with right parts of the inequalities multiplied by polynomials in m.

When we have several partitions, e.g. Q', Q?, and Q2 of the class G we refer to the norms
associated to the partitions by [=10;] [ and [-103)] respectively.

We will need the following fact.

L1 1
Remark 3. For any s; <2 <'s,, satisfying logs; —logs, [I Bnd d =27%M there exists

a number 0 <vy; = 2(1 — a) < 1/4 such that

3m

S
ms . o <2 (3.12)
2

for m large enough.

1
Lemma 3.2.1. Let A: ®q1 -~ P2 be a generalised toy dynamo and let ¢ = CjXq: be a

i !
step function. Then
D G
Il - 11 — ay] < 2ME2VD) (@]
i=NZj=N}
Proof. By straightforward calculation,
(D G
lcjl - 11— ayj] = Icj| - 11 — aij| < sup |1l —ajj| - #Din - sup|cj| <
i=N? j=Nj (i.j) (i

ST asom oms2 m(3/2+
= gy mosyT 2 [QI; k= 2™ /20 (@I ]
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L1

Definition 8. Let Q!, Q2 be two partitions of the class G(m). We define the kernel of

AN11 Po1 — Dg2 to be the set

1 L4 1
Ker A0 = @ [y | lA(p(x)dx =0 =
(0 1 Y11 1
= 9= gl aijcj|Q? =0 . (3.13)
jrz i=NZ j (7]

Proposition 3.2.1. Let 2Y1 < s, < 2. Then for any two partitions of the class G and a

generalised toy dynamo A: ®g1 - P2
Po1 = Xp—1.1] CKEr Ay 4.
In other words, for any @ [@ly: there exist EKIerAQ[_lyl] and d such that
¢ =dxX—1,1+ V. (3.14)

—1 1 1 .
Proof. Let X[—1,1) = j rzHiXabs where u; =1 for Ny < j < Ny and uj = 0 otherwise. Let

1
¢ = jzfiXa: [@y: be a step function. We want to find a function § [C@g: such that

Y [Ker AS'By definition of the kernel 8, using (3.14) we write

L4 Ld L —
ApP(dx = A($ — dX—1,1)(X)dx = aj (Cj — duj)Xoz (X)dx =
-1 -1 —1ij
r T T ]
= aij(cj — du;)|Q?| = 0.
i=N? i

We want to solve the last equality for d. It is su [cieht to show that for any generalised toy

dynamo A we have that

r T T ] 5
ujaij |Qf| £ 0.
i=N?J
By straightforward calculation,
[ B . 5 () 5 1 1 () [ 5
ujaij |Qf| = aij|Qf| = 2(Ny — Nj) + (aij — DIQTI.
i=N?J J=Nli=N? J=Nli=N?
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Using conditions (D1)—(D4), we estimate the last term as follows
(D ) 1 5 )
(aij — DIQf| = (aij — 1)|Qf| = #Din - suplajj — 1| - sup |Qf| =

J=NLi=NZ Din

S - —
< sf™m?5 - sim 22(s;M+s;™M).
2

-
We see that uja;j|Qi| £ 0 under condition that
i=N?]J

s _ _
$2Mm?25 - $ 2(s7™+s,M) < 2(N! — ND). (3.15)

Recall that, since Q? is of the class G, we have N} — N! > 2™~ We also know from (3.12)

that there exists y; < 1/4 such that

25 . S1 m
med . ——— < 2™,
2msy

Therefore (3.15) holds true under condition that 2¥1 < s, < 2. 1

Lemma 3.2.2. Let n = dx—1,13 + ¥ Do be a step function such that [ dr for some

L1 L1

r CIdThen n [Cone 25-,Q .

. . 1
Proof. We would like to write § = BX(—1,1 + $-Where -2 dixh; and & 0. Let us

J =N

L1

assume that = cjXgq;, then
iz
N1 N 1
CiXe; =B Xoy +  diXhy;.
=N =N =N

. .
implies &3 c¢; — B and consequently _ (cj —B) = 0. Thus we have an upper bound for |B|:

=N,
1 Nr i 1 C—
B] = N cj= om—1 cj| = 2 U= 2dr.
r =Ny fjval

Therefore we deduce that

=Y 1 QEI
|dI — 18I’ 1-2r

N =(d+B)X-11 + P-HC

— 41 —
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Definition 9. Given Q! and Q2, two partitions of the class G, we define a linear operator

E: ®g1 » P2 by the matrix

1
T ifNZ<isN?Zand N} <j <N},
Eij = (3.16)
83  otherwise.
Remark 4. The operator E is a generalised toy dynamo.
Lemma 3.2.3. Consider a function ¢ EKIerE'ﬂ[_lll]. Then [EP L= [l
. . 1
Proof. Let ¢ @1 be a step function. We may write ¢ = Cj Xat» then
jza
I — -
Ed= CiX(-1,11 + + Cj XQJ?;
i=N{ J<NE >N
and the condition ¢ EKIerE%_l,l] implies ¢j = 0. Therefore
i=N}
%:I 11 (B S [ |
EbLF + Cj Xq2 2§= + Icj| = [y
i<Nt j=NE <Nt =N
1

Proposition 3.2.2. Let s; be small enough so that log,s; < 64/63. Let Q' and Q2 be

partitions of the class G. Consider a generalised toy dynamo operator A: ®g1 —» ®52. Then

for any @ [@ly:

[(A — E)p ok 2M/2V1) (@1

where y; satisfies the inequality (3.12).

—1
Proof. Let 9 = ; zfjXaor [P be a step function with the unit norm
J

I:I—m —m/2 lil
(@I = max 2 Icjl, 2 ,suplcjl =1,

j oz

— 42 —
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1
which implies ; {cj| < 2™M and sup|cj| = 2M/2 By straightforward calculation,

C 1T 11
(A—E)o= ¢j (aij — Eij)Xqz =
i (2]
[ 1 L 1
= j(aij —DXoz +  ¢j(@ij —dij)Xaz +  Cj(@ij — ij)Xqz-
i=N? j=N} Dout Sp

Observe that
o 2N 2 2 _ N2 1_ 1 El
#Dout = 4m“°Ng + 2mNz (N7 — Nf°) + 2mNs(Ny — Nj°) =
= 2mN;s(2mNs + N2 — N2 + N2 = ND).

Therefore, using [k 1, Lemma 3.2.1, definition of the set Doy, and condition (D3),

IIA_E)([)IQ'QZ S
I G @ — 1 I -
2" lcjl - laij — 11+ lcjl - laij = dijl +  [cjl - laij —dij] <
i=NZj=N} Dout Sp
] 1 1
<27M 2ME/2*V1) 4 sup|cj| - sup|aij| - #Dout +  Icj| - MN; - sup |aij| <
VA
1/2+ —ms2S1 2 2 1 1 st
< 2M@/2+y1) 4 p=m <& - 2mN5(2mN3 + NZ = N£ + N7 — N +mNs .
2 2

By straightforward calculation we see that for s; small enough so that log, s; < 64/63

s s _ s gs?m
2L mNy < 2L .mamiralogs, 2 < 2L AL — pmys
sy S sy 2m

Therefore, under the same condition, since Ny 2™,

2~m/2. % m?NZ < 2™1. mNj - 272 < 2m/2Hvn),
Finally,
212 MmN - % : ENIE —NZ+N}! - N,lzé % - 2M/2 . 4mNg < 2MmA/2Hva),
Summing up,

[(A —E)plk 3-2Mm1/2+y1),

— 43 —
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Now, for the maximum norm, we have that

C 1T 1 1 | — om
[(A — E)pLed < max lejl - laij = BijlXoz 00 = ol g =2™ o
ivalva joma 2 2
Thus 272 (A — E)@[J < 2Mm1/2+y1), 1

Lemma 3.2.4. Let Q! and Q? be two partitions of the class G. Let E: ®g1 — ®g2 be
a linear operator with the matrix defined by (3.16) in the canonical basis. Then for any

function ¢ C®H

EpL2"@h) and  [EX-1yLE2" 2

1
Proof. Let ¢ = j zfiXa} [C@,: be a step function of the unit norm. Then, by straightfor-

ward calculation,

C I 11 [ —
Eg = Cj EijXoz = CjXqz + CjdijXai =
i [Zj i=N2 j=N} Dout i
Cr—w th
= CiX—111 + + CiXa;s
=N} i<NE >N
so the weighted Li-norm is
Hep B
[Eplp], =2"". GGOI(NZ —NP)+27™ + cj| < 2™ + 1.
j:N|1 j<N|:L j>N|:'L
The upper estimate for the supremum norm is easy:
Cr—w t1 (.
[Etp [d max CiX[—1,11(X) _ CiXg;(X) =2
j=N|1 j<N|l J>N|:'L

Hence [Etp [k 2™ @I 10bviously,

[EX1y e Ephl, =2 "N} = NH(NZ = NP) =2m2,

— A4 —
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; - /2 2EI ;
Let us consider two cones Cone 1,Q! [C®L: and Cone 2 vi—/2m ¢ [ ®DhL- in corre-

spondence with general definition p. 37:

C1 D 1 N1 1
Cone 1,0 = o= dX[—l,l] +P |y = chle; ¢j =0, Mhkd ; (3.17)
J =N
1 1
Cone 201—1/2m 2 df
L1 1 1 1
P=dX1g+W W= CjXgz; ¢ =0; Mk d2mv1~12) = (3.18)
i =N

Theorem 3. Assume that m is large enough so that the inequality (3.12) holds true for some
0 <y < 1/4 and all su [ciehtly small ». Additionally, assume that log, s; < 64/63. Let Q!
and Q? be two partitions of the class G. Then for any generalised toy dynamo A: ®g1 — ®q2

- 1] 1] |
we have A: Cone(1,Q) — Cone 2M01=Y2) Q2" Moreover, for any n CQone 1,Q! we

have [ANnGE (N2 — N O 2m ! [T

C1 Ol . 1 .
Proof. Let ¢ [Cone 1,Q' be a step function, ¢ = dX[-1,1 + ¥, where y = cijjl, with
jza

:
[ = d and ¢j = 0. We may write

j=N|1

AP =(A—E)p+EQ=dEX-1+(A—E)p+EU.
Obviously, [@I;k 2d, thus by Proposition 3.2.2
[(A — E)o L [A—ECQhL ks d2m®/2Hyn)+l,

By Lemma 3.2.3, [Elp < 1= d. Therefore [(A — E)¢ + Ey < d2MI/2+vD)+1 4 ¢ 5o

we conclude
Ag = a‘X[—1,1] +d(A—E)X-1,1 + (A—E)Y +EY,

where d = d2™~2 and [d{A — E)X(—1,1) + (A — E)Y + EY [k d(2M/2+Y)+1 + 1), Theorem

now follows from Lemma 3.2.2.

— 45 —
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1
Now we proceed to approximation. First of all we shall show that with any sequence & we
can associate a pair of canonical partitions of the class G. Then we approximate the operator

[E'_H)y a generalised toy dynamo (Theorem 4, p. 62).

3.2.2 Canonical partition for the perturbation [}

In this section we construct a partition of the class G(m) associated to the sequence &. Later
we will refer to it as the canonical partition of the map ['g_“l

Recall Definition 4 of the partition G:
Definition 4. We say that a collection of intervals Q = {Q;}; rzamakes a partition of the

—1
class G(m,9,s1,s2), if Q; =R, QinQ; =@ if i 8 J, and the following conditions hold true.

1. The interval [—1, 1] contains at least 2™~ and at most 2™ intervals of the partition,

and {1} are the end points of some intervals of the partition.

2. The length of intervals Q;j is bounded away from zero and from infinity

1 L4 4 E
ms? s s
3. Any interval 1 [CRlof the length |I| =& contains not more than

N5 — 2m+16|0951 2 _ 2m(1—o(|ogSl 2)+1

intervals of the partition.

4. Any interval of the partition Q; CIRI\[—1 —m)j, 1+ md] has length |Q;| =27,

We fix s1 and s; in the definition of the map [{3.3) and a sequence § [CTH(R) with a norm

MM 6 = 2~M<,

— 46 —
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The map [glis piecewise linear and so any iteration is a such. Let

oo = a(k) < a(k) <...< a(k) = 400 3.19
0 1 Nk+1

be all the points of discontinuity of the map [';J Define the corresponding partition of the real
line a® = %@ where a}k) = (a}k),a}'i)l) are the partition intervals. Observe that for
any k we have that {1} are the endpoints of some intervals of the partition. Let al(:) =-1
and aﬁt) =1.

We shall modify the partition a{™ and obtain the canonical partition for the map ['g_“l

Definition 10. We call a branch [EE(a}”)) of the map [E[Imain, if for any 0 < k < n we have

that i) L[, 1].

Definition 11. We call a main branch ['gla}k)) of the map [§long, if
%Ia}")) =
S2

Lemma 3.2.5. The map [{) has at most 2M~91)*1 main branches that are not long, where

o < is chosen such that s{* < 2°.

_a
log, s1

Proof. Let a}m) be a domain of a main branch which is not long, that is |[g](a§m))m[—1, 1]|< %
Since [ﬁ” (a}m)) is an interval, a connected subset of R, we conclude |(a; My +1]>1-— é

or |E§ﬂ(aj+1(m)) — 1] >1— L. Without loss of generality we may assume that the first holds

S2”

true. By definition, a™

; is a point of discontinuity. Therefore, for some k < m we have

that [‘;Ia}m)) = —1 + &(k); hence we deduce that [éT)(a}m)) = [ (=1 +&K)). So we
conclude |[§'j_k(—1 +eKk))+1 =>1- % and, consequently, Kk < m(1 — a;) + 1. Indeed,

if kK>m(1l—ay)+1, then m—k <ma; — 1, and it follows that

2 2
—k -1 —
DL+ e + U <SP < = =2 =

— 47 —
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Since the map ['g]has at most 2K main branches, we conclude that there are at most 2m(1—01)+1
points a ) such that ['gla(m)) = —1+&(K).

Summing up, the map [£) has at most 2Mm(=01)*1 main branches that are not long. 1

Lemma 3.2.6. Let 1 <k = malogg, 2 and let (a,b) be the domain of a main branch of the

map [§] Then

k
‘gla < —-=9;
| —1 S1

-1 2
|ETb) — 1<§—5.

Proof. By induction in k. The case k = 1 is obvious. Recall that a® [atc*D and

a® D\ a®) = {F(-1), (D), F(2/s1 — D}

Therefore for x [af®) we have

1 (X) = ok E1X) = s1T§1x) + 51— 1= &(k + 1), if |B(x) + 1] < 2/51 — 3
(%) = kg [E1X) = S2[§1X) — s + 1 = &(k + 1), if |[E(x) — 1] <2/s1 — 5

In the first case we know that, by induction assumption,

k+1
61560 + 1 < sil1500 + 1+ ik + D] + 1= L2
In the second case,
1 Sk+l 1
— < — <
IETH00 — 1 < sl (B0 — U + ek + ) +1 < £—=5.

L1

Corollary 1. Let 1 < k < malogg, 2. Then for any domain (a,b) of a main branch of the

- % Dgla, b).

map [flwe have that Z —

— 48 —
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Proof. By assumption, [§{a) < [{{b) and from Lemma 3.2.6 it follows that

2 2 2
['g(a)<s_l—5—1<s_l—1<1—5+a<['§(b)_

L1

Corollary 2. Let 1 =< n < malogg, 2. Then any main branch of the map ['gtlis d-close to one
of the ends of the interval [—1,1]: in other words, either 1 — 29 E[gla, byordo—1 E[g(a, b),

or both.

Proof. By induction in n. The case n = 1 is obvious. Observe that (a,b) cannot be an
interval of continuity of the map [Jfor any k < n. Therefore [gtrl is either continuous at a,
or at b, or at both end points. In any case (a,b) belongs to an interval of continuity of E;rl
satisfying conditions of Corollary 1 of Lemma 3.2.6. By definition of [g] we see that either
[FTH(a) = & —1or [FT*(b) = £ —1. Without loss of generality assume that [FT*(h) = & —1.
Then we see that [g(a, b) [C(&(n),1+ &(n)) I+ 5. Similarly, E;rl(a) = % — 1 implies that

[Ma,b) 31+ E(n),&(n)) CB+ 1. —
Lemma 3.2.7. The map [§Ifor any 1 <k < malogg, 2 has exactly 2% long branches.

Proof. By induction in k. The case k = 1 is trivial. It follows from Lemma 3.2.6 and
Corollary 1 of Lemma 3.2.6 that any long branch of the map [';]contains at least two long

branches of the map 5T 1

Corollary 1. The map Eg‘_l has at least 2™2 long branches, provided 2alogg, 2 > 1.

—malog, 2
Proof. If 2alogg, 2 > 1, then m—ma logs, 2 < ma logs, 2 and therefore the map Py

has at least 2™ ~™M%1%9s; 2 |ong branches for any n CIH(R) with [T 3. Let n = g™M*!%9s: 2¢,
—alogs, 2 logs, 2 .
Then we can decompose [2‘] = ﬂ(l 47005, )Ifzﬂa 0512, According to Lemma 3.2.7 the map

loge, 2 . o :
L?ja 1% has at 219, 2 |ong branches. By definition of a long branch, its image is
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at least % long; using Corollaries 1 and 2 of Lemma 3.2.6, we deduce that for any do-
main (a,b) of a long branch we have that either (=1 + %,—1 + é) Elﬂlogslz(a, b) or
(1-24:1-9) E@Iogsl 2(a, b). Moreover, any of two intervals (-1, 2 —1) and (& — 1,1)
contains exactly 2M(~2109s; 2=1 |ong branches of the map @(1—0( 199512

We can find an upper bound for the length of a domain of a long branch of the map

1-alogg, 2) . . . . .
lﬂ( 47005, ): it easy to show by induction in number of iterations that any long branch

(a,b) has a domain of the length at least

m(l—a) IogSl Za)s—m(l—a IogSl 2) —-m(1l—a IogSl 2) .
1

— —al 2
b—al=@—s, = 2s, mi-aloss, 2

d=s;

Therefore any of the intervals (—1 + 3§, 2 —1) and (& — 1,1 — §) contains at least
1 S1
om(1—alogs, 2)—1 _ Srl“(l_a logs, 2)5 — pm(1—alogs, 2)=1 _ pm(log; s1—2a) = pm(1—alogs, 2)=1 _

—alogs, 2
long branches of the map @(1 47005, ).

Therefore, the composition has at least 2M109s; 2(pmA~alogs, =1 _ 23 ong branches, which

comes as 2M~1 — aMalods, 2 5 om=2 55 Hromised. 1

Canonical partition construction. Let us consider the set of end points of domains of long

branches

L1 L1
Di: = x| x is an endpoint of a domain of a long branch of the map [ [{F*1} =

={-1=di<dy<...<dy =1},

1
and define a partition Q = Q; of the interval [—1,1] by Q; = (dj,dj+1); J =1,...,N.
=1
Let us denote by Ug(Q;) a neighbourhood of Q; of the size €.
We shall set € = (2sf™)~L. If for some Q; = (dj, dj+1), containing a long branch of the map

['g_“l, there exist points of discontinuity of the map ['g_“l in a neighbourhood U¢(Q;j) n [—1,1],

then we extend the interval Q; to include all these points.
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Let Q;'= (d:dk1), J = 1,...,N be a new collection of intervals. If there exist two in-
tervals (dD dJD+1) and (dj+2, J+3) containing long branches of the map [Eﬂ and such that
dj+2 — dj+1 < (msP)~1, then we replace the interval (dj,dj+1) in Q" with the interval
(dj, dj+2).

Now the length of any interval of the partition QY containing a long branch, is not more than
2(s;™ +s,™). Assume that there exist two intervals (dJD, de+1) and (dJ+2, J+3) containing
long branches of the map [, such that de+2 — de+1 > s,™, then we split the interval
(dfh1,dfs,) into intervals of the size s,™, allowing one of them to be longer, or smaller, if
necessary. More precisely, let QD (d J+l) be an interval of Q that doesn’t contain a

] O] .
long branch. Let n := sg‘(de+1 — dj[) be the number of “whole” intervals of the length

M that could fit inside (df,dfyy). If (dfyy —df) —ns]' < sT™, we split the interval
(dj dk) into n intervals; adding the intervals (di’+ ks, ™, df'+ (k + 1)s;™), 0 < k < n
to the partition QY Otherwise, we split the interval (d;d},) into n + 1 intervals, adding
(df+ks; M, di+ (k +1)s;™), 0=k <n to QF

The intervals (a(()m),—l) and (1,a§\,”2), do not contain any long branches, and we define
the partition there as described above. Finally, we define the partition on (—oo, a(m)) and
(af\l?, +00) splitting them into equal intervals of the length 2™,

We have obtained a partition of the real line, that satisfies Conditions (D2) and (D4) of

Definition 4. We have to check other conditions of Definition 4.

Lemma 3.2.8. The partition constructed satisfies Condition (D3). Any interval | [IRIof

the length & contains at most Ny < 2M1%9s; D+1 jntervals of the partition.

Proof. The statement holds true for any interval | DKl\[a(m) (m)] of the length 8. Assume

that I CJai™, a(m)] and || = 3. Then there are two possibilities:
1. the interval | contains a long branch;

— 51 —
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2. the interval | doesn’t contain a long branch.

Consider the first case. Observe that for any ko < m and for any interval 1, [J31, 1] of the
length |lo| < s7*° such that [¥{lp) 131, 1] for all k < ko, the map [ is one-to-one on lo.
(Easy to check by induction). Since for any long branch a}m) we have 1 — 2 I:I}la}m)),
we conclude that ko: = [—log, d logs, 2] = [amlogs, 2] and then we see that the map E'g‘j
is one-to-one on any interval 1o of the length less than & such that ['gllo) [1#+1,1] for
all k < ko. Thus any interval of the length & contains at most 2™~ ¢ long branches of the
map ['g_“l Consequently, any interval 1 with |I| <& contains at most 2™k < Nj intervals of
the partition with a long branch inside.

Assume now that the interval 1 of the length |I| = & contains some intervals of the partition
that do not contain a long branch inside. Let Iy [CIbe a maximal by inclusion subinterval
not containing a long branch. Then by construction of the partition, it contains at most
one interval of the partition Q of the length less than s; ™. Since the interval | contains at
most 2™~ Jong branches, it may contain not more than 2™~ + 2 intervals I, without a
long branch inside. Therefore, the interval | contains not more than s + 2M Ko+l < Nj
intervals of the partition.

In the second case, an argument similar to the one above shows that an interval 1 of the
length [I]| = & and without a long branch inside contains not more than 6s5'+1 < Nj; intervals
of the partition.

L1

Lemma 3.2.9. The partition constructed satisfies Condition (D1) of Definition 4. The
interval [—1, 1] contains at least 2™~ and at most 2™ — 2M%!%%s; 2 4+ masM intervals of the

partition.
Proof. By Corollary 1 of Lemma 3.2.7, the map ['g_“l has at least 2™~2 long branches, provided
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sy is chosen such that 2alogg, 2 > 1. Every long branch belongs to exactly one of intervals

of the partition, and the escaping set of measure md contains at most mds?" intervals. —1
Summing up, we conclude that the construction leads to a partition of the class G, as

desired.

We shall refer to the resulting partition Q as the canonical partition of the map [g'_“l

Lemma 3.2.10. Any interval of a canonical partition Q has at most two main branches of

the map [2‘]

Proof. If an interval Q; of the partition contains more than one main branch, one of the main
branches is not long. Let it be a™. Then by Definition 11 %’J(aﬁm)) n[-1, 1]EL 2.

Now we repeat the calculation of Lemma 3.2.5. The end points of the interval aﬁm) are the
points of discontinuity of the map ['g_“l Then there exists two numbers n; < m and n, < m

such that [;Ef(al((m)) = —1+&(ny) and [?(al((rl‘)l) = 1 —&(ny). Therefore,

@E™) + 1] = [T (-1 + E(ny) + 1 < sT™;

D@ — 1 = I, (1 — &(n2) — 1] < s§" ™28

Since by assumption %ﬂ(aﬁm))& % we deduce 2 —§(sy" "2 +s]' ™) < % The latter is

equivalent to (sy' "2 +s7""™) = Z, which implies that either 83" " = L, or §s]" ™ = &,

or both. Hence we get an upper bound on n; or ny, respectively:

1 a 1
N2 <Mpg: =M 1-— + 10.

log, s1

Therefore one of the end points of aﬁm) is an end point of the main branch of the map Egﬂ
with n < mg. Observe that all main branches of the map EQ] are long. Any interval of the
length sT™° contains at not more than one main branch of the map @0. Therefore the dis-

tance between short main branches of the map [2[1 isat least s; M [C2(d; " +s; ™) = sup|Q;,
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and any interval of the partition contains not more than one short main branch of the map

[E'_“l. Therefore, any interval of the partition contains at most two main branches. —1

3.2.3 Approximating [f}-py a generalised toy dynamo operator

Here we prove the main result of this Section, Theorem 4, which establishes the existence of

a generalised toy dynamo operator, a close approximation of [gHor arbitrary [E1d <.

Construction. Let a partition Q2 of the class G be given. Let [} be as above, and let a(™ be
a partition of the real line by its points of discontinuity and let Q' be the canonical partition
of the map [{1. Introduce the joint partition: a(™m ot = {dj} We assume the natural

numbering: [do;di] [COland dj < dj+1 for any j Define the image of the joint partition

by

bqj—: = lim [@(y)J

y - dj 0

Then on the interval (d;j, dj+1) the map [2‘] is given by

+ + —
[@(X) J+l b X + bj dj"'l bJ+1dJ

, di < x<djiq.
dj+1 — dJ dj+1 —dj ! s

We define an approximating map {Bto be

@ I:q;llzl_[ﬁj“:xl_'_ [ﬁjrlﬂ]+l I:q;l

dj+1 — dj dj+1 — dj

dj <x <dj+1;

where [XI_Stands for the closest to x point of the partition Q2, which is smaller than x; and
[XIStands for the closest to x point of the partition Q2, which is larger than x. In particular,
branches of the map @'are not longer than branches of the map ['g_“l
We define an operator T : ®g1 —» ®g2 by
1

ToX): = sgn d B3y)p(y). (3.20)
y O™ (x)

— 54 —
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Lemma 3.2.11. The operator T is a linear operator between two subspaces of step functions

associated to the partitions Q! and Q? (see p. 26 for definition): T : ®o1 - Pgo.

Proof. Linearity is obvious. It is su Lcieht to show that for any interval le O of the first
partition,

L 1
(TXa)09: = sgn d BBy )xey () (.

y O ()
o . o . I .
By definition of I we see yJ'éP—o iBdy) = [b; ] and yll£1+o T4y) = [b]'], therefore all points

of Qf [COF have the same number of preimages with respect to [} for any interval QF.
Moreover, @(Qﬁ) does not contain any point of Q! inside, as it is piecewise monotone on a

subpartition Q! Caf™. 1
Definition 12. We introduce the k-escaping set
Ex: ={x J#1,1] | i< k [x) [=F1,1]}. (3.21)

Lemma 3.2.12. In the canonical bases of @1 and @2

_ 281
ysg%#{x COF | () =y}<m o

Proof. Observe that the map is one-to-one on any interval I [J31, 1] \ E;, of the length
[ <2s7™.
Given an element le, consider a maximal by inclusion interval I [E}, n le, such that

[1] <s;™. We shall show that

1
_ 3
ry# x | [A(x) =y} < 3msj. (3.22)

There are two possibilities:

1. the map [{ is continuous on I [CEl, n le;

2. the map ['g_“l is not continuous on | [CE}, n le.
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In the first case the map [g]; is a bijection and (3.22) holds true.
Now consider the second case: the map ['g_“l is not continuous on I [E}, n le. We may

find the smallest kp such that ['gH(I) 41, 1]. Then

(1) n [-1,1] CE,—1+s07™) CA-s©™™, 1).

Q.

Let mg fef llo*g';”so‘l — 2. It follows by induction in k that for any kg < k < mg the im-

age [';II) n [—1, 1] may be covered by two disjoint intervals in particular,
) n [-1,1] CE1, -1 +8 +s5™) CA+ 8 —s5 ™, 1),
where 3% = @Sl Jg; and 82 = qsz Tg; with [5%] < s§7%*15, and —1 + 2 [T for
J=ko J=ko

all ko < k < mg. In particular, for any x3,x, CHsuch that [(x;) [(31,—1+s{°™™) and

[{(x2) CQ@—s°™™, 1) we have for all k < mg:
) — B0 (1 52— S5 — (—1+ 85 + sk ™) =2 25k M 4 B — G = 1

The map I*_:l%;ko is a bijection on any of the intervals (—1, —1 +s¥°™™) and (1 — sko™™ 1),
Therefore, we deduce that the map [230 is a bijection on 1. It follows that the image [gjo(l)
consists of not more than 3mg intervals each of which is not longer than s7°™™. Letn = ¢™0¢
and consider the map [1"™°. We claim that it is a bijection on any interval I [RIof the
length |I| < si"o_m_3. Indeed, if [;G‘mo is continuous on I, then it is a bijection. Assume

that for some kg < m — mgp the map [{;‘IQ is not continuous on |I. Then
K1) n [-1,1] CEL; -1 +s070T™M3 4 5) [(@—sor*o™™3 —5;1),
and for any ko <k <=m—mg
K90 [-1,1] CE1—1+ 515 + o m™3) g — gk+t — gork=m=3 )

By straightforward calculation we see that provided s; < 229

—m— 1
STo+k m—3 + SIJ(_+15 = -
S1
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Therefore for any interval 1 of the length |I]| < srlno_m_3 and for any two points X1, X, 11
with X1 & X we have that [§{x;) 8 [K{x;) for all 1 < k < m—mg. We see that the image [
may be covered by not more than 3mygs$ intervals of the length srlno_m_3. Hence we conclude

that for any interval [I| < s ™

1 1 3 3
sup# x [ [A(X) =y < 3mps] < 3msj + 3.
y K1

Since by Lemma 3.2.10 any interval of the partition contains at most two main branches,
the set Q n Ey is a union of not more than two intervals, which may be covered by 2 + 2%

disjoint intervals of the length s;™. Therefore

ry# x COf | [(x) =y} < 3ms} 5 <m -

1

Corollary 1. In the canonical bases of ®51 and @52 the matrix of the operator T satisfies

condition (D1):

[
max |Tjj| + 1 < mzlg
S2
Proof. Recall the definition of the operator T :
| I |
To)x): = sgn dBy)o(y). (3.20)
y g ()
Then for ¢ = Xoi We have
L 1 I | I |
TOE): = TiXez() = sgn d B3¢y )X (V) Xaz () =
i [Z1 i [Z:k, I:LZ_EIm(X)
| I | I |
= sgn dfBly)xo2 (¥);  (3.23)
VY 0™ 0nf
therefore
L 1
Tij = sgn d £3¢dy).
y 0T (Q§)n 0}

— 57 —
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The definition of the map @uarantees that t;; are well-defined; in particular
tij| < #{x [0} | I}x) =y COF},
and the right hand side is independent on the choice of y. Obviously,
sup#{x [0 | IPbg =y [k} < sup#{x LG | () =y LY,
1

Corollary 2. We have the following upper bound for a total number of preimages of a point

X [RI:
- e
sup y [RI| [A(y) =x =2m* — (3.24)
x [R1 So
] ] Ll
sup y [RI| y) =x < 2m2% . (3.25)
x [ So

Proof. By definition of a partition of the class G, the interval [—1, 1] contains not more than
2™ intervals of the partition; and intervals [—1—mg; —1] and [1; 1+md] contain not more than
mN; intervals of the partition each. Finally, both maps are bijections on the complement to

[-1—mj, 1+ md]. 1

Lemma 3.2.13. Let Q! be the canonical partition of the map . Let Q? be another partition

of the class G. Then

#1J) CIT0F CEL1 0 (@) 0 Em) = m2ssi”

Proof. We shall prove that

2 (m)
7] < IE@™)| < s7s;

Din? a}m) [(Eh

then the Lemma will from from the lower bound on the size of the elements of partition.
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Indeed, by induction one can show that

1 K _ ok
(k) s1—2
aA) <~ 5
*) |[|E(1 ! ) §1-2
ay [EJ

The case k = 1 is trivial. Then we proceed

—ad w0 . &« w0
|68y ) < |6 )+ 6785 =<

al" [y a* D E a® LENE, 1
k=1 _ ok—1 k _ ok
S -2 st—2
S515-17+2k5= 1 0.
S1—2 S1—2

L1
Corollary 1. Let Q! be the canonical partition of the map Eg] Let Q2 be another partition
of the class G; and let [@r'be a map defined as above on p. 54. Then
#{(i,j) CI®? C31,1] n B30} n Em)} = m?ssi™

Proof. The inequality for the map @—'follows from the fact that images of all branches under
adjusted map @'are shorter than the images of the same branches under the original map
. 1
Proposition 3.2.3. In the canonical bases of ®q:1 and ®q2 the operator T defined by (3.20)
is a generalised toy dynamo.
Proof. We have checked the condition (D1) already. We should verify the following conditions.

(D2)  #Djn < 3m?3s?™;

(D3) for any pair (i, j) [Sp we have that Tj; = 0 whenever |i — j| > mNs;

(D4)  #HAr=2m"2
where
L] 1 1 : 2 29 [ 1. — m_ .
JON NS A ONS . N6 =13=2 N ;
G

Ar: =

. : 2 2 1 1 L]
Din: = i) |:{_]\||...Nr}><{N|...Nr}|Tij§1.
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—1
To verify the condition (D2): #Dij, < 3s;™m?3 we shall show that |, |Qf| < 3s"m& and
then taking into account |Qi2| = % we get the result. Let E, be the m-escaping set as
defined by (3.21) above.

We introduce three subsets of the set Dj,.
Din': ={(i,j) [y | QF C[31, 1]\ BMOQf \Emm)}
— complement to the images of the main branches;
Din?: ={(i,j) [y | QF C131,1] n £3{O] n Em)}
— image of the points that were mapped outside [—1, 1] and back;
Din®: ={(i,J) (D | @ [13L,1] n IB{Q} \ Em)}

— image of the points that were inside [—1, 1] in first m iterations.
We claim that Di, = Dj,! [Dh,2 CD4n°: indeed, for any pair of indices (i,j) [Di, we
1 L1, m L1, m
have that Qj n Em B @. We shall show that . 1|Qf| = sT'md, . 2|Qf| < sT"m), and
#Din® < s7"m?3.
We start with Dj,! and recall the original partition al™ by the points of discontinuity of

the map [g] Let J(Dint) be the union of intervals with indices corresponding to Din?:

. —
J(Din): = (Qj \ Em).
it (i) Dk
We may write then
— [ —
107 <2 #{a{™ CIDinY)} - | EHa™)| < 2m*t — | Eai™);
o™ 30, ™ =L INE

and we shall show by induction in k that

L 1
2k*1 — IE‘glank))l < sK. k27K where [EId < 27K,

a{' [=1,1\Eyc
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The case k = 1 is trivial. Let b® be the canonical partition of the map [§] This parti-
tion has 2 elements in [—1,1]. There exists a correspondence between the sets of indices
T {i | a9 1,1} - {—2%...,2¢ — 1} that satisfies d[£ lgo= drkl |b§k&) and
1(j1) B 1(j2) for all j, & j,. In particular, sgnd@a}k)z sgnd@b%).

We split the intervals a}k) into two groups:

BX: ={j Cg2X,...,2k—1}| j = 1(i) for some i CZB;

By: ={=2,...,2—1}\BX

We also see that ['glb}k)) = [—1, 1] for any interval of the partition b,

1 L1 1 1
2K+t — K@D =+ ERI) - |Eta) =
a{* [=1L1NEy jmBf  jBf a{* [=1L1NEy
B I:I(k) K I:I(k)
= EEM)\EE +  En) =<
i B j B
ssi BRSO (T @S] + 245 + 2 ) =
jts*fl imEft
<s 2" 1 5 (am) +2"6£
B!

< sK(k — 1)3 + 2¥5 < s¥ka.
Therefore we deduce that

om+1 _ 87| < sT'- m27m%, where [T < 27k
j 1 ’ =2
a{' [=1,1\E,c

Since there are not more than 2™ main branches, and the length of intervals of the partition Q2

is bounded |Q?| < 2(s,™ +s;™), we get

2m+t — |@(k))| <M. M2 MY 4 2M(s™ 4 sTM) < 2mBsT;

al' =1, 1\E,c

provided s, < 2 < s; are chosen such that s;s, > 219 which is possible.
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The inequality for the set Di,? follows from 1 of Lemma 3.2.13.

Finally, for the set Di,® we observe that (i,j) [Dj,° if and only if there exist two
main branches aﬂ”),a}m) O such that for any k < m we have @}T)) [[3+1,1] and
@g‘)) [[31,1], and @aﬂm) n @a};")) nQ? 8 @. Since both aﬂ") and a};“) are
belong to the same element of the partition we conclude that either |[E'_°|(aﬂ"))| = % or
|[g](a};"))| < £. By Lemma 3.2.5 there are at most 2™~ main branches with this prop-

erty. Without loss of generality we assume the latter. Then by definition of @'we have

|I@aﬂn))| < Z +2(s;™ +s7™). Hence #D;, < 2m(-) 2 ¢ follows that
2N
#Din = #Din" + #Djn? + #Din® < 252™m3 + 2m<1—°‘>T6 < 3s{™m3,

as required.

The condition (D3) follows from the fact that the map @'is linear and on the compliment
R\ [—1—myj, 1+ md] (in other words, the complement consists of two pieces of continuity),
and, moreover, it is given by @x) = x + b on these set. Therefore, t;; = 0 whenever
li—j| >b-Ns6~L. Obviously, |b| < m3, so we get Tj; = 0 whenever |i — j| > mNj.

1

Now it only remains to show that the generalised toy dynamo, constructed from the map @

is & good approximation to the operator [f}

Theorem 4. Let Q? be a partition of the class G. Consider a sequence & [IEJ(R) with
Eld < 2™ and let Q! be the canonical partition of the map [2[1 Then for the opera-

tor T

@,(D - © defined by (3.20) and for any essentially bounded integrable function
g CIH(R) we have

I:ISE -
[T THWsg 2A/z+ag, -miglyl
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Proof. Let [gIg] =1 and let f = W3g. Then FIJ < [gIJd < 2™/2, since

1 L] 1
OhLEmMax 27™ ——  |g()ldx,2"™2sup|g(x)| <1.
i e Lo s x [E]
By definition, we write
1
Tf(x) = sgn %ﬁy)f(y); (3.26)
y O (%)
" an '
() = sgn 1 ()T (). (3.27)
y ™ ()

We begin with weighted Li-norm.

[ — B !I_Z; Ef(x) [ij](x)g <
[iva o
Ei-ms HMHeo
< o + I%f(x) — [ (X) Bx+ (3.28)
—oo 1+md
n=h L m
+ @51 ml + 6 I%f(x) — [EHH(X) %x+ (3.29)
—1—md 1

_I:I
|2| 2Ef(x) ['gji(x)gx (3.30)
i=N¢ !

We estimate all three terms separately. By the very definition, on the infinite intervals

N [ LI I
(1 + mY, +o0) and (—oo,—1 — md) the map [2‘] is given by [(x) = (=)™ x+  &Qd) .
i=1
Therefore, the map @'is one to one on each of the intervals (—oo, —1—md) and (1 + 6, +o0);

moreover,
" ((—e0, =1 = md) LA+ mj, +o0)) [(Foo, —1) [(1, +o0).

Observe that for the last point ay of the last point of discontinuity of the map [E'_“l we

have, using Lemma 3.3.3:

Ll (Y (-

P 5=rl
[FO)ldx = |(Wsg)(X)dx = o7 JWea()ldx = DNgLl<
aN aN j=N> | Jl sz

mN;
S
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The first di Lerknce we estimate by the sum of absolute values.

oo 1 ]
ﬁ sgn %%)f () — sgn % l%Jy)f ) x =

1+md

y O™ (x) y ™ (x)
. (@(X))—f(@m(x))x<2 ot ) [f ()|dx =
@1 |:|1 ljal I:-Iloo
=2 + + + [f ()ldx,
—oo a1 1 aN

where a; and ay are the first and the last points of discontinuity of the map [f). Summing

up,
Lo (| mN
|[§]£(x) =T f(X)|dx < 4md sup |[f|+4[F1 = 4 m52m/2+ 5 . (3.31)
1+m
Similarly,
EI—1—m6
[EH) — T F(ldx < smN; (3.32)

Summing up (3.31) and (3.32), and taking into account that [¥Ti1= 1, we get an upper

bound for the first term (3.28):

Ei-ms oo [
+ |00 — T FOQldx < 16

—oo 1+md 5

(3.33)

Now we use a rough upper bound to estimate the second term. Since by Corollary 2 of

Lemma 3.2.12 any point has at most 2m2'_—“;%|1:ﬁl preimages with respect to Hor [M; and

taking into account [FId < 2™/2,

Ig+m5 |:1|+m6
(@7 TFEldx < [EFCI+ [T Feoldx <

] 7] Lol
< sup [IEHE)| + [T F(x)| md < g m32M* 1 FI ] <
X 2
I;‘ @

< momG/2—a)

Therefore we get an upper bound for the second term (3.29):

;l_lqﬁ_cl

2 1 —1-—md

l%[gjj T )f(x)ax < m2m/2-a) @ I;l (3.34)

— 64 —
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The third term (3.30) is a little more complicated. We split the sum into two terms: long
branches and all other intervals. Let a(™ be a partition of R by the points of disconti-
nuity (cf. (3.19)) and let a$™ = (a{™,a{™) be its intervals. Let a,, = (—1,a™,) and

' n+1 n+1

= (ag?ll, 1) be the most left and the most right intervals of the partition inside the in-

terval [—1,1]. Let E, be the m-escaping set as defined by (3.21) above. By definition of [gin

and T,

N—m

2—”“i:N2|Q—i2| i2|[?j£(x)—Tf(x)|dx=
“_ 1 ]
Y] E Sgn%%}y)f(y) sgn%ﬁy)f(y)x.
i=Nf % 'y ™ (x) 9 LI (x)

Let us introduce two functions

MG ZXR R hGoo= s X O
y ™ ()

and

b x): Z xR - R; kg x) = sgn %ﬁy)x (m)(y)f(y)
9 03" (%)

Then we see that
1 1
hG.x) = son T W) ():
] y 2™ (9

and

ﬁ, X) = sgn %ﬁjﬂf@);

Jtzd g L™ (x)

both sums are well-defined, because they have finite humber of non-zero terms, since by

Corollary 2 of Lemma 3.2.12 the total nhumber of preimages of a point is not more than
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m32M+1sMs> M Therefore we may write

p_lil N
IO —TFOQIdx = E

021 3
|=N2| il 2 |N2| | ?

C—ri™— I—E‘H’TJ ':'@ I
= + + g,x) — x)x—

h(j, x) — kG x) E@x =

j<n@™  j=n™  j=nim i:le
O ) CEw a MY
= + + + o i, x) — kGl x)dx.  (3.35)
£ 2
j<n™ ™ rER aMuEs  jen™ i=NF L
First we estimate the finite sums:
1y || =g >=nl @ Q
o7 (,x) — g x)dx <
1QF] a2
j<n{™ J>n<m> i=N?
- NﬁNlﬂﬂNﬂﬁJ — EE =l
= (4,%) ﬁ@X)

=Nl—m k=N1 (m) =N_?2 i
k NI Ns r aj @I N
S]

= 2mN ii fl<2 ngl”;l <2 ;
< 2mNj5 - sup [tij| - sup |f| < 2mNj; S, gld = 2m Alzvrag,

(3.36)

for all s; = 2.
Observe that for any domain of a main branch a}m) By, and v,V Ijaf"), such that

[M(y) = EB{g) we have that sgn(f)y) = sgn(FY) = 1 and (IM)y) > s'. As before, let

a}m) = (a}m) J(T)l) Then

- (m) (m) (m) (m)
¥ Inf |([Eg)q maxﬁ )~ [@(a ), [@( j+1 J+l S%m
Hence for any f [WW5(L1(R)) we see that

1 2m/2
If(§) — F(Y)] < —5= sup(Ws0) "< gz my = 5o
sgm S5

Summing up, since the total number of main branches is not more than 2™, we get for the
first term of (3.35):

—m lj]:‘ m +a
%(j,x)—ll@,x)%xs 2 il xsz@zu2 @ (3.37)
oh

inf|Q2] _; 8s3m s3




3.2 DYNAMO OPERATOR

To estimate the last term, we introduce two sets of indices

D% %I t) CI®2 731, 1] n [DQ} n Em)l;:l
% %' t) CI02 [31,1] n B0l n Em)l.:|

By Lemma 3.2.13 and its Corollary 1, we see #D < m23s?™ and #D-£ m23s?™. Observe

that

e ]
@™ x 0% |a™ CEp, 0 CiHa{™ n[-1,1) [

1]

@ % 02) | (5,0 CI02 CE1,1] 0 BNQL 0 Er)

along with

]
@™ <o 1™ e, of CaE™ 01 1

1]

1 ]
@ x 02) | (s,t) CI2 C[AL 1] 0 [Y(Q} 0 En) -

. Hence we calculate an upper bound for the second term of (3.35):

" s e o — 1 L1

|QZ Xaem (y) + Xajgm) ) dx =

il oz m i =
Py (x) § O™ (x)
1]

o |[tijldx < 2 ™ sup|g| - sup [tij| - #(D [k

1 i tm! 2:'5? @

om Sy 21/2+0(s2

<2 Msup|f|

(3.38)

Now we collect the four estimates (3.33), (3.34), (3.36), (3.37), and (3.38) together and get
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3.2 DYNAMO OPERATOR

for any function g with [gI; = 1:

(TWs9 — W59 0] 02 <
mN Lodiro—o)g2 [l Llo1/2+a [yl L1 Lyl
S4m 21 T4 % 1 <

=16—— + m* ——
s'd S s 2l/2+ag,

for m large enough and s, < 2 <'s; chosen such that s;s3 = 21/2+29,

Now we turn our attention to the supremum norm. We may write

sgp%ﬂi(x) — B = sgp@ sgn %ﬁy)f(y) - sgn % W) @E

y O () y ™ (%)
iy | 1
= SlipE sgn %ﬁy)f () — sgn % %Jy)f ) E@E
(VA y@(x)mgil y ™ ()0}
P Ol 1
= sup + sgn %ﬁy)f(y) - sgn % '“%)f(y) Eé
T N{-mNs y T gnot y ™ 090
R Ly e | E— | 1
+sup sgn%ﬁy)f(y)— sgn%%)f(y)tﬁ (3.40)
N =mNs y 0BT (x)n 0} y [ 0)nQf

Observe that

sup r sgn %ﬁy)f ) — sgn % l%)f(y) DQE

N} —mNs y@(x)n()} y ™ () nQ}
NF+miNs—) NF+miNs—)
< 2sup #{y LTI (x) n Qi}sup [F(y)| < 2sup tij| sup [F(Y)| =
X 1 Q; X 1 Qi
NI —mNj3 NI —mNj3
N#
< sup |t sulp [F(Y)]- (3.41)
Ni—mN;s @

Our goal is to estimate the last sum from above via weighted L;-norm. Recall that f = W;g.
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By definition of the weighted L1 norm, we see

Wsg [ = —T |Wsg| =
|Qi| ol
Nit—mNs i
Al ai I NFiNs—y
=2 o | IWag| —sup [Wsg| + 27" sup [Wagl;
NE-mN; Qi Q Nit—mN; &
in particular,
N} N2 1
. N AU . Al i | 1 1
2 sup |Wsg| = DAWg L H-2 sup [Wsg| — 7 Wagl . (3.42)
Ni— ohy 1_ Ql |Qi| ol
i mN5 i NI mN5 i 1

We know that for any bounded, continuous, absolutely integrable, and piecewise di [eren-

tiable function f: R - R and any finite interval |

@:pf—iqim
|

Therefore

NE-ymiNsFy 1 1 %E N i |
| |Wagl

W,
u_pl 1] foxt o
d

mNB Q Qil X
%ﬁ/ég(x)@s I@ W (X — t)|g(t)|dt dx < ngﬁ lg(D)|dtdx =
=
= |g(t)| I@Mlxdt = Jv; |g(t)|dt < 2— sup|Ql (g1, ] 1. (3.43)

kd

% it 9} 0
Hence, substituting (3.43) to (3.42), and using Lemma 3.3.3
Nf g .
2M sup |2 Lohng  om
SUP|W59IS2mMag@++|@ﬂS m > + s WLk
NI —mNj3 1
2m+lN6
< S gl 1 (3.44)

Finally, taking into account [glg] = 1, we substitute (3.44) to (3.41) and get for the second

term of (3.40)

! x| —  —
2~m/2 sup sgn %ﬁy)f(y) - sgn % %Jy)f(y) EE'E

N —mN;s y O™ (x)n 0} y ™ )nQf
2m/2+1N6 2m2N5 @/231 @
< sup |Tij = 3.45
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Let us define A(X) def (x—s, ™, x+s,™). We have the following upper bound for the first

sum in (3.40):
ey Ol 1 1
sup + sgn %ﬁy)f(y) - sgn % %Jy)f(y) Egs
—o Nit—mNs yI:I_z_i:—lﬂ”'(x)nQi1 yEQm(x)nQil

<sup sup [FyD)—FOl<  sup  IFY) —FOI S S < peome (3:46)
x [RY1,y> CALX) ly1—yzl=2s, ™ S2 S
Summing up (3.45) and (3.46), we get in (3.40)
om2N; Fodrzg, Il L1 g3 Ll
o—m/2 B{Hﬁ _ &_ % 1 =3m —21 3.47
(by straightforward calculation).

3.3 Invariant cone in P.

In this section we construct an invariant cone in the space of essentially bounded and abso-

lutely integrable functions @ for the operator W s [}W s, which is independent of the choice
2m 2m

of [ET = 6. We exploit the properties of the Weierstrass transform that we prove below.

3.3.1 Discretization and the Weierstrass transform toolbox

Here we prove a few estimates showing that the image of the Weierstrass transform with
Gaussian kernel of a large variance compared to the size of elements of a partition may be

very well approximated by a step function on the partition.

Definition 13. Given a partition Q of the class G we define a linear discretization opera-
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tor Dqg:

Da: L1(R) N Loo(R) — @q n L1(R) N Loo(R);

L1 101 ) (|
Do: fB djXq;,» dj = 5 max f(x) + min f(x) . (3.48)
j oz Qj Qj

Definition 14. The Weierstrass transform Wj is a convolution with the Gaussian kernel
with variance &2

X2
Ws: f 5 ws [, where ws(X) = %%e_ﬁ. (3.49)
i
Lemma 3.3.1. Let f: R - R be a di [erkntiable function. Then

[Fl—- Doflg), <2 ™! :@%Qx. (3.50)
R

Proof. Indeed, by straightforward calculation,

1
- Dqof o, = oM [f(X) — Daf (X)|dx <
e o BN
1
[ o—ml
= — | max £(x) — minf(x)|dx =
k|Qk| Qe Qx

[ — —
<2 ™M |r122axf(x)—n§12inf(x)|sz_m gm@xz

Kz K Kz

=2 " :@mgx
r dx '

L1

Lemma 3.3.2. Let Q! and Q2 be two partitions of the class G(m, d,s1,S2). Let Dg1 be a
discretization operator and let Wy be the Weierstrass transform defined above. Then for any
bounded integrable function f

max(sup |Q}, sup |QZF]) 1
Mo W5 — W5 F [ = 6‘ 1 Lk s SAEY
2

Remark 5. The dispersion 3 in the Gaussian kernel is the same 6 as in the definition of a

partition of the class G.
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—1
Proof. We begin with estimation of the Loo-norm. Let Do:Wsf = ; 7 fjXq1. Then
J

X ks
Mot WsF — W5 F [d = supd ws(x — t)f(t)dt — dj XQl x)

x[R1 R

]
1 1 1
—su p%ax ws (X — t)F(t)dt — m|n W5(X —t)f(t)dt
S 2k 9L ®
1 =) -
== su | k- max% ws (X — t)F(t)dt
2 k [Z1 X R
=sup |Q | sup?—wé(x —bf (t)dt%
x[R] R dx
L] — (x—1)? x—1? %:ﬂw L]
< sup |Q%| sup [f ()] sup P e 22 : —e a7 <
—_=—00 X
Ql
< sup la—kl I

Now we proceed to the weighted L;-norm. Using Lemma 3.3.1 we get

Do W5 — W5 |_1—_|s 2~m-1 I:%Waf(x)@x =
= p~m-1 wé(x - t)f(t)dtx <2™m :@M@ IF (t)|dtdx =
—m 02
= m-1 |f(t)| E@Mlxdt = |f(t)|dt < p' il g,

ij

1

Lemma 3.3.3. Let Q! and Q2 be two partitions of the class G(3,S1,S2). Then an upper
bound of the norm of the Weierstrass transform is given by

W5 (3 2m - sup 0] - ~ No e NS gy (3.51)

SIS
Proof. We estimate the norm of the operator W3 on step functions first. Let ¢ @1 be a

. 1 1
step function on Q*. Assume that ¢ = cjxgl and [@Igl =1, that is
]
L1 I:I L1
max 27™  |cj|,2 ™ 2suplcj| =1;
jz

which implies

- /2
Icjl =2™, suplcj| = 2™°.
[iva
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Then

So we calculate

Wsplat ), =

] 2 J k [Z1 | Q
@F‘ ] — (T
ws (X — t)dxdt.
Q52 o1 2_pl I o
i i |02-a}>ms  |0Z—Q}|<md k
We know that
1
ws(X — t)dx < 1
R 5
We also observe that for any t IZIIJl
[— PR 5 t—ms e 1 e—m
WX —t)dX = ——- ws(X—t)+ ws(X—t)dx dx < .
2 2
—oijoms 10K 07 inf 102 o trm inf [QZ]
L 1
Therefore, taking into account that 2™ j Gl = 1,
— 1 - 1
CTgbm N = mNg
Wsolod,, < o inflaz] 1)1 =< sup1Qy] inflaz] o
k [Z§
Now we consider arbitrary function f CLL(R) n Lo (R) with (I, = 1. Then
- @
MW lgl , = T w5(x — t)f (t)dtdx
L1 le 02
k [Z1 k j
1]
2" [ (D)) — ws(x — t)dxdt =
9 k| Kl o
e e =0 =
=2="m [F(0)] ws (X — t)dxdt <
VAR 02— [>m5  |Q2—Q}|<ms 1971 9
- 1
m mN
<o |f(t)|E!an +35 5 gt <
i @ 102
Ii!a—m 3mN 1
<sup|Q} + 0

W;s0(x) = Cjws(x — t)dt.
jm 9
I = ml I ':’—l‘l [
E Cj ws(X — t)dtx <

kl il Rijm 9

T Tl Sls
]
km2m|Q| o2 o

HHF'—H

ws (X — t)dtdx =

ws (X — t)dxdt =
2
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In the last inequality we take into account that

1
L1
jozal 9y

Now we recall that inf |Qj1| =s;"/m and therefore, for s; <e

e ™ I;'_l Lon]

inf |Q2] |Q | e

while
& — 2m(1—0( logs, 2+a) > om
)
Therefore we conclude

3mMN;
5

(W5 o2, <2sup|Qj]-

The upper bound of the supremum norm is easy.

DN F [d = sup?wé(x —Of (t)dt@ sup [F(X)|.

x[R1 R x [R1

L1

Lemma 3.3.4. Let Q be a partition of the class G(sy, Sz, 0, m) where the parameters s; and

0 = 27™M% gatisfy the inequality log, s1 < 2a then
(W5 X[—1,1) — Xj—1,1) o)< 27™2. (3.52)

Proof. Obviously, sup [WsX[—1,17(X) = X[-1,1(X)| = 1. Now we have to find an upper bound

for DWsX[—1,17 — Xi-1,11 @)L, -

o-m
ﬁvé(x OX—1,yMdt = X—1 1](X)§ =

W5 X—1,11 — X-1.1 kel = | |
jrzat Il @

We split the sum into two parts: over the intervals inside [—1, 1] and the rest

L (- LI
"— L1 LT 1 ik
ToNl 1— ws(x—1t)dt dx + + ToNl ws (X — t)dtdx. (3.53)
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We begin with the first term of (3.53), that is the sum of the intervals of partition inside the

interval [—1, 1].

L 4 1
— 1-— ws(x —t)dt dx =
NN —Ne sy N pdm 1 -
= + + —

1— ws(x — t)dt dx. (3.54)
1

Q; . _
J=N J=Nj+mNs  j=Nr—mN; 191 2

We estimate each term separately. The first term of (3.54) has only mN; elements:

NiNs o LI T [0 NN LI 0 1
— 1-— ws(X —t)dt dx < — 1—- ws(t+ 1)dt dx <
i=N, |QJ| Qj -1 j=N, |QJ| Qj -1

J
— 4 1
sz_mN5 1-— ws(t)dt .
0

We have the following upper bound for the second term of (3.54), since for |t| <1 — md the

integral Lirll ws (X — t)dx is close to 1:

Negqmvs—3-m L1 L4 .

— 1— ws(x —t)dt dx <
1

j=N|+mN5 IQjI Qj -
NegmNs—pm LI T4 1
< o 1— ws(l—md —t)dt dx <

1 Ddms (]

= 2_m(Nr —N;—2mNj) 1-— ws(t)dt .

—md
The third term of (3.54) has only mNjs elements, so we write
m b 4 (]
o 1-— ws(x —t)dt dx <

N——gm 1 - — 4 -

— 1- ws(1—t)dt dx = mNz2™™ 1— ws(D)dt .

j=Nr—mN |Qj| Qj -1 0
r 9

Putting all three inequalities together, we get the following upper bound for the first term
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of (3.53):
Y o Y (I

B P 1—g_méw(t)dtlj<

=om 2 om—1 s =
ZTNH e R e | - ms Ll 1

<—: —+0 + 1—— w; (t)dt + ws(t)dt <
om 5 m 5(0) s 5(t)

_ang B BV ey s D gy,

—om 2 2m T — om”

Recall that Ny < 2M17%109s; 2) py definition of the partition of the class G. Therefore we

complete the estimation of the first term of (3.53) :

1 [
NF o=l ' [] ]
o 1—  ws(x—t)dt dx <2 Malogs, 2 < p=m/2, (3.55)
j=Ng A -1

Now we proceed to the upper bound for the second term of (3.53).

B e = !
i=Nr <N 191 9 -1
2—m Iﬁl—l lj1|+m6 @ @1—m6 g—oo |__b_r1|
s —— + ws (X — t)dtdx + + ws(X — t)dtdx <
inf1Qj]  —1-ms_ 1 -1 —oc0 1+mé -1
- 4 e i
s —— ws(t)dt+ ws (X + t)dxdt + ws(X — t)dxdt <
2™ inf |Qj| 0 6( ) —1 1+md 5( —1 1+md
__amb It 5% e ws(t — 1)dtdx + e w;(t — 1)dtdx <
= . — ) - ) - =
2minf|Q;] 2 1 1+md 1 1+md
2mo
- 7 —m
= ominfloy) T

We observe that

2md oM — 2msy"

E——. — e—m <= 2—m/2—1,
2Minf [Q;] 2m(1+a)

under condition that s; < 21/2+%_ Therefore, we get the following upper bound for the second

term of (3.53)

[ 2 !
+ s ws(x — t)dtdx < 27™/271, (3.56)
i>Nr  j<N 1951 o -1
r |
Summing up (3.55) with (3.56), we get (3.52). 1
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Proposition 3.3.4. Let Q! and Q2 be two partitions of the class G(3). Let g; = 2My=1/2)

1 1
Let ¢ [CCone &1,Q% be a step function. (See p. 37 for a general definition of cones). Then

1
Doz We¢ 2> 7 (@] (3.57)

1 1
Proof. By Lemma 3.3.3 above, for any ¢ [Cone £3,Q?! ,

mN
(W5 Lk —ns [l
S
By Lemma 3.3.2,
[Dlo2WsX[—1,17 — WaX[—1,11[ed = 2. (3.58)

We can find an upper bound for the weighted Li-norm using Lemma 3.3.1,

]
—m— Ly
I:DQZW5X[_111] - WéX[—l,l] @.Ll =2 m-1 IEW5X[—L1](X) X =
R
1

]

— p—m-1 E iwé(x — t)dtx =271 ws(x +1) —ws(x — L)[dx <2~™. (3.59)
R —1 OX R

Therefore

(D2 WsX(—1,1] — WaX[—1,1) 2= 21 7™/2, (3.60)

Using Lemma 3.3.4,

W5 X[—1,11[el = D119 M5 X[—1,1 — X[-1, =1 — 2~m/2,

1 1]
Consider a step function n = dx;—1,1; + ¢ [Cone ¢, Q! , with @M= d. By Lemma 3.3.2

1 om(y1—1/2)
5P — DoWsl o k= 7 ML = d——f—; (3.61)
s'd S50
and by Lemma 3.3.3
mN Ng2mv1—1/2)
W s o [ d— (3.62)
sh'd s
summing up the last two (3.61) and (3.62) together
Dige Wy s d2ma— 12 T 2L
2
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We have the following upper bound for the error of approximation for a function from the

e . :
cone Cone &1, Q? , using the inequality (3.59), (3.60), and (3.61),

(59 — D2Ws@ [ k= d W5 X[—1,1] — Do2WsX[—1,1 e DAsY — Do2Ws [2 =
1] om(y1—1/2) 1

<d 272 4 3.63
SR
We may also write using and Lemma 3.3.4 and (3.62)
W5 L= [AWsX[—1,1) + We = d W X1 1) WY =
L [
=d -1,y WeX(-1,1 ~ X1, 21— WY =
L] N 2m(ya—1/2) [
>d - —27™2_ 0% " (364)

m
S50

Hence we deduce from (3.63) and (3.64)

(Do Ws@ o = D@ - W@ — Do We @ [ =

1
>d ?_ 0=M/2 _ 5l—m/2 _ pm(y1—1/2) (N; +1) .

m
sh'0

We can simplify and write, dividing by d,

1
[Mo2We¢ 2> - [@T]

3.3.2 Constructing an invariant cone

We shall construct an invariant cone around the cones for the discretized operator T. First
we extend the cones from ®qi to ® and obtain a pair of cones for W5 T ; which depend on the
choice of the first partition and hence on the sequence &. Then we get rid of this dependence

using estimates from the previous Subsection.
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Proposition 3.3.5. Let Q, Q2, Q3 be partitions of the class G(3). Let T : 51 — ®p2 be a

generalised toy dynamo. There exists a humber % < a < 1 such that for 6 = 27™% we may

def 1 llj
choose y, = y1 + a(l —logg, 2) < 1/2, and then for any n [Cone 1,Q" we have

] . om(y2+1/2)
DqosW;T : Cone 1,Q' - Cone o (3.65)
2
[DigsW;T Nz 2M 3 mi (3.66)

(See p. 37 for definition of the cone).

Proof. We define an operator E: ®g1 — ®Pg2 as before in (3.16). According to Theorem 3
1 1 ] ] _ _

p. 45, we know that T: Cone 1,Q' _ Cone 2112 02~ Consider a step function

I R .

N = dX—1+¥ CQone 1,Q* . Then Tn = d(N} — N})X(—1,1) + W1, where the norm is

bounded O = [EW + (T — E)nLk d2M32+v1)  We may write
DqsW5T N = DgaWs(d(N; — I\||1)X[—1,1] + 7).

Using Lemmas 3.3.2 and 3.3.3

mN;j +

1
[(DosWsW1 g WY, [ H [DosWsh — Weli = S [} =
2

< dzm(l/2+y1

mN;s + 1
)ST' (3.67)

2

So we conclude using Lemma 3.3.4 that

[DlpsWsX[—1,1] — X[-1,11[e E

< MlgsWsX[—1.1] — WoX[—1,1) B MeX(—11 — Xj-111 5= 3272 (3.68)
Then we may write

DasWs(d(N} = NDX=1.17) = d(NF = N)X[—1.17 + 2,
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where y, [@lyz and (3.68)
[ G d(N; — N Migs WaX(—1,1) — Xj—1,11 BE d(N} = NH21~™/2,
Hence
DosWsT 0 = DosWa(d(N7 — Ni)X-1,1] + Y1) = DosWalps + (N — N{)X(-1,17 + ¥z,

where using (3.67)

I:DQ3W5qJ1 + llJZ @< mlb s H DJQ3W6qu |%——|< 21—m/2 + 2(y1+l/2)m ' mN5 +1 -
d(er—Nll) - d(er—Nll) - er_N|1 s
2(1=1/2)m+3 N

< 21—m/2 + —
S50

Substituting 3 = 279M and N = 23721095, 2) 'we set vy, =y, +a(l — logs, 2) and get

- om(y2+1/2)
D3sW;5Tn = dX[—l,l] + (3, where [ Z£d ——

s3
-

Definition 15. We extend the operator E defined between two spaces of step functions
by (3.16) to bounded integrable functions. Given a partition Q! of the class G we consider a

map go: R - R by
1

TH Z=2, if a < x <b for some interval (a,b) = Q} [[31,1]

go(X) = (3.69)

X otherwise.

and introduce a linear operator E: L1(R) - Lo (R) defined by:

1
ER)X) = f(y). (3.70)
y g5l (%)

Lemma 3.3.5. For any bounded integrable function f

] ] 2m(3/2+yl)

|[EHH)Idx = [EF(X)|dX + ——7— [FIL]
R R sg
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Where 0 < vy; < 1/8 is chosen such that

S1 m
mo - < 2mv,
2msy

Remark 6. The statement of Lemma 3.3.5 and the argument below hold true for the map @'

as well.

Proof. Let a™: = {—co = a™ < a™ < ... < a{["), = +co} be a set of points of
: - (M) — (M) M)y o -
discontinuity of the map Egi}zand let ay = (aj ,aj+l) be intervals of the partition. We can

Let us introduce a set of indices of long branches

L1
1M T T<j=N| a}m) is a domain of a long branch of the map [ .

split the integral into two

L EHi-ms  Hoeo [ Ly ms
R|[?E(><)|C'X= A |EEH () dx + 5|[§‘E(x)|dx.

—Ooo

| L
To estimate the first term we recall that [gi}ﬁ() =(—1)"x+ &) forx< agm) and x > af\lm).
i=1

Since [£1.J < &, we see that H E(j)B< md and write

j=1
(EHi-ms e [ Ei-ms He E@ 1
+ IEHRCAldx = + sgn([E) () F(y)dx =
—oo 1+md —oo 1+md yEQm(x)
Edi-ms Heo [@7 . 1
= DM EDT - EG) k=
—co +m j=1
Edi-ms o Eél:l ™1
= A D" (x—  &3) fx=
—co +m i=1
@l I:-Iloo 1 @—l I:-Iloo 1
= + [F()ldx = + [ET(X)|dx.
—oo 1 —oo 1
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Consider the second term.
Ly ms Llems H 1
ESEI(X) BX = sgn(@ﬂy)f(y) X =
—1—md —1—md y ng(x)
Ig+m6
= ﬁ sgn(IM () n a{™)F (") n a}m))gx =
—1-mb

Liime M1 01 )
- ﬁj sgn([M X" () n &™) F (" (X) n a}m))x <
—1—md j Dﬁ“) jﬂﬁn)

Lbms Q C—1 I
< (") n ™) fdx+
-1

—md
™ j o

I:1|+m6 @

+

I:g i I;I H [Z—J H Q —_

| ——
= If(Y)Id([?j(Y)) + - [T (y)Id(L2(y)) Sgn([?j)%) =
j s 2™ jrgw %
=}
< U ()|'[2]((

™)) —— IDE™)]
S y+ O o

(
m) (m)
aJ

E['(jn)

) e INTINC) 1| 1
= L e o] dy + sup [F(X)| I ) =<

j=Np 9% j o

|90(Q))

o] dy + sup [f(x)| - sup [tij| - sup|Qf| - #(Din)-

N
= o IfWI—51—

Observe that

N =
TO)Id@o(y)) = If (95" () n Q)ldx = . [EF(A)dx.

. Q: - -
J=NL j=Nt

So we may proceed

Ig+m6 q
EEE(X)%KZ IEf(y)Idy+Sup|f(X)| sup [tij| - supQf| - #(Din) <

—1—md
L] Con]
<2 |[EFf()|dx + 2™/2 [FI 1 m? ? - 3m28s2™,
R 2

Recall that mo - stm < 21 50 we may conclude

e -
6 %‘jf,(x) Bx <2

2m(3/2+y1)
|Ef(x)|dx +5 I
—1-md 52
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L1

Lemma 3.3.6. Let Q', Q?, and Q3 be partitions of the class G. Let T be a linear operator

on the main space such that T : ®g1 - @1 is generalised toy dynamo. Assume that

L] L] m(3/2+y1)
ITf)ldx =  [EF(x)|dx +
R R

m
S

3m
Si

where 0 < y; < 1/8 is chosen such that mo - sy < 2™V1. Then for any essentially bounded

and absolutely integrable function f
N3
W5 f g 5= [FT3] (3.71)
Proof. We shall show that there exists a polynomial @-slich that

W5ES [ 12 OGh) (FT)

and the Lemma will follow. By direct calculation, substituting N5 = 2M(17109s; 2) gpq
d = 279M we see that

2m(3/2+y1)

N
d

m

S2

under condition that 21/2*v1*+a(lods; 2-1) < o) je for s, < 2 su [ciehtly large, or, in other
words, for > = log 3* small enough.

By definition of the norm we calculate,

I\i?l—_lzlflf
L e
iz 9 B i=NZ af 15
1 N NéyiNs =i IF ()| L1 r— — L IF )|
+ + dy + + dy. (3.72)

ar 19l ar 19l

J=N—mN; J=N} J<NE—mNs  j>N1+mN;

We estimate each of three terms separately. For the first term we have the following lower
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bound, using |Qj| - dgo(y) = 2 for any y [Qf [131,1].

) — Y= i
Soay= ey =3 ie)idanw) =
j=Ng A i=Ng j=Np 9
1 '\iﬂ_—g_l 1 L4
= IF@o ) nQhldx =2 [EF)(x)dx.
2j=N|1 2
Thus for any function f
=
[EF(x)|dx < 2™+ (141 (3.73)
-1

Consider the second term of (3.72) now:

R — LT iy T 1 B Lalyms 1
)l
+ Ql dy = su Ql + |f(y)|dy =
j=N,1—mN5 j=Ng le | j I p I j | —1—md 1
1 m=N5 Y
= o0 + (EF)(y)ldy
sup |le| -1-ms 1 | |
Thus
m=uE Ll ms 1
+ IEF)(y)Idy < 2™ - sup|Qj| - [FIL] (3.74)
—1—md 1
We have for the remaining term of (3.72)
+ L 107 dy = 2™ + [EF(y)[dy. (3.75)
J<NEP-mNs  j>NE+mNg 5 D 1+md  —oo

Summing up the three inequalities (3.73), (3.74) and (3.75) together, we get

1]
[EFf(y)ldy < 2™ [(FT4] (3.76)
R

— 84 —
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Taking the last inequality (3.76) into account, we estimate the norm

@ []
WsEfgE=2"T = ?W(;(x — t)(Ef)(t)th =
i |Qj| Q¢ R
10
<2 e8] ws (X — t)|ET (t)|dtdx =
i ,/‘ jI Q¢ R
- =h
=2=m =3 ws (X — t)|EF(t)|dtdx =
j IQjI Q3 1

b kza Qk

r=h O g Y
=27" [EF(D)] + oF , Wa(x— Ddxdt <
kzn % |Q3—Q[>md  |Q3—Qj|<md I j| o}

L-m mN [
<2o™m + =0 Ef(D)|dt <
inf |Q3| 3 Rl ®l

4mN;
d

=

§d W

Taking into account

L] L]

2m(3/2+y1)
ITf@)|dt< |EF(t)|dt+
R R

m
S

we calculate in a similar way

L-m mN [
m + 0 T f£()|dt <
inf Q3| 3 Rl |
Ch-m  mng mREL om(3/2+y1) 1
- <
ianQngJr 5 R|Ef(t)|dt+ g Hhl =<

2
N5 L1 2m(l/2+y1) 1

d sy

MWsT flk 2™

—-m

for 0 <vy; < 1/8 and m large enough. —1

Recall general definition of cones associated to a partition Q (p. 37):

1 L 1 N1 1
Cone(r,Q) = n=dx—1y+¢1¢= CiXe;: ¢j =0; [plgl<dr . (3.6);
VA =N
e def 1
Cone(r,e,Q) = f=n+g,n [Cone(r,Q), [Glal< Mgl 3.7).
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Theorem 5. Let W5 be the Weierstrass transform defined by (3.49). Let Q!, Q2?, and Q2
be three partitions of the class G. Let a linear operator T : L1(R) - Lo(R) be such that
T (®n1) @) is a generalised toy dynamo. Then for any m su [ciehtly large and s = log 2—;
su Cciehtly small there exists % <a<l rnm CIle(m) [C=Edm) [Tkuch that

_— 1 o _— [ (I
W;T (Cone 1,&1,Q' ) CCbne ry,&,0Q% with 8 = 2%, Moreover, the norm of any func-
. — I:I |:I -
tion f [Cone 1,g1,Q' grows exponentially fast W5T f [31= 2M° [F1]

[ R | ] 1

Proof. By Theorem 3 on p. 45 we know that T (Cone 1,Q! ) [Cbne 2™v1=1/2) Q2 ~Con-
. . L1 ol Lyl .
sider a function n = dx—1;+¥ [Cone 1,Q' , such that -, Ey = 0. By Proposition 3.2.2,
for any step function ¢ @1 we have [T — E)¢ < 2M1/2+Y1) [@I ] Using Lemma 3.2.3,

we calculate

TN & dTiX—1 g O LE dEK-1y + (T —E)X—1,yk+ O —E)y +EYLE

= d(N} — N — 2d(2"®/2HV1) 4 1) > g(er — N} =d2™3 (3.77)

Consider a function f = n+g [Qone Elsl,Ql I,:Iwhere n [CCQone ?Ql I:z!ls above is a
piecewise constant part; and [gI; k< de;. We may write WsT f = WsTn+W;Tg.

We shall show that for & = 27™% Jarge enough compared to the size of particles of the
partition, WT f may be approximated by a step function from ®gs. We write each term as

a sum of a step function with remainder, and estimate the Q3 norm of every term. Let

W5Tn = @1+ 91, where @1 = DosW5Tn, and gy = WsT n — DgsW5T n; (3.78)

W;5T g = @2 + g2, Where 92 = DosW5T g, and g2 = W3T g — DoaW;5T g. (3.79)

Using Lemma 3.3.2 and Proposition 3.2.2 we estimate the Q3 norm of the first remainder

term [g4 1]

[TIn 21_ 2d(N} — NP - dzm’
S S sh'd

[ 1= DWsT N — DosWsT NGk (3.80)
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since
[T [0 — E)nH EhGk d2"@2Y0) + d(NF — NF) < 2d(NF — NP).

We also know that [Tlg < si"[gIy) therefore we have the following upper bound for the

second remainder term [gd [31

[Ty IZI< dsy"eq
sMe T sy

[gd = DT g — DosWsT gl =

(3.81)

1
Since Tn [C@one 21712 Q2 we may apply Proposition 3.3.4 to estimate [@] [z us-
ing (3.77)

[@] = [DgsW;sT niz= % [T &= d2™ .

Finally, for [@} [3we get, using Lemma 3.3.6

[@ = MDosWsT g WT g H [WsT g — DgsW,T gk

sSmT@I_H @lzdg 5mN;s + —= . (3.82)

m
S

We would like to find a number 0 < ry(m) [T duch that for some dg

@1+ @2 = doX[—1,17 + ¥ with [z dor; (3.83)

and two numbers 0 < g,(m) [C€:dm) < 1 such that the following inequality holds true

(g1 + g2 [ k= doeo. (3.84)

1 .1
We apply Proposition 3.3.5 p. 79 to the function n CCone 1,Q! , and get

~ ~2M(y2+1/2) ~
@1 = DqsWsT n = dX[—1,1) + Y1 wWhere [} [31= dT and 2M°d <d < 2™Md. (3.85)
2

with y,: =y1 +a(l —logg, 2). Using the inequalities (3.82) and (3.85) above we write

1 m
1

[l = [ + Y e dea—1 N5 + z% + d2m<V2+3/2>S—m. (3.86)
2 2

87 —
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Therefore the condition (3.83) on ry holds true if

e 1 gmd
5 No+ L < 2™, (3.87)
S2
om(y2+3/2)
— < rp2™3, (3.88)

2

We can find a lower bound on dg from (3.83), using upper bound for [z 1from (3.86)

[ddX[—1,1 = [@] + @2 — Y= |j§([—1,1] +U1+—UGE
> (A1, (3 [ + @ (31 Wiz d2™~* — 2(Tilz =

=d2™ 4 —dr,2™ 7t = d2™?,  (3.89)

for all rp < 1/2.
We can find an upper bound for [g4d + g, CSumming up (3.80) with (3.81). Then the second

inequality (3.84) on &, will follow from

2m g8
+ 1 1 S 2m—2
osy'  &sy

€. (3.90)
We claim that the three inequalities (3.87), (3.88), (3.90), and conditions of Theorem 3 on

; — 15 -1 — s — 2 — 4 — s 1
p. 45 hold true with o = 33, y1 = 5, r, = 0%, and &, =13, & =13, if 2 = Iogé < 5 s
small enough. In particular, we get

o 1 L4 s
W;T (Cone 1,r5,Q ) CCbne rp,15,Q°

for r, = 8s4. The condition on the norm W;T f = 2™ [FI follows from (3.80), (3.81),

(3.86) and (3.89). 1

Corollary 1. Under the hypotheses and in the notations of Theorem 5 on p. 86, we have for

r2:56714:
L1, U L1, 0]
W5 T:Cone 1,r5,Q° - Cone rp,r;,Q° ; (3.91)
L, 0 -5
[(F1CCone 1,r5,Q" : (W T flgk=2MFIL] (3.92)
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Proof. The theorem follows from Propositions 3.3.4 and 3.3.5 and Lemma 3.3.6. If we replace
0 in the Gaussian kernel by % we shall multiply the upper bounds in the inequalities by
polynomials. Since the estimates are based on comparison powers of 2, the results still hold
true. 1
Theorem 2.(Invariant cone) There exist a measure preserving piecewise-smmoth transfor-
mation f: R - R, a cone C in the space ® of essentially bounded absolutely integrable vector
fields on R, and a norm [=1[C1h @ such that for an m [Irge enough and any sequence

[ETd <3 with § = 27™M9 for 2 < a < 1 we have (3.1)

_ _ 1
Wo fiWs :C - C;  OICT: OW s fjW s 2 ) (P IV

Proof. We choose the transformation to be ¥ = [Jand pick up a partition Q of the class G.

Our goal is to show that there exist four numbers ro(m) [Crdm) and e,(m) [Cedm) 11

such that
W; [T}Ws : Cone (r1,1,Q) — Cone(rz, &2, Q) [Cbne (r1,&1,Q). (3.93)
[F1CCone (ry, €1, Q) : W, [FWs T [gl= 22 [FIg] (3.94)

Let Q! be the canonical partition of the perturbation [Eﬂ First of all, we shall find a number

1 .1
r1 such that for any n [CCone (r;, Q) we have Do1Wsn [Cone 1,Q! .

Since n [Qone (ry, Q), we may write N = dx—1,9 + ¥, where § = CiXQ; cj =0;
VA =N
and [l < dr;. Then
Dq:Wsn = dDg1WsX[—1,11 + D1 W5 .
Using Lemmas 3.3.2 and 3.3.3 we get
mN;s + 1 2mN
Mg W Gl W GH MigaWs — WsP G dry ané <dr 5sm6
2 2
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and for the supremum norm we have D1 W3y [od < [Qled. Summing up,

2mN;

EDQlWél.IJL]___IS drlas—m. (395)
2

Using Lemma 3.3.4, we calculate

(D1 WsX[—1,11 — X[-1,y . E

< Mg WaX[—1.1] — WaX[—1,1] GH DVsX[—1.1] — X(—1.11 3= 272, (3.96)

which implies dDq1WsX[—1,17 = dX[—1,17 + Y1, where Y [@ps, [ L= d21=™/2 Hence
Dq:1Wsn = dX[—1,1) + Da:WsY + Y1, where

2mNj;
osy!

Mo W5 + 1 I dry + d2i~m/2,

[ I
By Lemma 3.2.2, p. 41, in order to guarantee D1 Wsn [Cbne 1, Q! it is su [cieht to choose

the parameter r; [Islich that

2mN; 1
<—
osy! ry
Let us set
def 535“
r = . 3.97
17 amNg (3.97)
We can also notice using Lemma 3.3.2, that
(D W—W)Illsidr—i (3.98)
arWs = Weh sMs ' T 4mN;' '
N 1 .
Taking into account that Do:Wsn [CCbne 1,Q' and (3.98) we conclude
1 1 1
Do:Wsn + (DgiWs — Ws)n [Cone 1, ——, Q! . (3.99)
4AmN;

LetT : ®q1 » P2 be a generalised toy dynamo, approximating the operator %constructed

as described in Theorem 4 on p. 62. By straightforward calculation we see that the cone

1 1
Cone 1, 4m1N5 ,Q! satisfies the assumptions of Theorem 5 on p. 86 for any £2 <o < 1:
1 < 2m(cx logs, 2—-1) om(o—1) ~ 2—% — 63_12
4mN;
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Therefore, by Theorem 5,

W;5T (DoiWsn + (D1t Ws — W;s)n) [Cone 083%4,016,Q .

_— [ 1
We may write for any partition Q3 of the class G and for any f [CCbne ry,&1, Q!

W [EIWsT = W5 W5 (n + 9) = W5T Do Wsn + WsT (W5 — D1 Ws)n+
+ DgsW5 [EWsg + W (I8} T )Wsn + (Id — Dgs)Ws [F}W5g.  (3.100)

We are interested in the coe [cieht in front of the term X;—; 45, which corresponds to the

“cone axis”. Let E: ®o1 —» P2 be a linear operator defined by (3.16), p. 42. Then

W5T Dq1Wsn = WsT (dX[—1,17 + W1) = Ws(T — E)(AX[-1,11 + Y1) + WsE(dX[—1,1] + Y1) =
= W;(T — E)(dX[—1,1 + W1) + WsEWY1 + d(N} = N (WsX(-1,1] — X-1,1)+

+d(NF = NDX—1,y = d(NF = NDX—1,9 + U2; (3.101)
where
W2 = Ws(T —E)(dX[—1,1 + W1) + WsEY; + d(N;} — N|1)(W6X[—1,1] = X[~1.1):

and its norm may be bounded using Lemmas 3.2.2 p. 41, 3.2.3 p. 42, 3.3.3 p. 72, 3.3.4 p. 74,

and Proposition 3.2.2 p. 42:

[ G DWs(T — E)(dX[—1,1) + W1) G DAE W [ [N} — N (WsX—1.1) — X-1.17) =

< domzzwyyMNe | oMNs | om—151-m/2 g5 & om=3. (3102
dsy’ dsy’

for a suitable choice of s, <2 <s; and y; = %

By Theorem 4 p. 62 we get, using Lemma 3.3.3

N
(W5 (1F) TIWonlats o - [} T)Won [z
2

oy, Tl O s
= 5?6 . 21/2+(X32 Mdm N5 21/—235 . (3103)
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Using Lemmas 3.3.2 and 3.3.3 we obtain, taking into account that [gIgl< deq,

< 2de —3N6 i
m - m m - 1 2 3 '
S Sy S2 sy 0 S5

(3.104)

[THW =
[{d — Dg3)Ws [}Wag [a 1= o I@< des m2 l%l ~MNg

Combining (3.103) and (3.104), we have the following upper bound for the sum of the last

two terms in (3.100)

Mé(%— T )W5r] # mﬁ - DQ3)W5 [%Iég =S
g3 Ll m3N; 24, L]

+dgg—— —&
1/2g2 2 3
2125 0 S5

(3.105)

Applying Lemma 3.3.3 and Theorem 4 p. 62 again, we get

mMN; m2N5 S%m

W55} 7 TOWog = T () y TIWaO B - oy o (G121

< de;Nym? st
= 1722
212y

By Lemma 3.3.6, taking into account Lemma 3.3.3,

N5 N2

[W5T Wsg [ 5m 5 [Wsg [ 5delm25m52.
2

Hence summing up the last three inequalities we obtain:

Migs W5 W59 3= [(Id — Dgs)Ws W59 laH MW (I T )Weg e DT Weg [ 1<

<de M°Ns =25 @+ desNym? I:IS% I§I+ 5de;m? N
IR TS 1R 2122 U sme2
= d 3N5 Sg.n é 52 S%m +N SEn -

=g gm g 7O gma T gm

We see that for sz = log 2—; su Lciehtly small and a is as chosen above,

2 Ll Lrn]
q—l T knd N; @—2 11
21/2 S1

52

Therefore, we may write

2

N
[Dlgs W5 [[}W5g [ dezm?® 52 s,ém' (3.106)
2
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Therefore we deduce from (3.101), (3.106), and (3.105) that in order to get the inclusion
W5 [Qﬂ/af [Cone (o, €2, Q) we need to make sure that for some 1 £, &, the following

inequalities holds true:

N2
2dro(N} — N mam35255 ; (3.107)
2
3 [ 3N [od, Dl
S m=>N;
2de(Nf — N Cdm®N; -1 + deg 3—31 . (3.108)

2
We know that N} — N! = 2™~1 therefore we may choose & = 53 and get in the first
inequality

1 m2N52 _ im22m2(1—0(I09512)

2m(1+20((1—|ogSl 2))
rh=>032——9% =032
2 4522msMm 4s . 2—2am pm

1
=032

m>2
4 s
It holds true, if we set rp = 66*14, as in Theorem 5 on p. 86. Comparing it with the value of

. 63
we see that ry < r; provided log, s; + alogg, 2 > agy + 1.

_ ot
M= Zmng

It remains to check for the second inequality that

Clg Gl meng Do o

_ + 032 —
23/252 452 s3

€, = m?Nj (3.109)

We see immediately that we may choose s; and s; such that % > log 2—; > % and then

MmNy oL Thme S Mg mNa ST g it e
23/253 S% . ol/2+alogs, 2 T 452 Sg - Sg
Hence we conclude that for r; = %, r, = 66*14, € = 53 and & = 524 we have
W [?Jﬂ/g;: Cone ry,€1,Q" - Cone(rp, &,Q) [LCbne(ry,€1,Q). (3.93)
The second inequality on the norm
m—2
Mé L}.Tmlé |m(r1,£1,§2) @2 2

follows from (3.107), (3.108) and (3.101) immediately. 1
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Corollary 2. Under the hypotheses and in the notations of Theorem 2 p. 33, let us choose

m
dsh

i <1 _sA
amig; F2 =064, €1 =032 and g2 = 024. Then we have

four constants r; =

W5 [IW 5 : Cone (ry, &1, Q) — Cone(rz, €2, Q) [Cbne(ri, &1, Q)

[F1CChne (r1, €1, Q) : W5 [W s F [gl= 2" ? [FIgl

The constructive proof of the existence of an invariant cone is complete. Fast Dynamo

Theorem now follows as described in the Section 2.2.

Theorem 6 (Fast dynamo on R). There exist a measure-preserving piecewise-C?2 transfor-

mation IR — R and an essentially bounded, absolutely integrable vector field v such that
. .1
lim lim =In |{:elxp(6A) @PVI%| >0,
d-0Nn-oc0o N 1

The map [inay be realised as an induced action of the Poincaré map of the provisional fluid

flow on the unstable manifold.
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4 Fast dynamo on the real plane

This Chapter is dedicated to the construction of a piecewise di [edmorphism T: R? - R?
satisfying the Invariant Cone Hypothesis 1, p. 28. In perspective, the map T is the Poincaré

map of the provisional fluid flow. The main result it the following

Theorem 7. Let [E1.J < 3 be a sequence of real vectors. There exists a partition Q of R?

and four numbers ry(m) [rz(m) and €;(m) [—£2{0m) such that

W s PAW 5 : Cone(ry,€1,Q) — Cone(rp, €, Q) C Cone(ry, €1, Q).
2m 2m

@z?n PE,ZI%/% |Cone(r1,sl,Q) %— 2m=>

(See p. 100 for definition of a cone in the space of vector fields).

4.1 Notation

The following notations will be used throughout.

We denote the unit square in the plane R? by T [—1, 1]2.

The Jacobian of a function F we denote by dF, and by |dF| we denote its determinant.
For a function of two variables, by 0« we denote the derivative in the first variable and by
Oy we denote its derivative in the second variable. Similarly, for any point z [CRP we denote

by zx and zy its first and second coordinates.



4.1 NOTATION

The indicator function of a set X we denote by Xx. In particular, X —is the indicator
function of the square [—1,1]%. Given a subset X [RF and a partition Q = {Qij}i jyrza of
the plane R? we abuse notations and write (i, j) [ZX for Qjj X1 We denote by my and my

the natural orthogonal projections

T[X: RZ - R T[X(ZX’Zy) = ZX1 (41)

my: R R my(zx,2y) = 2y. (4.2)

The length of a vector v we denote by |v| and the n-dimensional Lebesgue measure of
a subset A IR we denote by |A|. For any sequence of vectors & [ILI(R?) we denote
by & [CIE(R) and & [IE(R) two sequences of x- and y-coordinates of elements of &,
respectively. We denote by >5 the subset of sequences with [E1d < d.

The two dimensional Gaussian kernel wj is specified by

def 1 _x2+ 2
ws(X,y) = Tl 5 (4.3)

The Weierstrass transform is a convolution operator with the Gaussian kernel. For any

absolutely integrable function f it is given by

1
WsF(z) & ws CR(z) = ws(z — OF (). (4.4)
]RZ

For a vector field v = (vx, vy) with absolutely Lebesgue-integrable components vy and vy the
Weierstrass transform is defined by Wsv = (ws [, ws [M)).

The space of essentially bounded vector field in R? with absolutely integrable coordinates
we denote by X.

The supremum norm of a matrix A is supremum of absolute values of its elements, we
denote it by [ALJ def sup;j [Aij|. The matrices we are dealing with will be bi-infinite.

The following letters are reserved for real constants: M, My, H1, M2, O, Y1234 > 0. Suitable

intervals of values will be specified later.



4.2 THE DYNAMICAL SYSTEM

4.2 The dynamical system

Here we introduce the dynamical system we will be studying. It consists of the phase space X;

the norm, which is the maximum of weighted L1 and Lo, norms; and the transformation of

the phase space, which is an action, induced by a piecewise di [edmorphism of R2. To define

the piecewise diledmorphism we use a tower construction.

4.2.1 Action on vector fields

A tower of M floors. Let M > 1 be a large natural number; and let 0 < y; < 0.1,

0 < yp [IHe two small real numbers.

Let Fp be the Baker’s map on the unit square

L1

—
 —

N II-[

i
zx —1);2zy +1, ifzy, <0

def
FO(ZX1 Zy) é

|

I\H-{

(I
zx +1);2zy—1, ifzy,>0.

Consider M — 1 maps F1,...,Fpm—1: R?\ CSIR?\ [Cwith the following properties

1.

2.

each Fy is a smooth map;

each Fy is area-preserving: |dFg| =1;

the Euclidean norm of the diLerential is uniformly bounded [dFy = 1 + y;

the Hessian is small [dfFy (= .

all F¢x are polynomials, most are linear, some are not; the product of degrees of
all of them is bounded by a small number d, which is independent of M. In par-
ticular, dw < 2so. This condition holds true, for example if F, = Fj, for all
l=k=j=M-—1 We use this a strict assumption only to claim that for any
point z CRP #{n '(F1o... o Fm(2))} = d and #{n *(F1 ... > Fm(2))} = d. This

bound is required in Proposition 4.3.2 only.
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4.2 THE DYNAMICAL SYSTEM

We build a tower X [R¥ defined by

dfI:I [ 1] 1
X E R?x {0} R\ DA {1,2,...,M —1}

with coordinates (z,n), where z = (zyx, zy) [R? and n 0,1,...,M — 1} We will abuse

notations and identify [ <XK0} CXlwith [

The choice of piecewise diledmorphism. We are ready to introduce a map F: X - X

defined by
L1
det t=(2), 0), ifn=0andz I 1
F(z,n) € (4.5)
Fd+1(2),(n +1)mod (M — 1)), otherwise.

Consider an extension F=X x R2 _, X

1
&=(z) +w,0), ifn=0andz I 1
B mwW) E ) +w,0), ifn=M—1: (4.6)
tFd+1(2), (n + 1)), otherwise.

Given a sequence & 1 [TB(R?), we define a small random perturbation F of the map F,
as described in Subsection 2.1.1. Then the zero floor R? x {0} is invariant with respect to FE'V'
and we may consider the M’th iteration as a map F: R* . R?. We denote by Fo: X - X

the map corresponding to the zero sequence & = 0.

Remark 7. The inverse map FET(l is given by

-
= 1z —&),0), if z CII+K&X and n = 0;
_1 _ -
Fac @M= gt z—89),M —1), ifz TI#k<andn=0;! 4.7
= 1(z),n—1), otherwise.
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Also observe that the inverse Baker’s map is given by
1

(I
7 X+1—2£§;%(zy—1)—%ﬁ'; ., ifzx <&, and z [T FKX);
Folz—&9) = (4.8)

(I
ZA —1— 285 3(zy + 1) — 385, if 2 > &, and z C(I=FKX).

Let mg [IHe a large natural number. We set m = 4M mg and choose a small real number
0 = 27MY with % < a < 1. The subset of sequences in [J(R?) with [EI.J < 3 we denote

by >;5. Given a sequence ¢ [k we may define a map

Pg: R? - R? Pe(z) € F"(z,0). (4.9)

The map P defines induced action on the space X according to

(Pe(@) ¥ dPe (P 2)v(P; 12). (4.10)

The number of iterations m remains fixed throught the manuscript. We assume it to be

su Lciehtly large so that all inequalities hold true.

4.2.2 The choice of the norm in X

In this Subsection we introduce a norm in the space of vector fields in R2. We also give a
general definition of a cone in X.
Given a partition Q of R?, we define an associated weighted (Q, L1)-norm of a vector field v

on the plane by
1
det ——dm

Wigh, = —=—
T @l o

[vI.

Observe that [VIg) , is finite if the ordinary Li-norm is finite and the size of elements of

partition is bounded away from zero:

pm ym 2—m

Mgh,= ———v Mo V=N
BT @I oy @] s it (@)



4.2 THE DYNAMICAL SYSTEM

The supremum norm of a vector field v we denote by VI % sup|v|. We denote by X the

space of vector fields on the real plane with finite L; and supremum norms.

Definition 16 (Norm). We introduce a new norm in X, associated to the partition Q,

combining the two:

ot 1 1
VIl max MIgl,,2 ™*suplv| . (4.11)

This definition agrees with the general definition in Subsection 2.1.2 with a = 1/4.
The subspace of piecewise constant vector fields associated to the partition Q we denote
Xao. We reserve Greek letters for piecewise constant vector fields. We shall call the basis

L1 L1

def 1 1 . def 1 0
X?zij (o)XQilengij - m(l))(gij

Qi) ij Iz
the canonical basis of the subspace Xgq.
Whenever we are dealing with several partitions Q% Q2 and Q3, say, we omit Q in the

norm index and write [0l [Z1x]and [0z respectively.

We have for the norm of a piecewise constant vector field v = vsa)(flij + vlﬂjxgij:

1

1 C—a ,-mni -
VIgl=max 2~ M v, ————sup |vY] ,
i VI sup M (Qij)I PV
in particular,
L1 3
Igl=1 =L_1 [vij| < 2™ and sup |vij| = 27am, (4.12)

Invariant cones. By analogy with one-dimensional part, cones of a special form in the spaces
X and Xq play an important role. We reserve notation for a cone of radius r with main axis
X i the subspace of piecewise constant vector fields associated to the partitions Q! and Q2:

[ Cgeg = 1 1
Cone Q' = n=d(DxrH¢| ¢ Xy, I dr, b=0. (4.13)

1
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4.2 THE DYNAMICAL SYSTEM

[ I
We extend the cone Cone r, Q! to include general functions from the main space:

O gy HH - L1
Cone r,e,Q* = f=n+v|n[Tone r,Q" , Wik elnly]. (4.14)

This definition agrees with the general definition in Subsection 2.1.3.

4.2.3 The canonical partition

In this subsection we introduce the notion of canonical partition of R? associated to a sequence
of perturbations & LTI (R?) as a direct product of a pair of canonical partitions of R and list

the main properties.

Definition 17. The Kk’th escaping set for k [Zlis defined by

L1 o L1

Ex = z [CIX| xXc(h{(2) =0 . (4.15)
j=0

Obviously, Ex [CEk+1, if k >0; and Ex+; CEL if Kk <O.

Lemma 4.2.1. Let § =)y CIH(R?) be a sequence of small vectors in the plane. Define a
sequence ¢(&) of the length m by ¢! = —2&2M, (2 = —2g2m~1 (™ = —28M*1 Let p,
and pg, be two random perturbations of the doubling map p defined by (3.3) with s; =s; = 2.

Then the following diagrams are commutative.

P Peg

[\E_ o R2 \E -, R?
[ |
Tix
m p™
R P, R R Y, R

Proof. Straightforward from definition. The Baker’s map preserves the horizontal and vertical
foliations, so the second diagram is trivial. For the first diagram, recall that by definition
(Subsection 4.2.1) P, = (FM)™ = E_llF{zl...FE_ml. Using (4.8) and (4.7), we conclude
that the corresponding sequence ¢ for the doubling map associated to P{l is as defined in

supposition of the Lemma. —1
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4.2 THE DYNAMICAL SYSTEM

We associate a chain Y1,Y2,... of partitions of R2to a sequence & L.
. o 0 ., 00 .
The first element Y! is defined as follows. Let YS = Y} = > sm . | [Z) be a partition
of R into equal intervals and let Y" = {Y}};j czabe the canonical partition of the map pg‘/.

Then

Yh={Yi} Yip =Y <Yy
To define partition YK, consider a sequence

c1 — _222km, C2 — _25'2km—l, o ,Cm — _22(2k—l)m.

Let Y® be the canonical partition for the perturbation p{! of the doubling map, and let Y"
be the canonical partition of the perturbation pg‘zmkzy of the doubling map. Then YX is given
by

YE={Yii} Yij = Y5 < Yy

Definition 18. We say that a partition Y of the plane R? is a partition of the class G(m, d),
if there exists a sequence & [ such that Y = YX for some partition Y¥ from the chain of

partitions associated to &.

L] L]
Definition 19. A rectangle zc — 5, zc+ % x z,— %,z  + % with centre at z and sides

|

Ix and Iy we denote by Rec,(lx, ly). Whenever location of the centre of the rectangle is of no

importance, we omit z and write Rec(ly, ly).

Lemma 4.2.2. Any partition Y of the class G(m, d) has the following properties
1. The unit square [cdntains at most 4™ and at least 4™~ elements of the partition.
2. For any element Yj; of the partition Y we have two rectangles

2rm 2=mp] L1
Rec =, =—— L[YJ; E@c%—m,zl—m .
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4.3 APPROXIMATING MATRIX

3. Any square with a side & may be covered by at most N5 = 4M=0+1 elements of the

partition.

Proof. Follows from the properties of the canonical partition for perturbation & of the doubling

map. 1

4.3 Matrix, approximating the operator qum

In this Section we assume that a sequence of vectors n [ILJ(R?) is fixed and we study
the associated operator Pnzd)n vector fields on R?, defined by (4.10), where the map Pp is
given by (4.9). Our goal is to show that for any sequence n there exist a pair of subspaces
Xq1,Xq2 [Xland a linear operator A(n): Xq1 — Xg, with a simple matrix, approximating
Pnzdxgl well enough. Given the operator A(n), we construct a pair of cones C; [Xh: and
C, [X}2 such that A(C;) [C}; C, [ Ciland [ALJg,=2M"1. We begin with the choice of
the operator A.

Let Y be a chain of partitions associated to the sequence n =3} ={& [TH(R?) | EIJ=<&}.
Let Q' = YK and Q? = YK*1 be two consecutive partitions from the chain Y. We intro-
duce two subspaces Xqo1 and Xg2 of piecewise-constant vector fields in X, associated to the

partitions Q! and Q2, respectively. The subspace Xq: has the (canonical) basis

Q.

ef def

1 1
S == u .
Xay = ey O%eh Xy = fragy el
and the (canonical) basis of the subspace Xq2 is
S def u def
X ™ X(Q @By X5 Xy X(Q G

both bases have Z?2 elements.

def

Let & = ¢2M&=Dp (see definition of the chain Y in Subsection 4.2.3, p. 101). We would

like to approximate the operator PEZE:,X - X by a linear operator A: Xg1 —» Xg2 chosen so
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4.3 APPROXIMATING MATRIX

that the averages along the elements of partition Q2 are equal for any field v Xl
1 1
JAv= Pév (4.16)
le le
We write down the action of the operator A on Xg1 in matrix form

| m |
Kkl

where the four matrices SS, SU, US, and UU are specified as follows, so that (4.16) holds

true (see Lemma 4.3.14 on p. 128 for details).

.
kI def 1 2 .
ki def 0x(P£)x(z)dz; (4.18)
T @I Q)] preppney
-
K ! L 0x(PR)y(2)dz; (4.19)
@B Ty Q)] 2oz 00t
-
i . 0y (PH)x(2)dz; (4.20)
I« (Q)1 - My (QF)) P 2020}
-
kI def 1 2
uuk 3y (PZ)y(2)dz. (4.21)

@I My Q)] p20z)008

We observe that
SS: Ij(lgilj@ &;iszISU: &;iljD» mg%mUS: &gileL mgizijU: Ij(lgiljD» Ij(lgizjtl

The matrix UU is the most important as it is responsible for the largest eigenvalue of the

operator A. We will study it in a great detail in the next Subsection.

Lemma 4.3.1. The map sz, corresponding to the zero sequence & = 0, gives the following
matrix elements for any quartet (i, j, k, 1) CIXICIUUK = 1; ssk =274m; sukl = 0;

usikj' = 0.

Proof. Each partition of the chain, associated to the zero sequence, is a partition of the

unit square [Cidto 2°M*2 equal squares with side length 2=™. Therefore we have that
Ql_l:! LDq j+1 andQZ_q k+1|:>l<l:l I+1I:I

|j 2 2m 2ms om 2m>sy om 2m»y om -
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4.3 APPROXIMATING MATRIX

The preimage of an element Qﬁ, [ITofl the partition Q2 under Po_2 is equal to 2™ disjoint
rectangles Rec(2,273™) in [L_Thus |Pg *(QZ) n Qf;| = 27, The derivative of P§ on [is]
given by the matrix

27°Mm 0

dPé(z) = L L1 forallz CII 1
0 22m

1

Definition 20. The matrices, corresponding to the map sz, we denote by SOS, SOU, UOS, and

UOU , respectively.

Remark 8. Immediately by definition we see that for any quartet (i,j,k,l) such that

(i,j) CIrand (k, 1) CRP\ s or (i,j) CRP\ Cons and (k, 1) Ik have
uul =sulf =usy =ssi =0 (4.22)
In addition, given [dFy [ py, from definition of Fy p. 97, we have
- . - - [ )
max [UU [d, [SU [, (TS [od, [SBLd < (1 + ) ™. (4.23)

Remark 9. The condition on the Euclidean norm [dFy = p; implies that there exists a

constant M such that for any two partitions Q! and Q? of the class G(m, d),

1 |
sup# (K, 1) CRP\ Do | P 2(Q0) n Qf B @ < My - (uy + 1)°™, (4.24)
(i)

Therefore for any pair (k,1) CIRP \ [iojns there exist not more than My - (1 + p1)?™ pairs

(i,j) CRF\ [ins such that
ssil-suil.usK-uui 2 0.

Remark 10. Recall the notations introduced in the beginning of Section 4.3. There exists a
constant M, independent of m, such that for R := Momda(1 + p1)?™ + 1 and for any quartet

@i,j, k, 1) where (i, j) CIrand (k,1) CRR\ Crdr (i,j) CRP\ [rand (k,1) CIT1

sskl=0, suk'=o0, usi=o0 uUUK =0
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4.3 APPROXIMATING MATRIX

Definition 21. The domains of continuity of the map PE2 we call (P, &)-domains.

We split (P, £)-domains in P —2(Q2 ) N Q [1Tinl “good” and “bad” parts:

(AG)kI def A Q 1 . ) . . =n L]
E@' Qi) n Qj5 [Ais a (P, &)-domain, and [nl< 2m: F¢'(A) [I1:1(4.25)

|
(AB) def EE{ (Q )N Q | Aisa (P, &)-domain, and [nl< 2m: F{‘(A) T11(4.26)
Then we may write for (i, j,k, 1) C 1
UUK = (UU®)K + (UUB)Y, (4.27)

where UUG UUB [CMat(2™,2™) are given by

uus e 1 ! 3, (PR, (2)dz; (4.28)
@I Iy@ e &
(UUB) & ! L 3y (PA)y(z)dz. (4.29)

lef o
Imx (Q )N [Tty (Qi)I ALAE
We define three more pairs of matrices SUB+SU®=SU, USB+US®=US, SSB+SSC =SS

in a similar way.

4.3.1 Properties of the matrix UU

The submatrix UU: 43, [~ X5, Ctorresponds to a mapping between two subspaces of
ij ij

vector fields parallel to the expanding direction of the Baker’s map and associated to two

di[erknt partitions. It is also responsible for the norm of the operator A. Our goal is to

establish the following two facts about the matrix UU.

Proposition 4.3.1. The following inequalities hold true for the elements of the matrix UU®

in the canonical bases.
1. MUCLJ=sup|UUK| <4
2. #{(UUCK 8 1} < 22m5.
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Proposition 4.3.2. There exist a constant y; < 0.01 such that for M and m su [ciehtly

large and for p; su Lciehtly small
max([SB [J, [US [J, [SU [J, MU [J) < 2¥1™,

(Recall Condition 3 on Fy: [dFx[= 1+ uy in the Euclidean operator norm).

By definition, the matrix UUC is related to subsets of the survivor set [XEpy. To study

the set [\ E,m, we introduce a simplified system, since the map outside of the unit square

is of no importance.

Consider a circle S! and a cylinder C % R x ST % f(x,y), x [R, y [T31;1)}. Define a

map h: C - C by

|
Hzx—1),2zy+1, if —1=2(<0, -1z, <1,

(4.30)

def ]
h(z) = L_jf'yx+1),2zy—1, ifosz <1 -1z <1,

if |2y > 1.

N

Let h: C x R2 _ C be an extension given by
1

|
Hzx — 1) +wy, (2zg +wy)mod2 -1, if —1=2,<0, -1z, <1,

~ def 1
h(z,w) = L_jf|7x+1)+wx,(22y+wy)mod2—1 , f0=sz=<1 —-1=sz,<1;

(4.31)

Using the extension ﬁ, we define a small perturbation hg, as described in Subsection 2.1.1.
We denote the central part of the cylinder by | {z [T |z«| = 1}. By rectangle in [1

we understand a subset Rec(ly, ly) = Ix > Iy, where I, [[31;1) and Iy St \ {1} are two

intervals with [Ix| = Ix and [Iy| = Iy.
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Lemma 4.3.2. Given a sequence & [ 35, with 6 = 27™%, for any 1 < k < ma — 3 there

exist k rectangles r‘f'z, r'lf'z [ITsdch that
z (T j < k: hi(z) T 11 1"
j=1
Moreover, r}"E [Rec(215,2171) for all 1 < j < k and for any a [P with |a] < & the map
| S P

h;! is continuous on the union of the rectangles I
i=1

Proof. By induction in k. Indeed, the conditions z [Mahd hg(z) II1l"ate equivalent to

[mx(he(z))| > 1 and z [CT1L"The latter means
1

=, -1+ 28) < (—1,0) [(F1;—1+25) x (—1;0), if& <0,
, |Ii def (4.32)

T 281: 1) x (0;1) C(U— 25; 1) x (0; 1), if & > 0.

AN

Thus the statement holds true for k = 1. Let us add to the induction assumption the following

inclusion which is trivial for k = 1;

r};'g C(— 255;1) x (—1;1) [(F1; —1 + 253) < (—1;1). (4.33)
j=1

We may write

[ : ]
z (T Ek+1: hi(z) T 11

1 1] . : 1
2 [ hg(z) T T ¥ CIJI0<j<k+1: hi(z) ITIT_T_1

L1 . 1 1
[ LW = hg(z) COILE j < k: hl ey (W) 188§ Chy! E%"'@ _

j=1
Therefore we may set ri ¢ € ¢} and ri7H4 € ht(r @) n Coar j = 1,.... k. Since hy is
continuous on every (r}“’(z) —&1) n [ The sets r}‘:{ll'i are rectangles. Using supposition (4.33)

we conclude
o . 1 L]
het ot ChE (1—256,1) 03, —1+246) x(-1,1) [
i=1

1 ]
C (1, —1+2K*15) [ —2K5,1) x (—1,1), (4.34)
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Bl
N
j=1

and therefore h3! is continuous on —afor any |a] < 6.

Finally, one can check by straightforward calculation that for all 1 < j < k we have

he(rf °®) CRec(2*15,217)).

1
Corollary 1. For any sequence & [2l5 there are 3Tm rectangles ri, rg, cen, "gm/4 [ITsich
that
1] 3m 13
z DIDIIsjsT:hJE(z) I ry;
i=1

34
and the union r; [CIImky be covered by at most m322™3 rectangles Rec(2~5™/4,273m/4),

=1
Proof. By Lemma 4.3.2, there exists M W rectangles rl, cen, 3m,4 [ITsdch that
1] . 13
z (I T< j <k: hi(z) T
j=1

moreover, r [CRec(233,2173). Therefore, each r may be covered by at most

m2 I%2'5I’T1/4 . 2_] 6) . (23m/4 . 21—]) + 2m/4 . 22—j + 23m/4+j+16l:é 22mm36

gLSm/4 2-3m/4 3m/4 EI

rectangles Rec

. Since there are 3™ W rectangles rl, .. their union may

3m/4
be covered by not more than 22™m?3 rectangles Rec(2~°M/4, 2—3m/4), 1
We may identify a rectangle on the cylinder I < I, [ITwith a rectangle on the plane

Ix < I, CIITIRY, since we agreed that 1y, S\ {1}.
i G2 O

Lemma 4.3.3. Under the hypothesis and in the notations of Lemma 4.3.2 the set I
j=1

may be covered by at most 22™m33 elements of a partition of the class G(m, 3).

Proof. By definition, all elements of a partition of the class G(m,d) are rectangles. By

the second part of Lemma 4.2.2, Rec(3-", 2") [Q}; [Rec(2'™™,21™™). Therefore any
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rectangle Rec(2K3, 217%) may be covered by at most
m2(2k+m6 . 21+m—k + 2m+2 . 2—|( + 2m+k+16) < m222m+26

elements of the partition. Then all 5} rectangles may be covered by at most 22Mm3§ elements.

1
We lift the map h: C — C to the plane R? and obtain
L1
i (I
Hzx—1),2zy+1, ifz I F1=<z,<0;
def 1
H(z) = §7X+1),2zy—1 , ifz CHO<z, <1; (4.35)
7 if z 111
Let H-1R2 < R2 _, R? be an extension given by
L1
i L] .
Hzx—1),2zy+1 +w, ifz [MTand —1=<2zy, <0,
def ]
HZ, w) = Lizx +1),2z,—1 +w, ifz (Mand0<z, <1, (4.36)
ZH w, if z 111

Given a sequence & [ >} [TB(R?) and extension Hi--ve define a small perturbation Hg, as

described in Subsection 2.1.1.

| S I
Remark 11. Observe that z [CHy if and only if x.ﬂ-ﬂg(z)) = 0; where Ey is the k’th
j=1

escaping set defined by (4.15), p. 101.

Remark 12. Let p be the doubling map defined by (3.3) with s; =s, = 2. Let & and ¢ be

two sequences defined as in Lemma 4.2.1. Then for any k > 0 the following two diagrams are

commutative.

Hk H—k
\E ., R2 [\E_, ——, R2
=1 H .H
R . R R P, R
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4.3 APPROXIMATING MATRIX

Recall the settings, introduced in the beginning of the Section 4.3, p. 103. Let Y be a
chain of partitions associated to the sequence n 5. Let Q! = YK and Q2 = YK*1 be two

consecutive partitions from the chain Y, and let & = 62™kn be a shifted sequence.

Lemma 4.3.4. The number of elements of the partition Q! inside the square [—pbssibly

escaping in the first 1 iterations is bounded by 2% +15:

L]

1
# QL COTD< k< —: HEXQY) IO & 27415,

~|3

Proof. By Lemma 4.3.3

] m ]
# Qjj L=< k < 7 hi(Qf) % 2™ - m%,

which is equivalent to

] 0 1
# Qf COID<k< 7 M (HE(QE)) T3L;1] < 22™ - m3s,

Recall the doublin map p defined by (3.3) with s; =s, = 2. Let p'gy be a small perturbation

as in Lemma 3.2.7. Then the map pg, p'gy has exactly 2¥ long branches for all k < ma.

Therefore we get an upper bound

1]

m
# O CIT<k< 7 M (HE(Q})) £131;1] and
m ) 1
[(M<sk< 7 Ty (Hg (Qilj)) m41;1] <
1 m 1
<2™.# Qf [EL1]| M<k< 7 ps, (Q)) ML 1] < 2°™/*+,

By supposition on a, we know that 2°™m3§ 2514, (In other words, assume that for some
Qf [T31;1] we have p'gy(le) [J31;1] for all k < ko and p'g;’(le) CT=#1;1]. Then Qf is a
subset of the domain of a long branch of p‘gy for all k < kg; and the subset of the domain of
a main branch that may escape at the iteration k is an interval, i.e. a connected set, of the
measure at most 273, which contains at most 2M%g intervals of the canonical partition of

the perturbation of the doubling map pg.) —1
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4.3 APPROXIMATING MATRIX

Remark 13. In Lemma 4.3.4 above, an alternative upper bound would be stm - Cs, Where
Cs is the maximum number of intervals of the canonical partition for the doubling map in the
interval of the length 3. In our case all intervals have the length |m, (Qj;)| < 21~ therefore

2My > Cy > 2M~15.

Lemma 4.3.5. There exists at least 22™ — 29™/4*25 elements Qf; [ITol the partition Q

such that H§(Q};) [Iidr all 1 <k <m and
L /4 1 /4 1 L m/4 1

Proof. By Lemma 4.3.4 we know that there are at most 2°™/4+25 elements of the partition Q!

m/4

such that Hg"""(Qf;) I TTWe shall show now that there are at most 25M/4 elements of Q!

such that HE(Q) all1<=k=<12 and yet

s R =
H Q) TRee 274 m, (Qi)I, 2™ my ()] -

] ]
It H4(QY) is connected, then H{*(Qk) = Rec 27™/4|my(Q4)I, 2™4|my (QE)] . Thus

without loss of generality we may assume that Hé””

(Qilj) is not a connected set. The latter
implies Hé‘(Qilj) n{zy = 0} B o for some 1 < k < m/4. Recall the doublin map p defined
by (3.3) with s; = s, = 2. Let p'gy be a small perturbation as in Lemma 3.2.7. Since by
supposition HE(Q;) CIIfar all 1 < k < 7', we conclude that O} : = m,(Q};) belongs to a
main branch of the map pg”. We know that the map p'gy has at most 2% main branches,
and if {0} CRf*(Q}), then {0} IRf?(Q}) for all ky < ko < . So there are at most 2m/4+
elements Q; such that {0} I:ugy(le) for some 1 < k < ', Thus there are at most 2°™/4
elements Qj; such that HE(Q};) n {y = 0} & @ for some 1 < k < and H§(Q};) [IIfor all

lsk< L1

~[3

Corollary 1. There exists at least 22™ — 29™/43 elements Qf; [_ITofl the partition Q' such

— 112 —
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that Fg(Q;5)) [Iidr all 1<k < 7 and

1 (I y
Rec 27™*m (Qij)l, 2™ Imy (Q)] = F¢" 4(9 ) LI

We need the following fact about small perturbations of the doubling map p.

Lemma 4.3.6. For any 3! < k < ma—2 the perturbation of the doubling map pg‘ with [E1d

has at most 2*2 main branches such that their domains a}m) satisfy |pg‘/ (a}m))| < 2—2m—kg,

Proof. Let a(m) = (a(m) J(T)l) be the domain of a main branch of the map p{” such that

PP (@™ < 2 —2m ks,
We shall show that the interval a}m) is not contained in a domain of a main branch of the

map pg 2.

Assume for a contradiction that for some 5! < k < ma — 2 there exists a main branch

ai(k+2) I_—aﬁ") of the map pE+2 By assumption, a( ) and a{T +1 are points of discontinuity of

(k+2)

the map pg‘ Since p"+2 is continuous on ch , we deduce that there exist ki, ko = k + 2

such that pil(a(m)) =0 and p'gz( J(Ti) = 0. Since pg‘(a}m)) is an interval, we see that either

|pg" (a(m)) +1| > 2M7*715 or |pf"(a J(T)l) — 1] > 2m~k=15, Without loss of generality, assume

the first. Then
PP @™) = p 4 (0) = pf" (=1 + E(ky + 1)),
and, therefore, |p{"(a (m)) + 1| < 2™ ka+1§ Thus k; < k + 2. We deduce that the map pk+2

j+1

is not continuous on a}m). We know by Lemma 3.2.7, that for any 1 < k < ma the map p'g

has exactly 2% main branches and the Lemma follows.

L1

Lemma 4.3.7. There exist at least 22™ — 2™ elements of the partition Q! in the unit

square [sdch that for some Q IZI}J we have H”(Q ) [IIfdr all 1 = n<m and
(Q ) = Rec 2_m|nX(Q I, 2 — 225
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Proof. Letn =c™4@E)andletr], 1<j < 3Tm be rectangles covering the escaping set E3Tm of

the map F>™*,

defined according to Corollary 1 of Lemma 4.3.2. According to Lemma 4.3.5
there exist at least 22™ — 23M*+2§ elements of the partition Q! such that HEQE) all
1<k <1, and there exists a rectangle Rec(2~™*|m.(Q};)I, 2™4|my (QF)]) = HE”M(Q ) LI

It follows from Corollary 1 of Lemma 4.3.2, that among these elements of the partition Q!

one can find at least 22™ —22M*25 — 22MmA5 elements that satisfy Hm/4(Q )m )=

The condition Hm/4(Q )N ) = & implies nX(Hk(Q )) 311 foralll<k<=m,

and it follows that |nX(Hm(Q ))| = 2" m|nX(Q ). Therefore, H"(Q ) I fdr some

~[3

<k =< m if and only if m(Hf(Q};)) IC[F1;1]. By construction, Qf = m,(Q};) is an
element of the canonical partition of the map pg‘/. By Lemma 4.3.6 with k = 3, there map
pg‘/ has at most 27 *2 main branches such that |pg‘/(a}m))| <2-278. For every Q,lJ such
that nX(H.'{(Q )) [I#1;1] and ny(Q .) contains the domain a J ) of a main branch of the

map pf with |pg) (a(m))| > 2—273, there exists a rectangle Ql def T (Qf;) % a(m) [Qf; with

the property HX (Q ) [ all 1 <k = m, and, moreover

L] 1
HIMQL) CHE(QE) CRec 27y (Qf)),2 — 2™ .

Therefore, there are at least 22M — 23M+25 — 22Mmpds — 23M+2 5 22m _ 23M+3 alaments of
the partition Q! such that for some Ql [Q}; which satisfies H"(Q )y (IIfarall l<sk<m
we have

m_ L[]
HQ’(Q ) = Rec 2‘m|nX(Q ),2—2720 .
In other words, the map H{" has at least 22m — 23M+3 main branches. 1

Corollary 1. There exist at least 2™ — 23M+3 glements of the partition Q2 such that for

some Q4 [ we have Hy%,(Q%) [CIIfar all 1<k <m and
Hy™(@%) = Rec(2 — 238,27™|m, (Q4))).
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Definition 22. The rectangles 5,1] and f),zj constructed in Lemma 4.3.7 and Corollary 1 of
Lemma 4.3.7 we call domains of the long branches of the maps Pz and P(;,}E, respectively.

Their images we call long branches.

Lemma 4.3.8. For any element Qj; of the partition Q', the set Qf; \ Em is a union of
(disjoint) rectangles. The number of rectangles is equal to the number of main branches of

the perturbation pg‘/ of the doubling map p.

Proof. We split the argument into several steps.

Claim 1. The projection ny(Qilj \Er) is a union of domains of main branches of the small
perturbation pgy‘ of the doubling map. First we shall show that the image of the projection
pgy(ny(Qilj \ En)) CJ31;1] for all 1 < n < m. Indeed, assume for a contradiction that for
some 1 < n < m we have p'gy(ny(Qilj \ En)) [J31;1], and n is the smallest humber with
this property. Since the horizontal lines {y = const} n [XE—1 are invariant under Hg‘, we
may conclude that Hg(Qf; \ Em) O TTwhich is a contradiction. Therefore 1y (Qj; \ Em) is a
subset of the domain of a main branch. Let an interval (a,b) Ijl(Qilj \ Em) be the domain
of the main branch. We shall show that Qf < (a,b) [Qf; \ Em. Assume that there exists
z [} x(a,b) such that H{'(z) [ IIfar some 1 < n < m. Since 1y (H{'(2)) = pg‘y(zy) 131; 1],
we conclude nX(HQ(z)) M(F1;1). Observe that, the lines {x = const}n [XHy,—; are invariant
with respect to H{', we get Hg‘(zx,ny(Qilj \ E;n)) L Which is a contradiction. Therefore
(a,b) C(Qj; \ Em) and hence 1y (Qj; \ Em) is a union of domains of main main branches.

Claim 2. The set {y = const}n (Qilj \En,) is connected. Indeed, assume that there are three
points z,u,w [¥ = const} n (Qilj \ Emm) such that zx < ux < wy, with z,w m,lj \E, and
u I]]IﬂllJ \Em. Then there exists 1 < n < m such that HE”(u) [[1I1_ahd we may assume that n is
the smallest number with such property. Then by invariance of {y = const} n Qilj \En—1 with

respect to Hy', we conclude that either Hy'(z) [ ITod HE”(W) [T wthich is a contradiction.
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Claim 3. For any two points z,w I:Q,lJ \ Ei» such that z, and wy belong to the same
domain of a main branch of pg, we have (zx,wy), (Wy, Zy) IZZI,lJ \ E;,. Indeed, assume for a
contradiction that (zx, wy) ﬂ]DI,lJ \Em. Then choose the smallest n such that Hg‘(zx,wy) 111
It follows that either 1ty (Hg'(zx, wy)) TF+1; 1] or 1 (Hg'(zx, wy)) []F1;1], or both. Without
loss of generality suppose that projection of the image ny(HQ(zx,wy) [1=#1;1]. Then due to
invariance of {x = const} n [CXE,—; we have nX(HE”(z)) [IT#1; 1], which is a contradiction.

Summing up, we conclude that the set Qilj \ En, is a union of rectangles and the number
of rectangles is equal to the number of main branches of the map pgy‘ in le.

1

Corollary 1. In the notation of Lemma 4.2.1, the set Qizj \ E_, is a union of (disjoint)
rectangles for any element Qizj of the partition Q2. The number of rectangles is equal to the

number of main branches of the perturbation pg? of the doubling map p.

Lemma 4.3.9. There exist at most 2*™M§ quartets (i, j, k, 1) such that H{zm(Qﬁ,) n Qjj has
more than one (P,&)-domain A that satisfies H{'(A) [IIfdr all 1 < n < 2m. For any

quartet (i, j, k, 1) the set ngm(Qﬁl) n Qj; has at most four (P, &)-domains with this property.

Proof. Let A be a (P, &)-domain in ngm(Qﬁ,)nQilj such that HQ(A) [IIfarall 1l = n<2m.

Then

#{A CHE*™(QF) n Qi | HE (D) all<sn<2m}=
=#{A EEEI‘E(Q%) n HE(Q}) | HE(Q) Cfor all —m<n<=m}=
(I I (A
=# A Ijnm\E_m n QI_]\Em
By Lemma 4.3.8 and Corollary 1 of Lemma 4.3.8, both sets Q2 \ E_, and Qilj \ En are

unions of rectangles, and the number of rectangles equal to the number of main branches of

the corresponding doubling maps on the associated intervals. By Lemma 3.2.5 there are at
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most 2M3 intervals Q; or Q, that contain two main branches. Thus there are at most 2M§
quartets (i, j, k, I) such that Q; or Q; or both contain two main branches of the maps pg, and
pg, respectively; and the Lemma follows. —1

Using Lemmas 4.3.7 and 4.3.9 and Corollary 1 of Lemma 4.3.7, we get

Corollary 1. Let Y be a chain of partitions associated to the sequence n [ k. Let Q! = Yk
and Q2 = YK*1 pe two consecutive partitions from the chain Y, and let & = ¢?™&~1p be a

shifted sequence. Then

1. There exist at least 22™ — 23M+3 elements Qilj such that for some 5,1] II}J we have

(- 1
o L] g g 27™M 0

P:(Qij) = Rec 27 ™M|my(Qij)|,2 — 223 and dPs By~ L1 L1
0 2m

2. There exist at least 22™ — 22M*3 glements Q2 such that for some 02 [Qf, we have

L1
< N . 2™ 0
P 1(Qij) = Rec 2 —228,27™|my (Qy)| and dp;* By = L1 . L1
-

3. There exists at most 2*™M§ quartets (i, j, k, 1) such that the set PE‘Z(Qﬁl) n Qilj contains

more than one (P, &)-domain A that satisfies dy(P#), 2= 2°".
Proof. Observe that for any 1 < k < 2m and for any z [CIINE, we have F¢(z) = Hf(z). [

Lemma 4.3.10. The area of a good (P, &£)-domain A is very small. More precisely, we have

an upper bound |A| < 227%™,
Proof. Recall the definition of good connected components (4.25) and observe
Gykl — A 2(02 1 : ; . En L]
A%y = A [Py Qi) n Qi | Ais a (P, §)-domain, [Tk n<2m: F'(A) 113
= ey naly A domain, [Tk n < 2m : H(A) CTLT
= A LBJ(Qi) n Qj5) [ Ais a (P, §)-domain, n<=2m:Hg Q)

We shall show that for any A [CAS the area |A| < 272™ - [m(Q})] - My (QF))|. Indeed,

consider the image A= P¢(A). Since Pg is area-preserving, |A = |A|. Since Pg(AY [CQF,,
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the length |y (AY] < 27™ - |my(Q2))]; and POmE(AQ [Qf; implies [ (AY] < 27™ - M (Q55)1-
Thus

1A = |AY < 272 (Qf)] - Iy (QF)] < 2°7™. (4.37)

Corollary 1. The matrix SS€ is small. More precisely,
I:I%'Se)lﬁl Hs g4—2m
11

Proof. By straightforward calculation, using Lemma 4.3.10,

T 1] —=
syt = Ox(PAx(2)dz =<

[ - :l"X(Q |T[y(Q |)| Ans D
C I 1 | I |
1 ! 2‘4m|A|s
i I:lT[x(Qij |T[y(Q |)|
C I 1 1

' —2m —4m 4—2m
D e ¢ M (@I - Iy QR - 274™ < 2

Now we are ready to prove

Proposition 4.3.1. The matrix UU€ has the following properties
1. MUCLd <4

2. #{(UUC)K 21} < 2%3Ms.

Proof. By Lemma 4.3.9, for any (i, j, k, 1) [CIIXT W have #(A®) < 4, and by Lemma 4.3.10
we know |A] < 272M. |nX(Q )IE |ny(Q |- We calculate
G 1 L 1
I(UUC)| < 1A - [0y (PE)yl - M ( Qi)™ - Iy (QRDI 7 <
AL@C)Y

= 4 @72k (QipI - Iny (QRDD - 22 - M (@1 - Imy ()1 = 4.
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To prove the second part, we recall that by Lemma 4.3.7 there are at least 2°™ — p5m+3
elements of the first partition Qilj such that for some ﬁij I:Qi‘J the image is a rectangle
Pe(Qij) = Rec(2™M|me(Qij)]), 2 — 228) and HP(Qy;) CIifdr all 1 < n < m. Similarly
by Corollary 1 of Lemma 4.3.7, there are at least 22™ — 23™+3 glements Q2, such that for
some small rectangle Qi [Qf, the preimage P; (Quq) = Rec(2 — 223, 27™|my (Q;5)]) and
H{”(E)H) [ Ifdr all 1 < n < m. Then there are at least (22™ — 23M*3 — 23M§)2 pairs
Q. QF such that P¢(Qi) n P *(Qu) & @ which correspond to (UUC)K & 0. If (AC)K! has
only one element, then it is A = Pg(Qij) n Porme (Qua) and |A] = 272M - i, (Q4)] - [y (Q3)]-

Therefore

(I
1 1

@I Iy Q2] A

Summing up, there are at least 24™ —25M+15 elements (U U®)K = 1. By Lemma 4.3.9 the set

22m —

UU®) =

(AG)'i‘jI has more than one connected component for not more that 2°™§ quartets (i, j, k, 1.
Therefore at most 2*™M§ elements satisfy 1 < (U UG)'i‘jI < 4. The other elements are zeros. [1
Now we proceed to the supremum norm of the matrix UU. Our goal is to prove the

following

Proposition 4.3.2. There exist a constant y; < 0.01 such that for M and m su [ciehtly

large and for p su Cciehtly small

max([SB [J, [SU [J, (WIS [, U [) < 2™,

We define two functions on the unit square

Z
tin: CSIN tin(2) =  Xc(F (@) (4.38)
=0
oy
tex: Nn 1; ™ tex(z) =#{l<n<=2m: F{“l(z) [1rand F{'(z) M1I}1(4.39)
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Given a sequence 1 [0, 1} we define a subset of the unit square 1

de

1 1
A=z CIER R (2)) = 1n forall n {0, 1,...,2m} .

=+

Note that some of A, may be empty and they are not necessary connected.
2m+
Lemma 4.3.11. There are at most 2WmZe 2o non-empty disjoint subsets A, 111

Proof. We know the total number of sequences that correspond to the points with tex = s:

C1
2m—(s—1)M
s

#{1 0, 1}V | tex (1) = s} =

Observe that the number of disjoint subsets A, [A is equal to the number of dilerkent

. . . . : Litd LI
sequences, which we can estimate in the following way. It is well known that " > ¢ for
all<k=<2nand1<s<k. The equality 2m — (s—1)M = 2s has the solution sy = Z*M

so we conclude

P NP e o
S — So

for all s > sy = 20*M - Using the Stirling formula, we

2+M
calculate
2s 250)?%0 am+am
° < const - ( 22 = const - 2250 = const - 2 2+M
So So°

We also may write for all s < sg

1 1
Jm—(s—DM _  (2m— (s — 1)M)! el
s T sl2m—(s—1)M —s)! =@m-@E-DM)" 5 -

By straightforward calculation

dHdm-s—pmye !

ds S -

_T@n--pwmeSTlam—s-m s O
- S - s 2m — (s — )M

for all s [C(;sg), because

2m — (s — —(so—
(s—1DM - In 2m — (so — )M
S So

In =In2>

So - S
2m—=(sp—1)M 2m—(s—1)M"~

1
> - =
2
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We conclude that for s < sg

2m—(s—1)M es0
—_ f— 2m+M
< < (ZSo)SOSTo = (2e) =™ ,
0

Summing up,

o 1

Hﬂﬁ —(s—1M m 2m+M

s = M(ZG) 2+M |

=1

Given a sequence [T {3+1,0, 1} we define a subset of the unit square

def
A|:|=

1] 1
z LI R (Re' (2)) - sgnmy (Ff'(2)) = Lfor all n [0, 1,...,2m}
Note that some of A-may be empty, and they are not necessary connected.
Definition 23. We introduce to projections of the tower to the zero floor:

Ti: X - X Tix(z, N) = ((zx, 0), 0);

my: X - X ny(z,n) = ((0, zy), 0).

Lemma 4.3.12. Given a quartet (i, j, k, I) and a subset B, & A, n Qi n P{Z(Qﬁl), there are

at most 6 disjoint subsets Asuch that A-n B, & @.

Proof. Consider a first half of the sequence 1 of the length m, the subsequence 14, I, ...

It may contain not more than & “blocks” of 1’s. We shall show by induction in number of

blocks that

1. There are not more than 6M di [&rent sequences [4]..., [ such that A B, & @.

2. The projection of the image 1y (Ps(B,)) may be covered by not more than 6™ intervals

of the total length not more than 2.

In order to use induction, we need to study the original map F: X - X of the tower X

defined on p. 98; we also recall that by definition Ps = Fzm: R? _ R2,

Given a sequence 1, there are two possibilities.
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Case 1. All blocks of 1's in 1 are not longer than ma — 1.

Case 2. There are blocks of 1’s in 1 of the length ma or longer.

Case 1. Assume that all blocks of 1's in the sequence 1 are not longer than ma — 1.
The base of induction. Assume that there is only one block of 1’s. Then there exist two

numbersl<t;<s;=<m, s —t; = ma:
1

1 ifty =k <sq;

g otherwise.

We deduce that ny(Pgl_l(A.)) belongs to a union of domains of main branches of the per-

s1—t1
o-tl—lzy

s1—11

turbation p oti-1g,

of the doubling map p. We know by Lemma 3.2.7 that the map p
has exactly 251~ % main branches, all of them are long and their domains have the length at

least 211751 > 2—MA | addition, since
diam(B,) = diam(A, n Qjj n P; %(Qk))) < diam(Qj;) < 2°™™

we conclude that there exists an interval | []31;1] such that ny(Fgl(B.)) [Tand® the

length [I] < 227™ . (1 + p)t™! < 27Ma < =S Thus the interval | may intersect not

s1—t1

oti-lg and therefore there are not more
Y

more than 2 domains of main branches of the map p
than 4 sequences LJ 1 < k < m corresponding to the sequence I, 1 < k < m. In addition,
we observe that the image ny(F§1(B.)) may be covered by 4 intervals of the total length not

more than 27™ . 25174 . (1 + py )™,

Now assume that there are n blocks of 1’s. Namely, there exist

lstyss1<tbh=ssr<...<thb=<sp<=m (4.40)

1We may safely assume that 2% > 1 + 4.
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such that tj+1 —sij = M and sj — tj < ma — 1, where
—1

T ifti=sk<s fori=1,...,n;
I = (4.41)

8] otherwise .

Sn—tn

Since sp — tp, < ma, by Lemma 3.2.7 the doubling map Potn—1¢

has exactly 25—t main

branches, all of which are long, and their domains have length at least 2t»~Sn, By induction

assumption, the set ny(Fg”_l(B.)) may be covered by 4" intervals of the total length

n
o—m, 25k—tk . (1 + IJl)m <o m, 2m—(sn—tn)—M(n—1) — 2tn—sn . 2—M(n—1).

k=1
Therefore it may intersect not more than min(2 - 4"~1, 2sn~tn) domains of the main branches

Sn—tn
otn—1g-

of the map p Consequently, there are at most 4" di [erknt sequences Cof the length m

and the projection of the image ny(FES”(B.)) may be covered by 4" intervals of the total

length 2™ . 2;k_tk (A + p)™ = 27MOD (] 4 )™,
k=1

Case 2. There exists a subsequence of 1's of the length ma or longer. Then there is only

one subsequence with this property (since a > %). There are two possibilities.
(2A) In the notations introduced in (4.40) and (4.41) above, s; — t; > ma.

(2B) In the notations introduced in (4.40) and (4.41) above, s, — t, > ma for some n > 1.

S1—11

oti-1g has at least 251~ t1—2 long branches, and their domains have

In the case 2A, the map p
length at least 212751, At the same time the projection of the image ny(Fgl_l(B.)) is contained

in an interval 1 of the length |I| <2™™ . (1 + )% < 24751, By Lemma 3.2.7, the distance

s1—11

between any two domains of the main branches of the map Pgsi-1g

which are not long, is at

least 2M(@~1) > 2ti=s1 Therefore the interval 1 may intersect not more than three domains

s1—1t1

of main branches (two long and one more) of the map Pots—1g- Thus we conclude that there
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are not more than 6 diLerknt sequences [, ... [s], corresponding to the sequence Iy, ..., Is,.
The induction step then follows as above, giving 6™ sequences.

In the case 2B, the map pf;n__t;‘z has at least 25"~ =2 Jong branches, and their domains
have length at least 2'n~Sn, Then by induction from the Case 1, we know that there are
4n—1 < 4mI-0-M sequences corresponding to the sequence Iy, ..., Iy,—1 and the image of
the set ny(Pg”_l(B.)) may be covered by 4"~ intervals of the total length not more than
2th=sn=M “\\e see that the total number of long branches of the map pi’gn__t';E is greater than

the number of intervals covering the image

2ma—2 = 4m(1—cx)—M

and the total length of intervals is shorter than a domain of any long branch. Therefore, each
of the intervals may intersect not more than three domains of main branches, and we get at
most 6 - 4K~1 di [erknt sequences. In addition, we notice that the image ny(FEs” (B,)) may be
covered by 6 - 471 intervals.

To complete the proof of the Lemma, we need to calculate number of di [erent sequences
[d+1,..., 2§ such that A B, 8 @. We would like to apply the argument above to the
inverse map Fgmrg = Po_n%z- Let us consider the image Ps(Bp) I:QE,. Define a sequence [

associated to the iterations of the inverse map Pgm&™1.

1
= f Fc;';:_iz(z) CI+g2m+i-k 7 > g2m—k.
N —
Bz - {-101} 2)= —1 i FoKML (2) CIEEREM K, 7, < g2mk, (4.42)
g if F ;ﬁtﬁz(z) I 2m+1-k,

We see that

[(P#2) = Gh—k+1(2) for all 0=k = m.
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We may associate the sequence [Gto main branches of the doubling map p.,, defined as in

Lemma 4.2.1 p. 101, in the following way.

1
I%El, foro=st1<k=stb=m, t1<t, [T T1

to—t—1 L]

1
nX(FG_Zf,%_tl (2)) in a domain of a main branch of Potic,

Indeed, if, say, [} = 1, then by definition, Foutrl (z) CI#E2m+1t and z, > g2mt,

02m—t1£
Consequently, FO_Z'm_,_lE(z) [Ifar all t; < | < t,, and therefore nX(P(;tn%_tl_lz(z)) isin a

to—11

domain of a long branch of Pozmi-1g, -

In the case t; = t, =1, i.e. a block of the length 1, we get two sequences corresponding to
a given [ =1 and [ —1, similarly to the previous case.
It follows that to any sequence 1 of the length 2m correspond 62™M sequences [

1

m 2m+M . . ..
Corollary 1. Among all sequences [Jthere are at most va : GZV(Ze) 2+M pairwise disjoint

segments Arsuch that P, 2(QZ) n Qf n A 2.

Now we are ready to prove
Proposition 4.3.2. There exist a constant y; < 0.01 such that for M and m su Lciehtly
large

max( QU o3, [SU [J, [UIS [, [SB ) < 2™,

Proof. Recall the definition of the matrices, for instance

L]
1 1

UUk = . dy(P#)y(2)dz
U m@pl Imy(@)1 p2@zyeay ¢

and the other three are defined using another three partial derivatives, according to (4.18)—

(4.20). Consider a vertical line segment A, = {zx = ¢} n P{Z(Qﬁ,) n Q,lJ Recall that
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according to condition 5 the composition of maps outside of the unit square Fj, = ... < Fj,,,
where iy,...,im CL,...,M} is a polynomial of degree at most d. Since PE2 is smooth
on each A A; and PEZ(AEn JAYS)| I:QE,. We can estimate the length of the image using
condition 5, p. 97:

IPZ(Arn Ac)| < diam(Qf) -d ™ < 2505, (4.43)

since the preimage with respect to any of the orthogonal projections my and 1y has at most

2m
d™ connected components.

CE = = = o
max  [0y(PE)y()ldz, [0x(PE)y(@)ldz, [0y(PH)x(@)ldz,  [0x(PE)x(2)ldz <
VAN VAN VAN VAN

< Bg(AEn AC)&_ d™ diam(QZ,).

Therefore

L1
L1 o2 2 2 2 L] —

sy T PP DL XPE @110y PO 0PI dz

E kIIZI = L] L]
= oy MA@ P @11y PO X (PO dzde =
- J L] 2 2 2 2 -

= max [0y (P£)y(2)1, 10x(PE)y @)1, 19y (PE)x(2)]. 10x (PE)x(2)| dzde <
y(Qf) Aring 2D

2m 2m+M
N —+

- (28) Z 6™ - diam(QZ)) - d™ - |y (Q})]-

=

Finally,

1

- 2 2 2 2 L]
» max |9y (Pg)y(2)], 10x(P£)y(2)], 10y (P£)x(2)], 10x (P£)x(2)] dz =
Pe (Qilj)ngzﬁ,

2m 2m

2m 2m+M 2m 2m
= Im(Qip)! - 10ty (QR)| - - (28) 20 - 63 - d

We can choose 1 and py su Cciehtly small so that for m and M large enough and for some

y1 =0.01

2m+M

2Vm(Ze) 2 BM - dM < 2V,
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L1

Lemma 4.3.13. The sum of elements of the matrix [(UUB)K| with (i, j, k, 1) CIX1Cislat

most 22 . 8mJ.

Proof. Indeed, recall that for any A IIIZB there exists 1 < n < 2m such that FE”(A) 111
and thus

A= Ais a (P, E)—domainE:Z”(A) some 1 <n<2m
i Kkl (aB) ij Kl

i [

={z (IIJII<n<2m: FE”(Z) 1} =: B.

We get |B| < 8méd by induction in number of iterations and conclude
1
(UUB < [0y (P)y(2)ldz < 2°™ - 8mS.
i K B
1
Remark 14. It follows from the condition 3 on the map F (see p. 97) that partial derivatives

are essentially bounded II)Q,(PEZ)XIQ < (1 + p2m, @(Pg)ylg < (1 + w2, and, finally,

[%(P#)x [d < (1 + p)®™. Thus by the same argument as in Lemma 4.3.13 we get

[(USB)K| < (1 + w)*™m3; (4.44)
101

I(SUB)K| < (1 + p)*™m3; (4.45)
| I |

I(SSB)1 = (1 + W™ ma. (4.46)
| I I |

4.3.2 The operators WA and Wészare close on X

We keep the notation introduced in the first paragraph of this Section.
Let Y be a chain of partitions associated to the sequence n 5. Let Q! = YK and

02 = Yk*1 be two consecutive partitions from the chain Y. Let & & g2mk—Dp (cf. Defi-
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nition of the chain Y in subsection 4.2.3, p. 101). Let A: Xq, — Xq, be a linear operator,
approximating the operator Pgmdefined according to (4.17).

In this section we establish the following

Proposition 4.3.3. The operators WsA and WéPzzdare close. Namely, for any v [ X1,

4sup diam(Q2)

Ws(P&T A igh, < 5 . 22m (4.47)
4 iam(Q2
Wy(pZ 7 A < PP L) ey, (4.48)
where y; is defined by Proposition 4.3.2.
We start with
Lemma 4.3.14. For any element Qﬁ, of the partition Q?, and for any v [ Xk,
1 1]
P{vi=  Av.
Q% Q4
Proof. Letv = vi’le ] vu]‘)(Ql . Then
PZV(2) = dP{(P; %2) - v(Pg %2) =
—_ I?Jdpz P—2 S P—2 + I:]EIIDZ P—2 u P—2 —_
= VvddPg (P Z)XQilj( £ 2) vy dP¢ (Pg Z)XQilj( £ 2)=
ij ij
— 2 -2 2 -2 1
ij M
_1h _ _ 1
+ v 0y (PP ?2) + 0y (PE)y(P; 2z) (L iy Xk Pe (P; *2).
ij x
We may integrate
1
Ix(P#)x(Ps 22) - Xar (Ps %z)dz =
0% oz 7R |X(Q TR
1
1 1 1 1
Ox(P2)x(z)dz = ——5—SSK.
IT[X(QZ|)| Iny(Qz|)| |T[x(Q )l P{Z(Qﬁl)nQilj e |T[X(Qﬁ|)| 4
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Similarly,
1]
1 kI 1 2 _2 1 _
= — oy (P P S — P dz:
|T[x(Q |)| |Qﬁ|| oz, y( E)X( g Z)IT[X(QiLj)IXQilj( H z)dz
(I
: suij = 12 6X(P.EZ)Y(PZ_ZZ);1XQ_1. (P{ZZ)dz;
m(QR)] 1%l a2, [T (Q35)1 7
1 Kl 1 2 > 1 _2
UUS = == 0y(P8)y(Pg °2)—=1~Xau (Pg “2)dz.
IT[X(Q&I)I ij |Qﬁ|| 2 y\rgJy\e IT[X(Qilj)I o \e

So we may write

1
1 1
PZ (z)dz = 7(35"' +USE) + v'J (U +uufh.
AR A * (@2 ¥ @)1
Observe that for any Qk,, by definition of the operator A (4.17) on p. 104,
; U L — —_1
—— Av= vassil+uskh+  visul +uul
Q41 oz, M (QE)] i ij

Lemma 4.3.15. For any partition Q of the plane R? into rectangles we have

4sup dlam(Q.J)
o

- wawa(z —-t)— n&g ws(z —t)%

Proof. Given a compact convex subset A [CRFP, let y(A) be the longest line segment con-
necting the points where the function w;s(t) achieves its maximum and minimum in A. By

straightforward calculation
1

maxwg(z —t) — minws(z —t) = max ws(t) — min ws(t) < t)|dt.
maxwsz =0~ minwiz —0 = max ws(® = min we®< | C60)
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Thus

I I

1
%axwé(z —1t) — min w;(z — t)gz =
R2  Qij tLQ

Hm(t)gtdz =
101 O
Hﬁ(t —-2) %tdz = Hﬂ(t - z)%zdt =

R?  y(Qij) v(Qij) R?

1 1
HAT@[Z)EZdt < diam(Q;j) HMZ)BZ =
R2

v(Qij) R?

i T

= diam(Qjj) - - 22 + 23 e 22 dz<

=y
=diam(Qy)  ogiad +lzyl) e dz <

n=k 2 L1 2 [

. Z _Zx Z _Zz
< diam(Qij) ]lsze 22 dzy + i %e w2dz, <
< 4diam(Qij).
o

L1

Lemma 4.3.16. Let f: R> - R? be a bounded integrable function. Assume that for any
1]
element Qilj of a partition Q! of the class (m, &) we have Qu f = 0. Then for any partition

Q? of the class (m, )

sup diam(Qj;)

IW5f @,Ll = 8 6 ,Ll; (43161)

sup diam(Qj;)

D Ld <8 5

(4.3.16.2)

Proof. By straightforward calculation

MWsf L) = Ij:?l%zlwé(z - t)f(t)dt@z = DEI_E—I ws(t)F(z — t)dt@z.

R2 Ij Z_Qij

1] 1] 1] 1]
We recall -y f(z —t)dt = o f(t)dt = 0 and so -0y f(z—-1) -y ws(s)dsdt = 0.
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Hence we conclude

W5 T (o2 <LDE I%I(t)—ilzI W(s)ds?(z—t)dtz<
° B inf My Q)1 e ij 29 ° 1231 z—0} ° S
- L —=h L
2z o) |-
S —— t ws(s)ds z—t)ldtdz <
@] s ooy |Qi,-| gy, OEFETY
zm B i Hie dtd
S max  ws(s mln ws(s z —t)|dtdz <
inf [y (QZ)] e ; 2oy siza) 5(s) — Uk s(8)-F(z — 1)

—m L1 ?. 1
2 max Wé(S) min1 Wé(S)B |f(z —t)|dtdz =

Sﬁ
1
rm g =i
= max  ws(s mlnws f(t)|dtdz =
@] e o W) JORMLIC]
j u
2—m @ E
< —— max ws(s mlnws f(t)|dtdz =
)] e ok, Wo() HORILIC]
ij IJ
2—m [_4diam(Q )
= - f()|dt <
inf |ny(QZ|)| __ d ul |
- sup |1ty Q)] 4supdiam(Qi1j)
= inf |y (Q2)] md b

by Lemma 4.3.15.

Similarly for the supremum norm

=h
sup |Wsf| = sup%jwé(z - t)f(t)dt%s sup% ws(z — t)f(t)dt@i
z R2 z 1

i
g 1 e
=sup Ws(z —1) — ws(z — s)ds f(t)dt
z . QL |Qi'| QL
ij ij ] ij
=su axwg(z—t) — minw z—tEft dt <
p Ql_ﬂt@j s(2 =0 = minwi(z ~ I 1)

1) ij

ol B | =
<sup|[flsup  |Qj] Thaxws(z —t) — min ws(z — )<
z trad trad
C 1
<sup|flsup  |Qjl- sup | GWk(z — 1) - diam(Qj;) <
zj troy
1]

_ L sup diam(Qf;)
< sup [f| sup diam(Q;;) - | Gwk(2)|dz <« ——
R2

3 -sup |f].
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Lemma 4.3.17. Let Q! and Q? be two partitions of the class G(m, 8). Then for any sequence

& CIH(R?) we have

[(®fv) 1= 222 VI

Proof. Upper bound for the supremum norm is obvious. Indeed, we have for the first

coordinate

L] ]
vy I = - %352 @)y(Z)Z =
[

%x(PEZ )y (Pg 22)vs(Pg %2) + 0y (PE)y (Pg *2)vu(Pg °2) %Z =
R2

L] L]
= %x(sz)y(Z)Vs(Z) +0y(P¢ )y(Z)Vu(Z)%Z =22™M (@) + Vu(@)ldz.  (4.49)
R2

R2

For the second coordinate we have got

1
(@)X = %Dgzi])x(Z)%z =
R2
L1
- zgx@f)x(%‘znvs(%‘zz) + 3, PP 2Py P2) e =
O -
= BX(Pf)x(Z)vs(Z) + dy(Pf)x(z)vu(z)Ez =21 Jus(@)] + [vu(2)ldz.  (4.50)
R2 R?
Therefore
L odm 1 o
3 N 2 2 2m+1
PrvF ; AT Z@(Z)EZSWE@QSmZ AW

L1

Lemma 4.3.18. In the notations introduced in the beginning of this subsection 4.3.2, p. 127,

the following inequalities on the norm of operators hold true for M and m large enough.

[UUvy (g, < 422" [Vl (4.3.18.1)

max([SUvy [gd, ,, [UISVs [gd |, [SBvs gt ,) < 22" WTg] (4.3.18.2)
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where the constant y, satisfies

1<y2=%+y1+2Iogz(1+pl)—a<; (4.51)

Proof. Let v, = vuaxg_l_ [C@,: be the y-component of a field with the unit norm
. 4

ij
I | s .
v} = max |V”| Ay (Qij)l, 23Msup v =1,

therefore we will be assuming that |vua| < 2™1 and sup |v | < 27%™ We write down the

formal action of the operator UU on vy

LI o) o 11
UUv, = VUiV X, = UUE' — 1 v xge + Vi Xz, +

Kl ij C1C 11
Cirrmrea 111
+ + UUi'j'vl'JJ)(gﬁl + uu; IV'JXQZ . (4.52)
R\ [ 1 [CR2\[1 R2\ R\ [

We estimate the norm of each of the four terms separately. Recall that by the choice of the

P U J— 1 0
basis XQﬁ. = Wx%(l) and therefore

p-m
= u —o—m
bz, o = @z g X2
% LI E!j u % L i | I:!JQ —m
UUIJ -1 Vu XQ&I 2L, = L] UUIJ -1 Vu 2 <
1 ’ 1 1
<2 ™m U Ui%' — 1| VY =27 ™supvl] U Ui%' -1 <
1 1

C T 1 1
<2l=am. I(UUCG)K + (UUBK —1] <
101

1—'m I:IZIIIG kl Bkl
=270 [((UUZ)i5 — 1| +|(UUZ)jl =
o -

< 27aM(22MF 4 23MG) < 222Mp, (4.53)

using Lemma 4.3.13 and the second part of Proposition 4.3.1.

The second part of (4.52) has the following upper bound, since |vua| =2M,

T 11 % (= 0
g viIxae =27Mm O vligx22m.om.ltm < p2m+l
kI Q2L
| I 1 1
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The last sum has only finite number of non-zero terms and can be estimated via the supremum
norm. Recall Remark 10: for R = My(1 + p1)?™ - md + 1, any quartet (i, j, k, 1) such that

(i,j) Cand (k,1) CRP\ Crdr (i,j) CRP\ [rand (k,1) CIT_1
SS;}' =0, SUi'}I =0, USi'ﬁ' =0, UUi'}' =0.

Therefore

% + UUEVI xS % =

R T 1 R[] 0%
1 a %
_ vi
= + UU XQZ. — =
[RNCI 1 [IgN[1 '
(I S I N | A [ N
< + sup [UUK!| - sup [vif|2~™ <

[RNLCIT—1 [CIgNLC

< 4(R? — 1)m424m . yam  p=3m  ol-m

< Mpym®3202+ DM (1 + 1;)2™.  (4.54)

We have for the last term, using the bound (4.24) (p. 105)

E kI i % ij —-m Kl 2m
UU;jj JXQ2 L, = VT-27™ sup [UUT| - My (1 + pp) ™ <
R2\ [R¥}\ [ R2\ [

<21 27ML VML My (14 pg)®™ = My - 2™ (L4 )™, (4.55)

Summing up the last four together, we get an upper bound MUvy [g} |, < 22*2M,
Now we proceed to the last inequality (4.3.18.2). We would like to show that there exists

a constant y, satisfying (4.51) such that for M and m large enough:

| 1
max [SUv, gl ,, MSvslgt, , [SBvslgl,, =22"Igl, .

We shall show that it holds true for the matrix SU, the argument for the matrix US is

similar.
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As before, we may assume for the first component of the vector field vs @1 that!
max

- . =
d - Imy(Qij)l, 2aMsupvd| =1
ij

and, consequently, |va| < 2™-1 and sup|v | < 272™M_ \We recall the definition of “good”
ij

and “bad” connected components (4.25) and (4.26)

D

(AB)kl def

(®)K €A CPF2(03) n QY | Ais a (P, €)-domain, [T n < 2m : F{(A) EEL—;_I

AEIQ’(Q )nQ | Ais a (P, §)-domain, [Tk n < 2m FE(A)[DIEL__I

We may write, similarly to (4.27)

(SU ﬁ| — (SUG k| +(suB k|
where
1 1
SUC k' = av(P2),(2)dz:
( @ @, s
1 1
SUB |_(_| —
CUIE = @]

my(Q2)]

ALNB

oy (P)y(2)dz.
A

Obviously, (SU®)K' =0. We also recall B = {z I < n < 2m: F{(z) [1}and observe
that

]
ISUB| < |0«(P2)y(2)ldz = 22™ - 8md

| I | B

We may write the action of SU on vg

SUVS - SUI] Vé‘lxgil - (SUB)kI IJXQZ
kI ij I
+ SUH\)'JXQz + k

Su 'v'J)(Qzl + SUg'v'JxQZ .
R\ [T 1

CRA\LC ]

R2\ R\ [

1We denote the space of essentially bounded, absolutely integrable, piece-wise constant functions, associated
to the partition Q! of R by ®q:
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We have the following upper bound for the first term, corresponding to the central part of

the matrix
T 1 1 -
2 (SUP)§veXae, % - :I%B)ﬁ'gwyyz—ms
1 2l 11
<sup|vl|.-27™. % ';'EL 22Mmg . 273M . 2™ < 2% mg.

B

Repeating the estimates (4.54) and (4.55) above, since [SU [J < [UU [J < 2Y1™ and using
the upper bounds D [d < 273M we obtain

% + + SUi'j'Véjxéﬁ, % <

Q2L
R T 1 L[R2\ IR\ [RA\[] !

< sup%Uk'Esup VI @+ )2 (Mg + Mom®s - 22™) <

< 2V1™ . 23MAM(L 4 )™ MpmSE < 2V2M - 24M(L + y)2™ - Mpm®S.
Summing up altogether, we get
[SUvslgl,, <2V:™. z%m(l + )2 - MomBs + 27 md < 2¥2M,

Similarly, [JISvy =k 2Y2M, It only remains to show that for y, =y; + % +2log,(1+ ) —a

and for M and m su [ciehtly large
[SBvs gt , < 22, (4.56)

Recall Corollary 1 of Lemma 4.3.10:

We can get an upper bound for the central part

g (SSC)y IJXQZIQ I:I%IG)MHWU' o—m

Q214
101

<Sup|VIJ| 2 m %ESG)L(JIES 24 2m 2——m 2—m<4 2—3m/2
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Repeating the estimates (4.54) and (4.55) for the matrix SS and taking into account an upper
bound [SBE [J < 2Y1™ from Proposition 4.3.2, we get

% + + SSi'j'Vyxgﬁ % <

YA R
R2\ 11 [CR2\ CIR2\ R\ 1

< sup%Ui'}'B (1 + w)2M(My + Mpm523M5) < 202+M . (1 4 141)2M . M,m53.

Thus

@vs @’Ll = g SSi'Zjiva;ﬁ % <

Q2L

Kl ij

< 2(y1+g)m L+ ”l)zm - Mom®5 + 93—3m/2  oy2m.
L1

Corollary 1. Under the hypothesis and in the notations of Lemma 4.3.18, the norm of the

operator [Allg} < 2°M*2, Namely, [Av Lk 22M+2 U]

Proof. Recall the definition (4.17) of the operator A: Xg1 —» Xg2
— 1j,S iju I:l
Av = A Vg XQ%,- +Vv XQ%,— =
ij

1 O .0
= v SSiiXg: +SUiiXGe, + Vil USiixge, +UUIXG:
ij ki

The upper bound for Li-norm follows from the parts 4.3.18.1 and 4.3.18.2 of Lemma 4.3.18.
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Now we proceed to the supremum norm.

sup|Av(z)| =
z

— E:I%ISKI S +SUkI u I;I'_ ij I%Iskl S +UUkI u %
= sup . Vs' SSijXaz (2) ij Xoz,(2) +Vy ij Xaz, (2) ij Xoz, (2)

_7supﬁ vl ssk'+su-'<-'q\;ii EUIS-"-'+UU-"—'%
inf | (Q2)] “«i ; s ij ij u ij ij

L Cpg—a | [
< ([SBlJ+ [SULJ+ MUSJ+ MU  (MI|+PMI]) <
Inf |nX(Qk|)| ij

< 2M.4.2V1M . M < p2+(@Hy)m
The Corollary follows from the definition of the norm on p. 100. 1

The result we were seeking follows immediately

Proposition 4.3.3. The operators WsA and WaPzzljare close. Namely,

4supdiam(QZ)) sup Imy (Q4)

W5 (Pé-T AV gt , < - 2°M I (4.57)

5 inf 1, (Q2,)]
H 2
(W5 (P A [ < 22UP d'g‘m(gk') . 2@HYDM [y (4.58)

Proof. Follows from Lemma 4.3.14, Lemma 4.3.16, the first and second parts of Lemma 4.3.18,

and Corollary 1 of Lemma 4.3.18. 1

Corollary 2.

8sup diam(Q2))
d

W5 (PZ-T AV 1= . 2°M VT

4.3.3 A pair of cones for the operator A

In this Subsection we construct two cones C; [Xh: and C, X}k such that A(C;) [C},
C, [Tyl and [Al|c, [22™1. This is the main result of Section 4.3, which is presented in

Preliminary Dynamo Theorem 8 below.
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4.3 APPROXIMATING MATRIX

Lemma 4.3.19. The operator UU is a small perturbation of the operator UOU. Namely
[WU— UU)V Gk 201+2Dms g5

Proof. We begin with (Q?, L;)-norm. Consider a vector field v [Xg, with [uTi1= 1. We

may assume that |vua| < 2M and sup v < 2~ M Then

[WU— UU)V (o}, = @ (UUE—' UkI)Vuxgz % =

Kl ij Q%L
CErT 1 o N
= B (VUK - uuli %2‘”1 < %UE—' - Uu'ij-'B 5{} Hom <
kI ij Kl ij
< %UE—' - Uou'ij-'E i Elpm.y

101

. E_Llru_url_u%iﬁl _ UOU'i‘j'B Bff Bz—m

RALC T 1 [ R\ IRA\LRN\L I

We have for the first term

Tk B, - TG By

10 101
< MU [ #{(i,j. k, ) COXICJWUE 8 13 -sup vl |- 27 <

< ovim, 24%m5 ) 2—%m LM < 2(2%+yl—a)m.

Recall Remark 10: for R = My(1 + p1)®™ - md + 1, any quartet (i, j, k, 1) such that (i, j) I

and (k, 1) CRP\ Cror (i,j) CRP\ Crand (k,1) CIC]
sskl=0, suk'=o0, usf=0 uUuK =0

Since UU"I =0 for all (i, j, k,1) CI<I(R2\ DI(®2\ O3 [k may write for the second
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4.3 APPROXIMATING MATRIX

term

+ %Uilfl - UDUIi(jIB By B|7Ty(Qﬁ|)| =
R\ 1 [CR2\[1
(I S | B T j | y
- - DUk IR 021 =

R2ALCIT—1 L[R2\

= E.:D;D:I%]Uilfla %&J E|7Ty(Q§|)| =

[RNLC 11 [CIRgNLC

- L] ij
<27M# (i, k1) CIXKGRY DAITRY O3 CIUU - sup vy <

< 21—m . 24m(1 + M1)2!’71 . M2m56 . 2y1m . 2-%!’“ < m22(%+y1—a)m’

where y, = % +vy; —a+2log(l + uy). Finally, for the last term we calculate

I:D%:'}' ~uuY S Hp-m < p-m. I:D%jui‘j'a %ouﬁ' %j} L

R\ R\ [ R\ R\ [

=27M . 29M (1 2m I:U 2m  9yim
< 11+ p) MU L v = (@ +pg)™" -2
R2\[1

Summing up,
[UU— UU)V gt , < m22@3+V5 ]

The upper bound for the supremum norm is easy:

(WU~ VUV [ = sup H0 0l - U Xaz, (@) =
kl i
sup OUK - Uou'ij-'E o

Sﬁ
inf M ()l w i

2V Lad

< e i < 20admL
inf [ (Q2)| u

ij
Then

max(LUU — UU) [odL,,2 M WU — UU)W ) < 2G5+ T3]
1

Let Y be a chain of partitions associated to the sequence n [=k. Let Q! = Yk, Q2 = yk+1,

and Q3 = YK*2 pe three consecutive partitions from the chain Y. Consider the sequence
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4.3 APPROXIMATING MATRIX

def

§ = 02mk=Dp (See definition of the chain Y in subsection 4.2.3, p. 101). Let A: Xq, — Xq,

be a linear operator, approximating the operator Pgmdefined according to (4.17). Consider
- Iil3+ ~ , 1 _ _
Cone 1,0 [Xy: and Cone 2(G*Yi—®M 02  [X.,: defined according to the general

definition from p. 100.

| L1 1 [
Cone 7.0 & v=(DXchy, ¢ [, migkd,  ¢J=0 ; (4.59)
1
L1 1 — -
Cone 2(%+Vl_a)m,Q2 I%I:ef v = (8)X|__+|'l.|J, LIJ mZ’ LT.IB'ZIS d2(y1+%—a)m’ LIJlIJJ =0 .
1

(4.60)
Theorem 8 (Preliminary Dynamo Theorem). In the notations introduced above for arbitrary

partition Q3 of the class G(m, 3),

1 [ (I 1
A:Cone 1,0 _ Cone 2G+vi—om 2

1 .
Proof. Consider a piecewise constant vector field v [CQone 1,Q! . By definition of the
1 .1 . C
Cone 1,Q' , we may write v = ()X ¢, where [Cx d and 7 = 0. We deduce
1

= Py = d and [, C= d. Moreover, since

L, S B i P
Uuy, = Uuy ngﬁ. = :‘ngﬁ. =
- L5 [
= W —osiXez, = W M@l =2 wll. (46
P :tlnx(le)l Kl 1 I —
I B . .
We conclude that the condition UUy, = 0 is equivalent to
1
1
g =0 (4.62)
1
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4.3 APPROXIMATING MATRIX

By definition of A we write

Av = A vstQilj + vquQilj =

— U[I Kkl L] ij Kkl
= SSi XQz +SUIJ XQz +Vv US XQz +UUIJ ng
:@' Kl Kl L iy ekl .
= vd SS; XQ + SU; XQz +vliysk )(Q +
| I I | C T I
+ UUf — Uuk'qlxQz + Uuﬁ'vyxgﬁl. (4.63)
T kI ij
By Lemma 4.3.19 we know
% UUE —uUk I:IJXQZ @Ezz yiag, (4.64)
kl ij

Using the third equality of Lemma 4.3.18, we get (recall y, =y; + 2% + 2log,(1 + 1) — Q)

B E =
E IJ SsklxQZ + SUIJ XQZ F VUUSKIXQZ - < 3.2Y2Mg.
ij Kl

The supremum norm estimate is similar to the supremum norm of A

(-
sup% v SSiixge, (2) + SUfiXGe, () +v'Jusk'xQZ (z)%ﬁ
z

T
< E 75k + suk 3 ijusk'E@s
—mwp ; Vs ij ij Vi U Sij
ij
< L [SB [+ [SU J+ TS )+ vl I:I<
Kkl ij
< 2M.4.viM. oMy < 22+ (@Hymy,
Thus
giljill Kkl L] ij Kkl ﬁ
SSii XQz +SUIJ XQz + v US; XQz .
ij Kl

< max(22+GHyDm 3. ovemyg = 3. 2¥2Mqg (4.65)
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4.3 APPROXIMATING MATRIX

We expand vy = dX — Wy and observe, using Lemma 4.3.1 and equality (4.22)

o C 1T 1.1
UUX = UU{Xgz, = 2°™X 1 (4.66)
| I I |

By definition of the (Q?, L1)-norm,

@2 H _ 2o X ®
WL ny(Qal o, T (QF) '
Using (4.62), we calculate the norm

Ej:UUI:“I Ixs g < Eiﬁwyxgz Q + (4.67)

Kl Q2 L kIl Q2L
ki L 1 L

+ | -+ + Ukl IJXQZ % =

R R IR LRI ] “iha
1 L 11T -1
<2 ™ H yiG2™m VU] [wd |- [y (QE)] <
1 1 R\ R\ [1

<271+ p)? sup JUUN|-sup W] < 27+ pg)2T - 2mL d2T™2 <
RA\[XT 1

< d273M2(1 + py)?m . 2vam, (4.68)

We shall estimate the supremum norm as well

- 1 .
supE supUUkI X5z, (z)& E VU H%
z |x(Q |)| kI ij
1 Kkl I: 2m  o2m
<| A sup [UUKT- [wd] < d(@ +p)>™ -2
X kl iJ
Then
E UUkI IJXQ @<
Kl ij

| L1
< d- max 2—3m/2(1 + lJ_1)2m . 2y1m’ (1 + “)Zm . 23m/2 — d(l + lJ_)Zm . 23m/2. (469)
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4.3 APPROXIMATING MATRIX

Now we substitute (4.64), (4.65), and (4.66) to (4.63) and obtain Av = d22™x !, where

wl: vl SSkIXS +Suk| u E_|I_VIJU8|(| S +
s ij Xaz, ij Xo2, u USij Xaz,
ij ki
+ UUR' — UU i XGe, + VU XGe - (4.70)

Kl ij Kl ij

with the norm (recall y, =y; +  + 2log,(1 + ;) — Q).

= ovem 4 o3 +yi—aym + 1N2Mo3m — gol+(@3+y1—o)m
[l =d2 d2 d(1 +p)M22" <= d2 <

< d[OUX g - 26 Y2 —om.

] -
We would like to write L|J)1, as a sum Yy = by — @ with  YUe =0. We may choose

S
b= Dﬂ (4.71)
HUX

] -
Using (4.66) we get UUx = 22M*2. Using (4.70) we get

111 rrml1 - O Crej .
Yy = vISUG'xge, + UUR' — U v XGe, + UUgpd

X5ﬁ.' (4.72)
kl ij kl ij kI ij

Apply (4.61) to gy

1

N - ] ° [

:‘“.3 = pm+1 I:I%‘E'vg + UUK —UuUl v +uulyl

kI ij

1

We may obtain an upper bound

ﬁ wlﬁs 2m+1 ﬁ sui&-lvgj @» E uuil-' —yuN E"} @ E Uu&ijlq;{,i %
:Iy Kl i ] J J .
ij

Kkl 1] Kkl ij

From Lemma 4.3.19 it follows that

H— gk - uu Sl Lom et evmamg

ij

Kl ij

Using (4.68) we deduce

@ uu&ij| I @s d(1+ p)2m. 272 . 21M(1 + p)2™,
Kl ij
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From the third part (4.3.18.2) of Lemma 4.3.18 we get

E sui%-lvgj ﬁs 202+ hmg,
|

ij k

Summing up the last three together, we get
@Eﬁ 3d - 265 +yi—om, (4.73)

We conclude that the ratio (4.71) is bounded by b < 2@3+vi—®m —2mq
1 I:I3 I:I
Therefore Av = d(2°™ + b)(2)X (“;px ) CCone 2G*Y1—0M 02 and [Av [ d22m 1,

L1

4.4 An invariant cone for the operator W s PGW o

The main goal of this Section is to get rid of the dependence of the sequence in the Pre-

liminary Dynamo Theorem. We exploit properties of the Weierstrass transform, and con-

struct an invariant cone for the operator W_s PAW s , which is independent of the choice
2m 2m

of 6 =2""9,

4.4.1 Discretization and the Weierstrass transform toolbox

In this Subsection we establish the fact that the image of the Weierstrass transform may
be very well approximated by piecewise-constant vector fields associated to some canonical
partition.

Two-dimensional discretization operator on vector fields on the real plane, associated to a

partition Q, we define by

1 I
Do L(R?) n Loo(R?) - X Dov ¥ dlixy, +dixs, (4.74)
ij
where
1 ]
ij def 1 dij def 1
u

= vs and —_ Vy- (4.75)
s IT[Y(QU)l Qij ° |T[y(Q|j)| Qij !
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4.4 AN INVARIANT CONE IN X

In this section we assume that Q!, Q2, and Q3, are three arbitrary partitions of the

class G(m, d), defined on p. 102. In particular, all three partitions satisfy Lemma 4.2.2.

Lemma 4.4.1. Let v [X be a bounded vector field with absolutely integrable components
in R2. Then there exists a constant yz > 0, that depends on & and on the size of partition

elements, such that
MQV - DnggV@S 2_y3m|I|I.|

One may choose y3 = 1 — 9928 4

2log, m
m m

2log, m
m

=l—a+ <l—a+yi.

Proof. We shall show that the inequality holds true for any bounded and integrable function

f: R? - R first. We may write by definition

1]
W;f(z) = ws(z — O)f (t)dt,
R2

and for the discretization operator we have that

| I | 11
u
Dq2W;sf(2) = i m o, RZWa(s—t)f(t)dtds.XQizj(z)_
- 1
= f(t ws (s — t)ds - At
R2 (t) S (A 5(s = D)ds - Xoz (2)
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Therefore, (Q?,L1) norm may be bounded as following:

1
I éﬂm
MWsT — D92W5f (ol L, — 5\/51:(2) - W5D92f(2) EZ =
' |T[y(Q )l or s
1 1
Il ?‘ [ — -]
= f(t) ws(z—t ws(s — t)ds - 7) dtfdz <
@B o e oz -0 - T o, "o 0% e, @
= —an @EI ]
< |f(t)| @5(2 —t)— — W5 (s — t)ds - X2 (z)zdt =
R ;@I o o 1900 a2, 2
1 m D@ 1]
= |f(D)|dt- sup s5(z—1) — Ws(s — t)ds - X2 (2)[dz <
R2 t | y(Q )l oL a 19l ez, K
1] m D% 1 1 @
< f(t)|dt - su z—t)— ws(s —t)dsdz <
L IFomdtsup M@ =0 gz} o, WG9
1] m
< |f(t)|dt-sup axws(z —t) —minws(z —t)[dz. (4.76)
R2 t | y(@) oz 7 z

1

We have to find an upper bound for the last term:

1 ]
m L
su @axw s—1t)— minw, s—tzs
p Iﬂy(Q TR s(s—1) o s(s—1)
1
=2 Msup |nX(Q )| - a'uax ws(z — t) — n&gg wa(z—t)B<
LT

| I |
<27Msup  |me(Qf)] - |diam(Q§)| - sup | Czwk(z — 1) =
t ij '17%

2
—amgp  ANOD] G —b)- 0 =
t Ij IT[y(Q )l ij
L ldiam(@)] 1
<z msup S sup | b — ) 101 <
ij Ty (Q5) t |:u| 2 103,
o Idiam(@3)] 2 jdiam(@p)|
<2 m . b dz < 4.77
WP @) g 2N = TS T oy (47D

Therefore substituting (4.77) to (4.76) we conclude

SUplny(Q Dl - |diam(Q2,)|

W — Do2W5sflgl |, <
@ b 0 Kl |T[y(QZ|)|

3 PYRY (4.78)
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Similarly, for the supremum norm

[DQZW5VS —Wsvslad =
L]

= supgI ws(s — t)vg(t)dt — o7 ws(z — t)dtdsziz_ (S)@:
s R? ij | |J| R2 J

1 I
= sup sup , ws(s — t)vg(t)dt — 7] , ws(z — t)vs(t)dtdzgz
ij

ij srof R Q4 R
1 1
= sup@ax ws(s — t)vg(t)dt — min ws(s — t)vs(t)dtﬁs
ij s i R2 s Iﬁj R2
1 1
=sup H:I ws(s — t)vs(t)dtas, (4.79)

Q% v(QF) R2
where y(QiZj) is a line segment connecting the points of maxima and minima of the integrand

in Qﬁ We proceed therefore

1
[Mg2W5vs — Wsvs [ed < sup diam(in) - sup%;l ws(s — t)vs(t)dtgs
S R2

L1 o
< sup diam(Q%;) - sup |v| - sup Em(s —pt <
S R2
, ] i I
< sup diam(Qjj) - sup |v| - o T tZ+t7-e 22 dt<
sup diam(Q%;)
= - 37

— (4.80)

We put (4.78) and (4.80) together, and conclude that we may find a constant y3 > 0 such

that
ax'—?clsupmy(Qilj)l . diam(Q2,)] m sup diam(QF) |:|=

, 27ysm
0 Kl |ny(Q§|)| 0

1

Remark 15. It follows from the properties of partitions of the class G(m,d), Lemma 4.2.2,

that y3 < 1—a and it may be chosen arbitrary close to 1 — a.
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Lemma 4.4.2. Let Q be a partition of R? the class G(m, ). Then
(W5 X =1 DoWsX rial< 27™%; (4.4.2.1)
(WX 1 X ral< 2~™/4. (4.4.2.2)

Proof. We start with the first inequality. The upper bound for the supremum norm is trivial.

Indeed, observe that for any non-negative integrable function £ and any element Q;;

1
Sggjupf = |Qlj| Qjj f= 0
and, consequently,
sup@—— f@s sup |F].
Qjj Qij Qij

Therefore

— I I
sup?wa(z —t)dt — Ws(z — t)dtdsxg;; (z)@:
z — ij

|QI_]| Q5 [

? 1 [ ?
= sup sup ws(z —)dt— — W5 (s — t)dtds@s sup sup ws(z — t)dté 1.
ij 2O} [ Q45| o; = ij 20y [

Now we consider (Q,L;)-norm. Let k be such that ek > 2™ and k < m. Introduce three sets
of indices:

ri: ={@,j) CZF | Q; Tk}

ra: ={(i,j) CZF | Qij ks, Qij T ks };

rs: ={(@i,j) CZF | Qij Tks}-

We split the sum of integrals in three parts:

1 — I ]
?Wé (z —t)dt — Tom Ws(s — t)dtdsxq;; (z)z =

|ny(QkI| Qg i Q451 o =
1 1 1 1
o ?‘ 1
w5(z —t)dt — ws(s — t)dtds[dz
Ity (Qijl o oy Q3] o; =
s D? - -
= + + w5(z —t)dt— ws(s — t)dtdsz. (4.81)
ra r2 rs IT[y(Qul Qij |Q|J| Qi [
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We estimate the three sums separately.

Observe that for any (i,j) [rd and any z [Of; [CTh_}ks

- - s s [
1> wi(z—tdt=  ws(t)dt= ws (t)dtydt, = wi(t)dt =1 —4e7¥
1 =1 —kd  —kd "
Therefore
—am I Ry A
ws(z —t)dt— — ws(s — t)dtdsz =
5 1z <
|ny(Qlj)| Qij |Qlj| Qijj [
EI 1 ] _
m m
e s~ N S U~ S S B~ T
L Imy(@Qipl o Q5] o inf |my (Qij)l
(1 —kd)?

= ety @] ~ P4l (482

Observe that for any (i,J) [rd and any z [Of;

? I
sup ws(z —t)dt — — ws (s — t)dtds@s
z[0f [ i‘| Qi [
e - N :
< sup 0% 1 ws(z — t)dtEdiam(Qj;) = sup Wk (z — t)@dt - diam(Q;jj) =
z mj 1 z IEIJ 1
L1 —1
. 2 4 _t 5 (Zx—tx) ;(Zy—ty) dt d 0 -
= Zslggj |j2—54 (Zx —t)?+ (zy —ty)? - e 2 iam(Qij)
1
Iil _ (@x—tx)%—(zy—ty)? 4diam(Qij)
= — —tx| +|zy — T Qi) = ——97,
Zs&j 254 |zx — tx| + |2y — ty| - 2 dt - diam(<;;) 25
Therefore
S ==
ws(z —t)dt — — ws(s — t)dtds - Xq; (z)[dz =
ro Qij 1 |Q|j| Qijj [
012 i8m(@i) _ T 4 )2 — (1 — ka2 AR IAMOQ) _ oy cup diami@y).

0 0

r2

(4.83)

Finally, for the third term we cut r3 into squared annuli

ain: = {(IJ) [rd, | Qij I:Emk+n)5a Qij m:EQK+n—1)6}-
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1
[Qij| < 23 + 3%(2k + 2n — 1). Therefore,

ain

ﬂf =
wa (z —tdt— ws(s — t)dtds[dz =

IQul Q; [
I I ]
W5 (s — t)dtdsz =

ra
T:I:E?
W5 (z —t)dt—
|%|% =

n0a|n Qij
1 1 @

= |Q.J| sup ?Wa(z —tdt— — w; (s — t)dtds
|Qu| Q; [

. ]
ObV|oust, al =rq, and

<= .
z[Qf 3

n=0 ain

n=0 aln

(k+n)2
2

< 4supdiam(Q;;). (4.84)

rri 4
< - |Qij| . dlam(Qij) . %
n=0 ain
Substituting up (4.82), (4.83), and (4.84) to (4.81):
(W s X —1 DoW s X rtal< 32m sup diam(Q;; ).

We conclude, using the second part of Lemma 4.2.2: Q;j [Rkc(2!~™m,21~m)

[W5X — DoWsX rfal< max(32m sup diam(Qjj), 2~™/4) = 27 ™4,

Now we consider the second inequality (4.4.2.2). Obviously, DAsX — X&ad < 1. We
proceed to the weighted (Q, L1)-norm. We shall show that
1
L2dm 125
w —_— . 4.
IWsX 1 X = 2N [y Qi) (4.85)

MsX T Xrel, = —=—
' ij |T[y(QIJ)| Qij

By straightforward calculation

T ?Wﬂz —t)dt—x@)z <

—~ W
M@ g XEXET @l o

pm B ?\Né(z - t)dt@z + I:?M(Z —t)dt - 1§ EI (4.86)

= inf [my (Qij)I |T[y(Qu)| R\ [1[ 1

Recall the error function

-
erf(z): = a%e_%dx;
0
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and its antiderivative
L1 022
erf(z)dz = zerf(z) + —»L

We estimate each of two terms of (4.86) separately.

I:I 2
_ gty
% 252 Xmdtl
1
q ljll—tl x2 Ijll g‘_—&
= %l%e_ﬁdxldtl 2 xL_e_erdxldtl =
-1 —1-t, 2m} -1 =£a T
L (54 Ly |
—1 2 ’\7£ _XidX]_'F % ie_xrfdxl dtl =
2 0 n 0
IZ' .
= 5 fL—EI/_ +erf ijxlzL;l dt; =
-1
I@,E/é Ld 1
= xL erf(z)dz— , erf(z)dz =
2 0 -2/
L e=22 [Has [ o2 1
= A% zerf(z) + —wL — zerf(z) + —wL Vs =

™M 5

=2erf — + Ea(e—W —1) = (2 -8)(1 — e %),

Therefore for the first term of (4.86) we have

q b=l ]
ws(z —t)dt—1[dz = 1—  ws(z—t)dt dz =
5 ey
(x3—tp)? (o]
—a— L e dxdt, = 4— (@2 —8)2(1—e Y)Y <45, (4.87)
—1 210
We claim
L1 [
w;(z — t)dtdz < 89. (4.88)
R\ 1
. . . _ D.L g _X2 —X
Indeed, using approximation erf(x) =1— =  “e > dx=1—e™ for large x,
Ijll I:—Iloo (x1— tl)z Ijll I:—Iloo 5
Jv; —Z_dxldtl = = e_xldxldtl =
-1 1 2110 2 -1 A%
MGy o 1 o7’

—1-1 f—'\/— =1+:= f =1+= zerf +A,L =

> dt1 2 _\/5/5 erf(z)dz > zerf(2) | 2/5

Ve My o—2/8% L1 ] a—2/8?
—1+1 iﬁ TZ f—2 ——\,L —1- Toe %Az —»LZ <3
i i
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Therefore,
oo Edoo L
ws(z — t)dtdz < 48%;
1 1 1
and, similarly,
(oo (4 04 [
ws(z — t)dtdz < 20.
1 -1 -1 -1
The claim (4.88) follows and hence the inequality (4.85). 1

Lemma 4.4.3. Let Q' and Q? be two arbitrary partitions of R? of the class G(m,&). Then

An upper bound for the norm of the Weiertstrass transform is given by

>N
(W5 (2 sup [y (QF)] - sup ()] - mP =+ T4

Proof. Consider a function f 1} (R?) n Loo(R?) with [FIgl = 1. Then

>dm ]
|1Ty(Q N ar

1

Ifl<1,  sup|f|<2%.

By straightforward calculation

o HpgEh ]
E ws(z — t)f (t)dtz =

(W5 f (o1
= 5 @I o

=h — U

<2 fo ws(z — t)dzdt <
W 9k | y@Q)I o2
=h = 4 i1, Y

=2 [f (1)) + ws(z — t)dzdt.

ot |y( )| Q%

Kl ki 1, —Q%1>md  |Q,—QF1<m3 ij

(4.89)

We have to estimate two sums separately. We know that [wk [od < glz; thus
1
1 Ws(z — 1)dz < |nx(Qi2j)|
) - s — 0.
Iy Q2] 2 &2

1

Therefore, since for a fixed Qf,, the total number of elements of another partition Qizj satisfying
|Q% — Q| < md is bounded by m?Nj:

1 , Y N
ws(z — t)dz <sup|nX(Q )| - m? =
Iy Q)] oz, '3

1

(4.90)
|Qﬁ|—§2i2j |[<md
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We also observe that for any t CQOF,

! - ws(z —t)dz < 71 - ws(z —t)dz < 74e_m
8(z — = 5 =
1o}, —03 |>m5| Ty (€ )I o inf | Y(Q i) B2\ s inf | y(Q Dl
(4.91)

Substituting (4.90) and (4.91) to (4.89) we get

1 4,0-m 1
_ 4e , N
W5 f =2m fo) —————— o} 2 dt<
sFlad, y Qﬁ.l Q] inf e, ()] + sup M (QF)] - m? 32
zNé
=< sup [T (Q5)] - sup [my Qi) - m? — OFId .

The upper bound of the supremum norm is easy

DT [od = sup ?Wé(z — t)f(t)dt@s sup [f(2)].

z[R1 R2

The upper bound for the vector fields follows immediately.

4.4.2 Constructing an invariant cone

In this Subsection we use approximations we obtained earlier and two cones constructed for
the operator A (Section 4.3, Theorem 8) to get an invariant cone in the space X for the

operator W 5 Pazétyi. The main result is Theorem 7. We shall prove two Lemmas first.
2m 2m

] 1
Lemma 4.4.4. There exists y4 > 0 such that for any v [Qone 2G*V1—®M ol and for

arbitrary partition Q2 of R? of the class G(m, 3):
Moz Wsv B (1 —27V4™) [uT ]
(See p. 100 for a general definition of a cone in X.)

Proof. Let v [Xq2 be a bounded and integrable vector field. Then similarly to one-
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dimensional case, by Lemma 4.4.3

[—odm 1
Wsvigd ?Wé(z - t)v(t)dt@z =
m Tt | y(Q oy

1]

< sup |y (Q3)] - sup [Tk (QZ)] - m 5 CVTgly .

By Lemma 4.4.2 we know that

W5 (9)X -1 D2 Ws ()X rhaks 27 %

Now we find a lower bound for the norm of Mip2W;5(?)X rfg?. Observe that the integral

. ] 2
over the unit square Ws(z)dz =1 —e /%",

D2 Ws(X rhalz W)X rhat Wa()X 7 Doz Wa()X a1 —27% —e /%,
. _ 5 ] -
Consider ¢ (X1, with MG d2(e*Y1=0™ YUy, = 0. Then by Lemma 4.4.1
[W s ) — DWW s Yok d - 23 +V2—va—aom (4.92)

2 Iog2 m.

where y3 =1 — ; and thus by Lemma 4.4.3

EDQZWQLIJ Lk MQLIJ LHd- 2(%+V1—V3—a)m <

2GHYImvamam (4 93)

= d - sup |my (QF)] - sup [mx(Qjj)! -

We use Lemma 4.4.2 and (4.92), to estimate the approximation error for the field Wsv:

Wsv—DgWs vl dm’%(?)Xm Dgzw%(‘i)x@ (W — Do2Ws Yo k=

< d2~m/4 4 ¢ . 2(G+V1i—ys—oom
Observe that by Lemma 4.4.3, since [IC= 2itVi—a

O 5 v 1= EﬂN%(?)XdW%w@ W%(?)Xlﬁl— W5 p [ =

> d(1 — &™) — sup |1y (Q5)] - sup T(Q})] - 5 m? [y =

m2N5

= d(1 — ™™ 7%%) — dsup Iy ()] - sup (@] - 2G VI
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Summing up altogether

Ll —m/4 —m2/62|:I
[DnggVEEMgV@—MQV—DQzWQVEEd 1-2 —€ -

L] 2N L1

m
—d Suplﬂy(ﬂ?j)l-surJlnx(Qilj)|-2<%+V1>m._5 5 4 9GHvi—vs—a)m

We know that T = d(L + 201+2=9M)  Hence
[MDoWsv [ (1 —27Y*M) T, ]
where y4 > 0 has been chosen such that

2
m-N
sup [Tty (Q2)] - sup [mx(Q%)] o(y1+m T5 + 2(G+V1—ys—a)m — o—yam

1

Remark 16. It follows from Lemma 4.2.2 and Remark 15 that we can choose the constant y4

tobe0<y,<i-yi<i

Proposition 4.4.4. Let Y be a chain of partitions associated to the sequence n [35. Let
Q! = YK and Q2 = Y**1 be two consecutive partitions from the chain Y. Let § & g2mk-Dy,
Consider a linear operator A: Xq, — Xq,, approximating the operator Pgmdefined according

to (4.17). Let Q3 be another partition of the class G(m, d).

. ml ;O
DosWs A: Cone(1,Q1) - Cone 27Y4M Q° .

(See p. 100 for definition of a cone and the chain Y.)

_ O O O, —
Proof. According to Theorem 8 p. 141, A: Cone 1,Q' — Cone 2G*V1i=®M 02  \We may

write then

1
AV =22 (X b, b (X, Mk d2@3He-am  yl=o,

1
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By straightforward calculation
DosW s Av = 22mD93W%(8)X|j DosWas .
Using Lemma 4.4.1
[DigsWa g — W Yk 27V™ il d2@3+yi—ys—am

Thus introducing y4 defined by Lemma 4.4.4 and using Lemma 4.4.3,

mgsw%wgﬁ M%LIJ@ EDQe,W%L]J—W%L]JI@s

2Ns

. + d2@%*+y1i—ys—oOm — go(2—va)m (4.94)

< d2012DM sup [y (QF)] - sup M (QF)] - m
By Lemma 4.4.2 we deduce
MosW s ()X (X ek 2™
Thus we may conclude
d2""DgsW s ()X =5 d22™ ()X e ¢ (s,

where [z d23™/2, Together with (4.94) we get the result. —1
Theorem 7. Let Q be a partition of R? of the class G(m, 8); and let [E1.J <  be a sequence

of real vectors. There exists ry(m) [Tr2(m) and g;(m) [£20m) such that

WLPEZ,A_A/L: Cone(r1,€1,Q) - Cone(ra, &2,Q) C Cone(ry,€1,Q).
2m 2m

@z?n PE,ZI%/% |Cone(r1,sl,Q) E’— 2m™

(See p. 100 for definition of a cone in the space of vector fields).
Proof. Let Q! be a canonical partition for the map PEZ. First of all we shall find a number
1 .1 _
ry such that for any n [Qone (r;, Q) we have Do,W s n [Qone 1,Q' . We may write
2m

n=(§)X Y, with %y!’

=0 and gl dr;. Then
DngZLI’] = (8)D91W2ixl_—+[ DngZLLIJ;
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and using Lemmas 4.4.1 and 4.4.3, we calculate

g W s Y1 (W G MigeW s Y —W s Y

1 Ny N
< 27VsMm4 22—2"‘m46—2 Mgl< 5dr1m42_2m6—2; (4.95)

Using Lemma 4.4.2, we calculate
MW s X X chks 2™, (4.96)

which implies D Ws ()X = ()X = W1, where §3 [ X and [ 1< 227™4. Hence

DQleir] = (DX DQlWZLX|__+|' Y1, where

1

N
DignW s X Yy [ dry m*272M S 4 otma
2m

[ |
In order to guarantee Do, W s  [Cone 1,Q! it is su [Cieht to choose r; such that
2m

N 1

44—2m 'NO

m-2 _ = —.
82 rq

We set

def 22m52

= . 4.97
4m4N5 ( )

r
We can also notice using Lemma 4.4.1 that
[Do:W s n—Ws nik dl’12_y3m.
2m 2m

L L1 [ _—_[1 (|
Taking into account Do:W s n [Cone 1,Q! we deduce W s n [CCone 1,r;27Y3M Q1 . We
2m 2m

also observe that by Lemma 4.4.3 for any v = n +g [Cone (r1, €1, Q) we have

@%ga;klmz Ns _ 168 =: g1

22M32  m?rq

We will be assuming that &, 2 r;27Y3™M. Then without loss of generality

W : Cone(r1,1,Q) — Cone (L, &) (4.98)
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Let A: Xo1 —» Xgq2 be a linear operator approximating Pzzlj?md defined by (4.17), p. 104. It

1 [ E|3+ ~ 1
follows from Theorem 8 p. 141, that A: Cone 1,Q! _ Cone 2G*Y1=®0M ol [X}.; more-

over, the norm is growing exponentially with number of iterations [Al |cone(1,01) [ = 22m=1,

[
In particular, we see that for any vector field v [[Cone 1,Q! ,

0 0 ZmEI ( +§—cx)ml:l
[Av = [A((§)X V) = dIA] )X et [AY = d2" 1 - 2%t

_ _ O | 1 . _
Consider a vector field v = v + g [Qone 1,d,0' , where v CQone 1,Q' [Xq: is
a piecewise constant part with the norm NI 1< d and [gI;1< d;dl Then by linearity
PZv= PV, + PZg, By inequality (4.3.17) of Lemma 4.3.17,

[PRglal< m22™*2 [gT; < mde 2f™*2. (4.99)

.. I R
By Proposition 4.3.3 for v [[Cone 1,Q' [X}:

sup diam(Q;j)

; 2°M Wk d2M*45, (4.100)

W s (P Avigl<8
2m
We have decomposition
2 — 2 2 N — 2 2
W%Paﬁ—W%PE&+W%PE@—W%(PED—A)V +W%AV +W%PE@. (4.101)

We write W s Av and W 5 Pf@ as a sum of piecewise-constant part and a remainder
2m 2m

W s Av =v; + 01, where vi = DgW 5 Av [ Xk, and g1 =W s Av — DgW 5 Av; (4.102)
2m 2m 2m 2m

W s P&g=v, + gz, Where v, = DoW s P&g [ Xk, and g2 =W s PZg — DoW s Pég.
2m 2m 2m 2m

(4.103)
We estimate all four terms separately.
Using Lemmas 4.4.1 and 4.3.18, since VI d, we get
(g1 [al= (W s Av —DoW s Av[gl< 2" [AV [pl< d2@—yam, (4.104)
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By Lemmas 4.4.1 and 4.3.18, using [gl; k= dd;,nd (4.99)
[0d[gl= (W s PZg— DoW 5 PAglol< 27V3™ [Pfiggl< mdeh2f?Vs)m*2, (4.105)
2m 2m
Finally, using (4.99) and (4.105),
(V3 [gl= MigW s Péglal< [Pfiglol+ W s Pég — DaW s Péglgl<
] ]
< mdeg2fM*2 1T+ 273 T (4.106)

We now need a lower bound for the norm of v, defined by (4.102). By Theorem 8 p. 141 we

E|3 1
have Av [Cone 2G*V1=®m ol and Lemma 4.4.4 is applicable:

Vi [gl= MoW s Avigl= (1—-27VM). [Av 1= d22m ?— 2(G+yi—am ?1 —27YaM) (4.107)
We need to check that
V1 +Vz = DoW s Av +DoW s Pég [CCone (r2,Q); (4.108)
and to verify the inequality
[qd [ol+ [gd o1+ M%(ng— A [gl< I + vy gl €. (4.109)

Consider a vector field v = ()X ¢ [Cone 1,Q' with MGk dand ¢ =0. Using
—

Theorem 8 p. 141 we write Av = d22™(9)x — ¢, where ¢ [ X2, and [l 223 +y1—a)m

For the first inclusion (4.108), we expand DoW s Av as following.
2m

DoW s Av = DaW 5 (d2°™(9)X = ¢) = d2°"DaW s (2)X 1 DaW o ¢ =
- 1
= d2’M ()X d2°™ DaW s (DX W o (DX W s (DX (DX
+(DaW s ¢ =W ¢) +W s ¢.
We see that by Lemma 4.4.2

622" MW 5 (D)X =1 W s (9)X rfal< d2:™; (4.110)

d2°™ W 5 (9)X 7 ($)X rLal< d24™. (4.111)

— 160 —
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By Lemma 4.4.1 again, since [l d2@3+yi—om
MW 2 ¢ —W 5 ¢lgl< d2@%+viya—oom, (4.112)
Therefore we may write
DoW s Av = d2?M (X ¢ X, (4.113)

where
¢ = d2*™(DaW 5 ()X (D)X )3+ DaW 5 ¢ [Xb;

with the norm that can be bounded using (4.110), (4.111) and (4.112)

[Qlgl= d2*™ MW s ()X =7 (DXl DaW o ¢~ W s dlah+ (W s ¢lgl<

1

. 1 23 2 1 2Ns
<d 24M* 4 2(1+25=OM . 97VaM 4 sup |my (QE)] - sup [T (Qi5)] - M —

2 =
<4d . 2@7vOm  (4.114)
Thus using (4.113) and (4.102), (4.103), we write
DoW o Av +DoW o PZMg = v1 + v = d2°M(9)X = ¢ + va. (4.115)
Then the condition (4.108): v1 + v, E@(rz, €2, Q) is equivalent to [+ v, [gl< dry22™.
We see using (4.114) and (4.106) that
_ L1 1]
[+ v, [pl< [@Igl+ V3 [gl< 4d - 2@7YOM 4 4dmeh2fM T+ 27V =
(| C1 RN
= 4d2°M 27VAM 4 me 1+ 273 T (4.116)
Now recall the second inequality (4.109)
(g4 [ql+ [gd [gql+ Mzi (Pazl:,— A Gl g v + v, [l (4.117)
We know already from (4.100), (4.104) and (4.105),
1

1
[0d [ol+ (g3 [+ DN 5 (PAT AV [gl< d22™ 27VsM 4 2T Vsm 4 2@~ DM+ < 3 pf2-Va)M,
2m
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Using (4.107) and (4.106), we deduce, taking into account Remark 15 and Remark 16

y3<1—0(andy4<%—V1, andazi—g:

04 + v, (= d22™ ?— 2(G+yi—em mlj— 27 Yam = dzz"‘agi%I + 27Yam %

] O O m [
= 22M T — 2(GHVLmOM _o—Vam _ goTVam S (492M T _ goT % (4.118)

Therefore (4.108) and (4.109) would follow from

- m 1
32TV M < g, 1— 2T 2 (4.119)

27VaM 4 g g 2TV2M < 1. (4.120)

Recall now that &, F 4elm2%. We may choose the following parameters for the cones

—ml=a —ma —mi=c — ma — 1—a — ma -
rpb=2""7% =26, =2""72 =2"3,and g, =222 =2"T16. Itis clear that

r, Cril= % and the second condition on the norm follows immediately from (4.115),
(4.116), and (4.117).
1

The proof of the existence of an invariant cone is complete. The fast dynamo theorem in

dimension two follows as shown in Section 2.2. It is the main result of the present work.

Theorem 9. There exists a volume preserving piecewise di [edmorphism F: R? - R? such

that for some vector field By in R2

lim lim %In [(@xp(eA)F O Bo ] > 0.

e€-0N-o0

The map F may be realised as a Poincaré map of an incompressible fluid flow filling a compact

domain in R® (an immersed 3-dimensional manifold with a boundary).
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