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Abstract

In the present work we develop an approach to the classical kinematic fast dynamo problem

for flows [32] in the real 3-dimensional space. We suggest a fluid flow that may possibly

generate a magnetic field which energy grows exponentially fast with time in the present of

slow diffusivity. In order to verify the construction we study a discrete system and prove that

an analogous statement holds true for the Poincaré map of the provisional flow and vector

fields in the plane.

This problem falls into the framework of open dynamical systems with random holes.
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1 Introduction

1.1 A problem of magnetohydrodynamics

The subject of magnetohydrodynamics is evolution and interaction of motions of an electri-

cally conducting fluid and an electromagnetic field. Typical examples of electrically conduct-

ing fluids that dynamo theory is dealing with are the liquid layer of the core of the Earth

or convection zones of stars, although we will be studying very simplified models. Dynamo

theory studies the mechanism of generation of magnetic fields in electrically conducting flu-

ids as a phenomenon of magnetohydrodynamics [25]. The classical kinematic fast dynamo

problem [32], [36] is dating back to 1970-s and concerns the evolution of a magnetic field in a

conducting fluid flow in the presence of small diffusion, or, in other words, when the magnetic

Reynolds number is large. The magnetic Reynolds number Rs is a dimensionless parameter

that is used to describe the relative balance of magnetic advection to magnetic diffusion. It

is proportional to the electric conductivity and the velocity of the fluid and to the length of

a characteristic fluid structure. The kinematic dynamo equations read





∂B
∂t

= (B · ∇)v − (v · ∇)B + ε∆B

∇ · v = ∇ · B = 0,

(1.1)

where v is the known velocity field of the conducting fluid filling a certain compact domain M .

We will be assuming that the vector field v is tangent to the boundary ∂M ; B is the magnetic
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1.1 A PROBLEM OF MAGNETOHYDRODYNAMICS

field, and ε = 1
Rs

is a parameter corresponding to the speed of diffusion through the boundary

of M . The case of slow diffusion corresponds to an almost perfectly conducting fluid.

Definition 1. The action of the velocity field v on the magnetic field B described by the

system (1.1) is called dynamo action. A divergence-free C1 vector field v with compact

support is called a kinematic fast dynamo if the magnetic field grows stronger exponentially

fast with time.

Dynamo action and chaotic motion turn out to be closely related. It has been shown by

Klapper and Young [19] that the growth rate of the magnetic field is bounded by topological

entropy of the fluid flow. Kozlovski [21] has shown that the growth rate is related to the

topological entropy, Lyapunov exponents, and topological pressure. The limit chaotic motion,

corresponding to the perfectly conducting liquid (ε = 0), causes the magnetic field B to inherit

the complexity of the Lagrangian chaos.

It turns out that in dynamo theory the magnetic field reflects closely the motions of the

fluid, just as the swirls of cream in a cup of coffee reveal the pattern of eddies stirred by

spoon. In other words, the changes of magnetic field keep the track of the movements of

the fluid, and one can reconstruct the geometry of the flow from the magnetic field. If we

consider a magnetic field as a collection of magnetic lines, the fast dynamo corresponds to

the growth of an average line length in a flow and thus stretching and folding properties of

the flow.

The Lorenz force causes a feedback action of the magnetic field on the velocity field.

When the magnetic field is small, one can neglect this action. Whence the full nonlinear

system of magnetohydrodynamics may be reduced [10] to the system (1.1) in the case of an

incompressible fluid.

— 2 —



1.1 A PROBLEM OF MAGNETOHYDRODYNAMICS

The full pre-Maxwell system of magnetohydrodynamics may be written as

Ampere’s Law ∇ ×B = µJ, (1.2)

Faraday’s Law ∇ × E = −
∂B
∂t
, (1.3)

Ohm’s Law J = σ(E + v ×B). (1.4)

The magnetic field is divergence-free:

∇ · B = 0. (1.5)

In the equations above B(x̄, t) is the magnetic field, E(x̄, t) is the electric field, J(x̄, t) is the

current, µ is the magnetic permeability in the vacuum, σ is the electrical conductivity, and v

is the velocity field of the fluid.

We can substitute (1.4) into (1.2) and apply the curl operator to both sides. Then we get

the induction equation

∂B
∂t

− ∇ × (v ×B) − ε∇2B = 0, (1.6)

where

ε =
1
µσ

= magnetic density.

We may expand

∇ × (v ×B) = B · ∇v − v · ∇B + (∇ ·B)v − (∇ · v)B,

and recall the incompressibility condition ∇ · v = 0. Together with (1.5) we get

∇ × (v ×B) = (B · ∇)v − (v · ∇)B.

Finally, we substitute it to (1.6) and obtain (1.1):

∂B
∂t

= (B · ∇)v − (v · ∇)B + ε∆B = 0.

The following question is well-known as ”The Kinematic Fast Dynamo Problem”.
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1.1 A PROBLEM OF MAGNETOHYDRODYNAMICS

Problem 1. Whether or not there exist a divergence-free velocity field v with a compact

support supp v = M such that the energy E(t) = ‖B(t)‖2
L1(M) of the magnetic field B(t)

grows exponentially with time for some initial condition B(0) = B0 with suppB0 = M , and

for arbitrary small diffusivity ε? In other words [1], does kinematic fast dynamo exist?

The exponential growth of the magnetic energy is equivalent to

lim
ε→0

lim
t→∞

1
t

ln
∫

Rd
|B(z, t, ε)|dz > 0 (1.7)

The main interest is related to stationary velocity fields v in two- and three-dimensional

domains M .

Looking at the heat equation one may deduce [34] that the exponent of the Laplace operator

is acting on vector fields by convolution with the heat kernel:

(exp(ε∆)v)(z) =
∫

Rd

1
(
√

2πε)d
exp

(
−

|z − t|2

2ε2

)
v(t)dt

1.1.1 The main result

We suggest a fluid flow on a 3-dimensional manifold immersed in R3, that may possibly

generate a magnetic field which energy grows exponentially fast with time in the present of

slow diffusivity; and therefore give a positive answer to a long standing Problem 1. The flow

is chaotic and structurally stable. In order to verify the example we show that an analogous

statement holds true for the Poincaré map of the provisional flow and vector fields in the

plane. The main result is the following

Theorem 9. There exists a volume preserving piecewise diffeomorphism F : R2 → R2 such

that for some vector field B0 in R2

lim
ε→0

lim
n→∞

1
n

ln ‖(exp(ε∆)F∗)nB0‖L1
> 0.
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1.2 BRIEF HISTORY

The map F may be realised as a Poincaré map of an incompressible fluid flow filling a compact

domain in R3 (an immersed 3-dimensional manifold with a boundary).

1.1.2 Discrete problem

The Problem 1 has a discrete analogue, where the flow action is replaced by a diffeomorphism,

and dissipation is represented by action of exp(ε∆). The Kinematic Fast Dynamo problem

for diffeomorphisms has been stated by Arnold [1] in the following form.

Problem 2. Does there exist a volume-preserving diffeomorphism g : M → M of a compact

manifold M such that the energy of the magnetic field B grows exponentially with the number

of iterations of the map

B 7→ exp(ε∆)(g∗B) (1.8)

for some initial vector field B0 and for arbitrary small diffusivity ε?

In other words,

lim
ε→0

lim
n→∞

1
n

ln
∫

Rd
|(wε ∗ g∗)nB0(z)|dz > 0, (1.9)

where wε is the d-dimensional Gaussian density with isotropic variance ε:

wε(z)
def=

1
(
√

2πε)d
exp

(
−

|z|2

2ε2

)
; (1.10)

where g∗ is induced action on vector fields and ∗ stands for convolution. Nowadays the

discrete analogue is a problem of particular interest itself and maps have become a popular

model for fast dynamos [6], [13], [14], [30].

1.2 Brief history

While the realistic dynamo problem is still open, the non-dissipative case, corresponding to

perfectly conducting fluid (ε = 0 in the equation (1.1)), is easy. It is well known [33], [14]
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1.2 BRIEF HISTORY

that non-dissipative kinematic fast dynamos exist on all manifolds.

Theorem. On an arbitrary n-dimensional manifold any divergence-free vector field with a

stagnation point with a unique positive eigenvalue is a non-dissipative kinematic fast dynamo.

The case of realistic dynamo action ε > 0 is not so simple. There is numerical evidence

of dynamo action in helical flows [6], ABC flows [16], and Möbius flows [31]. Yet, there is

no rigorous mathematical argument for these examples nor for flows in R3 in general. In

particular, there is no continuity of the spectrum of the corresponding operator as ε → 0.

The only constructions known are discrete dynamos in two dimensional surfaces with non-

trivial first homology group H1(M,R).

Main features of these examples are coming from the cat map on the torus [3]. Consider

g : T 2 → T 2, g :




x

y



 7→




2 1

1 1








x

y



 mod 1.

The expanding direction at all points is given by eigenvector B0 = ( 1+
√

5
2 ) with eigen-

value λ = 3+
√

5
2 . Therefore, the constant magnetic field B ≡ B0 grows exponentially with

number of iterations of the map g:

Bn = (g∗)nB0 = λnB0; ‖Bn‖ = λn‖B0‖.

Added diffusion doesn’t spoil the example, since an average of a constant field is the same

constant field.

This example has been generalised in [24] to arbitrary diffeomorphisms of the torus. Later,

a more general result has been established [1].

Theorem. Let g : M → M be an area-preserving diffeomorphism of the two-dimensional

compact Riemannian manifold M . Then g is a dissipative fast dynamo if and only if the
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induced linear operator g∗1 on the first homology group has an eigenvector λ with |λ| > 1.

The dynamo growth rate is independent of ε:

lim
n→∞

1
n

ln ‖Bn‖ = ln |λ|

for almost any initial vector field B0. (Here Bn+1 = exp(ε∆)g∗Bn.)

The argument exploits duality between vectors and one-forms on the surfaces and commu-

tativity between the Laplace-Beltrami operator and the exterior derivative. Therefore, it is

not possible to extend it to higher dimensions.

On the negative side, there are antidynamo theorems, specifying geometric properties of

the manifold M where flows with fast dynamo action are impossible. A very early result [11]

states that “A steady magnetic field in R3 that is symmetric with respect to rotations about a

given axis cannot be maintained by a steady velocity field that is also symmetric with respect

to rotations about the same axis”. This result has been generalised [22], [26] and it is now

understood that the symmetry of the magnetic field alone is not compatible with exponential

growth.

Theorem. A transitionally, helically, or axially symmetric magnetic field in R3 cannot be

maintained by a dissipative dynamo action.

Our goal is to construct a 3-dimensional flow, that will resolve Problem 1 positively. A

possible model is discussed below. In order to study the flow, we begin with Poincaré map.

Theorem 9 (p. 162) shows that the inequality (1.9) holds true with g chosen to be a simplified

Poincaré map of the flow. Although simpler than the flow itself, the Poincaré map is still

difficult to study. Therefore we begin with a simple one-dimensional map, which would be

a reduction of the Poincaré map, and show in Theorem 6 (p. 94) that the inequality (1.9)

holds true for this one-dimensional case.
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1.3 PROVISIONAL FLUID FLOW

1.3 Provisional fluid flow

The following model for the fluid flow on a 3-dimensional manifold, displayed in Figure 1.1,

has been suggested by Dr. O. Kozlovski. Topologically, the manifold is equivalent to a solid

3-dimensional body whose boundary is a sphere with three handles. The vector field has two

lines of saddles ℓ1 and ℓ2, which are orthogonal to each other and do not intersect. Light blue

two-dimensional surfaces consist of separatrices of the saddles. Blue dashed lines with arrows

represent solid tubes τ1,...,4 with cylindrical boundaries that connect two surfaces. Dark blue

arrows stand for the velocity field of the fluid flow, and red arrows is the stationary initial

induction field B0. We assume that the fluid flow is stationary outside of a neighbourhood

of the manifold and its velocity tends to zero rapidly near the boundary. Blue boundaries

mark “the dynamo manifold”, where the exponential growth of the initial induction field

takes place.

The induced mapping between the sections {π, σ1,...,4}, is shown in Figure 1.2. In particular,

we see that any point that leaves the dynamo manifold due to diffusion is being attracted

to the unstable manifolds of the saddles S1 and S2. In addition, we see two heteroclinic

connections clearly. To complete the construction one has to define gluing between the green

surfaces σ1,...,4 by tubes, and to make sure that unstable separatrices of two periodic saddle

points S1 and S2 eventually enter the tube τ3. This will guarantee that all trajectories, that

leave the manifold due to diffusion, either return back shortly, and the frozen into the fluid1

magnetic field doesn’t change much, or go into a long tube τ3, which causes large return time.

An alternative would be to make unstable separatrices to be attracted to periodic cycles of

1We say that a vector v field is frozen into a moving fluid if E + v × B = 0, which corresponds σ ≫ 1 in the

Ohm’s law (1.4). In practice, it means that when a surface consisting of magnetic field lines is moved by

the flow, it changes, but none of the field lines become orthogonal to the surface.
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1.4 POINCARÉ MAP

Figure 1.1: Dynamo manifold with the fluid flow (blue) and magnetic induction field (red).

The labels S1 and S2 mark periodic saddle points.

a huge period. This seems to be possible, although we are still working on the details.

We also would like to point out, that any small perturbation of the presented 3-dimensional

flow possess fast dynamo action as well. Therefore, once this example is verified, we will be

able to show that dynamo flows are generic.

1.4 Poincaré map

In order to study the flow, one can consider a global Poincaré section π, and the first return

map F . The intersection between the plane π and the dynamo manifold has four connected

components. Three of them are intersections with the tubes τ1, τ2, τ3 and another one is

— 9 —



1.4 POINCARÉ MAP

“a square” which is shown in Figure 1.1. The restriction of the Poincaré map onto the

square is representative for studying the flow action; and deserves a special consideration. In

particular, it is an unfolded1 Baker’s map and demonstrates chaotic properties. Since near

the intersection with the separatrices of the saddles ℓ2 the first return time is huge, a proper

2-dimensional model for the Poincaré map would be a map with a Z-shaped hole, as shown

in Figure 1.3.

Outside of the square the first return map F has the following properties.

1. It is piecewise continuous and bijective.

2. It is area preserving.

3. The Euclidean norm of the differential is uniformly bounded ‖dF‖ ≤ 1 + µ for a small

µ > 0.

4. The Hessian is small ‖d2F‖ ≤ µ2 for a small µ2 > 0.

In addition, we shall impose an artificial condition in order to guarantee that the map outside

of the unit square doesn’t “bend” too much. This condition in principle should be replaced

by a statement similar to Yomdin’s Lemma on volume growth [35].

Consequently, as a first step we may try to show that the unfolded Baker’s map itself is a

fast dynamo in the presence of slow diffusion through the boundary. This is the main result

of the present work (Theorem 9 p. 162).

1In literature two different maps are being referred to as “Baker’s map”. By unfolded we mean the one that

doesn’t change orientation of the vector field. A precise definition is given by (1.11).
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1.5 PRINCIPAL OBSTACLES AND GENERAL STRATEGY

1.5 Principal obstacles and general strategy

In the absence of diffusion (ε = 0) we may choose the initial magnetic field B0 to be collinear

with the stretching direction of the Baker’s map on the square and then transfer it out all

over the dynamo manifold using the fluid flow. The added diffusion makes the energy of the

vector field to dissipate through the boundary as a solution of the heat equation. Baker’s

maps were suggested as a model for kinematic fast dynamo long ago ([13], for example), and

a numerical evidence was found for the exponential growth of magnetic energy [12]. However,

there was no rigorous analytical argument in the presence of diffusion.

In order to be more specific, let us introduce a shorthand notation for the unit square

� : = {(x, y) ∈ R2 | |x| < 1, |y| < 1}.

and consider the unfolded Baker’s map

P (x, y) =






(x−1
2 , 2y + 1

)
, if x ∈ �, −1 < y < 0,

(x+1
2 , 2y − 1

)
, if x ∈ �, 0 < y < 1,

F (x, y), if (x, y) ∈ R2 \ �;

(1.11)

where F : R2 \ � → R2 \ � is an area-preserving piecewise diffeomorphism with uniformly

bounded Jacobian ‖∂F‖ < 1 + µ (as the Euclidean norm of a linear operator) and such that

any point has not more than d ≪ M preimages with respect to FM for some large M . Our

goal is to show that there exists a vector field B0 such that

lim
ε→0

lim
n→∞

1
n

ln
∫

R2

∣∣(exp(ε∆)P∗)nB0
∣∣ > 0. (1.12)

It is sufficient to construct two cones C1 and C2 in the space of essentially bounded vector

fields with finite L1 norm such that for some δ > 0 and any sufficiently large m

(exp(ε∆)P∗)m(C1) ( C2 ( C1 and ‖(exp(ε∆)P∗)m |C1 ‖ ≥ (1 + δ)m
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The argument is based on the following ideas.

Noise instead of diffusion. The idea to replace the diffusion by noise added to the system

has been used by Klapper and Young in [19]. One can introduce a “small perturbation” of

the original map

Pt : = P + t

and associate a composition of small perturbations to any sequence t̄ ∈ ℓ∞(R2) by

Pmt̄ : = Ptm ◦ Ptm−1 ◦ . . . ◦ Pt0 .

Then by the Noise Lemma 2.2.1 with t̂ = 0, tm−1, . . . , t1:

(exp(ε∆)P∗)mv(z) =
∫

R2(n−1)
wε(t1)wε(t2) . . . wε(tm−1)(exp(ε∆)Pmt̂∗ v)(z)dt1dt2 . . . dtm−1,

(1.13)

where wε is the two-dimensional Gaussian kernel with isotropic variance ε, defined by (1.10).

It follows that it is enough to construct a pair of cones C1 and C2 such that for arbitrary

sequence of small vectors t̂

exp(ε∆)Pmt̂∗ (C1) ( C2 ( C1 and ‖ exp(ε∆)Pmt̂∗ |C1 ‖ ≥ (1 + δ)m

The choice of the norm. By definition, a cone is a convex subset which is invariant with

respect to multiplication by a non-negative real number. The cones we will be dealing with

have a general form

Cone (vk, αk) : = {dvk + w | ‖w‖ ≤ d2−αk ‖vk‖, d ∈ R+}.

We say that the cone Cone (v1, α1) is smaller than the cone Cone (v2, α2), if α1 > α2 > 0.

We do not require here that Cone (v1, α1) ∩ Cone (v2, α2) 6= ∅.
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1.5 PRINCIPAL OBSTACLES AND GENERAL STRATEGY

In order to construct a pair of cones, it helps to choose the norm in a proper way. The

diffusion represented by convolution with the Gaussian kernel means that the energy of a

vector field that changes direction rapidly cannot grow very fast due to cancellations [14].

It is not unreasonable to suggest therefore that piecewise constant vector fields will grow

rapidly. Following this idea, we introduce a class G(m, δ) of partitions of the real plane with

the following properties.

1. The unit square � contains at most 4m and at least 4m−1 elements of the partition; the

interior of an element of the partition does not intersect the boundary of the square.

2. Any element of the partition contains a square with side length 1
m2m and is contained

in a square with side length 2m+1.

3. Any square with a side δ may be covered by at most Nδ = 22m+1δ2 elements of the

partition.

To any partition Ω of the class G(m, δ) we associate a weighted L1 norm on the space of

vector fields by (cf. Subsection 4.2.2):

‖v‖Ω,L1
def=

∑

ij

2−m

|πy(Ωij)|

∫

Ωij

|v|,

where πy represents orthogonal projection onto the expanding direction of the Baker’s map.

The supremum norm of a vector field v we denote by ‖v‖∞
def= sup |v|. Finally, on the space

of essentially bounded vector fields with finite L1 norm, we introduce a new norm, combining

the two

‖v‖ def= max
(

‖v‖Ω,L1 , 2
−m/4 sup |v|

)
.

Canonical partitions. We would like to approximate the operator Pmt̂∗ by a linear operator

between two suitable subspaces of piecewise constant vector fields with a simple-looking
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1.5 PRINCIPAL OBSTACLES AND GENERAL STRATEGY

matrix. In order to do that we construct a pair of so called canonical partitions Ω1 and Ω2 of

the class G(m, δ), associated to a sequence of perturbations t̂ (Subsection 4.2.3) and introduce

two subspaces XΩ1 and XΩ2 of piecewise constant vector fields associated to partitions Ω1 and

Ω2, respectively. On every subspace of piecewise constant vector fields we choose a normalised

basis
{
χsΩij

def=
1

|πx(Ωij)|
( 1

0 )χΩij ; χuΩij

def=
1

|πx(Ωij)|
( 0

1 )χΩij

}

i,j∈Z
, (1.14)

where πx represents the orthogonal projection onto the contracting direction of the Baker’s

map. The construction of canonical partitions rely on the study of small perturbations of

the doubling map. It is easy to observe that the Baker’s map and the doubling map are

closely related, and the former is just an extension of the latter. The canonical partition for

the sequence t̂ is set to be a direct product of two canonical partitions associated to suitably

chosen perturbations of the doubling map.

The first approximation. Once two partitions are chosen, we define a linear operator

At : XΩ1 → XΩ2 by its matrix elements so that

∫

Ω2
kl

Pmt̂∗ v =
∫

Ω2
kl

Atv for all Ω2
kl ∈ Ω2 and any v ∈ XΩ1 .

The choice of partitions allows us to establish the following facts about the matrix of the

operator At in canonical bases (1.14).

1. There exists a small number 0 < γ1 < 0.01 such that sup |aklij | < 2γ1m. (Proposi-

tion 4.3.2).

2. There exists an 15
16 < α < 1 such that for all |t| ≤ 2−mα we have a decomposition

At = Bt ⊕ Ct. The matrix elements of the operator Bt satisfy (Proposition 4.3.1)

#
{

(i, j, k, l) | (i, j) ∈ �, (k, l) ∈ �, bklij 6= 1
}

≤ 2(4 1
2 −α)m
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and the matrix of the operator Ct is small

∑

�

∑

�

∣∣cklij
∣∣ ≤ 100m(1 + µ)2m2−mα,

where µ comes from the upper bound on the Jacobian of F |R2\�.

Using the inequalities above, we deduce that for all sufficiently small |t̄| ≤ 2−mα we have

(Lemma 4.3.19)

‖At − A0‖ ≤ 2(2 3
4 +γ1−α)m;

where A0 corresponds to the zero sequence t = 0. Afterwards, we establish the following

facts

1. There exist two cones C1 ⊂ XΩ1 and C2 ⊂ XΩ2 such that At(C1) ⊂ C2 and C2 is much

smaller than C1 (Theorem 8 p. 141).

2. The operator At is a good approximation to Pt̂∗ (Corollary 2 of Proposition 4.3.3):

‖ exp(δ∆)(Pmt̂∗ − At)ν‖Ω2 ≤ 22+(2+α)m sup diam(Ω2
kl)‖ν‖Ω1 , where δ = 2−mα.

(1.15)

The second approximation. The goal is to get rid of dependence of partitions Ω1 and Ω2

on t̄ and to show that for any partition Ω3 of the class G(m, δ) there exists a linear operator

D : X → XΩ3 such that for any δ = 2−mα and any |t| ≤ δ the following properties hold true:

1. There exists a cone C3 ∈ XΩ3 , smaller than the cone C1, such that (Proposition 4.4.4):

D exp(δ∆)At(C1) ⊂ C3.

2. The norm of the operator D exp(δ∆)At grows exponentially with m: for any v ∈ XΩ1

we have (Lemma 4.4.4):

‖D exp(δ∆)Atv‖Ω3 ≥
(
22m − 2

3
2m

)
‖v‖Ω1 .
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3. The operators D exp(δ∆)At and exp(δ∆)At are close. There exists a small γ2 > 0 such

that for any v ∈ XΩ1 we have (Lemma 4.4.1):

‖(D exp(δ∆)At − exp(δ∆)At)v‖Ω3 ≤ 2(2−γ2)m‖v‖Ω1 . (1.16)

Combining the first (1.15) and the second (1.16) approximations, we get an invariant

cone for the operator exp(δ∆)P 2m
t̂∗ and derive from it an invariant cone for the operator

(exp(δ∆)P∗)2m.

It may seem at first sight that the examples chosen are too simple since they are linear.

However, it appears that they are sufficiently complicated to analyse and the same approach

is applicable to non-trivial perturbations, since most estimates are based on distortion prop-

erties and the distortion is easy to control for perturbations of hyperbolic maps.

1.6 Outline

The work presented has three chapters. In chapter 2 “A proof of the fast dynamo theorem”

we give sufficient conditions (Invariant Cone Hypothesis 1) for a piecewise C2 transformation

of Rn to be a fast dynamo. In the following Chapters 3 and 4 we construct measure-preserving

piecewise-C2 transformations ℓ : R → R and T : R2 → R2, respectively, that satisfy the

Hypothesis. As mentioned above, the arguments in the two-dimensional case rely on some

parts of the analysis of the one-dimensional system.

We begin the Chapter 2 with a few general constructions; we give a definition to small

random perturbations (Subsection 2.1.1), introduce a norm in the space of vector fields, and

fix the type of cones we are interested in. Then we explain how to reduce the system with

diffusion to a system generated by a small random perturbation of a certain map. Finally,

in the Section 2.2, we prove the fast dynamo theorem for maps satisfying the Invariant Cone
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Hypothesis.

The Chapter 3 we start with a few definitions, that introduce the central elements of

the construction. In particular, we define a class of partitions G(m) of the real line with

a certain “uniform” property (Definition 4, p. 34); and a norm in the space of essentially

bounded integrable functions we will be using throughout (Definition 3, p. 26). In addition,

we introduce a transfer operator, that we will use to define an induced action of a piecewise

diffeomorphism on functions (Definition 5 p. 35).

In Section 3.2.1 we consider a so-called toy dynamo operator between two linear spaces

A : X1 → X2 in the most abstract way, i.e. in terms of its matrix coefficients. We show

that for any toy dynamo operator there exist two cones C1 ⊂ X1 and C2 ⊂ X2 such that

A(C1) ( C2; and C2 is much smaller than C1. This is the content of Theorem 3 p. 45.

In Section 3.2 we show that a toy dynamo operator approximates a transfer operator,

induced by a large iteration m of a small random perturbation of the so-called dynamo map

(Subsection 3.1). The dynamo map is an expanding map on the unit interval complemented

by reflection outside. More precisely, given 1 < s2 < 2 < s1 < 3, we define (3.3)

ℓ(x) =






s1x+ s1 − 1, if − 1 < x < 2
s1

− 1;

s2x+ 1 − s2, if 2
s1
< x < 1;

−x, otherwise;

and associate a small random perturbation to any sequence ξ ∈ ℓ∞(R). Essentially, the

toy dynamo operator is given by the transition matrix between two partitions of the class

G(m) associated a small perturbation ℓmξ of the map ℓ. Namely, we see that aij = 1 if

ℓmξ (Ω1
i ) ∩ Ω2

j = Ω2
j and ℓmξ |Ω1

i
is increasing. Figure 1.4 shows a few iterations of the map

without perturbation (ξ ≡ 0) and with the largest possible perturbation (ξ ≡ δ). We see that

transition matrices should coincide in many places for Ω1
i ,Ω

2
j ⊂ [−1, 1].
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In Subsection 3.2.2 we introduce a canonical partition Ωξ of the class G(m), associated to

a small perturbation ξ. The partition has the following property. For any interval I with

ℓkξ (I) ⊂ [−1, 1] for all 0 ≤ k < m there exists an element of the partition Ωξ
i such that I ⊆ Ωξ

i .

In addition, the partition is “uniform”: any interval of the length δ contains not more than

Nδ elements of the partition.

In Subsection 3.2.3 we show that the operator ℓmξ∗ may be very well approximated (The-

orem 4 on p. 62) by a toy dynamo operator T defined on the space of piecewise constant

functions associated to Ωξ. For any essentially bounded and absolutely integrable function f ,

‖(ℓmξ∗ − T ) exp(δ∆)f‖2 ≤
( s3

1δ
21/2s2

)m
·m‖f‖1.

Here we can choose parameters s1, s2 of the map ℓ, and a constant α such that the approxi-

mation is good enough: namely ‖T ‖ = 2m and

s3
1

21/2+αs2
< 2.

In Section 3.3 we construct an invariant cone for the operator exp(δ∆)ℓmξ∗ exp(δ∆) in

the space of essentially bounded absolutely integrable functions. In order to do that, we

show that the image of the Weierstrass transform with Gaussian kernel with isotropic vari-

ance δ = 2−mα ≫ sup |Ω1
j | may be well approximated by step functions on a partition Ω1 of

the class G(m). Namely, for any partition Ω2 of the class G(m) we have (Lemma 3.3.2):

‖DΩ1Wδf −Wδf‖1 ≤
max(sup |Ω1

j |, sup |Ω2
j |)

δ
‖f‖2 ≤

1
sm2 δ

‖f‖2.

Based on this simple idea, we construct an invariant cone in the space of essentially bounded

integrable functions “around” the cone in the space of piecewise constant functions.

In chapter 4 we construct a transformation T : R2 → R2 that satisfies Invariant Cone

Hypothesis 1. Informally speaking, we take a certain iteration of an unfolded Baker’s map
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on the square and complement it by a non-expanding area preserving map outside. The

argument runs in a similar way to the one-dimensional case; and according to the general

strategy described above in Subsection 1.5.

In the beginning we fix notation related to mappings of R2 and vector fields. In particular,

we define (4.3) the Gaussian kernel Wδ and the Weierstrass transform operator on vector

fields.

In Section 4.2, we define the dynamical system we will be working with. It is easy to see

that the energy of the vector fields that change direction rapidly does not grow exponentially

fast. We are going, as before, to replace diffusion by small random perturbations, and we

have almost no control on the map outside the square. Therefore we need to introduce a

delay in return time artificially. One of possible solutions is to use a tower construction.

In Subsection 4.2.1 we define the phase space X to be a tower of M floors, which is a union

of the real plane R2 and M − 1 copies of it with the central square cut off:

X def=
(
{0} × R2)

∪
(
{1, . . . ,M − 1} × (R2 \ �)

)
,

where � = [−1, 1]2. We also define a map F : X → X, to be, generally speaking, Baker’s

map on the square � and some area-preserving map transferring points outside of the square

to a different floor.

F (z, n) def=






(F0(z), 0), if n = 0 and z ∈ �;

(Fn+1(z), (n + 1)mod (M − 1)), otherwise.

(4.5)

(See p. 97 for definition of the maps Fn, n = 1, . . . ,M − 1.) We also introduce small per-

turbations Fξ of the map F . Afterwards, we define the map P : R2 → R2 we will be dealing

with as a large iteration of the map Fξ.

In Subsection 4.2.2, we introduce (4.11) a norm on the space of vector fields we will be

using to construct invariant cones. It is similar to the norm we were using in one dimensional
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case, but we “weight” L1 norm only in expanding direction. A linear operator we define to

be an action induced by P 2
ξ in ordinary way (4.10).

In Subsection 4.2.3 we exploit similarities between Baker’s map, its inverse, and the dou-

bling map, and construct a canonical partition for the Baker’s map as a direct product of

two partitions for suitably chosen small random perturbations of the doubling map.

In Section 4.3 we introduce a subspace XΩ1 of piecewise constant vector fields associated

to the canonical partition Ω1. We define the basis on XΩ1 to be V sΩ1 ∪ V uΩ1 , where

V sΩ1
def=

{ 1
|πx(Ω1

ij)|
( 1

0 )χΩ1
ij

}

i∈Z,j∈Z
and V uΩ1

def=
{ 1

|πx(Ω1
ij)|

( 0
1 )χΩ1

ij

}

i∈Z,j∈Z
.

The vectors that have only χΩs
ij

components, are parallel to the contracting direction of the

Baker’s map and vectors that have only χΩu
ij

components, are parallel to the expanding di-

rection of the Baker’s map. Using the operator Pξ∗, we define an associated linear operator A

between XΩ1 and a suitable subspace of piecewise constant vector fields XΩ2 and such that

∫

Ω2
kl

P 2
ξ∗ν =

∫

Ω2
kl

Aν (4.16)

via its matrix elements. It is natural to write the operator A as a direct sum of four linear

operators A = SS ⊕ SU ⊕ US ⊕ UU , where

SS : 〈V sΩ1〉 → 〈V sΩ2〉; SU : 〈V sΩ1〉 → 〈V uΩ2〉; US : 〈V uΩ1〉 → 〈V sΩ2〉; UU : 〈V uΩ1〉 → 〈V uΩ2〉.

The growth of the energy is guaranteed by the operator UU , and we will study it separately

in the next section. We conclude this section with construction of a pair of cones C1 ⊂ XΩ1

and C2 ⊂ XΩ2 , such that A(C1) ( C2 and the cone C1 is much smaller than C2.

In Subsection 4.3.1 we establish that the matrix of the operator UU demonstrates properties

similar to the ones of “toy dynamo operator” we studied in the Chapter 3. Namely, its central

part, corresponding to the elements from the unit square, has a plenty of 1’s, and the absolute

value of elements is majorated by a small power of 2 (Propositions 4.3.1 and 4.3.2).
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In Subsection 4.3.2 we justify the choice of the operator A, and show that operators WδA

and WδP 2
ξ are close on the subspace of piecewise constant vector fields XΩ1 . The estimations

are based on the fact that δ is chosen so that

max(sup |πx(Ω2
ij)|, sup |πy(Ω2

ij)|) ≪ δ

and the construction of canonical partitions.

In Subsection 4.3.3 we construct a pair of cones for the operator A, the larger cone

C1 ⊂ XΩ1 and a much smaller cone A(C1) ⊂ C2 ⊂ XΩ2 . We use the decomposition

A = SS ⊕ SU ⊕ US ⊕ UU , and exploit simplicity of the matrix UU along with upper

bounds on other operators.

The Subsection 4.4.1 repeats the Section 3.3 of the one-dimensional Chapter 3 with obvious

modifications adjusting the arguments to dimension two. In particular, the length of the

intervals of the partitions in the upper bounds is replaced by the diameter of the elements.

In Subsection 4.4.2 we construct of an invariant cone for the operator W δ
2m
P 2
ξ∗W δ

2m
.
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Figure 1.2: The mapping between the sections π, σ1,...,4, induced by the fluid flow;

Ak = Φ′(Ak−1), Bk = Φ′′(Bk−1). The points S1 and S2 are periodic saddles;

blue and red arrows show stable and unstable manifolds, respectively.

— 22 —



1.6 OUTLINE

(
x−1

2 , 2y + 1
)

(
x+1

2 , 2y − 1
)

(a) (b) (c)

Figure 1.3: (a) Unfolded Baker’s map, that appears as the first return map to the section π;

(b) Doubling map with a hole; and (c) a small perturbation of the doubling map

with a hole.

0

1

2h − 1

1 − 2h

(a)

0

1 + ε

2h + ε − 1

1 − 2h + ε

(b)

Figure 1.4: First four iterations of a small perturbation of the doubling map with a hole of

the width h: (a) the case of the zero sequence; and (b) the case of the constant

sequence ξk ≡ ε.
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2 A proof of the fast dynamo theorem

In this Chapter we give a proof for the fast dynamo theorem for maps satisfying certain

hypothesis. Later, in the Chapter 3 we construct a one-dimensional map satisfying this

hypothesis and in the Chapter 4 we prove that its two-dimensional extension also satisfies

these conditions. The two-dimensional map may be realised as a Poincaré map of a smooth

stationary vector field in R3.

2.1 Basic constructions

In this Section we introduce objects central for our investigations: small random perturbations

of a dynamical system and a norm in the space of vector fields. We also specify the type of

cones in the space vector fields we are interested in.

2.1.1 Small random perturbations

We construct a random dynamical system using skew-products. Let X be a real manifold

and let f : X → X be a transformation. We consider its extension

f̂ : X × Rn → X f̂(x, ξ) def= f(x) + ξ(1). (2.1)
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Let Σ ⊂ ℓ∞(Rn) be a shift-invariant subset of two-sided bounded sequences of vectors in Rn.

We introduce a skew product over the Bernoulli shift

σ × f̂ : Σ ×X → Σ ×X (σ × f̂)(ξ, z) def= (σ(ξ), f̂ (z, ξ(1))). (2.2)

The induced transformation on fibers we denote by

fξ : X → X, fξ(z)
def= f̂(z, ξ(1)). (2.3)

Its iterations are given by

fkξ (z) def= f̂(fk−1
ξ (z), ξ(k)). (2.4)

Remark 1. The following identities follow from the definition of the map fξ.

fkξ = fξ(k) ◦ fξ(k−1) ◦ . . . ◦ fξ(1); (2.5)

f−k
ξ = (fkξ )−1 = f−1

ξ(1) ◦ f−1
ξ(2) ◦ . . . ◦ f−1

ξ(k); (2.6)

fn−k
ξ = fnξ ◦ f−k

ξ = f−k
ξ ◦ fnξ =






fn−k
σn(ξ), if n < k;

fn−k
σk(ξ), if n > k.

(2.7)

Definition 2. We call the map fξ a random perturbation of the map f associated to the

sequence ξ∈Σ.

2.1.2 Norm in the space of vector fields

Piecewise constant vector fields are proved to be very useful to us. We define a norm in the

space of essentially bounded and absolutely integrable vector fields Φ, using partitions.

The norm we are about to introduce is related to the map f . Since topological entropy is

an upper bound for the growth rate of the energy, the system has to be chaotic. We shall

assume therefore that the map is hyperbolic and choose an nu-dimensional unstable manifold.
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We let πu to be projection along the unstable foliation onto the stable manifold. We denote

by λnu the nu-dimensional Lebeague measure on the unstable manifold.

Let us fix a large number m ≫ 1. Its role will be clarified in the next Subsection.

Definition 3. A norm in the space of essentially bounded and absolutely integrable functions,

associated to a partition Ω(m) =
∞⋃

j=1
Ωj of Rn is given by

‖f‖Ω = max
(∑

j∈Z

2−num

λnu(πu(Ωj))

∫

Ωj

|f(x)|dx, 2−αm sup |f |
)

; (2.8)

where the choice of α depends on n.

The first term we refer to as the weighted L1-norm and write

‖f‖Ω,L1 : =
∑

j∈Z

2−num

λnu(πu(Ωj))

∫

Ωj

|f(x)|dx,

it depends, of course, on the partition chosen.

We denote by ΦΩ the subspace of Φ, consisting of piecewise constant vector fields associated

to the partition Ω.

2.1.3 Cones in vector fields on Rn

We reserve a notation for a cone of the radius r with the main axis v0 in the space ΦΩ:

Cone (v0, r,Ω) def=
{
η = dv0 + ϕ | ϕ ∈ ΦΩ,

∫
(fm∗ ϕ)v0 = 0; ‖ϕ‖Ω ≤ dr‖v0‖

}
. (2.9)

We extend the cone Cone (v0, r,Ω) to include general functions from the main space:

Ĉone (v0, r, ε,Ω) def=
{
f = η + g, | η ∈ Cone (v0, r,Ω) , ‖g‖Ω ≤ ε‖η‖Ω

}
. (2.10)

We say that the cone Ĉone
(
v0, r1, ε1,Ω1)

is smaller than the cone Ĉone
(
v0, r2, ε2,Ω2)

and

write Ĉone
(
v0, r1, ε1,Ω1)

≪ Ĉone
(
v0, r2, ε2,Ω2)

, if r1 > r2 and ε1 > ε2; we do not assume

here that Ĉone
(
v0, r1, ε1,Ω1)

∩ Ĉone
(
v0, r2, ε2,Ω2)

6= ∅.
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2.2 Fast dynamo theorem

In this Section we set the hypothesis and give a proof of the fast dynamo theorem 1.

The first step the Noise Lemma 2.2.1, which suggests to replace the operator (exp(δ∆)f∗)n

in our considerations with the operator exp(δ∆)fnt∗ for some sequence t.

We begin with a simple observation that the exponent of the Laplacian operator1 in Rn,

is the convolution with the Gaussian kernel, in particular

exp(δ∆)v = wδ ∗ v, where wδ(x) =
1

√
2πδ

exp
(
−
x2

2δ2

)
.

The latter operator is also known as the Weiertstrass transform Wδ(v)
def= (wδ ∗ v); this

notation we use throughout.

The following statement is generally known, but we give a proof for completeness.

Lemma 2.2.1 (Noise Lemma). For any map f : Rn → Rn and for any vector field v in Rn

we have

W δ
2
f∗(Wδf∗)m−1v(x) =

∫

Rn(m−1)
wδ(t1)wδ(t2) . . . wδ(tm−1)(W δ

2
fm0t∗v)(x)dt1dt2 . . . dtm−1,

(2.11)

where 0t = (0, t1, t2, . . . , tm−1) ∈ Rm.

Proof. Observe that f−1(x − t) = f−1
t (x), because ft(x) = f(x) + t. By straightforward

1∆: v → d2v in the case of the real line.
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calculation,

W δ
2
f∗(Wδf∗)m−1v(x) = W δ

2
f∗(Wδf∗)m−2Wδf∗v(x) =

= W δ
2
f∗(Wδf∗)m−2

∫

Rn
wδ(t)(f∗v)(x− t)dt =

= W δ
2
f∗(Wδf∗)m−2

∫

Rn
wδ(t1)(ft1∗v)(x)dt1 = . . . =

= W δ
2

∫

Rn(m−1)
wδ(t1) . . . wδ(tm−1)(f∗ft1∗ . . . ftm−1∗v)(x)dt1 . . . dtm−1 =

=
∫

Rn(m−1)
wδ(t1) . . . wδ(tm−1)(W δ

2
fm0t∗v)(x)dt1 . . . dtm−1.

�

Corollary 1. For any map f : Rn → Rn, any vector field v0 in Rn, and for any k = k0m ≫ m

W δ
2
f∗(Wδf∗)k−1W δ

2
v0(x) =

=
∫

Rk−k0
wδ(t1)wδ(t2) . . . wδ(tk−k0)

(
W δ

2
fm0t∗W δ

2

)k0
v0(x)dt1dt2 . . . dtk−k0. (2.12)

We shall put the following conditions on the map f .

Hypothesis 1 (Invariant Cone). There exist an m ≫ 1, a partition Ω(m), a vector field v0,

and four numbers r2(m) ≪ r1(m), ε2(m) ≪ ε1(m) ≪ 1 such that for any sequence ξ with

‖ξ‖∞ ≤ δ

W δ
2
fm0t∗W δ

2
: Ĉone (v0, r1, ε1,Ω) → Ĉone (v0, r2, ε2,Ω) ⊂ Ĉone (v0, r1, ε1,Ω) (2.13)

Moreover, there exists 0 < γ < 0.01 such that for any field v ∈ Ĉone (v0, r1, ε1,Ω)

2m−2‖v‖Ω ≤ ‖W δ
2
fm0t∗W δ

2
v‖Ω ≤ 2(1+γ)m‖v‖Ω. (2.14)

We construct a map f : R → R satisfying this hypothesis in the Chapter 3 and a map

f : R2 → R2 satisfying this condition in the Chapter 4.

We choose δ = 2−mα, a partition Ω = Ω(m) =
⋃

Ωj , the vector field v0 ≥ 0, and fix four

dimension parameters of two cones r1, r2, ε1, and ε2 such that the Hypothesis holds true.
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Lemma 2.2.2. In the notations introduced above, for any v ∈ Ĉone (v0, r1, ε1,Ω)

∫

[−δ,δ]m−1
w δ

m
(t1) . . . w δ

m
(tm−1)(W δ

2m
fmt∗W δ

2m
v)dt1 . . . dtm−1 ∈ Ĉone

(
v0, e2r2, e2ε2,Ω

)
.

(2.15)

Proof. By the Hypothesis assumption, we know that for any |t| ∈ [−δ, δ]m and any vector

field v ∈ Ĉone (v0, r1, ε1,Ω)

W δ
2m
fmt∗W δ

2m
v = dv0 + ψt + gt ∈ Ĉone (v0, r2, ε2,Ω) ,

where ψt ∈ ΦΩ, ‖ψt‖Ω ≤ dr2‖v0‖Ω and ‖gt‖Ω ≤ dε2‖v0‖Ω. Observe that Ω is independent on

t. Therefore,

∫

[−δ,δ]m−1
w δ

m
(t1) . . . w δ

m
(tm−1)v0dt1 . . . dtm−1 =

= v0

(∫ δ

−δ
w δ

m
(t)dt

)m−1
= v0

(
1 −

2
m

)m−1
≥ e−2v0, (2.16)

for m large enough. Since ψt ∈ ΦΩ for any t ∈ [−δ, δ]m,

∫

[−δ,δ]m
w δ

m
(t1) . . . w δ

m
(tm−1)ψtdt1 . . . dtm−1 ∈ ΦΩ,

and we calculate Ω-norm.

∥∥∥
∫

[−δ,δ]m−1
w δ

m
(t1) . . . w δ

m
(tm−1)ψtdt1 . . . dtm−1

∥∥∥
Ω

≤

≤
∑

j∈Z

2−num

λnu(πu(Ωj))

∫

[−δ,δ]m−1
w δ

m
(t1) . . . w δ

m
(tm−1)

( ∫

Ωj

|ψt(x)|dx
)

dt1 . . . dtm−1 ≤

≤ sup
t

‖ψt‖Ω ≤ dr2‖v0‖Ω.

Similarly,
∥∥∥

∫

[−δ,δ]m−1
w δ

m
(t1) . . . w δ

m
(tm−1)gtdt1 . . . dtm−1

∥∥∥
Ω

≤ dε2‖v0‖Ω.
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2.2 PROOF OF THE MAIN RESULT

Observe that

∫ 1

−1

∫

[−δ,δ]m−1
w δ

m
(t1) . . . w δ

m
(tm−1)ψt(x)dt1 . . . dtm−1dx =

=
∫

[−δ,δ]m−1
w δ

m
(t1) . . . w δ

m
(tm−1)dt1 . . . dtm−1 ·

∫ 1

−1
ψt(x)dx = 0.

Summing up, for any v ∈ Ĉone (v0, ε1, r1,Ω)

∫

[−δ,δ]m−1
w δ

m
(t1) . . . w δ

m
(tm−1)W δ

2m
fmt∗W δ

2m
vdt1 . . . dtm−1 ∈ Ĉone

(
v0, e2r2, e2ε2,Ω

)
.

�

Lemma 2.2.3. In the notations introduced above, assume in addition that 2γme−m ≪ ε2(m).

Then

W δ
2m
f∗(Wδf∗)m−1W δ

2m
: Ĉone (v0, r1, ε1,Ω) → Ĉone

(
v0, e2r2, e2ε2,Ω

)
( Ĉone (v0, r1, ε1,Ω) ;

Moreover, there exists 0 < γ < 0.01 such that for any field v ∈ Ĉone (v0, r1, ε1,Ω)

2m−5‖v‖Ω ≤ ‖W δ
2m
f∗(Wδf∗)m−1W δ

2m
v‖Ω ≤ 2(1+γ)m‖v‖Ω

Proof. By Lemma 2.2.1 for any v ∈ Cone (v0, r1,Ω)

W δ
2m
f∗(W δ

m
f∗)m−1W δ

2m
v =

=
∫

Rm−1
w δ

m
(t1) . . . w δ

m
(tm−1)(W δ

2m
fmt∗W δ

2m
v)dt1dt2 . . . dtm−1 =

=
(∫

Rm−1\[−δ,δ]m−1
+

∫

[−δ,δ]m−1

)m−1∏

j=1

w δ
m

(tj)(W δ
2m
fmt∗W δ

2m
v)dt. (2.17)

By Lemma 2.2.2 we know that for any v ∈ Ĉone (v0, r1, ε1,Ω)

∫

[−δ,δ]m−1

m−1∏

j=1

w δ
m

(tj)(W δ
2m
fmt∗W δ

2m
v)dt ∈ Ĉone

(
v0, e2r2, e2ε2,Ω

)
.
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2.2 PROOF OF THE MAIN RESULT

We estimate the first term

∥∥∥
∫

Rm−1\[−δ,δ]m−1

m−1∏

j=1

w δ
m

(tj)(W δ
2m
fmt∗W δ

2m
v)dt

∥∥∥
Ω

≤

≤
∑

j∈Z

2−num

λnu(πu(Ωj))

∫

Rm−1\[−δ,δ]m−1

m−1∏

j=1

w δ
m

(tj)
(∫

Ωj

∣∣∣W δ
2m
fmt∗W δ

2m
v(x)

∣∣∣dx
)

dt ≤

≤ sup
t

‖W δ
2m
fmt∗W δ

2m
v‖Ω

∫

Rm−1\[−δ,δ]m−1

m−1∏

j=1

w δ
m

(tj)dt.

We shall find an upper bound for the integral:

∫

Rm−1\[−δ,δ]m−1

m−1∏

j=1

w δ
m

(tj)dt ≤

≤ 2m
(∫ +∞

δ
w δ

m
(t)dt

)m
+ 2m

∫ +∞

δ

∫

[−δ,δ]m−1
w δ

m
(t1) . . . w δ

m
(tm−1)dt1 . . . dtm−1 ≤

≤ 2me−m2
+ 2me−m.

We may also recall that there exists 0 < γ < 0.01 such that for any v ∈ Ĉone (v0, r1, ε1,Ω),

we have supt ‖W δ
2m
fmt∗W δ

2m
v‖Ω ≤ 2(1+γ)m‖v‖Ω. Therefore

sup
t

‖W δ
2m
fmt∗W δ

2m
v‖Ω

∫

Rm−1\[−δ,δ]m−1

m−1∏

j=1

w δ
m

(tj)dt ≤ 2(1+γ)m · 2me−m‖f‖Ω.

We need to verify 2(1+γ)m · 2me−m ≪ 2m−5ε2, which is equivalent to 2γm+6e−m ≪ ε2.

For the second inequality we recall the second condition of the Hypothesis

∀v ∈ Ĉone (v0, r1, ε1,Ω): ‖W δ
2m
fmξ∗W δ

2m
v‖Ω ≥ 2m−2‖v‖Ω.

Then

∥∥∥
∫

[−δ,δ]m−1

m−1∏

j=1

w δ
m

(tj)(W δ
2m
fmt∗W δ

2m
v)dt

∥∥∥
Ω

≥

≥ inf
t∈[−δ,δ]m

‖W δ
2m
fmt∗W δ

2m
v‖Ω ·

∫

[−δ,δ]m−1

m−1∏

j=1

w δ
m

(tj) ≥ 2m−2e−2‖v‖Ω. (2.18)

Taking into account

∥∥∥
∫

Rm−1\[−δ,δ]m−1

m−1∏

j=1

w δ
m

(tj)(W δ
2m
fmt∗W δ

2m
v)dt

∥∥∥
Ω

≤ 2mε2‖v‖Ω,
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2.2 PROOF OF THE MAIN RESULT

we get the result. �

Theorem 1 (Fast dynamo theorem). Let f : Rn → Rn be a piecewise-C2 transformation

satisfying the Invariant Cone Hypothesis and an additional condition
( 2γ

e
)m ≪ ε2. Then

there exists an essentially bounded vector field v, with absolutely integrable components such

that

lim
δ→0

lim
n→∞

1
n

ln
∥∥(exp(δ∆)f∗)nv

∥∥
L1
> 0,

Proof. It follows by straightforward calculation that WδWδ = W2δ for any number δ > 0.

The Theorem follows from Corollorary 1 of Lemma 2.2.1 and Lemma 2.2.3 with v = W δ
2m
v0.

�
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3 Fast dynamo on the real line

This Chapter is dedicated to the construction of a transformation ℓ : R → R satisfying the

Invariant Cone Hypothesis 1, p. 28. In perspective, the operator ℓ∗ corresponds to the induced

action on vector fields on the unstable manifold of the Poincaré map of the provisional flow.

The unstable manifold is one dimensional and the settings are the following. Vector fields

on a one-dimensional real manifold may be identified with functions R → R; and an induced

action on vector fields on R is given by a transfer operator (ℓ∗v)(y) =
∑

x∈ℓ−1(y)
dℓ(x)v(x),

where ℓ : R → R is a piecewise-differentiable function.

The main result is the following

Theorem 2 (Invariant cone). There exist a measure preserving piecewise-smooth transfor-

mation ℓ : R → R, a cone C in the space Φ of essentially bounded absolutely integrable vector

fields on R, and a norm ‖ · ‖ in Φ such that for an m ≫ 1 large enough and any sequence

‖ξ‖∞ ≤ δ with δ = 2−mα for 15
16 < α < 1 we have

W δ
2m
ℓmξ∗W δ

2m
: C → C; ∀f ∈ C : ‖W δ

2m
ℓmξ∗W δ

2m
f‖ ≥

1
4

‖ℓm∗ ‖ · ‖f‖. (3.1)

3.1 Notation

In this Section we fix notation we use throught the proof of Invariant Cone Theorem 2.

— 33 —



3.1 NOTATION

The following letters are reserved for constants: α, β, γ, γ1, κ, s1, s2. The admissible

range of values will be specified later.

Given a subset I ⊂ Rn we denote by |I| its Lebesgue measure. We say that two sets I1 and

I2 are δ-close and write |I1 − I2| < δ if I1 belongs to the δ-neighbourhood of I2 or I2 belongs

to the δ-neighbourhood of I1. Otherwise, we write |I1 − I2| > δ. The indicator function of a

set I we denote by χI .

Let δij be the Dirac delta function:

δij =






1, if i = j

0, otherwise.

The supremum norm of a sequence of real numbers ξ ∈ ℓ∞(R) we denote by ‖ξ‖ = sup
k∈N

|ξk|.

Whenever supremum or infimum are taken along the whole range of values, we omit the

range.

We write x ≪ y when x is exponentially small compared to y, namely, there exist a small

number 0 < ε < 1 such that x < 2−εmy.

Let δ = 2−mα be a small real number with 15
16 < α < 1.

Definition 4. We say that a collection of intervals Ω = {Ωj}j∈Z makes a partition of the

class G(m, δ, s1, s2), if
⋃

Ωj = R, Ωi∩Ωj = ∅ if i 6= j, and the following conditions hold true.

1. The interval [−1, 1] contains at least 2m−1 and at most 2m intervals of the partition,

and {±1} are the end points of some intervals of the partition.

2. The length of intervals Ωj is bounded away from zero and from infinity

1
msm1

≤ |Ωj | ≤ 2
( 1
sm1

+
1
sm2

)
.
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3.1 NOTATION

3. Any interval I ⊂ R of the length |I| = δ contains not more than

Nδ = 2m+1δlogs1
2 = 2m(1−α logs1

2)+1

intervals of the partition.

4. Any interval of the partition Ωj ⊂ R \ [−1 −mδ, 1 +mδ] has length |Ωj| = 2−m.

We write G(m, δ, s1, s2) to indicate dependence on m, δ, s1, and s2; we will abuse notations

and omitm, δ, s1, or s2, when it leads to no confusion and the dependence is of no importance.

We number intervals of a partition Ω in the natural order, starting from Ω0 ∋ 0. We set

ΩNl to be the most left interval of Ω inside [−1, 1], and ΩNr to be the most right interval of

Ω inside [−1, 1].

Here we deal with essentially bounded absolutely integrable functions on the real line. We

refer to the space Φ def= L1(R)∩L∞(R) as the main space. “Any function” refers to a function

from the main space always.

Given a partition Ω = {Ωj}j∈Z of the class G, we denote the associated space of step

functions by ΦΩ and address the basis {χΩj }j∈Z as the canonical basis of ΦΩ.

Definition 5. We associate a weighted transfer operator f∗, acting on the main space, to a

map f on the real line by1

(f∗φ)(x) : =
∑

y∈f−1(x)

sgn df(y)φ(y). (3.2)

3.1.1 The dynamical system

Here we define the system we will be studying. We have specified the phase space to be the

space of essentially bounded and absolutely intgrable vector fields on R. Now we define a
1Transfer operator is a bounded linear operator. In this case, it is chosen to be one dimensional analogue

of induced action on vector fields by area-preserving transformations. Transfer operators with negative

coefficients have been considered, for instance, in [15].
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3.1 NOTATION

transformation and a norm. We also fix the type of cones we will be dealing with.

The transformation of Φ. Let s2 ≤ 2 ≤ s1, be two real numbers such that log s1
s2

= κ ≪ 1.

and let δ = 2−mα be a small real number with 15
16 ≤ α < 1. Consider the map ℓ : R → R

ℓ(x) =






s1x+ s1 − 1, if − 1 < x < 2
s1

− 1;

s2x+ 1 − s2, if 2
s1

− 1 < x < 1;

−x, otherwise.

(3.3)

and define its extension ℓ̂ : R2 → R by ℓ̂(x, y) = ℓ(x) + y. We associate a small perturbation

ℓξ to any sequence ξ ∈ ℓ∞(R) and ‖ξ‖∞ ≤ δ.

The map ℓ outside the unit interval is not important to us and we chose a simple map that

changes direction of the vector field, to make it non-trivial. The exact form is not relevant

here. We associate a transfer operator to a map ℓmξ according to (3.2). We will be studying

the action ℓmξ∗ : Φ → Φ.

Norm in the space of vector fields. Piecewise constant vector fields have proved to be

very useful to us. We define a norm in the space Φ of essentially bounded and absolutely

integrable vector fields on R, using partitions.

Definition 6. A norm in the space ΦΩ of essentially bounded and absolutely integrable

functions, associated to a partition Ω =
∞⋃

j=1
Ωj of R, is given by

‖f‖Ω = max
(∑

j∈Z

2−m

|Ωj |

∫

Ωj

|f(x)|dx, 2−m/2 sup |f |
)
. (3.4)

The first term we refer to as the weighted L1-norm and write

‖f‖Ω,L1 : =
∑

j∈Z

2−m

|Ωj|

∫

Ωj

|f(x)|dx,

it depends, of course, on the partition chosen.
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3.2 DYNAMO OPERATOR

This definition agrees with general definition in Subsection 2.1.2 with α = 1/2.

The subspace of Φ, consisting of piecewise constant vector fields associated to the parti-

tion Ω we denote by ΦΩ. Observe that for any step function φ =
∑

j∈Z
cjχΩj ∈ ΦΩ we have

that

‖φ‖Ω = max
(

2−m
∑

j∈Z

|cj |, 2−m/2 sup |cj |
)
. (3.5)

Cones in vector fields on R. We reserve a notation for a cone of radius r with the main

axis χ[−1,1] in the space ΦΩ of piecewise constant functions, associated to a partition Ω:

Cone (r,Ω) def=
{
η = dχ[−1,1] + ϕ | ϕ =

∑

j∈Z

cjχΩj ;
Nr∑

j=Nl

cj = 0; ‖ϕ‖Ω ≤ dr
}
. (3.6)

We extend the cone Cone (r,Ω) to include general functions from the main space:

Ĉone (r, ε,Ω) def=
{
f = η + g, | η ∈ Cone (r,Ω) , ‖g‖Ω ≤ ε‖η‖Ω

}
. (3.7)

This definition agrees with general definition in Subsection 2.1.3.

3.2 Transfer operator as a dynamo operator

The plan is to choose suitable subspaces of Φ and approximate the operator ℓmξ∗ by an operator

with a simple matrix. The latter we call a generalised toy dynamo operator.

Afterwards, we prove that there exists a map ℓ : R → R such that for any small perturba-

tion ℓmξ with ‖ξ‖∞ ≤ δ we can find a generalised toy dynamo operator A : Φ → Φ and two

partitions Ω1 and Ω2 of R such that A : ΦΩ1 → ΦΩ2 and ‖(ℓmξ∗ − A)Wδ‖ ≤ 2−γm(‖ℓmξ∗‖ + ‖A‖)

for some γ > 0.

3.2.1 Generalised toy dynamo operators

Here we give a definition and show that any generalised toy dynamo operator A possess a

pair of cones C1, C2 ⊂ Φ such that C2 ≪ C1 and A(C1) ⊂ C2 (but C2 6⊂ C1).
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3.2 DYNAMO OPERATOR

Let A be a linear operator acting on the main space. Assume that there exists two partitions

Ω1, Ω2 of the class G such that A : ΦΩ1 → ΦΩ2 . Here and below we denote by N1
l and N1

r

the indices of the first and the last intervals of the partition Ω1 inside [−1, 1], respectively;

and let N2
l and N2

r be the indices of the first and the last intervals of the partition Ω2 inside

[−1, 1], respectively. In other words, the sets Ω2
i × Ω1

j with N2
l ≤ i ≤ N2

r , and N1
l ≤ j ≤ N1

r

make a partition of the unit square.

We define several sets of indices in order to describe the properties of the operator A

important to us. Let aij be coefficients of the matrix of A in the canonical bases of the

subspaces ΦΩ1 and ΦΩ2 .

Accelerator:

Ar: =
{
j ∈ {N1

l , . . . , N
1
r } | #{i ∈ {N2

l , . . . , N
2
r } | aij = 1} ≥ 2m −Nδ

}
. (3.8)

Inflow diffusion:

Din : =
{

(i, j) ∈ {N2
l , . . . , N

2
r } × {N1

l , . . . , N
1
r } | aij 6= 1

}
. (3.9)

Outflow diffusion:

Dout : = {N2
l −mNδ, . . . , N2

r +mNδ} × {N1
l −mNδ, . . . , N1

r +mNδ}−

− {N2
l , . . . , N

2
r } × {N1

l , . . . , N
1
r }. (3.10)

Indifferent subspace:

Sp: = Z2 \ {N2
l −mNδ, . . . , N2

r +mNδ} × {N1
l −mNδ, . . . , N1

r +mNδ}. (3.11)

We are interested in linear operators A such that the following conditions hold true for the

matrix coefficients in the canonical bases.

(D1) max |aij| + 1 ≤ m2(s1
s2

)m;
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3.2 DYNAMO OPERATOR

(D2) #Din ≤ mδs2m
1 ;

(D3) for any pair (i, j) ∈ Sp we have aij = 0 whenever |i− j| > mNδ;

(D4) #Ar ≥ 2m−2.

Definition 7. We say that a linear operator A : L1(R) ∩ L∞(R) → L1(R) ∩ L∞(R) is a

generalised toy dynamo if there exist two partitions Ω1 and Ω2 of the class G such that

A(ΦΩ1) ⊂ ΦΩ2 and the conditions (D1)–(D4) hold true in the settings introduced above.

Remark 2. All theorems and the main result hold true for an operator A that satisfies

conditions (D1)–(D4) with right parts of the inequalities multiplied by polynomials in m.

When we have several partitions, e.g. Ω1, Ω2, and Ω3 of the class G we refer to the norms

associated to the partitions by ‖ · ‖1, ‖ · ‖2, and ‖ · ‖3, respectively.

We will need the following fact.

Remark 3. For any s1 ≤ 2 ≤ s2, satisfying
(
log s1 − log s2

)
≪ 1, and δ = 2−αm there exists

a number 0 < γ1 = 2(1 − α) < 1/4 such that

m2δ ·
s3m

1
2msm2

< 2mγ1 . (3.12)

for m large enough.

Lemma 3.2.1. Let A : ΦΩ1 → ΦΩ2 be a generalised toy dynamo and let φ =
∑

j∈Z
cjχΩ1

j
be a

step function. Then
N2

r∑

i=N2
l

N1
r∑

j=N1
l

|cj | · |1 − aij| ≤ 2m(3/2+γ1)‖φ‖1.

Proof. By straightforward calculation,

N2
r∑

i=N2
l

N1
r∑

j=N1
l

|cj | · |1 − aij| =
∑

(i,j)∈Din

|cj | · |1 − aij | ≤ sup |1 − aij | · #Din · sup |cj | ≤

≤
sm1
sm2

·m2δs2m
1 · 2m/2‖φ‖1 ≤ 2m(3/2+γ1)‖φ‖1.
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�

Definition 8. Let Ω1, Ω2 be two partitions of the class G(m). We define the kernel of

A∗χ[−1,1] : ΦΩ1 → ΦΩ2 to be the set

Ker A∗χ[−1,1] : =
{
φ ∈ ΦΩ1 |

∫ 1

−1
Aφ(x)dx = 0

}
=

=
{
φ =

∑

j∈Z

cj |Ω1
j | :

N2
r∑

i=N2
l

∑

j∈Z

aijcj |Ω2
i | = 0

}
. (3.13)

Proposition 3.2.1. Let 2γ1 < s2 < 2. Then for any two partitions of the class G and a

generalised toy dynamo A : ΦΩ1 → ΦΩ2

ΦΩ1 = χ[−1,1] ⊕ Ker A∗χ[−1,1].

In other words, for any φ ∈ ΦΩ1 there exist ψ ∈ Ker A∗χ[−1,1] and d ∈ R such that

φ = dχ[−1,1] + ψ. (3.14)

Proof. Let χ[−1,1] =
∑

j∈Z ujχΩ1
j
, where uj = 1 for N1

l ≤ j ≤ N1
r and uj = 0 otherwise. Let

φ =
∑

j∈Z cjχΩ1
j

∈ ΦΩ1 be a step function. We want to find a function ψ ∈ ΦΩ1 such that

ψ ∈ Ker A∗. By definition of the kernel 8, using (3.14) we write

∫ 1

−1
Aψ(x)dx =

∫ 1

−1
A(ϕ− dχ[−1,1])(x)dx =

∫ 1

−1

∑

i,j∈Z

aij(cj − duj)χΩ2
i
(x)dx =

=
N2

r∑

i=N2
l

∑

j∈Z

aij(cj − duj)|Ω2
i | = 0.

We want to solve the last equality for d. It is sufficient to show that for any generalised toy

dynamo A we have that
N2

r∑

i=N2
l

∑

j∈Z

ujaij |Ω2
i | 6= 0.

By straightforward calculation,

N2
r∑

i=N2
l

∑

j∈Z

ujaij |Ω2
i | =

N1
r∑

j=N1
l

N2
r∑

i=N2
l

aij|Ω2
i | = 2(N1

r −N1
l ) +

N1
r∑

j=N1
l

N2
r∑

i=N2
l

(aij − 1)|Ω2
i |.
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Using conditions (D1)–(D4), we estimate the last term as follows

N1
r∑

j=N1
l

N2
r∑

i=N2
l

(aij − 1)|Ω2
i | =

∑

Din

(aij − 1)|Ω2
i | ≤ #Din · sup |aij − 1| · sup |Ω2

i | ≤

≤ s2m
1 m2δ ·

sm1
sm2

· 2(s−m
1 + s−m

2 ).

We see that
N2

r∑

i=N2
l

∑

j∈Z
ujaij|Ωi| 6= 0 under condition that

s2m
1 m2δ ·

sm1
sm2

· 2(s−m
1 + s−m

2 ) < 2(N1
r −N1

l ). (3.15)

Recall that, since Ω1 is of the class G, we have N1
r −N1

l > 2m−1. We also know from (3.12)

that there exists γ1 < 1/4 such that

m2δ ·
s3m

1
2msm2

< 2mγ1 .

Therefore (3.15) holds true under condition that 2γ1 < s2 < 2. �

Lemma 3.2.2. Let η = dχ[−1,1] + ψ ∈ ΦΩ be a step function such that ‖ψ‖ ≤ dr for some

r ≪ 1. Then η ∈ Cone
(

2r
1−2r ,Ω

)
.

Proof. We would like to write ψ = βχ[−1,1] + ψ̃, where ψ̃ =
∑

j∈Z
c̃jχΩj and

Nr∑

j=Nl

c̃j = 0. Let us

assume that ψ =
∑

j∈Z
cjχΩj , then

Nr∑

j=Nl

cjχΩj = β
Nr∑

j=Nl

χΩj +
Nr∑

j=Nl

c̃jχΩj .

implies c̃j = cj −β and consequently
Nr∑

j=Nl

(cj −β) = 0. Thus we have an upper bound for |β|:

|β| =
∣∣∣

1
Nr −Nl

Nr∑

j=Nl

cj
∣∣∣ ≤

1
2m−1

∑

j∈Z

|cj | = 2‖ψ‖ ≤ 2dr.

Therefore we deduce that

η = (d+ β)χ[−1,1] + ψ̃ ∈ C
( |β|

|d| − |β|
,Ω

)
⊂ C

( 2r
1 − 2r

,Ω
)
.

�
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Definition 9. Given Ω1 and Ω2, two partitions of the class G, we define a linear operator

E : ΦΩ1 → ΦΩ2 by the matrix

Eij =






1, if N2
l ≤ i ≤ N2

r and N1
l ≤ j ≤ N1

r ,

δij , otherwise.

(3.16)

Remark 4. The operator E is a generalised toy dynamo.

Lemma 3.2.3. Consider a function ϕ ∈ Ker E∗χ[−1,1]. Then ‖Eϕ‖2 ≤ ‖ϕ‖1.

Proof. Let ϕ ∈ ΦΩ1 be a step function. We may write ϕ =
∑

j∈Z
cjχΩ1

j
, then

Eϕ =
N1

r∑

j=N1
l

cjχ[−1,1] +
( ∑

j<N1
l

+
∑

j>N1
r

)
cjχΩ2

j
;

and the condition ϕ ∈ Ker E∗χ[−1,1] implies
N1

r∑

j=N1
l

cj = 0. Therefore

‖Eϕ‖2 =
∥∥∥

( ∑

j<N1
l

+
∑

j>N1
r

)
cjχΩ2

j

∥∥∥
2

=
( ∑

j<N1
l

+
∑

j>N1
r

)
|cj | ≤ ‖ϕ‖1.

�

Proposition 3.2.2. Let s1 be small enough so that log2 s1 ≤ 64/63. Let Ω1 and Ω2 be

partitions of the class G. Consider a generalised toy dynamo operator A : ΦΩ1 → ΦΩ2. Then

for any φ ∈ ΦΩ1

‖(A − E)φ‖2 ≤ 2m(1/2+γ1)‖φ‖1,

where γ1 satisfies the inequality (3.12).

Proof. Let φ =
∑

j∈Z cjχΩ1
j

∈ ΦΩ1 be a step function with the unit norm

‖φ‖1 = max
(
2−m

∑

j∈Z

|cj |, 2−m/2, sup |cj |
)

= 1,
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which implies
∑

j∈Z |cj | ≤ 2m and sup |cj | ≤ 2m/2. By straightforward calculation,

(A − E)φ =
∑

i∈Z

∑

j∈Z

cj(aij − Eij)χΩ2
i

=

=
N2

r∑

i=N2
l

N1
r∑

j=N1
l

cj(aij − 1)χΩ2
i

+
∑

Dout

cj(aij − δij)χΩ2
i

+
∑

Sp

cj(aij − δij)χΩ2
i
.

Observe that

#Dout ≤
(
4m2N2

δ + 2mNδ(N2
r −N2

l ) + 2mNδ(N1
r −N1

l )
)

=

= 2mNδ(2mNδ +N2
r −N2

l +N1
r −N1

l ).

Therefore, using ‖φ‖1 ≤ 1, Lemma 3.2.1, definition of the set Dout, and condition (D3),

‖(A − E)φ‖L1,Ω2 ≤

≤ 2−m
( N2

r∑

i=N2
l

N1
r∑

j=N1
l

|cj | · |aij − 1| +
∑

Dout

|cj | · |aij − δij | +
∑

Sp

|cj | · |aij − δij |
)

≤

≤2−m(
2m(3/2+γ1) + sup |cj | · sup |aij| · #Dout +

∑

Z

|cj | ·mNδ · sup |aij|
)

≤

≤ 2m(1/2+γ1) + 2−m/2 sm1
sm2

· 2mNδ(2mNδ +N2
r −N2

l +N1
r −N1

l ) +mNδ
sm1
sm2
.

By straightforward calculation we see that for s1 small enough so that log2 s1 ≤ 64/63

sm1
sm2

·mNδ <
sm1
sm2

·m2m(1−α logs1
2) ≤

sm1
sm2

·
δs2m

1
2m

= 2mγ1 .

Therefore, under the same condition, since Nδ ≪ 2m,

2−m/2 ·
sm1
sm2

·m2N2
δ < 2mγ1 ·mNδ · 2−m/2 < 2m(1/2+γ1).

Finally,

21−m/2mNδ ·
sm1
sm2

·
(
N2
r −N2

l +N1
r −N1

l
)

≤
sm1
sm2

· 2m/2 · 4mNδ < 2m(1/2+γ1).

Summing up,

‖(A − E)φ‖2 ≤ 3 · 2m(1/2+γ1).
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Now, for the maximum norm, we have that

‖(A − E)φ‖∞ ≤ max
x∈R

∑

j∈Z

∑

i∈Z

|cj | · |aij − Eij |χΩ2
i
(x) ≤

∑

j∈Z

|cj |
sm1
sm2

≤ 2m
sm1
sm2
.

Thus 2−m/2‖(A − E)φ‖∞ ≤ 2m(1/2+γ1). �

Lemma 3.2.4. Let Ω1 and Ω2 be two partitions of the class G. Let E : ΦΩ1 → ΦΩ2 be

a linear operator with the matrix defined by (3.16) in the canonical basis. Then for any

function φ ∈ ΦΩ1

‖Eφ‖2 ≤ 2m‖φ‖1 and ‖Eχ[−1,1]‖2 ≥ 2m−2.

Proof. Let φ =
∑

j∈Z cjχΩ1
j

∈ ΦΩ1 be a step function of the unit norm. Then, by straightfor-

ward calculation,

Eφ =
∑

i∈Z

∑

j∈Z

cjEijχΩ2
i

=
N2

r∑

i=N2
l

N1
r∑

j=N1
l

cjχΩ2
i

+
∑

Dout∪Din

cjδijχΩi =

=
N1

r∑

j=N1
l

cjχ[−1,1] +
( ∑

j<N1
l

+
∑

j>N1
r

)
cjχΩj ;

so the weighted L1-norm is

‖Eφ‖2,L1 = 2−m ·
∣∣∣
N1

r∑

j=N1
l

cj
∣∣∣ · (N2

r −N2
l ) + 2−m

( ∑

j<N1
l

+
∑

j>N1
r

)
|cj | ≤ 2m + 1.

The upper estimate for the supremum norm is easy:

‖Eφ‖∞ = max
x∈R

( N1
r∑

j=N1
l

cjχ[−1,1](x) +
( ∑

j<N1
l

+
∑

j>N1
r

)
cjχΩj (x)

)
≤ 2m.

Hence ‖Eφ‖2 ≤ 2m‖φ‖. Obviously,

‖Eχ[−1,1]‖2 ≥ ‖Eφ‖2,L1 = 2−m(N1
r −N1

l )(N2
r −N2

l ) ≥ 2m−2.

�
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Let us consider two cones Cone
(
1,Ω1)

⊂ ΦΩ1 and Cone
(
2(γ1−1/2)m,Ω2)

⊂ ΦΩ2 in corre-

spondence with general definition p. 37:

Cone
(
1,Ω1) def=

{
φ = dχ[−1,1] + ψ | ψ =

∑

j∈Z

cjχΩ1
j
;
Nr∑

j=Nl

cj = 0; ‖ψ‖1 ≤ d
}

; (3.17)

Cone
(

2(γ1−1/2)m,Ω2
)

def=

{
φ = dχ[−1,1] + ψ | ψ =

∑

j∈Z

cjχΩ2
j
;
Nr∑

j=Nl

cj = 0; ‖ψ‖2 ≤ d2m(γ1−1/2)
}
. (3.18)

Theorem 3. Assume that m is large enough so that the inequality (3.12) holds true for some

0 < γ1 < 1/4 and all sufficiently small κ. Additionally, assume that log2 s1 ≤ 64/63. Let Ω1

and Ω2 be two partitions of the class G. Then for any generalised toy dynamo A : ΦΩ1 → ΦΩ2

we have A : Cone (1,Ω1) → Cone
(
2m(γ1−1/2),Ω2)

; Moreover, for any η ∈ Cone
(
1,Ω1)

we

have ‖Aη‖2 ≥ (N2
r −N1

l )‖η‖ ≥ 2m−1‖η‖.

Proof. Let φ ∈ Cone
(
1,Ω1)

be a step function, φ = dχ[−1,1] + ψ, where ψ =
∑

j∈Z
cjχΩ1

j
, with

‖ψ‖1 ≤ d and
N1

r∑

j=N1
l

cj = 0. We may write

Aφ = (A − E)φ+ Eφ = dEχ[−1,1] + (A − E)φ+ Eψ.

Obviously, ‖φ‖1 ≤ 2d, thus by Proposition 3.2.2

‖(A − E)φ‖2 ≤ ‖A − E‖ · ‖φ‖1 ≤ d2m(1/2+γ1)+1.

By Lemma 3.2.3, ‖Eψ‖2 ≤ ‖ψ‖1 = d. Therefore ‖(A − E)φ + Eψ‖2 ≤ d2m(1/2+γ1)+1 + d, so

we conclude

Aφ = d̃χ[−1,1] + d(A − E)χ[−1,1] + (A − E)ψ + Eψ,

where d̃ ≥ d2m−2 and ‖d(A − E)χ[−1,1] + (A − E)ψ + Eψ‖2 ≤ d(2m(1/2+γ1)+1 + 1). Theorem

now follows from Lemma 3.2.2.
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�

Now we proceed to approximation. First of all we shall show that with any sequence ξ we

can associate a pair of canonical partitions of the class G. Then we approximate the operator

ℓmξ∗ by a generalised toy dynamo (Theorem 4, p. 62).

3.2.2 Canonical partition for the perturbation ℓmξ

In this section we construct a partition of the class G(m) associated to the sequence ξ. Later

we will refer to it as the canonical partition of the map ℓmξ .

Recall Definition 4 of the partition G:

Definition 4. We say that a collection of intervals Ω = {Ωj}j∈Z makes a partition of the

class G(m, δ, s1, s2), if
⋃

Ωj = R, Ωi∩Ωj = ∅ if i 6= j, and the following conditions hold true.

1. The interval [−1, 1] contains at least 2m−1 and at most 2m intervals of the partition,

and {±1} are the end points of some intervals of the partition.

2. The length of intervals Ωj is bounded away from zero and from infinity

1
msm1

≤ |Ωj | ≤ 2
( 1
sm1

+
1
sm2

)
.

3. Any interval I ⊂ R of the length |I| = δ contains not more than

Nδ = 2m+1δlogs1
2 = 2m(1−α logs1

2)+1

intervals of the partition.

4. Any interval of the partition Ωj ⊂ R \ [−1 −mδ, 1 +mδ] has length |Ωj| = 2−m.

We fix s1 and s2 in the definition of the map ℓ (3.3) and a sequence ξ ∈ ℓ∞(R) with a norm

‖ℓ‖ ≤ δ = 2−mα.
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The map ℓξ is piecewise linear and so any iteration is a such. Let

− ∞ = a(k)
0 < a(k)

1 < . . . < a(k)
Nk+1 = +∞ (3.19)

be all the points of discontinuity of the map ℓkξ . Define the corresponding partition of the real

line a(k) =
⋃Nk
j=0 a(k)

j , where a(k)
j = (a(k)

j , a(k)
j+1) are the partition intervals. Observe that for

any k we have that {±1} are the endpoints of some intervals of the partition. Let a(k)
lk = −1

and a(k)
rk = 1.

We shall modify the partition a(m) and obtain the canonical partition for the map ℓmξ .

Definition 10. We call a branch ℓnξ (a(n)
j ) of the map ℓnξ main, if for any 0 < k < n we have

that ℓkξ (a
(n)
j ) ⊂ [−1, 1].

Definition 11. We call a main branch ℓkξ (a
(k)
j ) of the map ℓkξ long, if

∣∣ℓkξ (a
(k)
j ) ∩ [−1, 1]

∣∣ >
2
s2
.

Lemma 3.2.5. The map ℓmξ has at most 2m(1−α1)+1 main branches that are not long, where

α1 < α
log2 s1

is chosen such that sα1
1 < 2α.

Proof. Let a(m)
j be a domain of a main branch which is not long, that is |ℓmξ (a(m)

j )∩[−1, 1]|< 2
s2

.

Since ℓ(m)
ξ (a(m)

j ) is an interval, a connected subset of R, we conclude |ℓmξ (aj (m)) + 1| > 1 − 1
s2

or |ℓmξ (aj+1
(m)) − 1| > 1 − 1

s2
. Without loss of generality we may assume that the first holds

true. By definition, a(m)
j is a point of discontinuity. Therefore, for some k < m we have

that ℓkξ (a
(m)
j ) = −1 + ξ(k); hence we deduce that ℓ(m)

ξ (a(m)
j ) = ℓm−k

ξ (−1 + ξ(k)). So we

conclude |ℓm−k
ξ (−1 + ξ(k)) + 1| > 1 − 1

s2
, and, consequently, k < m(1 − α1) + 1. Indeed,

if k > m(1 − α1) + 1, then m− k < mα1 − 1, and it follows that

|ℓm−k
ξ (−1 + ξ(k)) + 1| < smα1−1

1 δ <
2
s1

= 2 −
2
s2
.
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Since the map ℓkξ has at most 2k main branches, we conclude that there are at most 2m(1−α1)+1

points a(m)
j such that ℓkξ (a

(m)
j ) = −1 + ξ(k).

Summing up, the map ℓmξ has at most 2m(1−α1)+1 main branches that are not long. �

Lemma 3.2.6. Let 1 ≤ k ≤ mα logs1 2 and let (a, b) be the domain of a main branch of the

map ℓkξ . Then

|ℓkξ (a) + 1| < δ
sk1 − 1
s1 − 1

<
2
s1

− δ;

|ℓkξ (b) − 1| < δ
sk2 − 1
s2 − 1

<
2
s1

− δ.

Proof. By induction in k. The case k = 1 is obvious. Recall that a(k) ⊂ a(k+1) and

a(k+1) \ a(k) = {ℓ−kξ (−1), ℓ−kξ (1), ℓ−kξ (2/s1 − 1)}.

Therefore for x ∈ a(k) we have

ℓk+1
ξ (x) = ℓσk(ξ)ℓ

k
ξ (x) = s1ℓkξ (x) + s1 − 1 − ξ(k + 1), if |ℓkξ (x) + 1| < 2/s1 − δ

ℓk+1
ξ (x) = ℓσk(ξ)ℓ

k
ξ (x) = s2ℓkξ (x) − s2 + 1 − ξ(k + 1), if |ℓkξ (x) − 1| < 2/s1 − δ

In the first case we know that, by induction assumption,

|ℓk+1
ξ (x) + 1| ≤ s1|ℓkξ (x) + 1| + |ξ(k + 1)| + 1 ≤

sk+1
1 − 1
s1 − 1

δ.

In the second case,

|ℓk+1
ξ (x) − 1| ≤ s2|ℓkξ (x) − 1| + |ξ(k + 1)| + 1 ≤

sk+1
2 − 1
s2 − 1

δ.

�

Corollary 1. Let 1 ≤ k ≤ mα logs1 2. Then for any domain (a, b) of a main branch of the

map ℓkξ we have that 2
s1

− 1 = 1 − 2
s2

∈ ℓkξ (a, b).
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Proof. By assumption, ℓkξ (a) < ℓkξ (b) and from Lemma 3.2.6 it follows that

ℓkξ (a) <
2
s1

− δ − 1 <
2
s1

− 1 < 1 −
2
s2

+ δ < ℓkξ (b).

�

Corollary 2. Let 1 ≤ n ≤ mα logs1 2. Then any main branch of the map ℓnξ is δ-close to one

of the ends of the interval [−1, 1]: in other words, either 1 − δ ∈ ℓnξ (a, b) or δ − 1 ∈ ℓnξ (a, b),

or both.

Proof. By induction in n. The case n = 1 is obvious. Observe that (a, b) cannot be an

interval of continuity of the map ℓnξ for any k < n. Therefore ℓn−1
ξ is either continuous at a,

or at b, or at both end points. In any case (a, b) belongs to an interval of continuity of ℓn−1
ξ

satisfying conditions of Corollary 1 of Lemma 3.2.6. By definition of ℓξ, we see that either

ℓn−1
ξ (a) = 2

s1
−1 or ℓn−1

ξ (b) = 2
s1

−1. Without loss of generality assume that ℓn−1
ξ (b) = 2

s1
−1.

Then we see that ℓnξ (a, b) ⊃ (ξ(n), 1 + ξ(n)) ∋ 1 − δ. Similarly, ℓn−1
ξ (a) = 2

s1
− 1 implies that

ℓnξ (a, b) ⊃ (−1 + ξ(n), ξ(n)) ∋ δ − 1. �

Lemma 3.2.7. The map ℓkξ for any 1 ≤ k ≤ mα logs1 2 has exactly 2k long branches.

Proof. By induction in k. The case k = 1 is trivial. It follows from Lemma 3.2.6 and

Corollary 1 of Lemma 3.2.6 that any long branch of the map ℓkξ contains at least two long

branches of the map ℓk−1
ξ . �

Corollary 1. The map ℓmξ has at least 2m−2 long branches, provided 2α logs1 2 > 1.

Proof. If 2α logs1 2 > 1, then m−mα logs1 2 < mα logs1 2 and therefore the map P
m−mα logs1

2
η

has at least 2m−mα logs1
2 long branches for any η ∈ ℓ∞(R) with ‖η‖ ≤ δ. Let η = σmα logs1

2ξ.

Then we can decompose ℓmξ = ℓ
m(1−α logs1

2)
η ℓ

mα logs1
2

ξ . According to Lemma 3.2.7 the map

ℓ
mα logs1

2
ξ has at 2mα logs1

2 long branches. By definition of a long branch, its image is
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at least 2
s2

long; using Corollaries 1 and 2 of Lemma 3.2.6, we deduce that for any do-

main (a, b) of a long branch we have that either (−1 + δ,−1 + 2
s2

) ⊂ ℓ
m logs1

2
ξ (a, b) or

(1 − 2
s2

; 1 − δ) ⊂ ℓ
m logs1

2
ξ (a, b). Moreover, any of two intervals (−1, 2

s1
− 1) and ( 2

s1
− 1, 1)

contains exactly 2m(1−α logs1
2)−1 long branches of the map ℓ

m(1−α logs1
2)

ξ .

We can find an upper bound for the length of a domain of a long branch of the map

ℓ
m(1−α logs1

2)
η : it easy to show by induction in number of iterations that any long branch

(a, b) has a domain of the length at least

|b− a| = (2 − s
m(1−α) logs1

2
1 δ)s

−m(1−α logs1
2)

1 = 2s
−m(1−α logs1

2)
1 − δ ≥ s

−m(1−α logs1
2)

1

Therefore any of the intervals (−1 + δ, 2
s1

− 1) and ( 2
s1

− 1, 1 − δ) contains at least

2m(1−α logs1
2)−1 − s

m(1−α logs1
2)

1 δ = 2m(1−α logs1
2)−1 − 2m(log2 s1−2α) ≥ 2m(1−α logs1

2)−1 − 2

long branches of the map ℓ
m(1−α logs1

2)
ξ .

Therefore, the composition has at least 2mα logs1
2(2m(1−α logs1

2)−1−2) long branches, which

comes as 2m−1 − 2mα logs1
2 > 2m−2, as promised. �

Canonical partition construction. Let us consider the set of end points of domains of long

branches

Dl : =
{
x | x is an endpoint of a domain of a long branch of the map ℓmξ

}
∪ {±1} =

= {−1 = d1 < d2 < . . . < dN = 1},

and define a partition Ω =
N⋃

j=1
Ωj of the interval [−1, 1] by Ωj = (dj , dj+1); j = 1, . . . , N .

Let us denote by Uε(Ωj) a neighbourhood of Ωj of the size ε.

We shall set ε = (2sm1 )−1. If for some Ωj = (dj , dj+1), containing a long branch of the map

ℓmξ , there exist points of discontinuity of the map ℓmξ in a neighbourhood Uε(Ωj) ∩ [−1, 1],

then we extend the interval Ωj to include all these points.
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Let Ω′
j = (d′

j , d
′
j+1), j = 1, . . . , N be a new collection of intervals. If there exist two in-

tervals (d′
j , d

′
j+1) and (d′

j+2, d
′
j+3) containing long branches of the map ℓmξ , and such that

dj+2 − dj+1 < (msm1 )−1, then we replace the interval (dj , dj+1) in Ω′ with the interval

(dj , dj+2).

Now the length of any interval of the partition Ω′, containing a long branch, is not more than

2(s−m
1 + s−m

2 ). Assume that there exist two intervals (d′
j , d

′
j+1) and (d′

j+2, d
′
j+3) containing

long branches of the map ℓmξ , such that d′
j+2 − d′

j+1 > s−m
2 , then we split the interval

(d′
j+1, d

′
j+2) into intervals of the size s−m

2 , allowing one of them to be longer, or smaller, if

necessary. More precisely, let Ω′
j = (d′

j , d′
j+1) be an interval of Ω′ that doesn’t contain a

long branch. Let n :=
[
sm2 (d′

j+1 − d′
j)

]
be the number of “whole” intervals of the length

s−m
2 that could fit inside (d′

j , d′
j+1). If (d′

j+1 − d′
j) − nsm2 < s−m

1 , we split the interval

(d′
j , d

′
j+1) into n intervals; adding the intervals (d′

j + ks−m
2 , d′

j + (k + 1)s−m
2 ), 0 ≤ k < n

to the partition Ω′. Otherwise, we split the interval (d′
j , d

′
j+1) into n + 1 intervals, adding

(d′
j + ks−m

2 , d′
j + (k + 1)s−m

2 ), 0 ≤ k ≤ n to Ω′.

The intervals (a(m)
0 ,−1) and (1, a(m)

Nm
), do not contain any long branches, and we define

the partition there as described above. Finally, we define the partition on (−∞, a(m)
1 ) and

(a(m)
Nm
,+∞) splitting them into equal intervals of the length 2−m.

We have obtained a partition of the real line, that satisfies Conditions (D2) and (D4) of

Definition 4. We have to check other conditions of Definition 4.

Lemma 3.2.8. The partition constructed satisfies Condition (D3). Any interval I ⊂ R of

the length δ contains at most Nδ < 2m(1−α logs1
2)+1 intervals of the partition.

Proof. The statement holds true for any interval I ⊂ R \ [a(m)
1 , a(m)

Nm
] of the length δ. Assume

that I ⊂ [a(m)
1 , a(m)

Nm
], and |I| = δ. Then there are two possibilities:

1. the interval I contains a long branch;
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2. the interval I doesn’t contain a long branch.

Consider the first case. Observe that for any k0 ≤ m and for any interval I0 ⊂ [−1, 1] of the

length |I0| < s−k0
1 such that ℓkξ (I0) ⊂ [−1, 1] for all k < k0, the map ℓk0

ξ is one-to-one on I0.

(Easy to check by induction). Since for any long branch a(m)
j we have 1 − 2

s1
∈ ℓξ(a

(m)
j ),

we conclude that k0 : = [− log2 δ logs1 2] = [αm logs1 2] and then we see that the map ℓk0
ξ

is one-to-one on any interval I0 of the length less than δ such that ℓkξ (I0) ⊂ [−1, 1] for

all k < k0. Thus any interval of the length δ contains at most 2m−k0 long branches of the

map ℓmξ . Consequently, any interval I with |I| ≤ δ contains at most 2m−k0 < Nδ intervals of

the partition with a long branch inside.

Assume now that the interval I of the length |I| = δ contains some intervals of the partition

that do not contain a long branch inside. Let I0 ⊂ I be a maximal by inclusion subinterval

not containing a long branch. Then by construction of the partition, it contains at most

one interval of the partition Ω of the length less than s−m
2 . Since the interval I contains at

most 2m−k0 long branches, it may contain not more than 2m−k0 + 2 intervals I0 without a

long branch inside. Therefore, the interval I contains not more than δsm2 + 2m−k0+1 < Nδ

intervals of the partition.

In the second case, an argument similar to the one above shows that an interval I of the

length |I| = δ and without a long branch inside contains not more than δsm2 +1 < Nδ intervals

of the partition.

�

Lemma 3.2.9. The partition constructed satisfies Condition (D1) of Definition 4. The

interval [−1, 1] contains at least 2m−1 and at most 2m − 2mα logs1
2 + mδsm1 intervals of the

partition.

Proof. By Corollary 1 of Lemma 3.2.7, the map ℓmξ has at least 2m−2 long branches, provided
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s1 is chosen such that 2α logs1 2 > 1. Every long branch belongs to exactly one of intervals

of the partition, and the escaping set of measure mδ contains at most mδsm1 intervals. �

Summing up, we conclude that the construction leads to a partition of the class G, as

desired.

We shall refer to the resulting partition Ω as the canonical partition of the map ℓmξ .

Lemma 3.2.10. Any interval of a canonical partition Ω has at most two main branches of

the map ℓmξ .

Proof. If an interval Ωj of the partition contains more than one main branch, one of the main

branches is not long. Let it be a(m)
k . Then by Definition 11

∣∣ℓmξ (a(m)
k ) ∩ [−1, 1]

∣∣ < 2
s2

.

Now we repeat the calculation of Lemma 3.2.5. The end points of the interval a(m)
k are the

points of discontinuity of the map ℓmξ . Then there exists two numbers n1 < m and n2 < m

such that ℓn1
ξ (a(m)

k ) = −1 + ξ(n1) and ℓn2
ξ (a(m)

k+1) = 1 − ξ(n2). Therefore,

|ℓmξ (a(m)
k ) + 1| = |ℓm−n1

σn1 ξ (−1 + ξ(n1)) + 1| ≤ sm−n1
1 δ;

|ℓmξ (a(m)
k+1) − 1| = |ℓm−n2

σn2 ξ (1 − ξ(n2)) − 1| ≤ sm−n2
2 δ.

Since by assumption
∣∣ℓmξ (a(m)

k )
∣∣ < 2

s2
, we deduce 2 − δ(sm−n2

2 + sm−n1
1 ) ≤ 2

s2
. The latter is

equivalent to δ(sm−n2
2 +sm−n1

1 ) ≥ 2
s1

, which implies that either δsm−n2
2 ≥ 1

s1
, or δsm−n1

1 ≥ 1
s1

,

or both. Hence we get an upper bound on n1 or n2, respectively:

n1,2 < m0 : = m
(

1 −
α

log2 s1

)
+ 10.

Therefore one of the end points of a(m)
k is an end point of the main branch of the map ℓnξ

with n < m0. Observe that all main branches of the map ℓmξ are long. Any interval of the

length s−m0
1 contains at not more than one main branch of the map ℓm0

ξ . Therefore the dis-

tance between short main branches of the map ℓmξ is at least s−m0
1 ≫ 2(s−m

1 +s−m
2 ) = sup |Ωj |,
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and any interval of the partition contains not more than one short main branch of the map

ℓmξ . Therefore, any interval of the partition contains at most two main branches. �

3.2.3 Approximating ℓmξ∗ by a generalised toy dynamo operator

Here we prove the main result of this Section, Theorem 4, which establishes the existence of

a generalised toy dynamo operator, a close approximation of ℓmξ∗ for arbitrary ‖ξ‖∞ ≤ δ.

Construction. Let a partition Ω2 of the class G be given. Let ℓmξ be as above, and let a(m) be

a partition of the real line by its points of discontinuity and let Ω1 be the canonical partition

of the map ℓmξ . Introduce the joint partition: a(m) ∪ Ω1 = {dj}j∈Z. We assume the natural

numbering: [d0; d1] ∋ 0 and dj < dj+1 for any j ∈ Z. Define the image of the joint partition

by

{
b±j : = lim

y→dj±0
ℓmξ (y)

}
j∈Z
.

Then on the interval (dj , dj+1) the map ℓmξ is given by

ℓmξ (x) : =
b−j+1 − b+j
dj+1 − dj

x+
b+j dj+1 − b−j+1dj

dj+1 − dj
, dj < x < dj+1.

We define an approximating map ℓ̂mξ to be

ℓ̂mξ (x) : =
⌊b−j+1⌋ − ⌈b+j ⌉
dj+1 − dj

x+
⌈b+j ⌉dj+1 − ⌊b−j+1⌋dj

dj+1 − dj
, dj < x < dj+1;

where ⌊x⌋ stands for the closest to x point of the partition Ω2, which is smaller than x; and

⌈x⌉ stands for the closest to x point of the partition Ω2, which is larger than x. In particular,

branches of the map ℓ̂mξ are not longer than branches of the map ℓmξ .

We define an operator T : ΦΩ1 → ΦΩ2 by

(T φ)(x) : =
∑

y∈ℓ̂−m
ξ (x)

sgn dℓ̂mξ (y)φ(y). (3.20)
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Lemma 3.2.11. The operator T is a linear operator between two subspaces of step functions

associated to the partitions Ω1 and Ω2 (see p. 26 for definition): T : ΦΩ1 → ΦΩ2.

Proof. Linearity is obvious. It is sufficient to show that for any interval Ω1
j ∈ Ω1 of the first

partition,

(T χΩ1
j
)(x) : =

∑

y∈ℓ̂−m
ξ (x)

sgn dℓ̂mξ (y)χΩ1
j
(y) ∈ ΦΩ2 .

By definition of ℓ̂mξ , we see lim
y→dj−0

ℓ̂mξ (y) = [b−j ] and lim
y→dj+0

ℓ̂mξ (y) = [b+j ], therefore all points

of Ω2
k ⊂ Ω2 have the same number of preimages with respect to ℓmξ for any interval Ω2

k.

Moreover, ℓ̂−mξ (Ω2
k) does not contain any point of Ω1 inside, as it is piecewise monotone on a

subpartition Ω1 ∪ a(m). �

Definition 12. We introduce the k-escaping set

Ek : = {x ∈ [−1, 1] | ∃n < k ℓnξ (x) 6∈ [−1, 1]}. (3.21)

Lemma 3.2.12. In the canonical bases of ΦΩ1 and ΦΩ2

sup
y∈Ω2

i

#{x ∈ Ω1
j | ℓmξ (x) = y} ≤ m2 sm1

sm2
.

Proof. Observe that the map is one-to-one on any interval I ⊂ [−1, 1] \ Em of the length

|I| ≤ 2s−m
1 .

Given an element Ω1
j , consider a maximal by inclusion interval I ⊂ Em ∩ Ω1

j , such that

|I| ≤ s−m
1 . We shall show that

max
y∈R

#
{
x ∈ I | ℓmξ (x) = y} ≤ 3ms3

1. (3.22)

There are two possibilities:

1. the map ℓmξ is continuous on I ⊂ Em ∩ Ω1
j ;

2. the map ℓmξ is not continuous on I ⊂ Em ∩ Ω1
j .
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In the first case the map ℓξ|I is a bijection and (3.22) holds true.

Now consider the second case: the map ℓmξ is not continuous on I ⊂ Em ∩ Ω1
j . We may

find the smallest k0 such that ℓk0
ξ (I) 6⊂ [−1, 1]. Then

ℓk0
ξ (I) ∩ [−1, 1] ⊂ (−1,−1 + sk0−m

1 ) ⊔ (1 − sk0−m
1 , 1).

Let m0
def= 1+mα

log2 s1
− 2. It follows by induction in k that for any k0 ≤ k < m0 the im-

age ℓkξ (I) ∩ [−1, 1] may be covered by two disjoint intervals in particular,

ℓkξ (I) ∩ [−1, 1] ⊂ (−1,−1 + δ1
k + sk−m

1 ) ⊔ (1 + δ2
k − sk−m

1 , 1),

where δ1
k =

k∑

j=k0

sk−j
1 ξj and δ2

k =
k∑

j=k0

sk−j
2 ξj with |δ1,2

k | ≤ sk−k0+1
1 δ, and −1 + 2

s1
6∈ ℓkξ (I) for

all k0 ≤ k < m0. In particular, for any x1, x2 ∈ I such that ℓk0
ξ (x1) ∈ (−1,−1 + sk0−m

1 ) and

ℓk0
ξ (x2) ∈ (1 − sk0−m

1 , 1) we have for all k < m0:

∣∣ℓkξ (x1) − ℓkξ (x2)
∣∣ ≥ (1 + δ2

k − sk−m
1 ) − (−1 + δ1

k + sk−m
1 ) = 2 − 2sk−m

1 + (δ2
k − δ1

k) ≥ 1.

The map ℓm0−k0
σk0ξ is a bijection on any of the intervals (−1,−1 + sk0−m

1 ) and (1 − sk0−m
1 , 1).

Therefore, we deduce that the map ℓm0
ξ is a bijection on I. It follows that the image ℓm0

ξ (I)

consists of not more than 3m0 intervals each of which is not longer than sm0−m
1 . Let η = σm0ξ

and consider the map ℓm−m0
η . We claim that it is a bijection on any interval I ⊂ R of the

length |I| ≤ sm0−m−3
1 . Indeed, if ℓm−m0

η is continuous on I, then it is a bijection. Assume

that for some k0 ≤ m−m0 the map ℓk0
η is not continuous on I. Then

ℓk0
η (I) ∩ [−1, 1] ⊂ (−1; −1 + sm0+k0−m−3

1 + δ) ⊔ (1 − sm0+k0−m−3
1 − δ; 1),

and for any k0 < k ≤ m−m0

ℓkη ∩ [−1, 1] ⊂ (−1; −1 + sk+1
1 δ + sm0+k−m−3

1 ) ⊔ (1 − sk+1
1 − sm0+k−m−3

1 ; 1).

By straightforward calculation we see that provided s1 ≤ 22α

sm0+k−m−3
1 + sk+1

1 δ ≤
1
s1
.
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Therefore for any interval I of the length |I| ≤ sm0−m−3
1 and for any two points x1, x2 ∈ I

with x1 6= x2 we have that ℓkη(x1) 6= ℓkη(x2) for all 1 ≤ k ≤ m−m0. We see that the image ℓm0
ξ

may be covered by not more than 3m0s3
1 intervals of the length sm0−m−3

1 . Hence we conclude

that for any interval |I| ≤ s−m
1

sup
y∈R

#
{
x ∈ I | ℓmξ (x) = y

}
≤ 3m0s3

1 < 3ms3
1 + 3.

Since by Lemma 3.2.10 any interval of the partition contains at most two main branches,

the set Ω ∩ Em is a union of not more than two intervals, which may be covered by 2 + 2s
m
1
sm

2

disjoint intervals of the length s−m
1 . Therefore

max
y∈R

#
{
x ∈ Ω1

i | ℓmξ (x) = y} ≤ 3ms3
1

(s1

s2

)m
< m2

(s1

s2

)m
.

�

Corollary 1. In the canonical bases of ΦΩ1 and ΦΩ2 the matrix of the operator T satisfies

condition (D1):

max |τij| + 1 ≤ m2
(s1

s2

)m
.

Proof. Recall the definition of the operator T :

(T φ)(x) : =
∑

y∈ℓ̂−m
ξ (x)

sgn dℓ̂mξ (y)φ(y). (3.20)

Then for φ = χΩ1
j

we have

(T φ)(x) : =
∑

i∈Z

τijχΩ2
i
(x) =

∑

i∈Z

∑

y∈ℓ̂−m
ξ (x)

sgn dℓ̂mξ (y)χΩ1
j
(y)χΩ2

i
(x) =

=
∑

i∈Z

∑

y∈ℓ̂−m
ξ (x)∩Ω1

j

sgn dℓ̂mξ (y)χΩ2
i
(x); (3.23)

therefore

τij =
∑

y∈ℓ̂−m
ξ (Ω2

i )∩Ω1
j

sgn dℓ̂mξ (y).
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The definition of the map ℓ̂ξ guarantees that τij are well-defined; in particular

|τij| ≤ #{x ∈ Ω1
j | ℓ̂mξ (x) = y ∈ Ω2

i },

and the right hand side is independent on the choice of y. Obviously,

sup
x

#{x ∈ Ω1
j | ℓ̂mξ (x) = y ∈ Ω2

i } ≤ sup
x

#{x ∈ Ω1
j | ℓmξ (x) = y ∈ Ω2

i },

�

Corollary 2. We have the following upper bound for a total number of preimages of a point

x ∈ R :

sup
x∈R

{
y ∈ R | ℓmξ (y) = x

}
≤ 2m2

(2s1

s2

)m
; (3.24)

sup
x∈R

{
y ∈ R | ℓ̂mξ (y) = x

}
≤ 2m2

(2s1

s2

)m
. (3.25)

Proof. By definition of a partition of the class G, the interval [−1, 1] contains not more than

2m intervals of the partition; and intervals [−1−mδ; −1] and [1; 1+mδ] contain not more than

mNδ intervals of the partition each. Finally, both maps are bijections on the complement to

[−1 −mδ, 1 +mδ]. �

Lemma 3.2.13. Let Ω1 be the canonical partition of the map ℓmξ . Let Ω2 be another partition

of the class G. Then

#
{

(i, j) ∈ � | Ω2
i ⊂ [−1, 1] ∩ ℓmξ (Ω1

j ∩ Em)
}

≤ m2δs2m
1

Proof. We shall prove that

∑

Din
2

|Ω2
i | ≤

∑

a(m)
j ⊂Em

|ℓmξ (a(m)
j )| ≤ sm1 δ;

then the Lemma will from from the lower bound on the size of the elements of partition.

— 58 —



3.2 DYNAMO OPERATOR

Indeed, by induction one can show that

∑

a(k)
j ⊂Ek

|ℓkξ (a
(k)
j )| ≤

sk1 − 2k

s1 − 2
δ.

The case k = 1 is trivial. Then we proceed

∑

a(k)
j ⊂Ek

|ℓkξ (a
(k)
j )| ≤

∑

a(k−1)
j ⊂Ek−1

|ℓkξ (a
(k−1)
j )| +

∑

a(k)
j ⊂Ek\Ek−1

|ℓkξ (a
(k)
j )| ≤

≤ s1δ ·
sk−1

1 − 2k−1

s1 − 2
+ 2kδ =

sk1 − 2k

s1 − 2
δ.

�

Corollary 1. Let Ω1 be the canonical partition of the map ℓmξ . Let Ω2 be another partition

of the class G; and let ℓ̂mξ be a map defined as above on p. 54. Then

#{(i, j) ∈ � | Ω2
i ⊂ [−1, 1] ∩ ℓ̂mξ (Ω1

j ∩ Em)} ≤ m2δs2m
1

Proof. The inequality for the map ℓ̂mξ follows from the fact that images of all branches under

adjusted map ℓ̂mξ are shorter than the images of the same branches under the original map

ℓmξ . �

Proposition 3.2.3. In the canonical bases of ΦΩ1 and ΦΩ2 the operator T defined by (3.20)

is a generalised toy dynamo.

Proof. We have checked the condition (D1) already. We should verify the following conditions.

(D2) #Din ≤ 3m2δs2m
1 ;

(D3) for any pair (i, j) ∈ Sp we have that τij = 0 whenever |i− j| > mNδ;

(D4) #Ar ≥ 2m−2.

where

Ar: =
{
j ∈ {N1

l . . . N
1
r } | #{i ∈ {N2

l . . . N
2
r } | τij = 1} ≥ 2m −Nδ

}
;

Din : =
{

(i, j) ∈ {N2
l . . . N

2
r } × {N1

l . . . N
1
r } | τij 6= 1

}
.
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To verify the condition (D2): #Din ≤ 3s2m
1 m2δ we shall show that

∑
Din

|Ω2
i | ≤ 3sm1 mδ and

then taking into account |Ω2
i | ≥ s−m

1
m we get the result. Let Em be the m-escaping set as

defined by (3.21) above.

We introduce three subsets of the set Din.

Din
1 : = {(i, j) ∈ Din | Ω2

i ⊂ [−1, 1] \ ℓ̂mξ (Ω1
j \ Em)}

— complement to the images of the main branches;

Din
2 : = {(i, j) ∈ Din | Ω2

i ⊂ [−1, 1] ∩ ℓ̂mξ (Ω1
j ∩ Em)}

— image of the points that were mapped outside [−1, 1] and back;

Din
3 : = {(i, j) ∈ Din | Ω2

i ⊂ [−1, 1] ∩ ℓ̂mξ (Ω1
j \Em)}

— image of the points that were inside [−1, 1] in first m iterations.

We claim that Din = Din
1 ∪ Din

2 ∪ Din
3: indeed, for any pair of indices (i, j) ∈ Din we

have that Ω1
j ∩ Em 6= ∅. We shall show that

∑
Din

1 |Ω2
i | ≤ sm1 mδ,

∑
Din

2 |Ω2
i | ≤ sm1 mδ, and

#Din
3 ≤ s2m

1 m2δ.

We start with Din
1 and recall the original partition a(m) by the points of discontinuity of

the map ℓmξ . Let J(Din
1) be the union of intervals with indices corresponding to Din

1:

J(Din
1) : =

⋃

j : (i,j)∈Din
1

(Ω1
j \ Em).

We may write then

∑

Din
1

|Ω2
i | ≤ 2 · #{a(m)

j ⊂ J(Din
1)} −

∑

a(m)
j ⊂J(Din

1)

|ℓ̂mξ (a(m)
j )| ≤ 2m+1 −

∑

a(m)
j ⊂[−1,1]\Em

|ℓ̂mξ (a(m)
j )|;

and we shall show by induction in k that

2k+1 −
∑

a(k)
j ⊂[−1,1]\Ek

|ℓkξ (a
(k)
j )| < sk1 · k2−kα, where ‖ξ‖∞ ≤ 2−kα.
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The case k = 1 is trivial. Let b(k) be the canonical partition of the map ℓk0 . This parti-

tion has 2k elements in [−1, 1]. There exists a correspondence between the sets of indices

τ : {i ∈ Z | a(k)
i ⊂ (−1, 1)} → {−2k, . . . , 2k − 1} that satisfies dℓkξ |a(k)

j
= dℓk0 |b(k)

τ(j)
and

τ(j1) 6= τ(j2) for all j1 6= j2. In particular, sgn dℓ̂kξ |a(k)
j

= sgn dℓ̂k0 |b(k)
τ(j)

.

We split the intervals a(k)
j into two groups:

Bk1 : = {j ∈ {−2k, . . . , 2k − 1} | j = τ(i) for some i ∈ Z};

Bk2 : = {−2k, . . . , 2k − 1} \Bk1 .

We also see that ℓk0(b(k)
j ) = [−1, 1] for any interval of the partition b(k).

2k+1 −
∑

a(k)
j ⊂[−1,1]\Ek

|ℓkξ (a
(k)
j )| =

( ∑

j∈Bk
1

+
∑

j∈Bk
2

)
|ℓk0(b(k)

τ(j))| −
∑

a(k)
j ⊂[−1,1]\Ek

|ℓkξ (a
(k)
j )| =

=
∑

j∈Bk
1

|ℓk0(b(k)
j ) \ ℓkξ (a

k
j )| +

∑

j∈Bk
2

|ℓk0(b(k)
j )| ≤

≤ s1
∑

j∈Bk−1
1

|ℓk−1
0 (b(k−1)

j ) \ ℓk−1
ξ (ak−1

τ(j))| + 2kδ + 2
∑

j∈Bk−1
2

|ℓk−1
0 (b(k−1)

j )| ≤

≤ s1

(
2k−1 −

∑

Bk−1
1

|ℓk−1
ξ (ak−1

τ(j))|
)

+ 2kδ ≤

≤ sk1(k − 1)δ + 2kδ ≤ sk1kδ.

Therefore we deduce that

2m+1 −
∑

a(k)
j ⊂[−1,1]\Ek

|ℓkξ (a
(k)
j )| < sm1 ·m2−mα, where ‖ξ‖∞ ≤ 2−kα.

Since there are not more than 2m main branches, and the length of intervals of the partition Ω2

is bounded |Ω2
i | ≤ 2(s−m

2 + s−m
1 ), we get

2m+1 −
∑

a(k)
j ⊂[−1,1]\Ek

|ℓ̂kξ (a
(k)
j )| < sm1 ·m2−mα + 2m(s−m

2 + s−m
1 ) ≤ 2mδsm1 ;

provided s2 < 2 < s1 are chosen such that s1s2 > 21+α, which is possible.
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The inequality for the set Din
2 follows from 1 of Lemma 3.2.13.

Finally, for the set Din
3 we observe that (i, j) ∈ Din

3 if and only if there exist two

main branches a(m)
j1 , a(m)

j2 ⊂ Ω1
j such that for any k < m we have ℓ̂kξ (a

(m)
j1 ) ⊂ [−1, 1] and

ℓ̂kξ (a
(m)
j2 ) ⊂ [−1, 1], and ℓ̂mξ (a(m)

j1 ) ∩ ℓ̂mξ (a(m)
j2 ) ∩ Ω2

i 6= ∅. Since both a(m)
j1 and a(m)

j2 are

belong to the same element of the partition we conclude that either |ℓmξ (a(m)
j1 )| ≤ 2

s2
or

|ℓmξ (a(m)
j2 )| ≤ 2

s2
. By Lemma 3.2.5 there are at most 2m(1−α1) main branches with this prop-

erty. Without loss of generality we assume the latter. Then by definition of ℓ̂mξ we have

|ℓ̂mξ (a(m)
j2 )| ≤ 2

s2
+ 2(s−m

2 + s−m
1 ). Hence #Din

3 ≤ 2m(1−α1) 2Nδ
δ . It follows that

#Din = #Din
1 + #Din

2 + #Din
3 ≤ 2s2m

1 mδ + 2m(1−α) 2Nδ
δ

≤ 3s2m
1 mδ,

as required.

The condition (D3) follows from the fact that the map ℓ̂mξ is linear and on the compliment

R \ [−1 −mδ, 1 +mδ] (in other words, the complement consists of two pieces of continuity),

and, moreover, it is given by ℓ̂mξ (x) = x + b on these set. Therefore, τij = 0 whenever

|i− j| > b ·Nδδ−1. Obviously, |b| ≤ mδ, so we get τij = 0 whenever |i− j| > mNδ.

�

Now it only remains to show that the generalised toy dynamo, constructed from the map ℓ̂mξ ,

is a good approximation to the operator ℓmξ∗.

Theorem 4. Let Ω2 be a partition of the class G. Consider a sequence ξ ∈ ℓ∞(R) with

‖ξ‖∞ ≤ 2−mα and let Ω1 be the canonical partition of the map ℓmξ . Then for the opera-

tor T = ℓ̂mξ∗ : Φ → Φ defined by (3.20) and for any essentially bounded integrable function

g ∈ L1(R) we have

‖(ℓmξ∗ − T )Wδg‖2 ≤
( s3

1
21/2+αs2

)m
·m‖g‖1.
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Proof. Let ‖g‖Ω1 = 1 and let f = Wδg. Then ‖f‖∞ ≤ ‖g‖∞ ≤ 2m/2, since

‖g‖1 = max
(

2−m
∑

j∈Z

1
|Ω1
j |

∫

Ω1
j

|g(x)|dx, 2−m/2 sup
x∈R

|g(x)|
)

≤ 1.

By definition, we write

T f(x) =
∑

y∈ℓ̂−m
ξ (x)

sgn
(
ℓ̂mξ

)′(y)f(y); (3.26)

ℓmξ∗f(x) =
∑

y∈ℓ−m
ξ (x)

sgn
(
ℓmξ

)′(y)f(y). (3.27)

We begin with weighted L1-norm.

‖ℓmξ∗f − ℓ̂mξ∗f‖2 =
∑

j∈Z

2−m

|Ω2
j |

∫

Ω2
j

∣∣T f(x) − ℓmξ∗f(x)
∣∣dx ≤

≤
(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)∣∣T f(x) − ℓmξ∗f(x)
∣∣dx+ (3.28)

+
(s1

2

)m(∫ −1

−1−mδ
+

∫ 1+mδ

1

)∣∣T f(x) − ℓmξ∗f(x)
∣∣dx+ (3.29)

+ 2−m
N2

r∑

j=N2
l

1
|Ω2
j |

∫

Ω2
j

∣∣T f(x) − ℓmξ∗f(x)
∣∣dx. (3.30)

We estimate all three terms separately. By the very definition, on the infinite intervals

(1 + mδ,+∞) and (−∞,−1 − mδ) the map ℓmξ is given by ℓmξ (x) = (−1)m
(
x +

m∑

j=1
ξ(j)

)
.

Therefore, the map ℓ̂mξ is one to one on each of the intervals (−∞,−1−mδ) and (1+ δ,+∞);

moreover,

ℓ−mξ ((−∞,−1 −mδ) ∪ (1 +mδ,+∞)) ⊂ (−∞,−1) ∪ (1,+∞).

Observe that for the last point aN ∈ R of the last point of discontinuity of the map ℓmξ we

have, using Lemma 3.3.3:

∫ +∞

aN

|f(x)|dx =
∫ +∞

aN

|(Wδg)(x)|dx =
+∞∑

j=N2

2−m

|Ω2
j |

∫

Ω2
j

|Wδg(x)|dx ≤ ‖Wδg‖1 ≤
mNδ
sm2 δ

.
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The first difference we estimate by the sum of absolute values.

∫ +∞

1+mδ

∣∣∣
∑

y∈ℓ̂−m
ξ (x)

sgn
(
ℓ̂mξ

)′(y)f(y) −
∑

y∈ℓ−m
ξ (x)

sgn
(
ℓmξ

)′(y)f(y)
∣∣∣dx =

=
∫ +∞

1+mδ

∣∣∣f(ℓ̂−mξ (x)) − f(ℓ−mξ (x))
∣∣∣dx ≤ 2

(∫ −1

−∞
+

∫ +∞

1

)
|f(x)|dx =

= 2
(∫ a1

−∞
+

∫ −1

a1

+
∫ aN

1
+

∫ +∞

aN

)
|f(x)|dx,

where a1 and aN are the first and the last points of discontinuity of the map ℓmξ . Summing

up,

∫ +∞

1+mδ
|ℓmξ∗f(x)−T f(x)|dx ≤ 4mδ sup |f |+4‖f‖1 ≤ 4

(
mδ2m/2+

mNδ
sm2 δ

)
‖g‖1 ≤ 8

mNδ
sm2 δ

. (3.31)

Similarly,
∫ −1−mδ

−∞
|ℓmξ∗f(x) − T f(x)|dx ≤ 8

mNδ
sm2 δ

. (3.32)

Summing up (3.31) and (3.32), and taking into account that ‖f‖1 = 1, we get an upper

bound for the first term (3.28):

(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)
|ℓmξ∗f(x) − T f(x)|dx ≤ 16

mNδ
sm2 δ

. (3.33)

Now we use a rough upper bound to estimate the second term. Since by Corollary 2 of

Lemma 3.2.12 any point has at most 2m2(2s1
s2

)m preimages with respect to ℓ̂mξ or ℓmξ ; and

taking into account ‖f‖∞ ≤ 2m/2.

∫ 1+mδ

1
|(ℓmξ∗ − T )f(x)|dx ≤

∫ 1+mδ

1
|ℓmξ∗f(x)| + |T f(x)|dx ≤

≤ sup
x

(
|ℓmξ∗f(x)| + |T f(x)|

)
mδ ≤

(s1

s2

)m
m32m+1δ‖f‖∞ ≤

≤ m2m(3/2−α)
(s1

s2

)m
.

Therefore we get an upper bound for the second term (3.29):

(s1

2

)m(∫ 1+mδ

1
+

∫ −1

−1−mδ

)∣∣(ℓmξ∗ − T )f(x)
∣∣dx ≤ m2m(1/2−α)

(s2
1
s2

)m
. (3.34)
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The third term (3.30) is a little more complicated. We split the sum into two terms: long

branches and all other intervals. Let a(m) be a partition of R by the points of disconti-

nuity (cf. (3.19)) and let a(m)
n = (a(m)

n , a(m)
n+1) be its intervals. Let anl = (−1, a(m)

nl+1) and

anr = (a(m)
nr−1, 1) be the most left and the most right intervals of the partition inside the in-

terval [−1, 1]. Let Em be the m-escaping set as defined by (3.21) above. By definition of ℓξ∗

and T ,

2−m
N2

r∑

i=N2
l

1
|Ω2
i |

∫

Ω2
i

|ℓmξ∗f(x) − T f(x)|dx =

=
N2

r∑

i=N2
l

2−m

|Ω2
i |

∫

Ω2
i

∣∣∣
∑

y∈ℓ−m
ξ (x)

sgn
(
ℓmξ

)′(y)f(y) −
∑

ŷ∈ℓ̂−m
ξ (x)

sgn
(
ℓ̂mξ

)′(ŷ)f(ŷ)
∣∣∣dx.

Let us introduce two functions

h(j, x) : Z × R → R; h(j, x) =
∑

y∈ℓ−m
ξ (x)

sgn
(
ℓmξ

)′(y)χa(m)
j

(y)f(y);

and

ĥ(j, x) : Z × R → R; ĥ(j, x) =
∑

ŷ∈ℓ̂−m
ξ (x)

sgn
(
ℓ̂mξ

)′(ŷ)χa(m)
j

(ŷ)f(ŷ).

Then we see that

∑

j∈Z

h(j, x) =
∑

y∈ℓ−m
ξ (x)

sgn
(
ℓmξ

)′(y)f(y);

and

∑

j∈Z

ĥ(j, x) =
∑

ŷ∈ℓ̂−m
ξ (x)

sgn
(
ℓ̂mξ

)′(ŷ)f(ŷ);

both sums are well-defined, because they have finite number of non-zero terms, since by

Corollary 2 of Lemma 3.2.12 the total number of preimages of a point is not more than
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m32m+1sm1 s
−m
2 . Therefore we may write

2−m
N2

r∑

i=N2
l

1
|Ω2
i |

∫

Ω2
i

|ℓmξ∗f(x) − T f(x)|dx =
N2

r∑

i=N2
l

2−m

|Ω2
i |

∫

Ω2
i

∣∣∣
∑

j∈Z

(
h(j, x) − ĥ(j, x)

)∣∣∣dx =

=
( ∑

j<n(m)
l

+
n(m)

r∑

j=n(m)
l

+
∑

j>n(m)
r

) N2
r∑

i=N2
l

2−m

|Ω2
i |

∫

Ω2
i

∣∣∣h(j, x) − ĥ(j, x)
∣∣∣dx =

=
( ∑

j<n(m)
l

+
∑

a(m)
j ⊂Em

+
∑

a(m)
j 6⊂Em

+
∑

j>n(m)
r

) N2
r∑

i=N2
l

2−m

|Ω2
i |

∫

Ω2
i

∣∣∣h(j, x) − ĥ(j, x)
∣∣∣dx. (3.35)

First we estimate the finite sums:

( ∑

j<n(m)
l

+
∑

j>n(m)
r

) N2
r∑

i=N2
l

2−m

|Ω2
i |

∫

Ω2
i

∣∣∣h(j, x) − ĥ(j, x)
∣∣∣dx ≤

≤
( N1

l∑

k=N1
l −mNδ

+
N1

r +mNδ∑

k=N1
r

) ∑

a(m)
j ⊂Ω1

k

N2
r∑

i=N2
l

2−m

|Ω2
i |

∫

Ω2
i

∣∣h(j, x)
∣∣ +

∣∣ĥ(j, x)
∣∣dx ≤

≤ 2mNδ · sup |τij | · sup |f | ≤ 2mNδ
(s1

s2

)m
‖g‖∞ ≤ 2m

( s3
1

21/2+αs2

)m
; (3.36)

for all s1 ≥ 2.

Observe that for any domain of a main branch a(m)
j 6⊂ Em and y, ŷ ∈ a(m)

j , such that

ℓmξ (y) = ℓ̂mξ (ŷ) we have that sgn(ℓmξ )′(y) = sgn(ℓ̂mξ )′(ŷ) = 1 and (ℓmξ )′(y) > sm2 . As before, let

a(m)
j = (a(m)

j , a(m)
j+1). Then

|ŷ − y| ≤
1

inf |(ℓmξ )′|
max

(
ℓ̂mξ (a(m)

j ) − ℓmξ (a(m)
j ), ℓmξ (a(m)

j+1) − ℓ̂mξ (a(m)
j+1)

)
≤

1
s2m

2
.

Hence for any f ∈ Wδ(L1(R)) we see that

|f(ŷ) − f(y)| ≤
1
s2m

2
sup(Wδg)′ ≤

‖g‖∞

s2m
2 δ

≤
2m/2

δs2m
2
.

Summing up, since the total number of main branches is not more than 2m, we get for the

first term of (3.35):

∑

a(m)
j 6⊂Em

N2
r∑

i=N2
l

2−m

|Ω2
i |

∫

Ω2
i

∣∣h(j, x) − ĥ(j, x)
∣∣dx ≤

2−m

inf |Ω2
i |

∫ 1

−1

23m/2

δs2m
2

dx ≤ 2
(s121/2+α

s2
2

)m
. (3.37)
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To estimate the last term, we introduce two sets of indices

D def=
{

(s, t) ∈ � | Ω2
s ⊂ [−1, 1] ∩ ℓmξ (Ω1

t ∩Em)
}

;

D̂ def=
{

(s, t) ∈ � | Ω2
s ⊂ [−1, 1] ∩ ℓ̂mξ (Ω1

t ∩Em)
}
.

By Lemma 3.2.13 and its Corollary 1, we see #D ≤ m2δs2m
1 and #D̂ ≤ m2δs2m

1 . Observe

that

⋃

i,j

{
(a(m)
j × Ω2

i ) | a(m)
j ⊂ Em, Ω2

i ⊂ ℓ̂mξ (a(m)
j ∩ [−1, 1])

}
⊂

{
(Ω1

t × Ω2
s) | (s, t) ∈ �, Ω2

s ⊂ [−1, 1] ∩ ℓ̂mξ (Ω1
t ∩ Em)

}
.

along with

⋃

i,j

{
(a(m)
j × Ω2

i ) | a(m)
j ⊂ Em, Ω2

i ⊂ ℓmξ (a(m)
j ∩ [−1, 1])

}
⊂

{
(Ω1

t × Ω2
s) | (s, t) ∈ �, Ω2

s ⊂ [−1, 1] ∩ ℓmξ (Ω1
t ∩ Em)

}
.

. Hence we calculate an upper bound for the second term of (3.35):

2−m
∑

a(m)
j ⊂Em

N2
r∑

i=N2
l

1
|Ω2
i |

∫

Ω2
i

∣∣h(j, x) − ĥ(j, x)
∣∣dx ≤

≤ 2−m sup |f |
∑

a(m)
j ⊂Em

N2
r∑

i=N2
l

1
|Ω2
i |

∫

Ω2
i

( ∑

y∈ℓ−m
ξ (x)

χa(m)
j

(y) +
∑

ŷ∈ℓ̂−m
ξ (x)

χa(m)
j

(ŷ)
)

dx ≤

≤ 2−m sup |g|
∑

(i,j)∈D∪D̂

1
|Ω2
i |

∫

Ω2
i

|τij|dx ≤ 2−m sup |g| · sup |τij| · #(D ∪ D̂) ≤

≤
1

2m
· ‖g‖∞ ·

(s1

s2

)m
·m2δs2m

1 ≤ m2 ·
( s3

1
21/2+αs2

)m
. (3.38)

Now we collect the four estimates (3.33), (3.34), (3.36), (3.37), and (3.38) together and get
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for any function g with ‖g‖1 = 1:

‖ℓmξ∗Wδg − ℓ̂mξ∗Wδg‖L1,Ω2 ≤

≤ 16
mNδ
sm2 δ

+m
(2(1/2−α)s2

1
s2

)m
+ 2

(s121/2+α

s2
2

)m
+ 2m2

( s3
1

21/2+αs2

)m
≤

≤ 3m2
( s3

1
21/2+αs2

)m
. (3.39)

for m large enough and s2 < 2 < s1 chosen such that s1s2
2 ≥ 21/2+2α.

Now we turn our attention to the supremum norm. We may write

sup
x

∣∣ℓmξ∗f(x) − ℓ̂mξ∗f(x)
∣∣ = sup

x

∣∣∣
∑

y∈ℓ̂−m
ξ (x)

sgn
(
ℓ̂mξ

)′(y)f(y) −
∑

y∈ℓ−m
ξ (x)

sgn
(
ℓmξ

)′(y)f(y)
∣∣∣ ≤

≤ sup
x

∣∣∣
∑

i∈Z

( ∑

y∈ℓ̂−m
ξ (x)∩Ω1

i

sgn
(
ℓ̂mξ

)′(y)f(y) −
∑

y∈ℓ−m
ξ (x)∩Ω1

i

sgn
(
ℓmξ

)′(y)f(y)
)∣∣∣ ≤

≤ sup
x

∣∣∣
(N1

l −mNδ∑

−∞
+

+∞∑

N1
l −mNδ

)( ∑

y∈ℓ̂−m
ξ (x)∩Ω1

i

sgn
(
ℓ̂mξ

)′(y)f(y) −
∑

y∈ℓ−m
ξ (x)∩Ω1

i

sgn
(
ℓmξ

)′(y)f(y)
)∣∣∣+

+ sup
x

∣∣∣
N1

r +mNδ∑

N1
l −mNδ

( ∑

y∈ℓ̂−m
ξ (x)∩Ω1

i

sgn
(
ℓ̂mξ

)′(y)f(y) −
∑

y∈ℓ−m
ξ (x)∩Ω1

i

sgn
(
ℓmξ

)′(y)f(y)
)∣∣∣. (3.40)

Observe that

sup
x

∣∣∣
N1

r +mNδ∑

N1
l −mNδ

( ∑

y∈ℓ̂−m
ξ (x)∩Ω1

i

sgn
(
ℓ̂mξ

)′(y)f(y) −
∑

y∈ℓ−m
ξ (x)∩Ω1

i

sgn
(
ℓmξ

)′(y)f(y)
)∣∣∣ ≤

≤ 2 sup
x

N1
r +mNδ∑

N1
l −mNδ

#{y ∈ ℓ−mξ (x) ∩ Ω1
i } sup

Ωi

|f(y)| ≤ 2 sup
x

N1
r +mNδ∑

N1
l −mNδ

|τij | sup
Ωi

|f(y)| ≤

≤ sup |τij |
N1

r +mNδ∑

N1
l −mNδ

sup
Ω1

i

|f(y)|. (3.41)

Our goal is to estimate the last sum from above via weighted L1-norm. Recall that f = Wδg.
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By definition of the weighted L1 norm, we see

‖Wδg‖1 ≥
N1

r +mNδ∑

N1
l −mNδ

2−m

|Ω1
i |

∫

Ω1
i

|Wδg| =

= 2−m
N1

r +mNδ∑

N1
l −mNδ

( 1
|Ω1
i |

∫

Ω1
i

|Wδg| − sup
Ω1

i

|Wδg|
)

+
N1

r +mNδ∑

N1
l −mNδ

2−m sup
Ω1

i

|Wδg|;

in particular,

2−m
N1

r +mNδ∑

N1
l −mNδ

sup
Ω1

i

|Wδg| ≤ ‖Wδg‖1 + 2−m
N1

r +mNδ∑

N1
l −mNδ

(
sup
Ω1

i

|Wδg| −
1

|Ω1
i |

∫

Ω1
i

|Wδg|
)
. (3.42)

We know that for any bounded, continuous, absolutely integrable, and piecewise differen-

tiable function f : R → R and any finite interval I

∣∣∣sup
I
f −

1
|I|

∫

I
f

∣∣∣ ≤
∫

I
|f ′|.

Therefore

N1
r +mNδ∑

N1
l −mNδ

∣∣∣sup
Ω1

i

|Wδg| −
1

|Ω1
i |

∫

Ω1
i

|Wδg|
∣∣∣ ≤

N1
r +mNδ∑

N1
l −mNδ

∫

Ω1
i

∣∣∣
d

dx
∣∣Wδg(x)

∣∣
∣∣∣dx <

<
∫ 2

−2

∣∣∣
d

dx
∣∣Wδg(x)

∣∣
∣∣∣ ≤

∫

R

∣∣∣
d

dx

∫

R
wδ(x− t)|g(t)|dt

∣∣∣dx ≤
∫

R

∫

R

∣∣∣
dwδ(x− t)

dx

∣∣∣ · |g(t)|dtdx =

=
∫

R
|g(t)|

∫

R

∣∣∣
dwδ(x− t)

dx

∣∣∣dxdt ≤
1

√
2πδ

∑

j∈Z

∫

Ω1
j

|g(t)|dt ≤
2m

δ
sup |Ω1

j | · ‖g‖L1,Ω1 . (3.43)

Hence, substituting (3.43) to (3.42), and using Lemma 3.3.3

N1
r +mNδ∑

N1
l −mNδ

sup
Ω1

i

|Wδg| ≤ 2m‖Wδg‖1 +
2m sup |Ω1

i |
δ

‖g‖1 ≤
(2mNδ
sm2 δ

+
2m

sm2 δ

)
‖g‖1 ≤

≤
2m+1Nδ
sm2 δ

‖g‖1. (3.44)

Finally, taking into account ‖g‖Ω1 = 1, we substitute (3.44) to (3.41) and get for the second

term of (3.40)

2−m/2 sup
x

∣∣∣
N1

r +mNδ∑

N1
l −mNδ

( ∑

y∈ℓ̂−m
ξ (x)∩Ω1

i

sgn
(
ℓ̂mξ

)′(y)f(y) −
∑

y∈ℓ−m
ξ (x)∩Ω1

i

sgn
(
ℓmξ

)′(y)f(y)
)∣∣∣ ≤

≤ sup |τij |
2m/2+1Nδ
sm2 δ

≤
2m2Nδ
δ

(21/2s1

s2
2

)m
. (3.45)
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Let us define A(x) def= (x− s−m
2 , x+ s−m

2 ). We have the following upper bound for the first

sum in (3.40):

sup
x

∣∣∣
(N1

l −mNδ∑

−∞
+

+∞∑

N1
l −mNδ

)( ∑

y∈ℓ̂−m
ξ (x)∩Ω1

i

sgn
(
ℓ̂mξ

)′(y)f(y) −
∑

y∈ℓ−m
ξ (x)∩Ω1

i

sgn
(
ℓmξ

)′(y)f(y)
)∣∣∣ ≤

≤ sup
x∈R

sup
y1,y2∈A(x)

|f(y1) − f(y2)| ≤ sup
|y1−y2|≤2s−m

2

|f(y1) − f(y2)| ≤
sup |f |
2δsm2

≤
2m/2

2δsm2
. (3.46)

Summing up (3.45) and (3.46), we get in (3.40)

2−m/2 sup
x

∣∣ℓmξ∗f(x) − ℓ̂mξ∗f(x)
∣∣ ≤

2m2Nδ
δ

(21/2s1

s2
2

)m
+

1
2δsm2

≤ 3m
( s3

1
21/2+αs2

)m
, (3.47)

(by straightforward calculation).

�

3.3 Invariant cone in Φ.

In this section we construct an invariant cone in the space of essentially bounded and abso-

lutely integrable functions Φ for the operator W δ
2m
ℓmξ∗W δ

2m
, which is independent of the choice

of ‖ξ‖ ≤ δ. We exploit the properties of the Weierstrass transform that we prove below.

3.3.1 Discretization and the Weierstrass transform toolbox

Here we prove a few estimates showing that the image of the Weierstrass transform with

Gaussian kernel of a large variance compared to the size of elements of a partition may be

very well approximated by a step function on the partition.

Definition 13. Given a partition Ω of the class G we define a linear discretization opera-

— 70 —



3.3 INVARIANT CONE IN Φ.

tor DΩ:

DΩ : L1(R) ∩ L∞(R) → ΦΩ ∩ L1(R) ∩ L∞(R);

DΩ : f 7→
∑

j∈Z

djχΩj , dj =
1
2

(
max

Ωj
f(x) + min

Ωj
f(x)

)
. (3.48)

Definition 14. The Weierstrass transform Wδ is a convolution with the Gaussian kernel

with variance δ2

Wδ : f 7→ wδ ∗ f, where wδ(x) =
1

√
2πδ

e− x2

2δ2 . (3.49)

Lemma 3.3.1. Let f : R → R be a differentiable function. Then

‖f −DΩf‖Ω,L1 ≤ 2−m−1
∫

R

∣∣∣
df(x)

dx

∣∣∣dx. (3.50)

Proof. Indeed, by straightforward calculation,

‖f −DΩf‖Ω,L1 =
∑

k∈Z

2−m

|Ωk|

∫

Ωk

|f(x) −DΩf(x)|dx ≤

≤
∑

k∈Z

2−m

|Ωk|

∫

Ωk

| max
Ωk

f(x) − min
Ωk

f(x)|dx =

≤ 2−m
∑

k∈Z

| max
Ωk

f(x) − min
Ωk

f(x)| ≤ 2−m
∑

k∈Z

∫

Ωk

∣∣∣
df(x)

dx

∣∣∣dx =

= 2−m
∫

R

∣∣∣
df(x)

dx

∣∣∣dx.

�

Lemma 3.3.2. Let Ω1 and Ω2 be two partitions of the class G(m, δ, s1, s2). Let DΩ1 be a

discretization operator and let Wδ be the Weierstrass transform defined above. Then for any

bounded integrable function f

‖DΩ1Wδf −Wδf‖1 ≤
max(sup |Ω1

j |, sup |Ω2
j |)

δ
‖f‖2 ≤

1
sm2 δ

‖f‖2.

Remark 5. The dispersion δ in the Gaussian kernel is the same δ as in the definition of a

partition of the class G.
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Proof. We begin with estimation of the L∞-norm. Let DΩ1Wδf =
∑

j∈Z djχΩ1
j
. Then

‖DΩ1Wδf −Wδf‖∞ = sup
x∈R

∣∣∣
∫

R
wδ(x− t)f(t)dt−

∑

j∈Z

djχΩ1
j
(x)

∣∣∣ =

=
1
2

sup
k∈Z

∣∣∣max
Ω1

k

∫

R
wδ(x− t)f(t)dt− min

Ω1
k

∫

R
wδ(x− t)f(t)dt

∣∣∣ ≤

≤
1
2

sup
k∈Z

(
|Ω1
k| · max

Ω1
k

∣∣∣
d

dx

∫

R
wδ(x− t)f(t)dt

∣∣∣
)

≤

≤ sup |Ω1
k| sup
x∈R

∣∣∣
∫

R

d
dx
wδ(x− t)f(t)dt

∣∣∣ ≤

≤ sup |Ω1
k| sup |f(x)| sup

x∈R

1
√

2πδ

(
e− (x−t)2

2δ2

∣∣∣
x

t=−∞
−e− (x−t)2

2δ2

∣∣∣
t=+∞

x

)
≤

≤ sup
|Ω1
k|
δ

‖f‖∞.

Now we proceed to the weighted L1-norm. Using Lemma 3.3.1 we get

‖DΩ1Wδf −Wδf‖1 ≤ 2−m−1
∫

R

∣∣∣
d

dx
Wδf(x)

∣∣∣dx =

= 2−m−1
∫

R

∣∣∣
d

dx

∫

R
wδ(x− t)f(t)dt

∣∣∣dx ≤ 2−m
∫

R

∫

R

∣∣∣
dwδ(x− t)

dx

∣∣∣ · |f(t)|dtdx =

= 2−m−1
∫

R
|f(t)|

∫

R

∣∣∣
dwδ(x− t)

dx

∣∣∣dxdt =
2−m

√
2πδ

∑

j∈Z

∫

Ωj

|f(t)|dt ≤
sup |Ω2

j |
δ

‖f‖Ω2 .

�

Lemma 3.3.3. Let Ω1 and Ω2 be two partitions of the class G(δ, s1, s2). Then an upper

bound of the norm of the Weierstrass transform is given by

‖Wδf‖2 ≤ 2m · sup |Ω1
j | ·

Nδ
δ

‖f‖1 ≤
mNδ
sm2 δ

‖f‖1. (3.51)

Proof. We estimate the norm of the operator Wδ on step functions first. Let φ ∈ ΦΩ1 be a

step function on Ω1. Assume that φ =
∑

j∈Z
cjχΩ1

j
and ‖φ‖Ω1 = 1, that is

max
(

2−m
∑

j∈Z

|cj |, 2−m/2 sup |cj |
)

= 1;

which implies
∑

j∈Z

|cj | ≤ 2m, sup |cj | ≤ 2m/2.
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Then

Wδφ(x) =
∑

j∈Z

∫

Ω2
j

cjwδ(x− t)dt.

So we calculate

‖Wδφ‖Ω2,L1 =
∑

k∈Z

2−m

|Ω2
k|

∫

Ω2
k

∣∣∣
∑

j∈Z

cj
∫

Ω1
j

wδ(x− t)dt
∣∣∣dx ≤

≤
∑

k∈Z

∑

j∈Z

|cj |
2m|Ω2

k|

∫

Ω2
k

∫

Ω1
j

wδ(x− t)dtdx =

=
∑

j∈Z

|cj |
2m

∫

Ω1
j

∑

k∈Z

1
|Ω2
k|

∫

Ω2
k

wδ(x− t)dxdt =

=
∑

j∈Z

|cj |
2m

∫

Ω1
j

( ∑

|Ω2
k−Ω1

j |>mδ

+
∑

|Ω2
k−Ω1

j |<mδ

) 1
|Ω2
k|

∫

Ω2
k

wδ(x− t)dxdt.

We know that

1
|Ω2
k|

∫

Ω2
k

wδ(x− t)dx <
1
δ
.

We also observe that for any t ∈ Ω1
j

∑

|Ω2
k−Ω1

j |>mδ

1
|Ω2
k|

∫

Ω2
k

wδ(x− t)dx ≤
1

inf |Ω2
k|

(∫ −t−mδ

−∞
wδ(x− t) +

∫ +∞

t+mδ
wδ(x− t)dx

)
dx ≤

e−m

inf |Ω2
k|
.

Therefore, taking into account that 2−m ∑
j∈Z |cj | ≤ 1,

‖Wδφ‖Ω2,L1 ≤
∑

k∈Z

∑

j∈Z

|cj |
2m

( e−m

inf |Ω2
k|

+
mNδ
δ

)
|Ω1
j | ≤ sup |Ω1

j |
( e−m

inf |Ω2
k|

+
mNδ
δ

)
.

Now we consider arbitrary function f ∈ L1(R) ∩ L∞(R) with ‖f‖1 = 1. Then

‖Wδf‖Ω2,L1 =
∑

k∈Z

2−m

|Ω2
k|

∫

Ω2
k

∣∣∣
∑

j∈Z

∫

Ω1
j

wδ(x− t)f(t)dt
∣∣∣dx ≤

≤ 2−m
∑

j∈Z

∫

Ω1
j

|f(t)|
∑

k∈Z

1
|Ω2
k|

∫

Ω2
k

wδ(x− t)dxdt =

= 2−m
∑

j∈Z

∫

Ω1
j

|f(t)|
( ∑

|Ω2
k−Ω1

j |>mδ

+
∑

|Ω2
k−Ω1

j |<mδ

) 1
|Ω2
k|

∫

Ω2
k

wδ(x− t)dxdt ≤

≤ 2−m
∑

j∈Z

∫

Ω1
j

|f(t)|
( e−m

inf |Ω2
k|

+
3mNδ
δ

)
dt ≤

≤ sup |Ω1
j |

( e−m

inf |Ω2
k|

+
3mNδ
δ

)
.
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In the last inequality we take into account that

‖f‖Ω1,L1 = 2−m
∑

j∈Z

1
|Ω1
j |

∫

Ω1
j

|f(t)|dt ≤ 1.

Now we recall that inf |Ω1
j | ≥ s−m

1 /m and therefore, for s1 < e

e−m

inf |Ω2
k|

=
(s1

e

)m
≪ 1,

while

Nδ
δ

= 2m(1−α logs1
2+α) > 2m.

Therefore we conclude

‖Wδf‖Ω2,L1 ≤ 2 sup |Ω1
j | ·

3mNδ
δ

.

The upper bound of the supremum norm is easy.

‖Wδf‖∞ = sup
x∈R

∣∣∣
∫

R
wδ(x− t)f(t)dt

∣∣∣ ≤ sup
x∈R

|f(x)|.

�

Lemma 3.3.4. Let Ω be a partition of the class G(s1, s2, δ,m) where the parameters s1 and

δ = 2−mα satisfy the inequality log2 s1 < 2α then

‖Wδχ[−1,1] − χ[−1,1]‖Ω ≤ 2−m/2. (3.52)

Proof. Obviously, sup |Wδχ[−1,1](x) − χ[−1,1](x)| ≤ 1. Now we have to find an upper bound

for ‖Wδχ[−1,1] − χ[−1,1]‖Ω,L1 .

‖Wδχ[−1,1] − χ[−1,1]‖Ω,L1 =
∑

j∈Z

2−m

|Ωj|

∫

Ωj

∣∣∣
∫

R
wδ(x− t)χ[−1,1](t)dt− χ[−1,1](x)

∣∣∣dx =

We split the sum into two parts: over the intervals inside [−1, 1] and the rest

=
Nr∑

j=Nl

2−m

|Ωj|

∫

Ωj

(
1 −

∫ 1

−1
wδ(x− t)dt

)
dx+

( ∑

j>Nr

+
∑

j<Nl

)2−m

|Ωj|

∫

Ωj

∫ 1

−1
wδ(x− t)dtdx. (3.53)
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We begin with the first term of (3.53), that is the sum of the intervals of partition inside the

interval [−1, 1].

Nr∑

j=Nl

2−m

|Ωj|

∫

Ωj

(
1 −

∫ 1

−1
wδ(x− t)dt

)
dx =

=
(Nl+mNδ∑

j=Nl

+
Nr−mNδ∑

j=Nl+mNδ

+
Nr∑

j=Nr−mNδ

)2−m

|Ωj |

∫

Ωj

(
1 −

∫ 1

−1
wδ(x− t)dt

)
dx. (3.54)

We estimate each term separately. The first term of (3.54) has only mNδ elements:

Nl+mNδ∑

j=Nl

2−m

|Ωj|

∫

Ωj

(
1 −

∫ 1

−1
wδ(x− t)dt

)
dx ≤

Nl+mNδ∑

j=Nl

2−m

|Ωj |

∫

Ωj

(
1 −

∫ 1

−1
wδ(t+ 1)dt

)
dx ≤

≤ m2−mNδ
(

1 −
∫ 2

0
wδ(t)dt

)
.

We have the following upper bound for the second term of (3.54), since for |t| < 1 −mδ the

integral
∫ 1

−1wδ(x− t)dx is close to 1:

Nr−mNδ∑

j=Nl+mNδ

2−m

|Ωj |

∫

Ωj

(
1 −

∫ 1

−1
wδ(x− t)dt

)
dx ≤

≤
Nr−mNδ∑

j=Nl+mNδ

2−m

|Ωj|

∫

Ωj

(
1 −

∫ 1

−1
wδ(1 −mδ − t)dt

)
dx ≤

≤ 2−m(Nr −Nl − 2mNδ)
(

1 −
∫ 2−mδ

−mδ
wδ(t)dt

)
.

The third term of (3.54) has only mNδ elements, so we write

Nr∑

j=Nr−mNδ

2−m

|Ωj|

∫

Ωj

(
1 −

∫ 1

−1
wδ(x− t)dt

)
dx ≤

≤
Nr∑

j=Nr−mNδ

2−m

|Ωj|

∫

Ωj

(
1 −

∫ 1

−1
wδ(1 − t)dt

)
dx ≤ mNδ2−m

(
1 −

∫ 2

0
wδ(t)dt

)
.

Putting all three inequalities together, we get the following upper bound for the first term
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of (3.53):

Nr∑

j=Nl

2−m

|Ωj|

∫

Ωj

(
1 −

∫ 1

−1
wδ(x− t)dt

)
dx ≤

≤
2Nδ
2m

·
(1

2
+ δ

)
+

(
1 −

Nδ
2m−1

)(
1 −

∫ 2−mδ

−mδ
wδ(t)dt

)
≤

≤
2Nδ
2m

·
(1

2
+ δ

)
+

(
1 −

Nδ
2m

)(∫ −mδ

−∞
wδ(t)dt+

∫ +∞

2−mδ
wδ(t)dt

)
≤

≤
2Nδ
2m

·
(1

2
+ δ

)
+

(
1 −

Nδ
2m

)(e−m + e−1/δ
√
π

)
≤

2Nδ
2m

.

Recall that Nδ ≤ 2m(1−α logs1
2) by definition of the partition of the class G. Therefore we

complete the estimation of the first term of (3.53) :

Nr∑

j=Nl

2−m

|Ωj|

∫

Ωj

(
1 −

∫ 1

−1
wδ(x− t)dt

)
dx ≤ 2−mα logs1

2 ≤ 2−m/2. (3.55)

Now we proceed to the upper bound for the second term of (3.53).

( ∑

j>Nr

+
∑

j<Nl

)2−m

|Ωj|

∫

Ωj

∫ 1

−1
wδ(x− t)dtdx ≤

≤
2−m

inf |Ωj|

(∫ −1

−1−mδ
+

∫ 1+mδ

1

) ∫ 1

−1
wδ(x− t)dtdx+

(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

) ∫ 1

−1
wδ(x− t)dtdx ≤

≤
mδ

2m inf |Ωj|

∫ 2

0
wδ(t)dt+

∫ 1

−1

∫ +∞

1+mδ
wδ(x+ t)dxdt+

∫ 1

−1

∫ +∞

1+mδ
wδ(x− t)dxdt ≤

≤
2mδ

2m inf |Ωj|

(1
2

− δ
)

+
∫ 1

−1

∫ +∞

1+mδ
wδ(t− 1)dtdx+

∫ 1

−1

∫ +∞

1+mδ
wδ(t− 1)dtdx ≤

≤
2mδ

2m inf |Ωj |
+ 2e−m.

We observe that

2mδ
2m inf |Ωj |

+ 2e−m =
2msm1

2m(1+α) + e−m ≤ 2−m/2−1,

under condition that s1 < 21/2+α. Therefore, we get the following upper bound for the second

term of (3.53)
( ∑

j>Nr

+
∑

j<Nl

)2−m

|Ωj|

∫

Ωj

∫ 1

−1
wδ(x− t)dtdx ≤ 2−m/2−1. (3.56)

Summing up (3.55) with (3.56), we get (3.52). �
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Proposition 3.3.4. Let Ω1 and Ω2 be two partitions of the class G(δ). Let ε1 = 2m(γ−1/2).

Let φ ∈ Cone
(
ε1,Ω1)

be a step function. (See p. 37 for a general definition of cones). Then

‖DΩ2Wδφ‖2 >
1
4

‖φ‖1. (3.57)

Proof. By Lemma 3.3.3 above, for any φ ∈ Cone
(
ε1,Ω1)

,

‖Wδφ‖2 ≤
mNδ
sm2 δ

‖φ‖1.

By Lemma 3.3.2,

‖DΩ2Wδχ[−1,1] −Wδχ[−1,1]‖∞ ≤ 2. (3.58)

We can find an upper bound for the weighted L1-norm using Lemma 3.3.1,

‖DΩ2Wδχ[−1,1] −Wδχ[−1,1]‖Ω2,L1 ≤ 2−m−1
∫

R

∣∣∣
d

dx
Wδχ[−1,1](x)

∣∣∣dx =

= 2−m−1
∫

R

∣∣∣
∫ 1

−1

d
dx
wδ(x− t)dt

∣∣∣dx = 2−m−1
∫

R
|wδ(x+ 1) − wδ(x− 1)|dx ≤ 2−m. (3.59)

Therefore

‖DΩ2Wδχ[−1,1] −Wδχ[−1,1]‖2 ≤ 21−m/2. (3.60)

Using Lemma 3.3.4,

‖Wδχ[−1,1]‖Ω1 ≥ ‖χ[−1,1]‖2 − ‖Wδχ[−1,1] − χ[−1,1]‖2 ≥ 1 − 2−m/2.

Consider a step function η = dχ[−1,1] + ψ ∈ Cone
(
ε1,Ω1)

, with ‖ψ‖1 ≤ d. By Lemma 3.3.2

‖Wδψ −DΩ2Wδψ‖2 ≤
1
sm2 δ

‖ψ‖1 ≤ d
2m(γ1−1/2)

sm2 δ
; (3.61)

and by Lemma 3.3.3

‖Wδψ‖2 ≤
mNδ
sm2 δ

‖ψ‖1 ≤ d
Nδ2m(γ1−1/2)

sm2 δ
; (3.62)

summing up the last two (3.61) and (3.62) together

‖DΩ2Wδψ‖2 ≤ d2m(γ1−1/2)Nδ + 1
sm2 δ

.
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We have the following upper bound for the error of approximation for a function from the

cone Cone
(
ε1,Ω2)

, using the inequality (3.59), (3.60), and (3.61),

‖Wδφ−DΩ2Wδφ‖2 ≤ d‖Wδχ[−1,1] −DΩ2Wδχ[−1,1]‖2 + ‖Wδψ −DΩ2Wδψ‖2 ≤

≤ d
(

21−m/2 +
2m(γ1−1/2)

sm2 δ

)
. (3.63)

We may also write using and Lemma 3.3.4 and (3.62)

‖Wδφ‖2 = ‖dWδχ[−1,1] +Wδψ‖2 ≥ d‖Wδχ[−1,1]‖2 − ‖Wδψ‖2 ≥

≥ d
(
‖χ[−1,1]‖2 − ‖Wδχ[−1,1] − χ[−1,1]‖2

)
−‖Wδψ‖2 ≥

≥ d
(1

2
− 2−m/2 −

Nδ2m(γ1−1/2)

sm2 δ

)
. (3.64)

Hence we deduce from (3.63) and (3.64)

‖DΩ2Wδφ‖2 ≥ ‖Wδφ‖2 − ‖Wδφ−DΩ2Wδφ‖2 ≥

≥ d
(1

2
− 2−m/2 − 21−m/2 − 2m(γ1−1/2) (Nδ + 1)

sm2 δ

)
.

We can simplify and write, dividing by d,

‖DΩ2Wδφ‖2 >
1
4

‖φ‖1.

�

3.3.2 Constructing an invariant cone

We shall construct an invariant cone around the cones for the discretized operator T . First

we extend the cones from ΦΩi to Φ and obtain a pair of cones for WδT ; which depend on the

choice of the first partition and hence on the sequence ξ. Then we get rid of this dependence

using estimates from the previous Subsection.
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Proposition 3.3.5. Let Ω1, Ω2, Ω3 be partitions of the class G(δ). Let T : ΦΩ1 → ΦΩ2 be a

generalised toy dynamo. There exists a number 15
16 < α < 1 such that for δ = 2−mα we may

choose γ2
def= γ1 + α(1 − logs1 2) < 1/2, and then for any η ∈ Cone

(
1,Ω1)

we have

DΩ3WδT : Cone
(
1,Ω1)

→ Cone

(
2m(γ2+1/2)

sm2
,Ω3

)

(3.65)

‖DΩ3WδT η‖3 ≥ 2m−3‖η‖1 (3.66)

(See p. 37 for definition of the cone).

Proof. We define an operator E : ΦΩ1 → ΦΩ2 as before in (3.16). According to Theorem 3

p. 45, we know that T : Cone
(
1,Ω1)

→ Cone
(
2m(γ1−1/2),Ω2)

. Consider a step function

η = dχ[−1,1] + ψ ∈ Cone
(
1,Ω1)

. Then T η = d(N1
r − N1

l )χ[−1,1] + ψ1, where the norm is

bounded ‖ψ1‖2 = ‖Eψ + (T − E)η‖2 ≤ d2m(1/2+γ1). We may write

DΩ3WδT η = DΩ3Wδ(d(N1
r −N1

l )χ[−1,1] + ψ1).

Using Lemmas 3.3.2 and 3.3.3

‖DΩ3Wδψ1‖3 ≤ ‖Wδψ1‖3 + ‖DΩ3Wδψ1 −Wδψ1‖3 ≤
mNδ + 1
sm2 δ

‖ψ1‖2 ≤

≤ d2m(1/2+γ1)mNδ + 1
sm2 δ

. (3.67)

So we conclude using Lemma 3.3.4 that

‖DΩ3Wδχ[−1,1] − χ[−1,1]‖3 ≤

≤ ‖DΩ3Wδχ[−1,1] −Wδχ[−1,1]‖3 + ‖Wδχ[−1,1] − χ[−1,1]‖3 ≤ 3 · 2−m/2 (3.68)

Then we may write

DΩ3Wδ(d(N1
r −N1

l )χ[−1,1]) = d(N1
r −N1

l )χ[−1,1] + ψ2,
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where ψ2 ∈ ΦΩ3 and (3.68)

‖ψ2‖3 ≤ d(N1
r −N1

l )‖DΩ3Wδχ[−1,1] − χ[−1,1]‖3 ≤ d(N1
r −N1

l )21−m/2.

Hence

DΩ3WδT η = DΩ3Wδ(d(N1
r −N1

l )χ[−1,1] + ψ1) = DΩ3Wδψ1 + d(N1
r −N1

l )χ[−1,1] + ψ2,

where using (3.67)

‖DΩ3Wδψ1 + ψ2‖3

d(N1
r −N1

l )
≤

‖ψ2‖3 + ‖DΩ3Wδψ1‖3

d(N1
r −N1

l )
≤ 21−m/2 +

2(γ1+1/2)m

N1
r −N1

l
·
mNδ + 1
sm2 δ

≤

≤ 21−m/2 +
2(γ1−1/2)m+3Nδ

sm2 δ
.

Substituting δ = 2−αm and Nδ = 2m(1−α logs1
2), we set γ2 : = γ1 + α(1 − logs1 2) and get

D3WδT η = d̃χ[−1,1] + ψ3, where ‖ψ3‖ ≤ d̃ ·
2m(γ2+1/2)

sm2
.

�

Definition 15. We extend the operator E defined between two spaces of step functions

by (3.16) to bounded integrable functions. Given a partition Ω1 of the class G we consider a

map g0 : R → R by

g0(x) =






1 + 2x−2b
a−b , if a < x < b for some interval (a, b) = Ω1

j ⊂ [−1, 1]

x, otherwise.

(3.69)

and introduce a linear operator E : L1(R) → L∞(R) defined by:

(Ef)(x) =
∑

y∈g−1
0 (x)

f(y). (3.70)

Lemma 3.3.5. For any bounded integrable function f

∫

R
|ℓmξ∗f(x)|dx =

∫

R
|Ef(x)|dx+

2m(3/2+γ1)

sm2
‖f‖1.
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Where 0 < γ1 ≤ 1/8 is chosen such that

mδ ·
s3m

1
2msm2

< 2mγ1 .

Remark 6. The statement of Lemma 3.3.5 and the argument below hold true for the map ℓ̂mξ

as well.

Proof. Let a(m) : = {−∞ = a(m)
0 < a(m)

1 < . . . < a(m)
N+1 = +∞} be a set of points of

discontinuity of the map ℓmξ∗, and let a(m)
j = (a(m)

j , a(m)
j+1) be intervals of the partition. We can

Let us introduce a set of indices of long branches

I(m)
l

def=
{

1 ≤ j ≤ N | a(m)
j is a domain of a long branch of the map ℓmξ

}
.

split the integral into two

∫

R
|ℓmξ∗f(x)|dx =

(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)
|ℓmξ∗f(x)|dx+

∫ 1+mδ

−1−mδ
|ℓmξ∗f(x)|dx.

To estimate the first term we recall that ℓmξ∗(x) = (−1)mx+
m∑

j=1
ξ(j) for x < a(m)

0 and x > a(m)
N .

Since ‖ξ‖∞ < δ, we see that
∣∣
m∑

j=1
ξ(j)

∣∣ < mδ and write

(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)
|ℓmξ∗f(x)|dx =

(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)∣∣∣
∑

y∈ℓ−m
ξ (x)

sgn(ℓmξ )′(y)f(y)
∣∣∣dx =

=
(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)∣∣∣(−1)mf
(
(−1)m(x−

m∑

j=1

ξ(j))
)∣∣∣dx =

=
(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)∣∣∣f
(
(−1)m(x−

m∑

j=1

ξ(j))
)∣∣∣dx ≤

≤
(∫ −1

−∞
+

∫ +∞

1

)
|f(x)|dx =

(∫ −1

−∞
+

∫ +∞

1

)
|Ef(x)|dx.
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Consider the second term.

∫ 1+mδ

−1−mδ

∣∣ℓmξ∗f(x)
∣∣dx =

∫ 1+mδ

−1−mδ

∣∣∣
∑

y∈ℓ−m
ξ (x)

sgn(ℓmξ )′(y)f(y)
∣∣∣dx =

=
∫ 1+mδ

−1−mδ

∣∣∣
N∑

j=1

sgn(ℓmξ )′(ℓ−mξ (x) ∩ a(m)
j )f(ℓ−mξ (x) ∩ a(m)

j )
∣∣∣dx =

=
∫ 1+mδ

−1−mδ

∣∣∣
( ∑

j∈I(m)
l

+
∑

j /∈I(m)
l

)
sgn(ℓmξ )′(ℓ−mξ (x) ∩ a(m)

j )f(ℓ−mξ (x) ∩ a(m)
j )

∣∣∣dx ≤

≤
∫ 1+mδ

−1−mδ

∣∣∣
∑

j∈I(m)
l

f(ℓ−mξ (x) ∩ a(m)
j )

∣∣∣dx+

+
∫ 1+mδ

−1−mδ

∣∣∣
∑

j /∈I(m)
l

sgn(ℓmξ )′(ℓ−mξ (x) ∩ a(m)
j )f(ℓ−mξ (x) ∩ a(m)

j )
∣∣∣dx ≤

≤
∑

j∈I(m)
l

∫

a(m)
j

|f(y)|d(ℓmξ (y)) +
∑

j /∈I(m)
l

∫

a(m)
j

|f(y)|d(ℓmξ (y)) sgn(ℓmξ )′(y) ≤

≤
∑

j∈I(m)
l

∫

a(m)
j

|f(y)|
|ℓmξ (a(m)

j )|

|a(m)
j |

dy +
∑

j /∈I(m)
l

∫

a(m)
j

|f(y)|
|ℓmξ (a(m)

j )|

|a(m)
j |

dy ≤

≤
N1

r∑

j=N1
l

∫

Ω1
j

|f(y)|
|g0(Ω1

j )|
|Ω1
j |

dy + sup |f(x)|
∑

j∈I(m)
l

|ℓmξ (a(m)
j )| ≤

≤
N1

r∑

j=N1
l

∫

Ω1
j

|f(y)|
|g0(Ω1

j)|
|Ω1
j |

dy + sup |f(x)| · sup |τij| · sup |Ω2
j | · #(Din).

Observe that

N1
r∑

j=N1
l

∫

Ω1
j

|f(y)|d(g0(y)) =
N1

r∑

j=N1
l

∫ 1

−1
|f(g−1

0 (x) ∩ Ω1
j )|dx =

∫ 1

−1
|Ef(x)|dx.

So we may proceed

∫ 1+mδ

−1−mδ

∣∣ℓmξ∗f(x)
∣∣dx ≤ 2

∫ 1

−1
|Ef(y)|dy + sup |f(x)| · sup |τij| · sup |Ω2

j | · #(Din) ≤

≤ 2
∫

R
|Ef(x)|dx+ 2m/2‖f‖1 ·m2

(s1

s2

)m
· 3m2δs2m

1 .

Recall that mδ · s3m
1

2msm
2
< 2mγ1 so we may conclude

∫ 1+mδ

−1−mδ

∣∣ℓmξ∗f(x)
∣∣dx ≤ 2

∫

R
|Ef(x)|dx+

2m(3/2+γ1)

sm2
‖f‖1.
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�

Lemma 3.3.6. Let Ω1, Ω2, and Ω3 be partitions of the class G. Let T be a linear operator

on the main space such that T : ΦΩ1 → ΦΩ1 is generalised toy dynamo. Assume that

∫

R
|T f(x)|dx ≤

∫

R
|Ef(x)|dx+

2m(3/2+γ1)

sm2
‖f‖1;

where 0 < γ1 ≤ 1/8 is chosen such that mδ · s3m
1

2msm
2
< 2mγ1 . Then for any essentially bounded

and absolutely integrable function f

‖WδT f‖3 ≤ 5m
Nδ
δ

‖f‖1. (3.71)

Proof. We shall show that there exists a polynomial Q̃ such that

‖WδEf‖3 ≤
Nδ
δ
Q̃(m)‖f‖1,

and the Lemma will follow. By direct calculation, substituting Nδ = 2m(1−α logs1
2) and

δ = 2−αm we see that

2m(3/2+γ1)

sm2
≤
Nδ
δ
,

under condition that 21/2+γ1+α(logs1
2−1) ≤ s2, i.e. for s2 < 2 sufficiently large, or, in other

words, for κ = log s1
s2

small enough.

By definition of the norm we calculate,

2m‖f‖1 ≥
∑

j∈Z

∫

Ω1
j

|f(y)|
|Ω1
j |

dy =
N1

r∑

j=N1
l

∫

Ω1
j

|f(y)|
|Ω1
j |

dy+

+
( N1

l∑

j=N1
l −mNδ

+
N1

r +mNδ∑

j=N1
r

) ∫

Ω1
j

|f(y)|
|Ω1
j |

dy +
( ∑

j<N1
l −mNδ

+
∑

j>N1
r +mNδ

) ∫

Ω1
j

|f(y)|
|Ω1
j |

dy. (3.72)

We estimate each of three terms separately. For the first term we have the following lower
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bound, using |Ω1
j | · dg0(y) = 2 for any y ∈ Ω1

j ⊂ [−1, 1].

N1
r∑

j=N1
l

∫

Ω1
j

|f(y)|
|Ω1
j |

dy =
N1

r∑

j=N1
l

∫

Ω1
j

|f(y)|
dg0(y)

2
dy =

1
2

N1
r∑

j=N1
l

∫

Ω1
j

|f(y)|dg0(y) =

=
1
2

N1
r∑

j=N1
l

∫ 1

−1
|f(g−1

0 (x) ∩ Ω1
j)|dx ≥

1
2

∫ 1

−1
|(Ef)(x)dx.

Thus for any function f
∫ 1

−1
|Ef(x)|dx ≤ 2m+1‖f‖1. (3.73)

Consider the second term of (3.72) now:

( N1
l∑

j=N1
l −mNδ

+
N1

r +mNδ∑

j=N1
r

) ∫

Ω1
j

|f(y)|
|Ω1
j |

dy ≥
1

sup |Ω1
j |

(∫ −1

−1−mδ
+

∫ 1+mδ

1

)
|f(y)|dy ≥

≥
1

sup |Ω1
j |

(∫ −1

−1−mδ
+

∫ 1+mδ

1

)
|(Ef)(y)|dy

Thus
(∫ −1

−1−mδ
+

∫ 1+mδ

1

)
|(Ef)(y)|dy ≤ 2m · sup |Ω1

j | · ‖f‖1. (3.74)

We have for the remaining term of (3.72)

( ∑

j<N1
l −mNδ

+
∑

j>N1
r +mNδ

) ∫

Ω1
j

|f(y)|
|Ω1
j |

dy = 2m
(∫ +∞

1+mδ
+

∫ −1−mδ

−∞

)
|Ef(y)|dy. (3.75)

Summing up the three inequalities (3.73), (3.74) and (3.75) together, we get

∫

R
|Ef(y)|dy ≤ 2m+2‖f‖1. (3.76)
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Taking the last inequality (3.76) into account, we estimate the norm

‖WδEf‖3 = 2−m
∑

j∈Z

1
|Ω3
j |

∫

Ω3
j

∣∣∣
∫

R
wδ(x− t)(Ef)(t)dt

∣∣∣dx ≤

≤ 2−m
∑

j∈Z

1
|Ω3
j |

∫

Ω3
j

∫

R
wδ(x− t)|Ef(t)|dtdx =

= 2−m
∑

j∈Z

1
|Ω3
j |

∫

Ω3
j

∑

k∈Z

∫

Ω1
k

wδ(x− t)|Ef(t)|dtdx =

= 2−m
∑

k∈Z

∫

Ω1
k

|Ef(t)|
( ∑

|Ω3
j −Ω1

k|>mδ

+
∑

|Ω3
j −Ω1

k|<mδ

) 1
|Ω3
j |

∫

Ω3
j

wδ(x− t)dxdt ≤

≤ 2−m
( e−m

inf |Ω3
j |

+
mNδ
δ

) ∫

R
|Ef(t)|dt ≤

≤
4mNδ
δ

‖f‖1.

Taking into account

∫

R
|T f(t)|dt ≤

∫

R
|Ef(t)|dt+

2m(3/2+γ1)

sm2
‖f‖1,

we calculate in a similar way

‖WδT f‖3 ≤ 2−m
( e−m

inf |Ω3
j |

+
mNδ
δ

) ∫

R
|T f(t)|dt ≤

≤ 2−m
( e−m

inf |Ω3
j |

+
mNδ
δ

)(∫

R
|Ef(t)|dt+

2m(3/2+γ1)

sm2
‖f‖1

)
≤

≤
Nδ
δ

·
(

4m+
2m(1/2+γ1)

sm2

)
‖f‖1

< 5m
Nδ
δ

‖f‖,

for 0 < γ1 < 1/8 and m large enough. �

Recall general definition of cones associated to a partition Ω (p. 37):

Cone (r,Ω) =
{
η = dχ[−1,1] + ϕ | ϕ =

∑

j∈Z

cjχΩj ;
Nr∑

j=Nl

cj = 0; ‖ϕ‖Ω ≤ dr
}
. (3.6);

Ĉone (r, ε,Ω) def=
{
f = η + g, η ∈ Cone (r,Ω) , ‖g‖Ω ≤ ε‖η‖Ω

}
(3.7).
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Theorem 5. Let Wδ be the Weierstrass transform defined by (3.49). Let Ω1, Ω2, and Ω3

be three partitions of the class G. Let a linear operator T : L1(R) → L∞(R) be such that

T (ΦΩ1) ⊂ ΦΩ2 is a generalised toy dynamo. Then for any m sufficiently large and κ = log s1
s2

sufficiently small there exists 3
4 < α < 1, r2(m) ≪ 1, ε2(m) ≪ ε1(m) ≪ 1 such that

WδT (Ĉone
(
1, ε1,Ω1)

) ⊂ Ĉone
(
r2, ε2,Ω3)

with δ = 2−mα. Moreover, the norm of any func-

tion f ∈ Ĉone
(
1, ε1,Ω1)

grows exponentially fast ‖WδT f‖3 ≥ 2m−5‖f‖1.

Proof. By Theorem 3 on p. 45 we know that T (Cone
(
1,Ω1)

) ⊂ Cone
(
2m(γ1−1/2),Ω2)

. Con-

sider a function η = dχ[−1,1] +ψ ∈ Cone
(
1,Ω1)

, such that
∫ 1

−1 Eψ = 0. By Proposition 3.2.2,

for any step function ϕ ∈ ΦΩ1 we have ‖(T − E)ϕ‖2 ≤ 2m(1/2+γ1)‖ϕ‖1. Using Lemma 3.2.3,

we calculate

‖T η‖2 ≥ d‖T χ[−1,1]‖2 − ‖T ψ‖2 ≥ d‖Eχ[−1,1] + (T − E)χ[−1,1]‖2 − ‖(T − E)ψ + Eψ‖2 ≥

≥ d(N1
r −N1

l ) − 2d(2m(1/2+γ1) + 1) >
d
2

(N1
r −N1

l ) ≥ d2m−3 (3.77)

Consider a function f = η + g ∈ Ĉone
(
1, ε1,Ω1)

, where η ∈ Cone
(
1,Ω1)

as above is a

piecewise constant part; and ‖g‖1 < dε1. We may write WδT f = WδT η +WδT g.

We shall show that for δ = 2−mα large enough compared to the size of particles of the

partition, WδT f may be approximated by a step function from ΦΩ3 . We write each term as

a sum of a step function with remainder, and estimate the Ω3 norm of every term. Let

WδT η = φ1 + g1, where φ1 = DΩ3WδT η, and g1 = WδT η −DΩ3WδT η; (3.78)

WδT g = φ2 + g2, where φ2 = DΩ3WδT g, and g2 = WδT g −DΩ3WδT g. (3.79)

Using Lemma 3.3.2 and Proposition 3.2.2 we estimate the Ω3 norm of the first remainder

term ‖g1‖.

‖g1‖3 = ‖WδT η −DΩ3WδT η‖3 ≤
‖T η‖2

sm2 δ
≤

2d(N1
r −N1

l )
sm2 δ

≤
d2m

sm2 δ
, (3.80)
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since

‖T η‖2 = ‖(T − E)η‖2 + ‖Eη‖2 ≤ d2m(1/2+γ1) + d(N1
r −N1

l ) ≤ 2d(N1
r −N1

l ).

We also know that ‖T g‖2 ≤ sm1 ‖g‖1, therefore we have the following upper bound for the

second remainder term ‖g2‖3:

‖g2‖3 = ‖WδT g −DΩ3WδT g‖3 =
‖T g‖2

sm2 δ
≤
dsm1 ε1

sm2 δ
. (3.81)

Since T η ∈ Cone
(
2(γ1−1/2),Ω2)

we may apply Proposition 3.3.4 to estimate ‖φ1‖3, us-

ing (3.77)

‖φ1‖3 = ‖DΩ3WδT η‖3 ≥
1
4

‖T η‖2 ≥ d2m−5.

Finally, for ‖φ2‖3 we get, using Lemma 3.3.6

‖φ2‖3 = ‖DΩ3WδT g‖3 ≤ ‖WδT g‖3 + ‖WδT g −DΩ3WδT g‖3 ≤

≤ 5m
Nδ
δ

‖g‖1 + ‖g2‖ ≤ d
ε1

δ

(
5mNδ +

sm1
sm2

)
. (3.82)

We would like to find a number 0 < r2(m) ≪ 1 such that for some d0

φ1 + φ2 = d0χ[−1,1] + ψ with ‖ψ‖3 ≤ d0r2; (3.83)

and two numbers 0 < ε2(m) ≪ ε1(m) < 1 such that the following inequality holds true

‖g1 + g2‖3 ≤ d0ε2. (3.84)

We apply Proposition 3.3.5 p. 79 to the function η ∈ Cone
(
1,Ω1)

, and get

φ1 = DΩ3WδT η = d̃χ[−1,1] + ψ1 where ‖ψ1‖3 ≤ d̃
2m(γ2+1/2)

sm2
and 2m−5d < d̃ < 2md. (3.85)

with γ2 : = γ1 + α(1 − logs1 2). Using the inequalities (3.82) and (3.85) above we write

‖ψ‖3 = ‖φ2 + ψ1‖3 ≤ d
ε1

δ

(
Nδ +

sm1
sm2

)
+ d2m(γ2+3/2) 1

sm2
. (3.86)
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Therefore the condition (3.83) on r2 holds true if

ε1

δ

(
Nδ +

sm1
sm2

)
< r22m−3; (3.87)

2m(γ2+3/2)

sm2
< r22m−3. (3.88)

We can find a lower bound on d0 from (3.83), using upper bound for ‖ψ‖3 from (3.86)

‖d0χ[−1,1]‖3 = ‖φ1 + φ2 − ψ‖3 = ‖d̃χ[−1,1] + ψ1 + φ2 − ψ‖3 ≥

≥ ‖d̃χ[−1,1]‖3 − ‖ψ1 + φ2‖3 − ‖ψ‖3 ≥ d2m−4 − 2‖ψ‖3 ≥

≥ d2m−4 − dr22m−1 ≥ d2m−2, (3.89)

for all r2 < 1/2.

We can find an upper bound for ‖g1 +g2‖ summing up (3.80) with (3.81). Then the second

inequality (3.84) on ε2 will follow from

2m

δsm2
+
ε1sm1
δsm2

≤ 2m−2ε2. (3.90)

We claim that the three inequalities (3.87), (3.88), (3.90), and conditions of Theorem 3 on

p. 45 hold true with α = 15
16 , γ1 = 1

8 , r2 = δ
1

64 , and ε1 = r2
2, ε2 = r4

2, if κ = log s1
s2

≤ 1
25 is

small enough. In particular, we get

WδT (Cone
(
1, r2

2,Ω
1)

) ⊂ Cone
(
r2, r4

2 ,Ω
3)
,

for r2 = δ
1

64 . The condition on the norm ‖WδT f‖3 ≥ 2m−5‖f‖1 follows from (3.80), (3.81),

(3.86) and (3.89). �

Corollary 1. Under the hypotheses and in the notations of Theorem 5 on p. 86, we have for

r2 = δ
1

64 :

W δ
m

T : Cone
(
1, r2

2,Ω
1)

→ Cone
(
r2, r4

2 ,Ω
3)

; (3.91)

∀f ∈ Cone
(
1, r2

2 ,Ω
1)

: ‖W δ
m

T f‖3 ≥ 2m−5‖f‖1. (3.92)
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Proof. The theorem follows from Propositions 3.3.4 and 3.3.5 and Lemma 3.3.6. If we replace

δ in the Gaussian kernel by δ
m , we shall multiply the upper bounds in the inequalities by

polynomials. Since the estimates are based on comparison powers of 2, the results still hold

true. �

Theorem 2.(Invariant cone) There exist a measure preserving piecewise-smmoth transfor-

mation f : R → R, a cone C in the space Φ of essentially bounded absolutely integrable vector

fields on R, and a norm ‖ · ‖ in Φ such that for an m ≫ 1 large enough and any sequence

‖ξ‖∞ ≤ δ with δ = 2−mα for 15
16 < α < 1 we have (3.1)

W δ
2m
fmξ∗W δ

2m
: C → C; ∀v ∈ C : ‖W δ

2m
fmξ∗W δ

2m
f‖ ≥

1
4

‖fm∗ ‖ · ‖v‖.

Proof. We choose the transformation to be f = ℓ, and pick up a partition Ω of the class G.

Our goal is to show that there exist four numbers r2(m) ≪ r1(m) and ε2(m) ≪ ε1(m) ≪ 1

such that

Wδℓmξ∗Wδ : Ĉone (r1, ε1,Ω) → Ĉone (r2, ε2,Ω) ⊂ Ĉone (r1, ε1,Ω) . (3.93)

∀f ∈ Cone (r1, ε1,Ω) : ‖Wδℓmξ∗Wδf‖Ω ≥ 2m−2‖f‖Ω. (3.94)

Let Ω1 be the canonical partition of the perturbation ℓmξ . First of all, we shall find a number

r1 such that for any η ∈ Cone (r1,Ω) we have DΩ1Wδη ∈ Cone
(
1,Ω1)

.

Since η ∈ Cone (r1,Ω), we may write η = dχ[−1,1] + ψ, where ψ =
∑

j∈Z
cjχΩj ,

Nr∑

j=Nl

cj = 0;

and ‖ψ‖Ω1 ≤ dr1. Then

DΩ1Wδη = dDΩ1Wδχ[−1,1] +DΩ1Wδψ.

Using Lemmas 3.3.2 and 3.3.3 we get

‖DΩ1Wδψ‖1 ≤ ‖Wδψ‖1 + ‖DΩ1Wδψ −Wδψ‖1 ≤ dr1
mNδ + 1
sm2 δ

≤ dr1
2mNδ
δsm2
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and for the supremum norm we have ‖DΩ1Wδψ‖∞ ≤ ‖ψ‖∞. Summing up,

‖DΩ1Wδψ‖1 ≤ dr1
2mNδ
δsm2

. (3.95)

Using Lemma 3.3.4, we calculate

‖DΩ1Wδχ[−1,1] − χ[−1,1]‖1 ≤

≤ ‖DΩ1Wδχ[−1,1] −Wδχ[−1,1]‖1 + ‖Wδχ[−1,1] − χ[−1,1]‖1 ≤ 21−m/2; (3.96)

which implies dDΩ1Wδχ[−1,1] = dχ[−1,1] + ψ1, where ψ1 ∈ ΦΩ1 , ‖ψ1‖1 ≤ d21−m/2. Hence

DΩ1Wδη = dχ[−1,1] +DΩ1Wδψ + ψ1, where

‖DΩ1Wδψ + ψ1‖1 ≤ dr1
2mNδ
δsm2

+ d21−m/2.

By Lemma 3.2.2, p. 41, in order to guarantee DΩ1Wδη ∈Cone
(
1,Ω1)

, it is sufficient to choose

the parameter r1 ≪1 such that

2mNδ
δsm2

<
1
r1

;

Let us set

r1
def=

δsm2
4mNδ

. (3.97)

We can also notice using Lemma 3.3.2, that

‖(DΩ1Wδ −Wδ)η‖1 ≤
1
sm2 δ

dr1 =
d

4mNδ
. (3.98)

Taking into account that DΩ1Wδη ∈ Cone
(
1,Ω1)

and (3.98) we conclude

DΩ1Wδη + (DΩ1Wδ −Wδ)η ∈ Ĉone
(

1,
1

4mNδ
,Ω1

)
. (3.99)

Let T : ΦΩ1 → ΦΩ2 be a generalised toy dynamo, approximating the operator ℓmξ∗, constructed

as described in Theorem 4 on p. 62. By straightforward calculation we see that the cone

Ĉone
(

1, 1
4mNδ

,Ω1
)

satisfies the assumptions of Theorem 5 on p. 86 for any 15
16 < α < 1:

1
4mNδ

≤ 2m(α logs1
2−1) < 2m(α−1) < 2− mα

32 = δ
1

32 .

— 90 —
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Therefore, by Theorem 5,

WδT (DΩ1Wδη + (DΩ1Wδ −Wδ)η) ∈ Ĉone
(
δ

1
64 , δ

1
16 ,Ω

)
.

We may write for any partition Ω3 of the class G and for any f ∈ Ĉone
(
r1, ε1,Ω1)

Wδℓmξ∗Wδf = Wδℓmξ∗Wδ(η + g) = WδT DΩ1Wδη +WδT (Wδ −DΩ1Wδ)η+

+DΩ3Wδℓmξ∗Wδg +Wδ(ℓmξ∗ − T )Wδη + (Id −DΩ3)Wδℓmξ∗Wδg. (3.100)

We are interested in the coefficient in front of the term χ[−1,1], which corresponds to the

“cone axis”. Let E : ΦΩ1 → ΦΩ2 be a linear operator defined by (3.16), p. 42. Then

WδT DΩ1Wδη = WδT (dχ[−1,1] + ψ1) = Wδ(T − E)(dχ[−1,1] + ψ1) +WδE(dχ[−1,1] + ψ1) =

= Wδ(T − E)(dχ[−1,1] + ψ1) +WδEψ1 + d(N1
r −N1

l )(Wδχ[−1,1] − χ[−1,1])+

+ d(N1
r −N1

l )χ[−1,1] = d(N1
r −N1

l )χ[−1,1] + ψ2; (3.101)

where

ψ2 = Wδ(T − E)(dχ[−1,1] + ψ1) +WδEψ1 + d(N1
r −N1

l )(Wδχ[−1,1] − χ[−1,1]),

and its norm may be bounded using Lemmas 3.2.2 p. 41, 3.2.3 p. 42, 3.3.3 p. 72, 3.3.4 p. 74,

and Proposition 3.2.2 p. 42:

‖ψ2‖3 ≤ ‖Wδ(T − E)(dχ[−1,1] +ψ1)‖3 + ‖WδEψ1‖3 + ‖d(N1
r −N1

l )(Wδχ[−1,1] − χ[−1,1])‖3 ≤

≤ d2m(1/2+γ1)mNδ
δsm2

+ 2
mNδ
δsm2

+ d2m−121−m/2 ≤ dδ
1

16 2m−3; (3.102)

for a suitable choice of s2 < 2 < s1 and γ1 = 1
8 .

By Theorem 4 p. 62 we get, using Lemma 3.3.3

‖Wδ(ℓmξ∗ − T )Wδη‖3 ≤
mNδ
sm2 δ

· ‖(ℓmξ∗ − T )Wδη‖2 ≤

≤
m2Nδ
sm2 δ

·
( s3

1
21/2+αs2

)m
‖η‖1 ≤ dm2Nδ

( s3
1

21/2s2
2

)m
. (3.103)
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Using Lemmas 3.3.2 and 3.3.3 we obtain, taking into account that ‖g‖Ω ≤ dε1,

‖(Id −DΩ3)Wδℓmξ∗Wδg‖3 ≤
‖ℓmξ∗Wδg‖3

sm2 δ
≤
dε1

sm2 δ
·m2

(2s1

s2

)m
·
mNδ
sm2 δ

≤ 2dε1
m3Nδ
δ2

(2s1

s3
2

)m
.

(3.104)

Combining (3.103) and (3.104), we have the following upper bound for the sum of the last

two terms in (3.100)

‖Wδ(ℓmξ∗ − T )Wδη‖ + ‖(Id −DΩ3)Wδℓmξ∗Wδg‖ ≤

≤ dm2Nδ
( s3

1
21/2s2

2

)m
+ dε1

m3Nδ
δ2

(2s1

s3
2

)m
. (3.105)

Applying Lemma 3.3.3 and Theorem 4 p. 62 again, we get

‖Wδ(ℓmξ∗ − T )Wδg‖3 ≤
mNδ
sm2 δ

‖(ℓmξ∗ − T )Wδg‖3 ≤
m2Nδ
sm2 δ

·
s3m

1
2m(1/2+α)sm2

‖g‖3 ≤

≤ dε1Nδm2
( s3

1
21/2s2

2

)m
.

By Lemma 3.3.6, taking into account Lemma 3.3.3,

‖WδT Wδg‖ ≤ 5m
Nδ
δ

‖Wδg‖ ≤ 5dε1m2 N
2
δ

sm2 δ2 .

Hence summing up the last three inequalities we obtain:

‖DΩ3Wδℓmξ∗Wδg‖3 ≤ ‖(Id −DΩ3)Wδℓmξ∗Wδg‖3 + ‖Wδ(ℓmξ∗ − T )Wδg‖3 + ‖WδT Wδg‖3 ≤

≤ dε1
m3Nδ
δ2

(2s1

s3
2

)m
+ dε1Nδm2

( s3
1

21/2s2
2

)m
+ 5dε1m2 N

2
δ

sm2 δ2 ≤

≤ dε1m3Nδ
δ2 ·

sm1
s2m

2

(2m

sm2
+ δ2 s2m

1
2m/2 +Nδ

sm2
sm1

)
.

We see that for κ = log s1
s2

sufficiently small and α is as chosen above,

δ2
( s2

1
21/2

)m
≪ 1 and Nδ

(s2

s1

)m
≫ 1.

Therefore, we may write

‖DΩ3Wδℓmξ∗Wδg‖3 ≤ dε1m3 N
2
δ

δ2sm2
. (3.106)
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Therefore we deduce from (3.101), (3.106), and (3.105) that in order to get the inclusion

Wδℓmξ∗Wδf ∈ Cone (r2, ε2,Ω) we need to make sure that for some 1 ≫ ε1 > ε2 the following

inequalities holds true:

2dr2(N1
r −N1

l ) ≫ dε1m3 N
2
δ

δ2sm2
; (3.107)

2dε2(N1
r −N1

l ) ≫ dm2Nδ
( s3

1
21/2s2

2

)m
+ dε1

m3Nδ
δ2

(2s1

s3
2

)m
. (3.108)

We know that N1
r − N1

l ≥ 2m−1, therefore we may choose ε1 = δ
1

32 and get in the first

inequality

r2 ≥ δ
1

32
m2N2

δ
4δ22msm2

= δ
1

32
m22m2(1−α logs1

2)

4sm2 · 2−2αm · 2m
= δ

1
32
m2

4
·

2m(1+2α(1−logs1
2))

sm2
.

It holds true, if we set r2 = δ
1

64 , as in Theorem 5 on p. 86. Comparing it with the value of

r1 = δsm
2

4mNδ
, we see that r2 < r1 provided log2 s2 + α logs1 2 > α63

64 + 1.

It remains to check for the second inequality that

ε2 ≥ m2Nδ
( s3

1
23/2s2

2

)m
+ δ

1
32
m2Nδ

4δ2

(s1

s3
2

)m
. (3.109)

We see immediately that we may choose s1 and s1 such that 1
25 > log s1

s2
> 1

2r2
and then

m2Nδ
( s3

1
23/2s2

2

)m
= m2

( s3
1

s2
2 · 21/2+α logs1

2

)m
≤ δ

1
32
m2Nδ

4δ2

(s1

s3
2

)m
≤ m2δ

1
32

(s121+α

s3
2

)m
≪ δ

1
24 .

Hence we conclude that for r1 = δsm
2

4mNδ
, r2 = δ

1
64 , ε1 = δ

1
32 and ε2 = δ

1
24 we have

Wδℓmξ∗Wδ : Ĉone
(
r1, ε1,Ω1)

→ Ĉone (r2, ε2,Ω) ⊂ Ĉone (r1, ε1,Ω) . (3.93)

The second inequality on the norm

‖Wδℓmξ∗Wδ |Ĉone(r1,ε1,Ω) ‖Ω ≥ 2m−2

follows from (3.107), (3.108) and (3.101) immediately. �
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Corollary 2. Under the hypotheses and in the notations of Theorem 2 p. 33, let us choose

four constants r1 = δsm
2

4mNδ
, r2 = δ

1
64 , ε1 = δ

1
32 and ε2 = δ

1
24 . Then we have

W δ
m
ℓmξ∗W δ

m
: Ĉone (r1, ε1,Ω) → Ĉone (r2, ε2,Ω) ⊂ Ĉone (r1, ε1,Ω)

∀f ∈ Cone (r1, ε1,Ω) : ‖W δ
m
ℓmξ∗W δ

m
f‖Ω ≥ 2m−2‖f‖Ω.

The constructive proof of the existence of an invariant cone is complete. Fast Dynamo

Theorem now follows as described in the Section 2.2.

Theorem 6 (Fast dynamo on R). There exist a measure-preserving piecewise-C2 transfor-

mation ℓ : R → R and an essentially bounded, absolutely integrable vector field v such that

lim
δ→0

lim
n→∞

1
n

ln
∥∥(exp(δ∆)ℓ∗)nv

∥∥
L1
> 0,

The map ℓ may be realised as an induced action of the Poincaré map of the provisional fluid

flow on the unstable manifold.
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4 Fast dynamo on the real plane

This Chapter is dedicated to the construction of a piecewise diffeomorphism T : R2 → R2

satisfying the Invariant Cone Hypothesis 1, p. 28. In perspective, the map T is the Poincaré

map of the provisional fluid flow. The main result it the following

Theorem 7. Let ‖ξ‖∞ ≤ δ be a sequence of real vectors. There exists a partition Ω of R2

and four numbers r1(m) ≪ r2(m) and ε1(m) ≪ ε2(m) such that

W δ
2m
P 2
ξ∗W δ

2m
: Cone (r1, ε1,Ω) → Cone (r2, ε2,Ω) ( Cone (r1, ε1,Ω) .

∥∥W δ
2m
P 2
ξ∗W δ

2m
|Cone(r1,ε1,Ω)

∥∥ ≥ 2m−5

(See p. 100 for definition of a cone in the space of vector fields).

4.1 Notation

The following notations will be used throughout.

We denote the unit square in the plane R2 by � def= [−1, 1]2.

The Jacobian of a function F we denote by dF , and by |dF | we denote its determinant.

For a function of two variables, by ∂x we denote the derivative in the first variable and by

∂y we denote its derivative in the second variable. Similarly, for any point z ∈ R2 we denote

by zx and zy its first and second coordinates.
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The indicator function of a set X we denote by χX . In particular, χ� is the indicator

function of the square [−1, 1]2. Given a subset X ⊂ R2 and a partition Ω = {Ωij}(i,j)∈Z2 of

the plane R2 we abuse notations and write (i, j) ∈ X for Ωij ⊂ X. We denote by πx and πy

the natural orthogonal projections

πx : R2 → R πx(zx, zy) = zx, (4.1)

πy : R2 → R πy(zx, zy) = zy. (4.2)

The length of a vector v we denote by |v| and the n-dimensional Lebesgue measure of

a subset A ∈ Rn we denote by |A|. For any sequence of vectors ξ ∈ ℓ∞(R2) we denote

by ξx ∈ ℓ∞(R) and ξy ∈ ℓ∞(R) two sequences of x- and y-coordinates of elements of ξ,

respectively. We denote by Σδ the subset of sequences with ‖ξ‖∞ ≤ δ.

The two dimensional Gaussian kernel wδ is specified by

wδ(x, y) def=
1

2πδ2 e
− x2+y2

2δ2 . (4.3)

The Weierstrass transform is a convolution operator with the Gaussian kernel. For any

absolutely integrable function f it is given by

Wδf(z) def= wδ ∗ f(z) =
∫

R2
wδ(z − t)f(t)dt. (4.4)

For a vector field v = (vx, vy) with absolutely Lebesgue-integrable components vx and vy the

Weierstrass transform is defined by Wδv = (wδ ∗ vx, wδ ∗ vy).

The space of essentially bounded vector field in R2 with absolutely integrable coordinates

we denote by X.

The supremum norm of a matrix A is supremum of absolute values of its elements, we

denote it by ‖A‖∞
def= supij |Aij |. The matrices we are dealing with will be bi-infinite.

The following letters are reserved for real constants: M , M1, µ1, µ2, α, γ1,2,3,4 > 0. Suitable

intervals of values will be specified later.
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4.2 The dynamical system

Here we introduce the dynamical system we will be studying. It consists of the phase space X;

the norm, which is the maximum of weighted L1 and L∞ norms; and the transformation of

the phase space, which is an action, induced by a piecewise diffeomorphism of R2. To define

the piecewise diffeomorphism we use a tower construction.

4.2.1 Action on vector fields

A tower of M floors. Let M > 1 be a large natural number; and let 0 < µ1 < 0.1,

0 < µ2 ≪ 1 be two small real numbers.

Let F0 be the Baker’s map on the unit square

F0(zx, zy)
def=






(1
2 (zx − 1); 2zy + 1

)
, if zy < 0;

(1
2 (zx + 1); 2zy − 1

)
, if zy > 0.

Consider M − 1 maps F1, . . . , FM−1 : R2 \ � → R2 \ � with the following properties

1. each Fk is a smooth map;

2. each Fk is area-preserving: |dFk| = 1;

3. the Euclidean norm of the differential is uniformly bounded ‖dFk‖ ≤ 1 + µ1;

4. the Hessian is small ‖d2Fk‖ ≤ µ2.

5. all Fk are polynomials, most are linear, some are not; the product of degrees of

all of them is bounded by a small number d, which is independent of M . In par-

ticular, d
2

M ≤ 2
1

500 . This condition holds true, for example if Fk ≡ Fj , for all

1 ≤ k ≤ j ≤ M − 1. We use this a strict assumption only to claim that for any

point z ∈ R2 #{π−1
x (F1 ◦ . . . ◦ FM (z))} ≤ d and #{π−1

y (F1 ◦ . . . ◦ FM (z))} ≤ d. This

bound is required in Proposition 4.3.2 only.
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We build a tower X ⊂ R3 defined by

X def=
(
R2 × {0}

) ⋃(
(R2 \ �) × {1, 2, . . . ,M − 1}

)

with coordinates (z, n), where z = (zx, zy) ∈ R2 and n ∈ {0, 1, . . . ,M − 1}. We will abuse

notations and identify � × {0} ⊂ X with �.

The choice of piecewise diffeomorphism. We are ready to introduce a map F : X → X

defined by

F (z, n) def=






(F0(z), 0), if n = 0 and z ∈ �;

(Fn+1(z), (n + 1)mod (M − 1)), otherwise.

(4.5)

Consider an extension F̂ : X × R2 → X

F̂ ((z, n), w) def=






(F0(z) + w, 0), if n = 0 and z ∈ �;

(FM−1(z) +w, 0), if n = M − 1;

(Fn+1(z), (n + 1)), otherwise.

(4.6)

Given a sequence ξ ∈ Σ ⊂ ℓ∞(R2), we define a small random perturbation Fξ of the map F ,

as described in Subsection 2.1.1. Then the zero floor R2 ×{0} is invariant with respect to FMξ

and we may consider the M ’th iteration as a map FMξ : R2 → R2. We denote by F0 : X → X

the map corresponding to the zero sequence ξ ≡ 0.

Remark 7. The inverse map F−1
ξk is given by

F−1
ξk (z, n) =






(F−1
0 (z − ξk), 0), if z ∈ � + ξk and n = 0;

(F−1
M−1(z − ξk),M − 1), if z 6∈ � + ξk and n = 0;

(F−1
n (z), n − 1), otherwise.

i (4.7)
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Also observe that the inverse Baker’s map is given by

F−1
0 (z − ξk) =






(
2zx + 1 − 2ξkx; 1

2(zy − 1) − 1
2ξ
k
y

)
, if zx < ξkx, and z ∈ (� + ξk);

(
2zx − 1 − 2ξkx; 1

2(zy + 1) − 1
2ξ
k
y

)
, if zx > ξkx, and z ∈ (� + ξk).

(4.8)

Let m0 ≫ 1 be a large natural number. We set m = 4Mm0 and choose a small real number

δ = 2−mα with 15
16 < α ≤ 1. The subset of sequences in ℓ∞(R2) with ‖ξ‖∞ ≤ δ we denote

by Σδ. Given a sequence ξ ∈ Σδ we may define a map

Pξ : R2 → R2 Pξ(z)
def= Fmξ (z, 0). (4.9)

The map Pξ defines induced action on the space X according to

(Pξ∗v)(z)
def= dPξ(P−1

ξ z)v(P−1
ξ z). (4.10)

The number of iterations m remains fixed throught the manuscript. We assume it to be

sufficiently large so that all inequalities hold true.

4.2.2 The choice of the norm in X

In this Subsection we introduce a norm in the space of vector fields in R2. We also give a

general definition of a cone in X.

Given a partition Ω of R2, we define an associated weighted (Ω,L1)-norm of a vector field v

on the plane by

‖v‖Ω,L1
def=

∑

ij

2−m

|πy(Ωij)|

∫

Ωij

|v|.

Observe that ‖v‖Ω,L1 is finite if the ordinary L1-norm is finite and the size of elements of

partition is bounded away from zero:

‖v‖Ω,L1 =
∑

ij

2−m

|πy(Ωij)|

∫

Ωij

|v| ≤
2−m

inf |πy(Ωij)|

∫

R2
|v| =

2−m

inf |πy(Ωij)|
‖v‖L1 .
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The supremum norm of a vector field v we denote by ‖v‖∞
def= sup |v|. We denote by X the

space of vector fields on the real plane with finite L1 and supremum norms.

Definition 16 (Norm). We introduce a new norm in X, associated to the partition Ω,

combining the two:

‖v‖Ω
def= max

(
‖v‖Ω,L1 , 2

−m/4 sup |v|
)
. (4.11)

This definition agrees with the general definition in Subsection 2.1.2 with α = 1/4.

The subspace of piecewise constant vector fields associated to the partition Ω we denote

XΩ. We reserve Greek letters for piecewise constant vector fields. We shall call the basis

{
χsΩij

def=
1

|πx(Ωij)|
( 1

0 )χΩij ;χuΩij

def=
1

|πx(Ωij)|
( 0

1 )χΩij

}

i,j∈Z
.

the canonical basis of the subspace XΩ.

Whenever we are dealing with several partitions Ω1, Ω2, and Ω3, say, we omit Ω in the

norm index and write ‖ · ‖1, ‖ · ‖2, and ‖ · ‖3, respectively.

We have for the norm of a piecewise constant vector field ν =
∑

ij
νijs χsΩij

+ νiju χuΩij
:

‖ν‖Ω ≥ max
(

2−m
∑

ij

|νij|,
2−m/4

sup |πx(Ωij)|
sup |νij |

)
,

in particular,

‖ν‖Ω = 1 =⇒
∑

|νij | < 2m and sup |νij| ≤ 2− 3
4m. (4.12)

Invariant cones. By analogy with one-dimensional part, cones of a special form in the spaces

X and XΩ play an important role. We reserve notation for a cone of radius r with main axis

χ� in the subspace of piecewise constant vector fields associated to the partitions Ω1 and Ω2:

Cone
(
r,Ω1) def=

{
η = d( 0

1 )χ� + ϕ | ϕ ∈ XΩ1 , ‖ϕ‖1 ≤ dr,
∑

�

ϕiju = 0
}
. (4.13)

— 100 —



4.2 THE DYNAMICAL SYSTEM

We extend the cone Cone
(
r,Ω1)

to include general functions from the main space:

Ĉone
(
r, ε,Ω1) def=

{
f = η + v | η ∈ Cone

(
r,Ω1)

, ‖v‖1 ≤ ε‖η‖1

}
. (4.14)

This definition agrees with the general definition in Subsection 2.1.3.

4.2.3 The canonical partition

In this subsection we introduce the notion of canonical partition of R2 associated to a sequence

of perturbations ξ ∈ ℓ∞(R2) as a direct product of a pair of canonical partitions of R and list

the main properties.

Definition 17. The k’th escaping set for k ∈ Z is defined by

Ek
def=

{
z ∈ � ⊂ X |

k∏

j=0

χ�(F jξ (z)) = 0
}
. (4.15)

Obviously, Ek ⊂ Ek+1, if k > 0; and Ek+1 ⊂ Ek if k < 0.

Lemma 4.2.1. Let ξ ∈ Σδ ⊂ ℓ∞(R2) be a sequence of small vectors in the plane. Define a

sequence ς(ξ) of the length m by ς1 = −2ξ2m, ς2 = −2ξ−2m−1, . . ., ςm = −2ξm+1. Let pςx

and pξy be two random perturbations of the doubling map p defined by (3.3) with s1 = s2 = 2.

Then the following diagrams are commutative.

� \ E−m
P−1

σmξ−−−−→ R2
yπx

yπx

R
pm

ςx−−−−→ R

� \ Em
Pξ−−−−→ R2

yπy

yπy

R
pm

ξy−−−−→ R

Proof. Straightforward from definition. The Baker’s map preserves the horizontal and vertical

foliations, so the second diagram is trivial. For the first diagram, recall that by definition

(Subsection 4.2.1) P−1
ξ = (Fmξ )−1 = F−1

ξ1 F−1
ξ2 . . . F−1

ξm . Using (4.8) and (4.7), we conclude

that the corresponding sequence ς for the doubling map associated to P−1
ξ is as defined in

supposition of the Lemma. �
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We associate a chain Υ1,Υ2, . . . of partitions of R2 to a sequence ξ ∈ Σδ.

The first element Υ1 is defined as follows. Let Υs =
{

Υs
i =

[ i
2m ; i+1

2m

]}
, i ∈ Z, be a partition

of R into equal intervals and let Υu = {Υu
j }j∈Z be the canonical partition of the map pmξy

.

Then

Υ1 = {Υij}, Υij = Υs
i × Υu

j .

To define partition Υk, consider a sequence

ς1 = −2ξ2km, ς2 = −2ξ2km−1, . . . , ςm = −2ξ(2k−1)m.

Let Υs be the canonical partition for the perturbation pmςx of the doubling map, and let Υu

be the canonical partition of the perturbation pmσ2mkξy
of the doubling map. Then Υk is given

by

Υk = {Υij}, Υij = Υs
i × Υu

j .

Definition 18. We say that a partition Υ of the plane R2 is a partition of the class G(m, δ),

if there exists a sequence ξ ∈ Σδ such that Υ = Υk for some partition Υk from the chain of

partitions associated to ξ.

Definition 19. A rectangle
(
zx − lx

2 , zx + lx
2

)
×

(
zy − ly

2 , zy + ly
2

)
with centre at z and sides

lx and ly we denote by Recz(lx, ly). Whenever location of the centre of the rectangle is of no

importance, we omit z and write Rec(lx, ly).

Lemma 4.2.2. Any partition Υ of the class G(m, δ) has the following properties

1. The unit square � contains at most 4m and at least 4m−1 elements of the partition.

2. For any element Υij of the partition Υ we have two rectangles

Rec
(2−m

m
,
2−m

m
)

⊆ Υij ⊆ Rec
(
21−m, 21−m)

.
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3. Any square with a side δ may be covered by at most Nδ = 4m(1−α)+1 elements of the

partition.

Proof. Follows from the properties of the canonical partition for perturbation ξ of the doubling

map. �

4.3 Matrix, approximating the operator P 2
η∗.

In this Section we assume that a sequence of vectors η ∈ ℓ∞(R2) is fixed and we study

the associated operator P 2
η∗ on vector fields on R2, defined by (4.10), where the map Pη is

given by (4.9). Our goal is to show that for any sequence η there exist a pair of subspaces

XΩ1 ,XΩ2 ⊂ X and a linear operator A(η) : XΩ1 → XΩ2 with a simple matrix, approximating

P 2
η∗ |XΩ1 well enough. Given the operator A(η), we construct a pair of cones C1 ⊂ XΩ1 and

C2 ⊂ XΩ2 such that A(C1) ⊂ C2; C2 ≪ C1 and ‖A‖ |C1≥ 2m−1. We begin with the choice of

the operator A.

Let Υ be a chain of partitions associated to the sequence η ∈Σδ={ξ ∈ ℓ∞(R2) | ‖ξ‖∞ ≤δ}.

Let Ω1 = Υk and Ω2 = Υk+1 be two consecutive partitions from the chain Υ. We intro-

duce two subspaces XΩ1 and XΩ2 of piecewise-constant vector fields in X, associated to the

partitions Ω1 and Ω2, respectively. The subspace XΩ1 has the (canonical) basis

χsΩ1
ij

def=
1

|πx(Ω1
ij)|

( 1
0 )χΩ1

ij
, χuΩ1

ij

def=
1

|πx(Ω1
ij)|

( 0
1 )χΩ1

ij
;

and the (canonical) basis of the subspace XΩ2 is

χsΩ2
ij

def=
1

|πx(Ω2
ij)|

( 1
0 )χΩ2

ij
, χuΩ2

ij

def=
1

|πx(Ω2
ij)|

( 0
1 )χΩ2

ij
;

both bases have Z2 elements.

Let ξ def= σ2m(k−1)η (see definition of the chain Υ in Subsection 4.2.3, p. 101). We would

like to approximate the operator P 2
ξ∗ : X → X by a linear operator A : XΩ1 → XΩ2 chosen so
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that the averages along the elements of partition Ω2 are equal for any field ν ∈ XΩ1 :

∫

Ω2
kl

Aν =
∫

Ω2
kl

P 2
ξ∗ν. (4.16)

We write down the action of the operator A on XΩ1 in matrix form

A
(
νijs χ

s
Ω1

ij
+ νiju χ

u
Ω1

ij

)
=

∑

kl

νijs
(
SSklijχ

s
Ω2

kl
+ SUklij χ

u
Ω2

kl

)
+ νiju

(
USklijχ

s
Ω2

kl
+ UUklij χ

u
Ω2

kl

)
, (4.17)

where the four matrices SS, SU , US, and UU are specified as follows, so that (4.16) holds

true (see Lemma 4.3.14 on p. 128 for details).

SSklij
def=

1
|πx(Ω1

ij)| · |πy(Ω2
kl)|

∫

P−2
ξ (Ω2

kl)∩Ω1
ij

∂x(P 2
ξ )x(z)dz; (4.18)

SUklij
def=

1
|πx(Ω1

ij)| · |πy(Ω2
kl)|

∫

P−2
ξ (Ω2

kl)∩Ω1
ij

∂x(P 2
ξ )y(z)dz; (4.19)

USklij
def=

1
|πx(Ω1

ij)| · |πy(Ω2
kl)|

∫

P−2
ξ (Ω2

kl)∩Ω1
ij

∂y(P 2
ξ )x(z)dz; (4.20)

UUklij
def=

1
|πx(Ω1

ij)| · |πy(Ω2
kl)|

∫

P−2
ξ (Ω2

kl)∩Ω1
ij

∂y(P 2
ξ )y(z)dz. (4.21)

We observe that

SS : 〈χsΩ1
ij

〉 → 〈χsΩ2
ij

〉; SU : 〈χsΩ1
ij

〉 → 〈χuΩ2
ij

〉; US : 〈χuΩ1
ij

〉 → 〈χsΩ2
ij

〉; UU : 〈χuΩ1
ij

〉 → 〈χuΩ2
ij

〉.

The matrix UU is the most important as it is responsible for the largest eigenvalue of the

operator A. We will study it in a great detail in the next Subsection.

Lemma 4.3.1. The map P 2
0 , corresponding to the zero sequence ξ ≡ 0, gives the following

matrix elements for any quartet (i, j, k, l) ∈ � × � : UUklij ≡ 1; SSklij ≡ 2−4m; SUklij ≡ 0;

USklij ≡ 0.

Proof. Each partition of the chain, associated to the zero sequence, is a partition of the

unit square � into 22m+2 equal squares with side length 2−m. Therefore we have that

Ω1
ij =

[ i
2m , i+1

2m

]
×

[ j
2m , j+1

2m

]
and Ω2

kl =
[ k

2m , k+1
2m

]
×

[ l
2m , l+1

2m

]
.
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The preimage of an element Ω2
kl ⊂ � of the partition Ω2 under P−2

0 is equal to 2m disjoint

rectangles Rec(2, 2−3m) in �. Thus |P−2
0 (Ω2

kl) ∩ Ω1
ij | = 2−4m. The derivative of P 2

0 on � is

given by the matrix

dP 2
0 (z) ≡




2−2m 0

0 22m



 for all z ∈ �.

�

Definition 20. The matrices, corresponding to the map P 2
0 , we denote by

◦
SS,

◦
SU ,

◦
US, and

◦
UU , respectively.

Remark 8. Immediately by definition we see that for any quartet (i, j, k, l) such that

(i, j) ∈ � and (k, l) ∈ R2 \ �1+mδ or (i, j) ∈ R2 \ �1+mδ and (k, l) ∈ � we have

◦
UUklij =

◦
SUklij =

◦
USklij =

◦
SSklij = 0 (4.22)

In addition, given ‖dFk‖ ≤ µ1, from definition of Fk p. 97, we have

max
(
‖

◦
UU‖∞, ‖

◦
SU‖∞, ‖

◦
US‖∞, ‖

◦
SS‖∞

)
≤ (1 + µ1)2m. (4.23)

Remark 9. The condition on the Euclidean norm ‖dFk‖ ≤ µ1 implies that there exists a

constant M1 such that for any two partitions Ω1 and Ω2 of the class G(m, δ),

sup
(i,j)

#
{

(k, l) ∈ R2 \ �1+mδ | P−2
ξ (Ω2

kl) ∩ Ω1
ij 6= ∅

}
< M1 · (µ1 + 1)2m. (4.24)

Therefore for any pair (k, l) ⊂ R2 \ �1+mδ there exist not more than M1 · (1 + µ1)2m pairs

(i, j) ⊂ R2 \ �1+mδ such that

SSklij · SUklij · USklij · UUklij 6= 0.

Remark 10. Recall the notations introduced in the beginning of Section 4.3. There exists a

constant M2, independent of m, such that for R := M2mδ(1 +µ1)2m + 1 and for any quartet

(i, j, k, l) where (i, j) ∈ � and (k, l) ∈ R2 \ �R or (i, j) ∈ R2 \ �R and (k, l) ∈ �

SSklij ≡ 0, SUklij ≡ 0, USklij ≡ 0, UUklij ≡ 0.
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4.3 APPROXIMATING MATRIX

Definition 21. The domains of continuity of the map P 2
ξ we call (P, ξ)-domains.

We split (P, ξ)-domains in P−2
ξ (Ω2

kl) ∩ Ω1
ij ⊂ � in “good” and “bad” parts:

(∆G)klij
def=

{
∆ ⊂ P−2

ξ (Ω2
kl) ∩ Ω1

ij | ∆ is a (P, ξ)-domain, and ∀n ≤ 2m : Fnξ (∆) ⊂ �
}

; (4.25)

(∆B)klij
def=

{
∆ ⊂ P−2

ξ (Ω2
kl) ∩ Ω1

ij | ∆ is a (P, ξ)-domain, and ∃n ≤ 2m : Fnξ (∆) 6⊂ �
}
. (4.26)

Then we may write for (i, j, k, l) ∈ � × �,

UUklij = (UUG)klij + (UUB)klij , (4.27)

where UUG, UUB ∈ Mat(2m, 2m) are given by

(UUG)klij
def=

1
|πx(Ω1

ij)|
·

1
|πy(Ω2

kl)|
·

∑

∆∈∆G

∫

∆
∂y(P 2

ξ )y(z)dz; (4.28)

(UUB)klij
def=

1
|πx(Ω1

ij)|
·

1
|πy(Ω2

kl)|
·

∑

∆∈∆B

∫

∆
∂y(P 2

ξ )y(z)dz. (4.29)

We define three more pairs of matrices SUB+SUG= SU , USB+USG= US, SSB+SSG= SS

in a similar way.

4.3.1 Properties of the matrix UU

The submatrix UU : 〈χuΩ1
ij

〉 → 〈χuΩ2
ij

〉 corresponds to a mapping between two subspaces of

vector fields parallel to the expanding direction of the Baker’s map and associated to two

different partitions. It is also responsible for the norm of the operator A. Our goal is to

establish the following two facts about the matrix UU .

Proposition 4.3.1. The following inequalities hold true for the elements of the matrix UUG

in the canonical bases.

1. ‖UUG‖∞ = sup |UUklij | ≤ 4;

2. #{(UUG)klij 6= 1} ≤ 24 1
2mδ.
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Proposition 4.3.2. There exist a constant γ1 < 0.01 such that for M and m sufficiently

large and for µ1 sufficiently small

max(‖SS‖∞, ‖US‖∞, ‖SU‖∞, ‖UU‖∞) ≤ 2γ1m.

(Recall Condition 3 on Fk: ‖dFk‖ ≤ 1 + µ1 in the Euclidean operator norm).

By definition, the matrix UUG is related to subsets of the survivor set � \E2m. To study

the set � \ E2m, we introduce a simplified system, since the map outside of the unit square

is of no importance.

Consider a circle S1 and a cylinder C def= R × S1 def= {(x, y), x ∈ R, y ∈ [−1; 1)}. Define a

map h : C → C by

h(z) def=






( 1
2(zx − 1), 2zy + 1

)
, if − 1 ≤ zx ≤ 0, −1 ≤ zy ≤ 1;

( 1
2(zx + 1), 2zy − 1

)
, if 0 ≤ zx ≤ 1, −1 ≤ zy ≤ 1;

z, if |zx| > 1.

(4.30)

Let ĥ : C × R2 → C be an extension given by

ĥ(z, w) def=






(1
2(zx − 1) + wx, (2zy + wy)mod 2 − 1

)
, if − 1 ≤ zx ≤ 0, −1 ≤ zy ≤ 1;

(1
2(zx + 1) + wx, (2zy + wy)mod 2 − 1

)
, if 0 ≤ zx ≤ 1, −1 ≤ zy ≤ 1;

(zx + wx, (zy + wy)mod 2 − 1), if |zx| > 1.

(4.31)

Using the extension ĥ, we define a small perturbation hξ, as described in Subsection 2.1.1.

We denote the central part of the cylinder by ⊙ def= {z ∈ C : |zx| ≤ 1}. By rectangle in ⊙

we understand a subset Rec(lx, ly) = Ix × Iy, where Ix ⊂ [−1; 1) and Iy ⊂ S1 \ {1} are two

intervals with |Ix| = lx and |Iy| = ly.
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Lemma 4.3.2. Given a sequence ξ ∈ Σδ, with δ = 2−mα, for any 1 ≤ k ≤ mα − 3 there

exist k rectangles rk,ξ1 , . . ., rk,ξk ⊂ ⊙ such that

{
z ∈ ⊙ | ∃1 ≤ j ≤ k : hjξ(z) 6∈ ⊙

}
⊂

k⋃

j=1

rk,ξj .

Moreover, rk,ξj ⊂ Rec(2jδ, 21−j) for all 1 ≤ j ≤ k and for any a ∈ R2 with |a| ≤ δ the map

h−1
a is continuous on the union of the rectangles

k⋃

j=1
rk,ξj .

Proof. By induction in k. Indeed, the conditions z ∈ ⊙ and hξ(z) 6∈ ⊙ are equivalent to

|πx(hξ(z))| > 1 and z ∈ �. The latter means

z ∈ rξ1
def=






(−1; −1 + 2ξ1
x) × (−1; 0) ⊂ (−1; −1 + 2δ) × (−1; 0), if ξx < 0,

(1 − 2ξ1
x; 1) × (0; 1) ⊂ (1 − 2δ; 1) × (0; 1), if ξx > 0.

(4.32)

Thus the statement holds true for k = 1. Let us add to the induction assumption the following

inclusion which is trivial for k = 1:

k⋃

j=1

rk,ξj ⊂ (1 − 2kδ; 1) × (−1; 1) ∪ (−1; −1 + 2kδ) × (−1; 1). (4.33)

We may write

{
z ∈ ⊙ | ∃j ≤ k + 1: hjξ(z) 6∈ ⊙

}
⊂

⊂
{
z ∈ ⊙ | hξ(z) 6∈ ⊙

}
∪

{
z ∈ ⊙ | ∃ 1 < j ≤ k + 1: hjξ(z) 6∈ ⊙

}
⊂

⊂ rξ1 ∪
{
w = hξ1(z) ⊂ ⊙ | ∃1 ≤ j ≤ k : hjσ(ξ)(w) 6∈ ⊙

}
⊂ rξ1 ∪ h−1

ξ1

( k⋃

j=1

rk,σ(ξ)
j

)
.

Therefore we may set rk+1,ξ
1

def= rξ1 and rk+1,ξ
j+1

def= h−1
ξ1 (rk,σ(ξ)

j )∩� for j = 1, . . . , k. Since h−1
0 is

continuous on every (rk,σ(ξ)
j − ξ1) ∩ �, the sets rk+1,ξ

j+1 are rectangles. Using supposition (4.33)

we conclude

h−1
ξ1

( k⋃

j=1

rk,ξj
)

⊂ h−1
ξ1

((
(1 − 2kδ, 1) ∪ (−1,−1 + 2kδ)

)
× (−1, 1)

)
⊂

⊂
(
(−1,−1 + 2k+1δ) ∪ (1 − 2kδ, 1)

)
× (−1, 1), (4.34)
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and therefore h−1
a is continuous on

k+1⋃

j=1
rk+1,ξ
j − a for any |a| ≤ δ.

Finally, one can check by straightforward calculation that for all 1 ≤ j ≤ k we have

h−1
ξ1 (rk,σ(ξ)

j ) ⊂ Rec(2j+1δ, 21−j).

�

Corollary 1. For any sequence ξ ∈ Σδ there are 3m
4 rectangles rξ1, r

ξ
2, . . . , r

ξ
3m/4 ⊂ ⊙ such

that
{
z ∈ ⊙ | ∃ 1 ≤ j ≤

3m
4

: hjξ(z) 6∈ ⊙
}

⊂
3m/4⋃

j=1

rξj ;

and the union
3m/4⋃

j=1
rξj ⊂ � may be covered by at most m322mδ rectangles Rec(2−5m/4, 2−3m/4).

Proof. By Lemma 4.3.2, there exists 3m
4 rectangles rξ1, . . . , r

ξ
3m/4 ⊂ ⊙ such that

{
z ∈ ⊙ | ∃ 1 ≤ j ≤ k : hjξ(z) 6∈ ⊙

}
⊂

3m/4⋃

j=1

rξj ;

moreover, rξj ⊆ Rec(2jδ, 21−j). Therefore, each rξj may be covered by at most

m2(
(25m/4 · 2jδ) · (23m/4 · 21−j) + 2m/4 · 22−j + 23m/4+j+1δ

)
≤ 22mm3δ

rectangles Rec
( 2−5m/4

m , 2−3m/4

m
)
. Since there are 3m

4 rectangles rξ1, . . . , r
ξ
3m/4 their union may

be covered by not more than 22mm4δ rectangles Rec(2−5m/4, 2−3m/4). �

We may identify a rectangle on the cylinder Ix × Iy ⊂ ⊙ with a rectangle on the plane

Ix × Iy ⊂ � ⊂ R2, since we agreed that Iy ⊂ S1 \ {1}.

Lemma 4.3.3. Under the hypothesis and in the notations of Lemma 4.3.2 the set
m/4⋃

j=1
rm/4,ξ
j

may be covered by at most 22mm3δ elements of a partition of the class G(m, δ).

Proof. By definition, all elements of a partition of the class G(m, δ) are rectangles. By

the second part of Lemma 4.2.2, Rec(2−m

m , 2−m

m ) ⊆ Ωij ⊂ Rec(21−m, 21−m). Therefore any
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4.3 APPROXIMATING MATRIX

rectangle Rec(2kδ, 21−k) may be covered by at most

m2(2k+mδ · 21+m−k + 2m+2 · 2−k + 2m+k+1δ) ≤ m222m+2δ

elements of the partition. Then all m4 rectangles may be covered by at most 22mm3δ elements.

�

We lift the map h : C → C to the plane R2 and obtain

H(z) def=






(1
2 (zx − 1), 2zy + 1

)
, if z ∈ �, −1 ≤ zy ≤ 0;

(1
2 (zx + 1), 2zy − 1

)
, if z ∈ �, 0 ≤ zy ≤ 1;

z, if z 6∈ �.

(4.35)

Let Ĥ : R2 × R2 → R2 be an extension given by

Ĥ(z, w) def=






( 1
2(zx − 1), 2zy + 1

)
+ w, if z ∈ � and − 1 ≤ zy ≤ 0;

( 1
2(zx + 1), 2zy − 1

)
+ w, if z ∈ � and 0 ≤ zy ≤ 1;

z + w, if z 6∈ �.

(4.36)

Given a sequence ξ ⊂ Σδ ⊂ ℓ∞(R2) and extension Ĥ, we define a small perturbation Hξ, as

described in Subsection 2.1.1.

Remark 11. Observe that z ∈ Ek if and only if
k∏

j=1
χ�(Hj

ξ (z)) = 0; where Ek is the k’th

escaping set defined by (4.15), p. 101.

Remark 12. Let p be the doubling map defined by (3.3) with s1 = s2 = 2. Let ξ and ς be

two sequences defined as in Lemma 4.2.1. Then for any k > 0 the following two diagrams are

commutative.

� \ Ek
Hk

ξ−−−−→ R2

πy

y πy

y

R
pξy−−−−→ R

� \ E−k
H−k

ξ−−−−→ R2

πx

y πx

y

R
pςx−−−−→ R
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Recall the settings, introduced in the beginning of the Section 4.3, p. 103. Let Υ be a

chain of partitions associated to the sequence η ∈ Σδ. Let Ω1 = Υk and Ω2 = Υk+1 be two

consecutive partitions from the chain Υ, and let ξ = σ2mkη be a shifted sequence.

Lemma 4.3.4. The number of elements of the partition Ω1 inside the square � possibly

escaping in the first m
4 iterations is bounded by 2

9m
4 +1δ:

#
{

Ω1
ij ⊂ � | ∃ 1 ≤ k ≤

m
4

: Hk
ξ (Ω1

ij) 6⊂ �
}

≤ 2
9m

4 +1δ.

Proof. By Lemma 4.3.3

#
{

Ω1
ij ⊂ ⊙ | ∃ 1 ≤ k ≤

m
4

: hkξ (Ω
1
ij) 6⊂ ⊙

}
≤ 22m ·m3δ,

which is equivalent to

#
{

Ω1
ij ⊂ � | ∃ 1 ≤ k ≤

m
4

: πx(Hk
ξ (Ω1

ij)) 6⊂ [−1; 1]
}

≤ 22m ·m3δ.

Recall the doublin map p defined by (3.3) with s1 = s2 = 2. Let pkξy
be a small perturbation

as in Lemma 3.2.7. Then the map pξy pkξy
has exactly 2k long branches for all k ≤ mα.

Therefore we get an upper bound

#
{

Ω1
ij ⊂ � | ∀ 1 ≤ k ≤

m
4

: πx(Hk
ξ (Ω1

ij)) ⊂ [−1; 1] and

∃ 1 ≤ k ≤
m
4

: πy(Hk
ξ (Ω1

ij)) 6⊂ [−1; 1]
}

≤

≤ 2m · #
{

Ω1
j ⊂ [−1; 1] | ∃ 1 ≤ k ≤

m
4

: pkξy (Ω1
j) 6⊂ [−1; 1]

}
≤ 25m/4+1,

By supposition on α, we know that 22mm3δ ≪ 25m/4. (In other words, assume that for some

Ω1
j ⊂ [−1; 1] we have pkξy

(Ω1
j) ⊂ [−1; 1] for all k < k0 and pk0

ξy
(Ω1

j) 6⊂ [−1; 1]. Then Ω1
j is a

subset of the domain of a long branch of pkξy
for all k < k0; and the subset of the domain of

a main branch that may escape at the iteration k is an interval, i.e. a connected set, of the

measure at most 2−kδ, which contains at most 2m−kδ intervals of the canonical partition of

the perturbation of the doubling map pmξy
.) �
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Remark 13. In Lemma 4.3.4 above, an alternative upper bound would be 2
5m

4 · Cδ, where

Cδ is the maximum number of intervals of the canonical partition for the doubling map in the

interval of the length δ. In our case all intervals have the length |πy(Ωij)| ≤ 21−m, therefore

2mδ > Cδ > 2m−1δ.

Lemma 4.3.5. There exists at least 22m − 29m/4+2δ elements Ω1
ij ⊂ � of the partition Ω1

such that Hk
ξ (Ω1

ij) ⊂ � for all 1 ≤ k ≤ m and

Rec
(

2−m/4|πx(Ω1
ij)|, 2

m/4|πy(Ω1
ij)|

)
= Hm/4

ξ (Ω1
ij) ⊂ �.

Proof. By Lemma 4.3.4 we know that there are at most 29m/4+2δ elements of the partition Ω1

such that Hm/4
ξ (Ω1

ij) 6⊂ �. We shall show now that there are at most 25m/4 elements of Ω1

such that Hk
ξ (Ω1

ij) ⊂ � for all 1 ≤ k ≤ m
4 , and yet

Hm/4
ξ (Ω1

ij) 6⊇ Rec
(

2−m/4|πx(Ω1
ij)|, 2

m/4|πy(Ω1
ij)|

)
.

If Hm/4
ξ (Ω1

ij) is connected, then Hm/4
ξ (Ω1

ij) = Rec
(

2−m/4|πx(Ω1
ij)|, 2

m/4|πy(Ω1
ij)|

)
. Thus

without loss of generality we may assume that Hm/4
ξ (Ω1

ij) is not a connected set. The latter

implies Hk
ξ (Ω1

ij) ∩ {zy = 0} 6= ∅ for some 1 ≤ k ≤ m/4. Recall the doublin map p defined

by (3.3) with s1 = s2 = 2. Let pkξy
be a small perturbation as in Lemma 3.2.7. Since by

supposition Hk
ξ (Ω1

ij) ⊂ � for all 1 ≤ k ≤ m
4 , we conclude that Ω1

j : = πy(Ω1
ij) belongs to a

main branch of the map pm/4
ξy

. We know that the map pkξy
has at most 2k main branches,

and if {0} ∈ pk1
ξy

(Ω1
j ), then {0} 6∈ pk2

ξy
(Ω1

j) for all k1 < k2 ≤ m
4 . So there are at most 2m/4+1

elements Ω1
j such that {0} ∈ pkξy

(Ω1
j ) for some 1 ≤ k ≤ m

4 . Thus there are at most 25m/4

elements Ω1
ij such that Hk

ξ (Ω1
ij) ∩ {y = 0} 6= ∅ for some 1 ≤ k ≤ m

4 and Hk
ξ (Ω1

ij) ⊂ � for all

1 ≤ k ≤ m
4 . �

Corollary 1. There exists at least 22m − 29m/4δ elements Ω1
ij ⊂ � of the partition Ω1 such
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that F kξ (Ωij)) ⊂ � for all 1 ≤ k ≤ m
4 and

Rec
(

2−m/4|πx(Ω1
ij)|, 2

m/4|πy(Ω1
ij)|

)
= Fm/4

ξ (Ω1
ij) ⊂ �.

We need the following fact about small perturbations of the doubling map p.

Lemma 4.3.6. For any m
2 ≤ k ≤ mα−2 the perturbation of the doubling map pmξ with ‖ξ‖∞

has at most 2k+2 main branches such that their domains a(m)
j satisfy |pmξy

(a(m)
j )| < 2−2m−kδ.

Proof. Let a(m)
j = (a(m)

j ; a(m)
j+1) be the domain of a main branch of the map pmξ such that

|pmξ (a(m)
j )| < 2 − 2m−kδ.

We shall show that the interval a(m)
j is not contained in a domain of a main branch of the

map pk+2
ξ .

Assume for a contradiction that for some m
2 ≤ k ≤ mα − 2 there exists a main branch

a(k+2)
i ⊃ a(m)

j of the map pk+2
ξ . By assumption, a(m)

j and a(m)
j+1 are points of discontinuity of

the map pmξ . Since pk+2
ξ is continuous on a(k+2)

j , we deduce that there exist k1, k2 ≥ k + 2

such that pk1
ξ (a(m)

j ) = 0 and pk2
ξ (a(m)

j+1) = 0. Since pmξ (a(m)
j ) is an interval, we see that either

|pmξ (a(m)
j ) + 1| > 2m−k−1δ or |pmξ (a(m)

j+1) − 1| > 2m−k−1δ. Without loss of generality, assume

the first. Then

pmξ (a(m)
j ) = pm−k1

ξ (0) = pm−k1−1
ξ (−1 + ξ(k1 + 1)),

and, therefore, |pmξ (a(m)
j+1) + 1| ≤ 2m−k1+1δ. Thus k1 < k + 2. We deduce that the map pk+2

ξ

is not continuous on a(m)
j . We know by Lemma 3.2.7, that for any 1 ≤ k ≤ mα the map pkξ

has exactly 2k main branches and the Lemma follows.

�

Lemma 4.3.7. There exist at least 22m − 2
3
2m elements of the partition Ω1 in the unit

square � such that for some Ω̆1
ij ⊂ Ω1

ij we have Hn
ξ (Ω̆1

ij) ⊂ � for all 1 ≤ n ≤ m and

Hm
ξ (Ω̆1

ij) = Rec
(
2−m|πx(Ω1

ij)|, 2 − 2
m
2 δ

)
.
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Proof. Let η = σm/4(ξ) and let rηj , 1 ≤ j ≤ 3m
4 be rectangles covering the escaping set E 3m

4
of

the map F 3m/4
η , defined according to Corollary 1 of Lemma 4.3.2. According to Lemma 4.3.5

there exist at least 22m − 2
9
4m+2δ elements of the partition Ω1 such that Hk

ξ (Ω1
ij) ⊂ � for all

1 ≤ k ≤ m
4 , and there exists a rectangle Rec(2−m/4|πx(Ω1

ij)|, 2m/4|πy(Ω1
ij)|) = Hm/4

ξ (Ω1
ij) ⊂�.

It follows from Corollary 1 of Lemma 4.3.2, that among these elements of the partition Ω1

one can find at least 22m−2
9
4m+2δ−22mm4δ elements that satisfy Hm/4

ξ (Ω1
ij)∩

(3m/4⋃

j=1
rηj ) = ∅.

The condition Hm/4
ξ (Ω1

ij) ∩
(3m/4⋃

j=1
rηj ) = ∅ implies πx(Hk

ξ (Ω1
ij)) ⊂ [−1; 1] for all 1 ≤ k ≤ m,

and it follows that |πx(Hm
ξ (Ω1

ij))| = 2−m|πx(Ω1
ij)|. Therefore, Hk

ξ (Ω1
ij) 6⊂ � for some

m
4 < k ≤ m if and only if πy(Hk

ξ (Ω1
ij)) 6⊂ [−1; 1]. By construction, Ω1

j = πy(Ω1
ij) is an

element of the canonical partition of the map pmξy
. By Lemma 4.3.6 with k = m

2 , there map

pmξy
has at most 2

m
2 +2 main branches such that |pmξy

(a(m)
j )| ≤ 2 − 2

m
2 δ. For every Ω1

ij , such

that πx(Hk
ξ (Ω1

ij)) ⊂ [−1; 1] and πy(Ω1
ij) contains the domain a(m)

j of a main branch of the

map pmξy
with |pmξy

(a(m)
j )| ≥ 2 − 2

m
2 δ, there exists a rectangle Ω̆1

ij
def= πx(Ω1

ij) × a(m)
j ⊂ Ω1

ij with

the property Hk
ξ (Ω̆1

ij) ⊂ � for all 1 ≤ k ≤ m, and, moreover

Hm
ξ (Ω1

ij) ⊃ Hm
ξ (Ω̆1

ij) ⊃ Rec
(

2−m|πx(Ω1
ij)|, 2 − 2m/2δ

)
.

Therefore, there are at least 22m − 2
9
4m+2δ − 22mm4δ − 2

3
2m+2 ≥ 22m − 2

3
2m+3 elements of

the partition Ω1 such that for some Ω̆1
ij ⊂ Ω1

ij which satisfies Hk
ξ (Ω̆1

ij) ⊂ � for all 1 ≤ k ≤ m

we have

Hm
ξ (Ω̆1

ij) = Rec
(
2−m|πx(Ω1

ij)|, 2 − 2
m
2 δ

)
.

In other words, the map Hm
ξ has at least 22m − 2

3
2m+3 main branches. �

Corollary 1. There exist at least 22m − 2
3
2m+3 elements of the partition Ω2 such that for

some Ω̆2
ij ⊂ Ω2

ij we have H−k
σmξ(Ω̆

2
ij) ⊂ � for all 1 ≤ k ≤ m and

H−m
ξ (Ω̆2

ij) = Rec(2 − 2
m
2 δ, 2−m|πy(Ω2

ij)|).
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Definition 22. The rectangles Ω̆1
ij and Ω̆2

ij , constructed in Lemma 4.3.7 and Corollary 1 of

Lemma 4.3.7 we call domains of the long branches of the maps Pξ and P−1
σmξ, respectively.

Their images we call long branches.

Lemma 4.3.8. For any element Ω1
ij of the partition Ω1, the set Ω1

ij \ Em is a union of

(disjoint) rectangles. The number of rectangles is equal to the number of main branches of

the perturbation pmξy
of the doubling map p.

Proof. We split the argument into several steps.

Claim 1. The projection πy(Ω1
ij \Em) is a union of domains of main branches of the small

perturbation pmξy
of the doubling map. First we shall show that the image of the projection

pnξy
(πy(Ω1

ij \ Em)) ⊂ [−1; 1] for all 1 ≤ n ≤ m. Indeed, assume for a contradiction that for

some 1 < n < m we have pnξy(πy(Ω1
ij \ Em)) 6∈ [−1; 1], and n is the smallest number with

this property. Since the horizontal lines {y = const} ∩ � \Em−1 are invariant under Hn
ξ , we

may conclude that Hn
ξ (Ω1

ij \Em) 6⊂ �, which is a contradiction. Therefore πy(Ω1
ij \Em) is a

subset of the domain of a main branch. Let an interval (a, b) ⊃ πy(Ω1
ij \ Em) be the domain

of the main branch. We shall show that Ω1
i × (a, b) ⊂ Ω1

ij \ Em. Assume that there exists

z ∈ Ω1
i ×(a, b) such that Hn

ξ (z) 6∈ � for some 1 ≤ n ≤ m. Since πy(Hn
ξ (z)) = pnξy

(zy) ∈ [−1; 1],

we conclude πx(Hn
ξ (z)) 6∈ (−1; 1). Observe that, the lines {x = const}∩�\Em−1 are invariant

with respect to Hn
ξ , we get Hn

ξ (zx, πy(Ω1
ij \ Em)) 6∈ �, which is a contradiction. Therefore

(a, b) ⊂ πy(Ω1
ij \ Em) and hence πy(Ω1

ij \Em) is a union of domains of main main branches.

Claim 2. The set {y = const}∩(Ω1
ij\Em) is connected. Indeed, assume that there are three

points z, u,w ∈ {y = const} ∩ (Ω1
ij \ Em) such that zx < ux < wx, with z, w ∈ Ω1

ij \ Em and

u 6∈ Ω1
ij\Em. Then there exists 1 ≤ n ≤ m such that Hn

ξ (u) 6∈ �, and we may assume that n is

the smallest number with such property. Then by invariance of {y = const}∩Ω1
ij \En−1 with

respect to Hn
ξ , we conclude that either Hn

ξ (z) 6∈ � or Hn
ξ (w) 6∈ �, which is a contradiction.
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Claim 3. For any two points z, w ∈ Ω1
ij \ Em such that zy and wy belong to the same

domain of a main branch of pmξy
, we have (zx, wy), (wx, zy) ∈ Ω1

ij \ Em. Indeed, assume for a

contradiction that (zx, wy) 6∈ Ω1
ij \Em. Then choose the smallest n such that Hn

ξ (zx, wy) 6∈ �.

It follows that either πy(Hn
ξ (zx, wy)) 6∈ [−1; 1] or πx(Hn

ξ (zx, wy)) 6∈ [−1; 1], or both. Without

loss of generality suppose that projection of the image πy(Hn
ξ (zx, wy) 6∈ [−1; 1]. Then due to

invariance of {x = const} ∩ � \Em−1 we have πx(Hn
ξ (z)) 6∈ [−1; 1], which is a contradiction.

Summing up, we conclude that the set Ω1
ij \ Em is a union of rectangles and the number

of rectangles is equal to the number of main branches of the map pmξy
in Ω1

j .

�

Corollary 1. In the notation of Lemma 4.2.1, the set Ω2
ij \ E−m is a union of (disjoint)

rectangles for any element Ω2
ij of the partition Ω2. The number of rectangles is equal to the

number of main branches of the perturbation pmςx of the doubling map p.

Lemma 4.3.9. There exist at most 24mδ quartets (i, j, k, l) such that H−2m
ξ (Ω2

kl) ∩ Ω1
ij has

more than one (P, ξ)-domain ∆ that satisfies Hn
ξ (∆) ⊂ � for all 1 ≤ n ≤ 2m. For any

quartet (i, j, k, l) the set H−2m
ξ (Ω2

kl) ∩ Ω1
ij has at most four (P, ξ)-domains with this property.

Proof. Let ∆ be a (P, ξ)-domain in H−2m
ξ (Ω2

kl)∩Ω1
ij such that Hn

ξ (∆) ⊂ � for all 1 ≤ n ≤ 2m.

Then

#{∆ ⊂ H−2m
ξ (Ω2

kl) ∩ Ω1
ij | Hn

ξ (∆) ⊂ � for all 1 ≤ n ≤ 2m} =

= #{∆ ⊂ H−m
σmξ(Ω

2
kl) ∩Hm

ξ (Ω1
ij) | Hn

ξ (∆) ⊂ � for all −m ≤ n ≤ m} =

= #
{

∆ ⊂
(
Ω2
kl \ E−m

)
∩

(
Ω1
ij \ Em

)}
.

By Lemma 4.3.8 and Corollary 1 of Lemma 4.3.8, both sets Ω2
kl \ E−m and Ω1

ij \ Em are

unions of rectangles, and the number of rectangles equal to the number of main branches of

the corresponding doubling maps on the associated intervals. By Lemma 3.2.5 there are at
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most 2mδ intervals Ωi or Ωl that contain two main branches. Thus there are at most 24mδ

quartets (i, j, k, l) such that Ωi or Ωl or both contain two main branches of the maps pmςx and

pmξy
, respectively; and the Lemma follows. �

Using Lemmas 4.3.7 and 4.3.9 and Corollary 1 of Lemma 4.3.7, we get

Corollary 1. Let Υ be a chain of partitions associated to the sequence η ∈ Σδ. Let Ω1 = Υk

and Ω2 = Υk+1 be two consecutive partitions from the chain Υ, and let ξ = σ2m(k−1)η be a

shifted sequence. Then

1. There exist at least 22m − 2
3
2m+3 elements Ω1

ij such that for some Ω̆1
ij ⊂ Ω1

ij we have

Pξ(Ω̆ij) = Rec
(

2−m|πx(Ωij)|, 2 − 2
m
2 δ

)
and dPξ

∣∣
Ω̆ij

=




2−m 0

0 2m



 .

2. There exist at least 22m − 2
3
2m+3 elements Ω2

ij such that for some Ω̆2
kl ⊂ Ω2

kl we have

P−1
ξ (Ω̆ij) = Rec

(
2 − 2

m
2 δ, 2−m|πy(Ωij)|

)
and dP−1

ξ

∣∣
Ω̆ij

=




2m 0

0 2−m



 .

3. There exists at most 24mδ quartets (i, j, k, l) such that the set P−2
ξ (Ω2

kl) ∩ Ω1
ij contains

more than one (P, ξ)-domain ∆ that satisfies dy(P 2
ξ )y

∣∣
∆= 22m.

Proof. Observe that for any 1 ≤ k ≤ 2m and for any z ∈ � \Ek we have F kξ (z) = Hk
ξ (z). �

Lemma 4.3.10. The area of a good (P, ξ)-domain ∆ is very small. More precisely, we have

an upper bound |∆| ≤ 22−4m.

Proof. Recall the definition of good connected components (4.25) and observe

(∆G)klij =
{

∆ ⊂ P−2
ξ (Ω2

kl) ∩ Ω1
ij | ∆ is a (P, ξ)-domain,∀1 ≤ n ≤ 2m : Fnξ (∆) ⊂ �

}
=

=
{

∆ ⊂ P−2
ξ (Ω2

kl) ∩ Ω1
ij) | ∆ is a (P, ξ)-domain,∀1 ≤ n ≤ 2m : Hn

ξ (∆) ⊂ �
}
.

We shall show that for any ∆ ∈ ∆G the area |∆| ≤ 2−2m · |πx(Ω1
ij)| · |πy(Ω2

kl)|. Indeed,

consider the image ∆′ = Pξ(∆). Since Pξ is area-preserving, |∆′| = |∆|. Since Pξ(∆′) ⊂ Ω2
kl,
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the length |πy(∆′)| ≤ 2−m · |πy(Ω2
kl)|; and P−1

σmξ(∆
′) ⊂ Ω1

ij implies |πx(∆′)| ≤ 2−m · |πx(Ω1
ij)|.

Thus

|∆| = |∆′| ≤ 2−2m|πx(Ω1
ij)| · |πy(Ω2

kl)| ≤ 22−4m. (4.37)

�

Corollary 1. The matrix SSG is small. More precisely,

∑

�

∑

�

∣∣(SSG)klij
∣∣ ≤ 24−2m.

Proof. By straightforward calculation, using Lemma 4.3.10,

∑

�

∑

�

∣∣(SSG)klij
∣∣ =

∑

�

∑

�

1
|πx(Ω1

ij)|
·

1
|πy(Ω2

kl)|
·

∑

∆∈∆G

∫

∆
∂x(P 2

ξ )x(z)dz ≤

≤
∑

�

∑

�

1
|πx(Ω1

ij)|
·

1
|πy(Ω2

kl)|
·

∑

∆∈∆G

2−4m|∆| ≤

≤
∑

�

∑

�

1
|πx(Ω1

ij)|
·

1
|πy(Ω2

kl)|
· 4(2−2m|πx(Ω1

ij)| · |πy(Ω2
kl)|) · 2−4m ≤ 24−2m.

�

Now we are ready to prove

Proposition 4.3.1. The matrix UUG has the following properties

1. ‖UUG‖∞ ≤ 4;

2. #{(UUG)klij 6= 1} ≤ 24 1
2mδ.

Proof. By Lemma 4.3.9, for any (i, j, k, l) ∈ �×� we have #(∆G)klij ≤ 4, and by Lemma 4.3.10

we know |∆| ≤ 2−2m · |πx(Ω1
ij)| · |πy(Ω2

kl)|. We calculate

|(UUG)klij | ≤
∑

∆∈(∆G)kl
ij

|∆| · |∂y(P 2
ξ )y| · |πx(Ω1

ij)|
−1 · |πy(Ω2

kl)|
−1 ≤

≤ 4 · (2−2m|πx(Ω1
ij)| · |πy(Ω2

kl)|) · 22m · |πx(Ω1
ij)|

−1 · |πy(Ω2
kl)|

−1 = 4.
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To prove the second part, we recall that by Lemma 4.3.7 there are at least 22m − 2
3
2m+3

elements of the first partition Ω1
ij such that for some Ω̆ij ⊂ Ω1

ij the image is a rectangle

Pξ(Ω̆ij) = Rec(2−m|πx(Ωij)|), 2 − 2
m
2 δ) and Hn

ξ (Ω̆ij) ⊂ � for all 1 ≤ n ≤ m. Similarly

by Corollary 1 of Lemma 4.3.7, there are at least 22m − 2
3
2m+3 elements Ω2

kl such that for

some small rectangle Ω̆kl ⊂ Ω2
kl the preimage P−1

ξ (Ω̆kl) = Rec(2 − 2
m
2 δ, 2−m|πy(Ωij)|) and

H−n
ξ (Ω̆kl) ⊂ � for all 1 ≤ n ≤ m. Then there are at least (22m − 2

3
2m+3 − 2

5
2mδ)2 pairs

Ω1
ij, Ω2

kl such that Pξ(Ω̆ij) ∩ P−1
ξ (Ω̆kl) 6= ∅ which correspond to (UUG)klij 6= 0. If (∆G)klij has

only one element, then it is ∆ = Pξ(Ω̆ij) ∩ P−1
σmξ(Ω̆kl) and |∆| = 2−2m · |πx(Ω1

ij)| · |πy(Ω2
kl)|.

Therefore

(UUG)klij =
1

|πx(Ω1
ij)|

·
1

|πy(Ω2
kl)|

∫

∆
22m = 1.

Summing up, there are at least 24m−2
9
2m+1δ elements (UUG)klij = 1. By Lemma 4.3.9 the set

(∆G)klij has more than one connected component for not more that 24mδ quartets (i, j, k, l).

Therefore at most 24mδ elements satisfy 1 < (UUG)klij ≤ 4. The other elements are zeros. �

Now we proceed to the supremum norm of the matrix UU . Our goal is to prove the

following

Proposition 4.3.2. There exist a constant γ1 < 0.01 such that for M and m sufficiently

large and for µ sufficiently small

max(‖SS‖∞, ‖SU‖∞, ‖US‖∞, ‖UU‖∞) ≤ 2γ1m.

We define two functions on the unit square

tin : � → N tin(z) =
2m∑

j=0

χ�(F jξ (z)); (4.38)

tex : � → N ∩
[
1;

2m
M

]
tex(z) = #{1 ≤ n ≤ 2m : Fn−1

ξ (z) ∈ � and Fnξ (z) 6∈ �}. (4.39)
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Given a sequence ı ∈ {0, 1}N we define a subset of the unit square �

∆ı
def=

{
z ∈ � : χ�(Fnξ (z)) = ın for all n ∈ {0, 1, . . . , 2m}

}
.

Note that some of ∆ı may be empty and they are not necessary connected.

Lemma 4.3.11. There are at most 2m
M 2e

2m+M
2+M non-empty disjoint subsets ∆ı ⊂ �.

Proof. We know the total number of sequences that correspond to the points with tex ≡ s:

#{ı ∈ {0, 1}N | tex(ı) = s} =
(

2m− (s− 1)M
s

)
.

Observe that the number of disjoint subsets ∆ı ⊂ ∆ is equal to the number of different

sequences, which we can estimate in the following way. It is well known that
(2n
n

)
>

(k
s
)

for

all 1 ≤ k ≤ 2n and 1 ≤ s ≤ k. The equality 2m− (s− 1)M = 2s has the solution s0 = 2m+M
2+M

so we conclude
(2m−(s−1)M

s
)

≤
(2s0
s0

)
for all s > s0 = 2m+M

2+M . Using the Stirling formula, we

calculate
(

2s0

s0

)
≤ const ·

(2s0)2s0

s2s0
0

= const · 22s0 = const · 2
4m+2M

2+M

We also may write for all s < s0

(
2m− (s− 1)M

s

)
=

(2m− (s− 1)M)!
s!(2m− (s− 1)M − s)!

≤ (2m− (s− 1)M)s
(e
s

)s
.

By straightforward calculation

d
ds

((2m− (s− 1)M)e
s

)s
=

=
((2m− (s− 1)M)e

s

)s
·
(

ln
2m− (s− 1)M

s
−

s
2m− (s − 1)M

)
> 0

for all s ∈ (1; s0), because

ln
2m− (s − 1)M

s
> ln

2m− (s0 − 1)M
s0

= ln 2 >

>
1
2

=
s0

2m− (s0 − 1)M
>

s
2m− (s− 1)M

.
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We conclude that for s < s0

(
2m− (s− 1)M

s

)
≤ (2s0)s0

es0

ss0
0

= (2e)
2m+M

2+M .

Summing up,
m
M∑

j=1

(
2m− (s− 1)M

s

)
≤
m
M

(2e)
2m+M

2+M .

�

Given a sequence  ∈ {−1, 0, 1}N we define a subset of the unit square

∆
def=

{
z ∈ � : χ�(Fnξ (z)) · sgnπy(Fnξ (z)) = n for all n ∈ {0, 1, . . . , 2m}

}
.

Note that some of ∆ may be empty, and they are not necessary connected.

Definition 23. We introduce to projections of the tower to the zero floor:

πx : X → X πx(z, n) = ((zx, 0), 0);

πy : X → X πy(z, n) = ((0, zy), 0).

Lemma 4.3.12. Given a quartet (i, j, k, l) and a subset Bı
def= ∆ı∩ Ω1

ij ∩P−2
ξ (Ω2

kl), there are

at most 6
2m
M disjoint subsets ∆ such that ∆ ∩Bı 6= ∅.

Proof. Consider a first half of the sequence ı of the length m, the subsequence ı1, ı2, . . . , ım.

It may contain not more than m
M “blocks” of 1’s. We shall show by induction in number of

blocks that

1. There are not more than 6
m
M different sequences 1, . . . , m such that ∆ ∩Bı 6= ∅.

2. The projection of the image πy(Pξ(Bı)) may be covered by not more than 6
m
M intervals

of the total length not more than 2.

In order to use induction, we need to study the original map F : X → X of the tower X

defined on p. 98; we also recall that by definition Pξ = Fmξ : R2 → R2.

Given a sequence ı, there are two possibilities.
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Case 1. All blocks of 1’s in ı are not longer than mα− 1.

Case 2. There are blocks of 1’s in ı of the length mα or longer.

Case 1. Assume that all blocks of 1’s in the sequence ı are not longer than mα− 1.

The base of induction. Assume that there is only one block of 1’s. Then there exist two

numbers 1 ≤ t1 ≤ s1 ≤ m, s1 − t1 ≤ mα:

ık =






1, if t1 ≤ k ≤ s1;

0, otherwise.

We deduce that πy(P t1−1
ξ (∆ı)) belongs to a union of domains of main branches of the per-

turbation ps1−t1
σt1−1ξy

of the doubling map p. We know by Lemma 3.2.7 that the map ps1−t1
σt1−1ξy

has exactly 2s1−t1 main branches, all of them are long and their domains have the length at

least 2t1−s1 > 2−mα. In addition, since

diam(Bı) = diam(∆ı ∩ Ω1
ij ∩ P−2

ξ (Ω2
kl)) ≤ diam(Ω1

ij) < 22−m

we conclude that there exists an interval I ⊂ [−1; 1] such that πy(F t1ξ (Bı)) ⊂ I and1 the

length |I| < 22−m · (1 + µ1)t1−1 < 2−mα < 2t1−s1 . Thus the interval I may intersect not

more than 2 domains of main branches of the map ps1−t1
σt1−1ξy

and therefore there are not more

than 4 sequences k, 1 ≤ k ≤ m corresponding to the sequence ık, 1 ≤ k ≤ m. In addition,

we observe that the image πy(F s1
ξ (Bı)) may be covered by 4 intervals of the total length not

more than 2−m · 2s1−t1 · (1 + µ1)m.

Now assume that there are n blocks of 1’s. Namely, there exist

1 ≤ t1 ≤ s1 < t2 ≤ s2 < . . . < tn ≤ sn ≤ m (4.40)

1We may safely assume that 2α > 1 + µ1.
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such that ti+1 − si ≥ M and si − ti ≤ mα− 1, where

ık =






1, if ti ≤ k ≤ si, for i = 1, . . . , n;

0, otherwise .

(4.41)

Since sn − tn < mα, by Lemma 3.2.7 the doubling map psn−tn
σtn−1ξ has exactly 2sn−tn main

branches, all of which are long, and their domains have length at least 2tn−sn . By induction

assumption, the set πy(F tn−1
ξ (Bı)) may be covered by 4n−1 intervals of the total length

2−m ·
n−1∏

k=1

2sk−tk · (1 + µ1)m ≤ 2−m · 2m−(sn−tn)−M(n−1) = 2tn−sn · 2−M(n−1).

Therefore it may intersect not more than min(2 · 4n−1, 2sn−tn) domains of the main branches

of the map psn−tn
σtn−1ξ. Consequently, there are at most 4n different sequences  of the length m

and the projection of the image πy(F sn
ξ (Bı)) may be covered by 4n intervals of the total

length 2−m ·
n∏

k=1
2sk−tk · (1 + µ1)m ≤ 2−M(n−1)(1 + µ1)m.

Case 2. There exists a subsequence of 1’s of the length mα or longer. Then there is only

one subsequence with this property (since α > 15
16 ). There are two possibilities.

(2A) In the notations introduced in (4.40) and (4.41) above, s1 − t1 > mα.

(2B) In the notations introduced in (4.40) and (4.41) above, sn − tn > mα for some n > 1.

In the case 2A, the map ps1−t1
σt1−1ξ has at least 2s1−t1−2 long branches, and their domains have

length at least 2t1−s1 . At the same time the projection of the image πy(F t1−1
ξ (Bı)) is contained

in an interval I of the length |I| < 2−m · (1 + µ1)t1 < 2t1−s1 . By Lemma 3.2.7, the distance

between any two domains of the main branches of the map ps1−t1
σs1−1ξ which are not long, is at

least 2m(α−1) > 2t1−s1 . Therefore the interval I may intersect not more than three domains

of main branches (two long and one more) of the map ps1−t1
σt1−1ξ. Thus we conclude that there
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are not more than 6 different sequences t1 , . . . s1 , corresponding to the sequence ıt1 , . . . , ıs1 .

The induction step then follows as above, giving 6
m
M sequences.

In the case 2B, the map psn−tn
σtn−1ξ has at least 2sn−tn−2 long branches, and their domains

have length at least 2tn−sn . Then by induction from the Case 1, we know that there are

4n−1 < 4m(1−α)−M sequences corresponding to the sequence ı1, . . . , ıtn−1 and the image of

the set πy(P tn−1
ξ (Bı)) may be covered by 4n−1 intervals of the total length not more than

2tn−sn−M . We see that the total number of long branches of the map psn−tn
σtn−1ξ is greater than

the number of intervals covering the image

2mα−2 > 4m(1−α)−M ,

and the total length of intervals is shorter than a domain of any long branch. Therefore, each

of the intervals may intersect not more than three domains of main branches, and we get at

most 6 · 4k−1 different sequences. In addition, we notice that the image πy(F sn
ξ (Bı)) may be

covered by 6 · 4k−1 intervals.

To complete the proof of the Lemma, we need to calculate number of different sequences

m+1, . . . , 2m such that ∆ ∩ Bı 6= ∅. We would like to apply the argument above to the

inverse map F−m
σmξ = P−1

σmξ. Let us consider the image Pξ(B) ⊂ Ω2
kl. Define a sequence ′,

associated to the iterations of the inverse map Pσmξ−1.

′ : z → {−1, 0, 1}N ′k(z) =






1, if F−k+1
σ2m−kξ(z) ∈ � + ξ2m+1−k

x , zx > ξ2m−k
x ;

−1, if F−k+1
σ2m−kξ(z) ∈ � + ξ2m+1−k

x , zx < ξ2m−k
x ;

0, if F−k+1
σ2m−kξ(z) 6∈ � + ξ2m+1−k

x .

(4.42)

We see that

′k(P
2
ξ z) = 2m−k+1(z) for all 0 ≤ k ≤ m.
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We may associate the sequence ′ to main branches of the doubling map pςx , defined as in

Lemma 4.2.1 p. 101, in the following way.

{
′k ≡ 1, for 0 ≤ t1 ≤ k ≤ t2 ≤ m, t1 < t2

}
⇐⇒

{
πx(F−t1

σ2m−t1 (z)) in a domain of a main branch of pt2−t1−1
σt1 ςx

}
.

Indeed, if, say, ′t1 = 1, then by definition, F−t1+1
σ2m−t1 ξ(z) ∈ � + ξ2m+1−t1

x and zx > ξ2m−t1
x .

Consequently, F−l
σ2m−l−1ξ(z) ∈ � for all t1 ≤ l ≤ t2, and therefore πx(P−t1

σ2m−t1−1ξ(z)) is in a

domain of a long branch of pt2−t1
σ2m−l−1ςx

.

In the case t1 = t2 = 1, i.e. a block of the length 1, we get two sequences corresponding to

a given t1 = 1 and  = −1, similarly to the previous case.

It follows that to any sequence ı of the length 2m correspond 62m/M sequences .

�

Corollary 1. Among all sequences , there are at most 2m
M · 6

2m
M (2e)

2m+M
2+M pairwise disjoint

segments ∆ such that P−2
ξ (Ω2

kl) ∩ Ω1
ij ∩ ∆ 6= ∅.

Now we are ready to prove

Proposition 4.3.2. There exist a constant γ1 < 0.01 such that for M and m sufficiently

large

max(‖UU‖∞, ‖SU‖∞, ‖US‖∞, ‖SS‖∞) ≤ 2γ1m.

Proof. Recall the definition of the matrices, for instance

UUklij =
1

|πx(Ω1
ij)|

·
1

|πy(Ω2
kl)|

∫

P−2
ξ (Ω2

kl)∩Ω1
ij

∂y(P 2
ξ )y(z)dz

and the other three are defined using another three partial derivatives, according to (4.18)–

(4.20). Consider a vertical line segment ∆c = {zx = c} ∩ P−2
ξ (Ω2

kl) ∩ Ω1
ij. Recall that
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according to condition 5 the composition of maps outside of the unit square Fi1 ◦ . . . ◦ FiM ,

where i1, . . . , iM ∈ {1, . . . ,M} is a polynomial of degree at most d. Since P 2
ξ is smooth

on each ∆ ∩ ∆c and P 2
ξ (∆ ∩ ∆c) ⊂ Ω2

kl. We can estimate the length of the image using

condition 5, p. 97:

|P 2
ξ (∆ ∩ ∆c)| ≤ diam(Ω2

kl) · d
2m
M ≤ 2

m
500 ; (4.43)

since the preimage with respect to any of the orthogonal projections πx and πy has at most

d
2m
M connected components.

max
(∫

∆

|∂y(P 2
ξ )y(z)|dz,

∫

∆

|∂x(P 2
ξ )y(z)|dz,

∫

∆

|∂y(P 2
ξ )x(z)|dz,

∫

∆

|∂x(P 2
ξ )x(z)|dz

)
≤

≤
∣∣P 2
ξ (∆ ∩ ∆c)

∣∣ ≤ d
2m
M diam(Ω2

kl).

Therefore

∫

P−2
ξ (Ω2

kl)∩Ω1
ij

max
(
|∂y(P 2

ξ )y(z)|, |∂x(P 2
ξ )y(z)|, |∂y(P 2

ξ )x(z)|, |∂x(P 2
ξ )x(z)|

)
dz =

=
∫

πy(Ω1
ij)

∫

∆c

max
(
|∂y(P 2

ξ )y(z)|, |∂x(P 2
ξ )y(z)|, |∂y(P 2

ξ )x(z)|, |∂x(P 2
ξ )x(z)|

)
dzdc =

=
∫

πy(Ω1
ij)

∑

∆⊂∆c

∫

∆

max
(
|∂y(P 2

ξ )y(z)|, |∂x(P 2
ξ )y(z)|, |∂y(P 2

ξ )x(z)|, |∂x(P 2
ξ )x(z)|

)
dzdc ≤

≤
2m
M

(2e)
2m+M

2+M · 6
2m
M · diam(Ω2

kl) · d
2m
M · |πy(Ω1

ij)|.

Finally,

∫

P−2
ξ (Ω1

ij)∩Ω2
kl

max
(
|∂y(P 2

ξ )y(z)|, |∂x(P 2
ξ )y(z)|, |∂y(P 2

ξ )x(z)|, |∂x(P 2
ξ )x(z)|

)
dz ≤

≤ |πx(Ω1
ij)| · |(πy(Ω2

kl)| ·
2m
M

(2e)
2m+M

2+M · 6
2m
M · d

2m
M .

We can choose µ1 and µ2 sufficiently small so that for m and M large enough and for some

γ1 ≤ 0.01

2m
M

(2e)
2m+M

2+M · 6
2m
M · d

2m
M ≤ 2γ1m.
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�

Lemma 4.3.13. The sum of elements of the matrix |(UUB)klij | with (i, j, k, l) ∈ � × � is at

most 22m · 8mδ.

Proof. Indeed, recall that for any ∆ ⊂ ∆B
ξ there exists 1 ≤ n ≤ 2m such that Fnξ (∆) 6⊂ �

and thus

⋃

ij

⋃

kl

⋃

(∆B)kl
ij

∆ =
⋃

ij

⋃

kl

{
∆ is a (P, ξ)-domain

∣∣Fnξ (∆) 6⊂ � for some 1 ≤ n ≤ 2m
}

=

= {z ∈ � | ∃ 1 ≤ n ≤ 2m : Fnξ (z) 6∈ �} =: B.

We get |B| ≤ 8mδ by induction in number of iterations and conclude

∑

ij

∑

kl

|(UUB)klij | ≤
∫

B
|∂y(P 2

ξ )y(z)|dz ≤ 22m · 8mδ.

�

Remark 14. It follows from the condition 3 on the map F (see p. 97) that partial derivatives

are essentially bounded ‖∂y(P 2
ξ )x‖∞ ≤ (1 + µ)2m, ‖∂x(P 2

ξ )y‖∞ ≤ (1 + µ)2m, and, finally,

‖∂x(P 2
ξ )x‖∞ ≤ (1 + µ)2m. Thus by the same argument as in Lemma 4.3.13 we get

∑

�

∑

�

|(USB)klij | ≤ (1 + µ)2mmδ; (4.44)

∑

�

∑

�

|(SUB)klij | ≤ (1 + µ)2mmδ; (4.45)

∑

�

∑

�

|(SSB)klij | ≤ (1 + µ)2mmδ. (4.46)

4.3.2 The operators WδA and WδP 2
ξ∗ are close on X

We keep the notation introduced in the first paragraph of this Section.

Let Υ be a chain of partitions associated to the sequence η ∈ Σδ. Let Ω1 = Υk and

Ω2 = Υk+1 be two consecutive partitions from the chain Υ. Let ξ def= σ2m(k−1)η (cf. Defi-
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nition of the chain Υ in subsection 4.2.3, p. 101). Let A : XΩ1 → XΩ2 be a linear operator,

approximating the operator P 2
ξ∗, defined according to (4.17).

In this section we establish the following

Proposition 4.3.3. The operators WδA and WδP 2
ξ∗ are close. Namely, for any ν ∈ XΩ1 ,

‖Wδ(P 2
ξ∗ − A)ν‖Ω2,L1 ≤

4 sup diam(Ω2
kl)

δ
· 22m, (4.47)

‖Wδ(P 2
ξ∗ − A)ν‖∞ ≤

4 sup diam(Ω2
kl)

δ
· 2(2+γ1)m; (4.48)

where γ1 is defined by Proposition 4.3.2.

We start with

Lemma 4.3.14. For any element Ω2
kl of the partition Ω2, and for any ν ∈ XΩ1 ,

∫

Ω2
kl

P 2
ξ∗ν =

∫

Ω2
kl

Aν.

Proof. Let ν =
∑

ij ν
ij
s χsΩ1

ij
+

∑
ij ν

ij
u χuΩ1

ij
. Then

P 2
ξ∗ν(z) = dP 2

ξ (P−2
ξ z) · ν(P−2

ξ z) =

=
∑

ij

νijs dP 2
ξ (P−2

ξ z)χsΩ1
ij

(P−2
ξ z) +

∑

ij

νiju dP 2
ξ (P−2

ξ z)χuΩ1
ij

(P−2
ξ z) =

=
∑

ij

νijs
(
∂x(P 2

ξ )x(P−2
ξ z) + ∂x(P 2

ξ )y(P−2
ξ z)

)
·

1
|πx(Ω1

ij)|
χΩ1

ij
(P−2
ξ z)+

+
∑

ij

νiju
(
∂y(P 2

ξ )x(P−2
ξ z) + ∂y(P 2

ξ )y(P−2
ξ z)

)
·

1
|πx(Ω1

ij)|
χΩ1

ij
(P−2
ξ z).

We may integrate

1
|Ω2
kl|

∫

Ω2
kl

∂x(P 2
ξ )x(P−2

ξ z) ·
1

|πx(Ω1
ij)|

· χΩ1
ij

(P−2
ξ z)dz =

=
1

|πx(Ω2
kl)|

·
1

|πy(Ω2
kl)|

·
1

|πx(Ω1
ij)|

∫

P−2
ξ (Ω2

kl)∩Ω1
ij

∂x(P 2
ξ )x(z)dz =

1
|πx(Ω2

kl)|
SSklij .
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Similarly,

1
|πx(Ω2

kl)|
USklij =

1
|Ω2
kl|

∫

Ω2
kl

∂y(P 2
ξ )x(P−2

ξ z)
1

|πx(Ω1
ij)|

χΩ1
ij

(P−2
ξ z)dz;

1
|πx(Ω2

kl)|
SUklij =

1
|Ω2
kl|

∫

Ω2
kl

∂x(P 2
ξ )y(P−2

ξ z)
1

|πx(Ω1
ij)|

χΩ1
ij

(P−2
ξ z)dz;

1
|πx(Ω2

kl)|
UUklij =

1
|Ω2
kl|

∫

Ω2
kl

∂y(P 2
ξ )y(P−2

ξ z)
1

|πx(Ω1
ij)|

χΩ1
ij

(P−2
ξ z)dz.

So we may write

1
|Ω2
kl|

∫

Ω2
kl

P 2
ξ∗ν(z)dz =

∑

ij

νijs
1

|πx(Ω2
kl)|

(SSklij + USklij ) +
∑

ij

νiju
1

|πx(Ω2
kl)|

(SUklij + UUklij ).

Observe that for any Ω2
kl, by definition of the operator A (4.17) on p. 104,

1
|Ω2
kl|

∫

Ω2
kl

Aν =
1

|πx(Ω2
kl)|

(∑

ij

νijs (SSklij + USklij ) +
∑

ij

νiju (SUklij + UUklij )
)
.

�

Lemma 4.3.15. For any partition Ω of the plane R2 into rectangles we have

∫

R2

∣∣max
t∈Ωij

wδ(z − t) − min
t∈Ωij

wδ(z − t)
∣∣dz ≤

4 sup diam(Ωij)
πδ

.

Proof. Given a compact convex subset A ⊂ R2, let γ(A) be the longest line segment con-

necting the points where the function wδ(t) achieves its maximum and minimum in A. By

straightforward calculation

max
t∈Ωij

wδ(z − t) − min
t∈Ωij

wδ(z − t) = max
t∈Ωij −z

wδ(t) − min
t∈Ωij−z

wδ(t) ≤
∫

γ(Ωij−z)
|∇wδ(t)|dt.
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Thus

∫

R2

∣∣max
Ωij

wδ(z − t) − min
t∈Ωij

wδ(z − t)
∣∣dz ≤

∫

R2

∫

γ(Ωij−z)

∣∣∇wδ(t)
∣∣dtdz =

=
∫

R2

∫

γ(Ωij )

∣∣∇wδ(t− z)
∣∣dtdz =

∫

γ(Ωij )

∫

R2

∣∣∇wδ(t− z)
∣∣dzdt =

=
∫

γ(Ωij)

∫

R2

∣∣∇wδ(z)
∣∣dzdt ≤ diam(Ωij)

∫

R2

∣∣∇wδ(z)
∣∣dz =

= diam(Ωij)
∫

R2

1
π2δ4

√
z2
x + z2

y · e
−z2

x−z2
y

2δ2 dz ≤

≤ diam(Ωij)
∫

R2

1
π2δ4 (|zx| + |zy|) · e

−z2
x−z2

y
2δ2 dz ≤

≤ diam(Ωij)
(∫

R

|zx|
π2δ3 e

− z2
x

2δ2 dzx +
∫

R

|zy|
π2δ3 e

−
z2

y
2δ2 dzy

)
≤

≤
4diam(Ωij)

πδ
.

�

Lemma 4.3.16. Let f : R2 → R2 be a bounded integrable function. Assume that for any

element Ω1
ij of a partition Ω1 of the class (m, δ) we have

∫
Ωij
f ≡ 0. Then for any partition

Ω2 of the class (m, δ)

‖Wδf‖Ω2,L1 ≤ 8
sup diam(Ω1

ij)
δ

‖f‖Ω1,L1 ; (4.3.16.1)

‖Wδf‖∞ ≤ 8
sup diam(Ω1

ij)
δ

‖f‖∞. (4.3.16.2)

Proof. By straightforward calculation

‖Wδf‖L1 =
∫

R2

∣∣∣
∫

R2
wδ(z − t)f(t)dt

∣∣∣dz =
∫

R2

∣∣∣
∑

ij

∫

z−Ωij

wδ(t)f(z − t)dt
∣∣∣dz.

We recall
∫
z−Ωij

f(z − t)dt =
∫

Ωij
f(t)dt = 0 and so

∫
z−Ωij

f(z − t)
∫
z−Ωij

wδ(s)dsdt = 0.
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Hence we conclude

‖Wδf‖Ω2,L1 ≤
2−m

inf |πy(Ω2
kl)|

∫

R2

∣∣∣
∑

ij

∫

z−Ω1
ij

(
wδ(t) −

1
|Ω1
ij |

∫

z−Ω1
ij

wδ(s)ds
)
f(z − t)dt

∣∣∣dz ≤

≤
2−m

inf |πy(Ω2
kl)|

∫

R2

∑

ij

∫

z−Ω1
ij

∣∣∣wδ(t) −
1

|Ω1
ij |

∫

z−Ω1
ij

wδ(s)ds
∣∣∣ ·

∣∣f(z − t)
∣∣dtdz ≤

≤
2−m

inf |πy(Ω2
kl)|

∫

R2

∑

ij

∫

z−Ω1
ij

∣∣ max
s∈z−Ω1

ij

wδ(s) − min
s∈z−Ω1

ij

wδ(s)
∣∣ · |f(z − t)|dtdz ≤

≤
2−m

inf |πy(Ω2
kl)|

∫

R2

∑

ij

∣∣ max
s∈z−Ω1

ij

wδ(s) − min
s∈z−Ω1

ij

wδ(s)
∣∣ ·

∫

z−Ω1
ij

|f(z − t)|dtdz =

=
2−m

inf |πy(Ω2
kl)|

∫

R2

∑

ij

∣∣ max
s∈z−Ω1

ij

wδ(s) − min
s∈z−Ω1

ij

wδ(s)
∣∣ ·

∫

Ω1
ij

|f(t)|dtdz =

≤
2−m

inf |πy(Ω2
kl)|

∑

ij

∫

R2

∣∣ max
s∈z−Ω1

ij

wδ(s) − min
s∈z−Ω1

ij

wδ(s)
∣∣ ·

∫

Ω1
ij

|f(t)|dtdz ≤

≤
2−m

inf |πy(Ω2
kl)|

∑

ij

4diam(Ω1
ij)

πδ

∫

Ω1
ij

|f(t)|dt ≤

≤
sup |πy(Ω1

ij)|
inf |πy(Ω2

kl)|
·

4 sup diam(Ω1
ij)

πδ
‖f‖Ω1,L1 ,

by Lemma 4.3.15.

Similarly for the supremum norm

sup |Wδf | = sup
z

∣∣∣
∫

R2
wδ(z − t)f(t)dt

∣∣∣ ≤ sup
z

∣∣∣
∑

ij

∫

Ω1
ij

wδ(z − t)f(t)dt
∣∣∣ =

= sup
z

∣∣∣
∑

ij

(∫

Ω1
ij

wδ(z − t) −
1

|Ω1
ij |

∫

Ω1
ij

wδ(z − s)ds
)
f(t)dt

∣∣∣ ≤

≤ sup
z

∑

ij

∫

Ω1
ij

∣∣max
t∈Ω1

ij

wδ(z − t) − min
t∈Ω1

ij

wδ(z − t)
∣∣ · |f(t)|dt ≤

≤ sup |f | sup
z

∑

ij

|Ω1
ij | ·

∣∣max
t∈Ω1

ij

wδ(z − t) − min
t∈Ω1

ij

wδ(z − t)
∣∣≤

≤ sup |f | sup
z

∑

ij

|Ω1
ij | · sup

t∈Ω1
ij

|∇zwδ(z − t)| · diam(Ω1
ij) ≤

≤ sup |f | sup diam(Ω1
ij) ·

∫

R2
|∇zwδ(z)|dz ≤

sup diam(Ω1
ij)

δ
· sup |f |.

�
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Lemma 4.3.17. Let Ω1 and Ω2 be two partitions of the class G(m, δ). Then for any sequence

ξ ∈ ℓ∞(R2) we have

‖(P 2
ξ∗ν)‖2 ≤ 22m+2‖ν‖1,

Proof. Upper bound for the supremum norm is obvious. Indeed, we have for the first

coordinate

‖(P 2
ξ∗ν)y‖L1 =

∫

R2

∣∣∣(P 2
ξ∗ν)y(z)

∣∣∣dz =

=
∫

R2

∣∣∂x(P 2
ξ )y(P−2

ξ z)νs(P−2
ξ z) + ∂y(P 2

ξ )y(P−2
ξ z)νu(P−2

ξ z)
∣∣dz =

=
∫

R2

∣∣∂x(P 2
ξ )y(z)νs(z) + ∂y(P 2

ξ )y(z)νu(z)
∣∣dz ≤ 22m+1

∫

R2
|νs(z)| + |νu(z)|dz. (4.49)

For the second coordinate we have got

‖(P 2
ξ∗ν)x‖L1 =

∫

R2

∣∣(P 2
ξ∗ν)x(z)

∣∣dz =

=
∫

R2

∣∣∂x(P 2
ξ )x(P−2

ξ z)νs(P−2
ξ z) + ∂y(P 2

ξ )x(P−2
ξ z)νu(P−2

ξ z)
∣∣dz =

=
∫

R2

∣∣∂x(P 2
ξ )x(z)νs(z) + dy(P 2

ξ )x(z)νu(z)
∣∣dz ≤ 22m+1

∫

R2
|νs(z)| + |νu(z)|dz. (4.50)

Therefore

‖P 2
ξ∗ν‖2 =

∑

ij

2−m

|πy(Ω2
ij)|

∫

Ωij

∣∣P 2
ξ∗ν(z)

∣∣dz ≤
2−m

inf |πy(Ω2
ij)|

‖P 2
ξ∗ν‖L1 ≤ m22m+1‖ν‖1.

�

Lemma 4.3.18. In the notations introduced in the beginning of this subsection 4.3.2, p. 127,

the following inequalities on the norm of operators hold true for M and m large enough.

‖UUνu‖Ω2,L1 ≤ 4 · 22m‖ν‖1, (4.3.18.1)

max(‖SUνu‖Ω2,L1, ‖USνs‖Ω2,L1 , ‖SSνs‖Ω2,L1) ≤ 2γ2m‖ν‖1; (4.3.18.2)
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where the constant γ2 satisfies

1 < γ2 =
9
4

+ γ1 + 2 log2(1 + µ1) − α <
3
2
. (4.51)

Proof. Let νu =
∑

ij
νiju χuΩ1

ij
∈ ΦΩ1 be the y-component of a field with the unit norm

‖νu‖ = max
(∑

ij

|νiju | · |πy(Ωij)|, 2
3
4m sup |νiju |

)
= 1,

therefore we will be assuming that
∑

ij
|νiju | ≤ 2m−1 and sup |νiju | ≤ 2− 3

4m. We write down the

formal action of the operator UU on νu

UUνu =
∑

kl

∑

ij

UUklij ν
ij
u χ

u
Ω2

kl
=

∑

�

∑

�

(
UUklij − 1

)
νiju χ

u
Ω2

kl
+

∑

�

∑

�

νiju χ
u
Ω2

kl
+

+
( ∑

R2\�

∑

�

+
∑

�

∑

R2\�

)
UUklij ν

ij
u χ

u
Ω2

kl
+

∑

R2\�

∑

R2\�

UUklij ν
ij
u χ

u
Ω2

kl
. (4.52)

We estimate the norm of each of the four terms separately. Recall that by the choice of the

basis χuΩ2
kl

= 1
|πx(Ω2

kl)|
χΩ2

kl
( 0

1 ) and therefore

‖χuΩ2
kl

‖Ω2,L1 =
2−m

|πy(Ω2
kl)|

∫

Ω2
kl

χuΩ2
kl

= 2−m.

∥∥∥
∑

�

∑

�

(
UUklij − 1

)
νiju χ

u
Ω2

kl

∥∥∥
Ω2,L1

=
∑

�

∣∣∣
∑

�

(
UUklij − 1

)
νiju

∣∣∣ · 2−m ≤

≤ 2−m
∑

�

∑

�

|UUklij − 1| · |νiju | ≤ 2−m sup |νiju |
∑

�

∑

�

|UUklij − 1| ≤

≤ 21− 7
4m ·

∑

�

∑

�

|(UUG)klij + (UUB)klij − 1| ≤

≤ 21− 7
4m ·

∑

�

∑

�

|(UUG)klij − 1| + |(UUB)klij | ≤

≤ 2− 7
4m(22mδ + 2

9
2mδ) ≤ 22 3

4mδ, (4.53)

using Lemma 4.3.13 and the second part of Proposition 4.3.1.

The second part of (4.52) has the following upper bound, since
∑

ij
|νiju | ≤ 2m,

∥∥∥
∑

�

∑

�

νiju χ
u
Ω2

kl

∥∥∥
Ω2,L1

= 2−m
∑

�

∣∣∣
∑

�

νiju
∣∣∣ ≤ 22m · 2m · 21−m ≤ 22m+1.
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The last sum has only finite number of non-zero terms and can be estimated via the supremum

norm. Recall Remark 10: for R = M2(1 + µ1)2m · mδ + 1, any quartet (i, j, k, l) such that

(i, j) ∈ � and (k, l) ∈ R2 \ �R or (i, j) ∈ R2 \ �R and (k, l) ∈ �

SSklij ≡ 0, SUklij ≡ 0, USklij ≡ 0, UUklij ≡ 0.

Therefore

∥∥∥
( ∑

R2\�

∑

�

+
∑

�

∑

R2\�

)
UUklij ν

ij
u χ

u
Ω2

kl

∥∥∥
Ω2,L1

=

=
∥∥∥

( ∑

�R\�

∑

�

+
∑

�

∑

�R\�

)
UUklij ν

ij
u χ

u
Ω2

kl

∥∥∥
Ω2,L1

≤

≤
( ∑

�R\�

∑

�

+
∑

�

∑

�R\�

)
sup |UUklij | · sup |νiju |2−m ≤

≤ 4(R2 − 1)m424m · 2γ1m · 2− 3
4m · 21−m ≤

≤ M2m5δ2(γ1+ 9
4 )m(1 + µ1)2m. (4.54)

We have for the last term, using the bound (4.24) (p. 105)

∥∥∥
∑

R2\�

∑

R2\�

UUklij ν
ij
u χ

u
Ω2

kl

∥∥∥
Ω2,L1

≤
∑

R2\�

|νiju | · 2−m · sup |UUklij | ·M1(1 + µ1)2m ≤

≤ 2m−1 · 2−m · 2γ1m ·M1(1 + µ1)2m = M1 · 2γ1m · (1 + µ1)2m. (4.55)

Summing up the last four together, we get an upper bound ‖UUνu‖Ω2,L1 ≤ 22+2m.

Now we proceed to the last inequality (4.3.18.2). We would like to show that there exists

a constant γ2 satisfying (4.51) such that for M and m large enough:

max
(
‖SUνu‖Ω2,L1 , ‖USνs‖Ω2,L1 , ‖SSνs‖Ω2,L1

)
≤ 2γ2m‖ν‖Ω1,L1.

We shall show that it holds true for the matrix SU , the argument for the matrix US is

similar.
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As before, we may assume for the first component of the vector field νs ∈ ΦΩ1 that1

max
(∑

ij

νijs · |πy(Ωij)|, 2
3
4m sup |νijs |

)
= 1,

and, consequently,
∑

ij
|νijs | ≤ 2m−1 and sup |νijs | ≤ 2− 3

4m. We recall the definition of “good”

and “bad” connected components (4.25) and (4.26) :

(∆G)klij
def=

{
∆ ⊂ P−2

ξ (Ω2
kl) ∩ Ω1

ij | ∆ is a (P, ξ)-domain,∀1 ≤ n ≤ 2m : Fnξ (∆) ⊂ �
}

;

(∆B)klij
def=

{
∆ ⊂ P−2

ξ (Ω2
kl) ∩ Ω1

ij | ∆ is a (P, ξ)-domain,∃1 ≤ n ≤ 2m : Fnξ (∆) 6⊂ �
}
.

We may write, similarly to (4.27)

(SU)klij = (SUG)klij + (SUB)klij ,

where

(SUG)klij : =
1

|πx(Ω1
ij)|

·
1

|πy(Ω2
kl)|

·
∑

∆∈∆G

∫

∆
∂y(P 2

ξ )y(z)dz;

(SUB)klij : =
1

|πx(Ω1
ij)|

·
1

|πy(Ω2
kl)|

·
∑

∆∈∆B

∫

∆
∂y(P 2

ξ )y(z)dz.

Obviously, (SUG)klij ≡ 0. We also recall B = {z ∈ � | ∃ 1 ≤ n ≤ 2m : Fnξ (z) 6∈ �} and observe

that
∑

�

∑

�

|(SUB)klij | ≤
∫

B
|∂x(P 2

ξ )y(z)|dz = 22m · 8mδ.

We may write the action of SU on νs

SUνs =
∑

kl

∑

ij

SUklij ν
ij
s χ

u
Ω2

kl
=

∑

�

∑

�

(SUB)klijν
ij
s χ

u
Ω2

kl
+

+
∑

R2\�

∑

�

SUklij ν
ij
s χ

u
Ω2

kl
+

∑

�

∑

R2\�

SUklij ν
ij
s χ

u
Ω2

kl
+

∑

R2\�

∑

R2\�

SUklij ν
ij
s χ

u
Ω2

kl
.

1We denote the space of essentially bounded, absolutely integrable, piece-wise constant functions, associated

to the partition Ω1 of R by ΦΩ1 .
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We have the following upper bound for the first term, corresponding to the central part of

the matrix

∥∥∥
∑

�

∑

�

(SUB)klijν
ij
s χ

u
Ω2

kl

∥∥∥
Ω2,L1

=
∑

�

∑

�

∣∣(SUB)klij
∣∣ · |νijs | · 2−m ≤

≤ sup |νijs | · 2−m ·
∑

�

∑

�

∣∣(SUB)klij
∣∣ ≤ 22mmδ · 2− 3

4m · 2−m ≤ 2
m
4 mδ.

Repeating the estimates (4.54) and (4.55) above, since ‖SU‖∞ ≤ ‖UU‖∞ ≤ 2γ1m and using

the upper bounds ‖νs‖∞ ≤ 2− 3
4m we obtain

∥∥∥
( ∑

R2\�

∑

�

+
∑

�

∑

R2\�

+
∑

R2\�

∑

R2\�

)
SUklij ν

ij
s χ

u
Ω2

kl

∥∥∥
Ω2,L1

≤

≤ sup
∣∣SUklij

∣∣ · sup |νijs | · (1 + µ1)2m(M1 +M2m5δ · 2
5
2m) ≤

≤ 2γ1m · 2
5
2m− 3

4m(1 + µ1)2m ·M2m5δ ≤ 2γ1m · 2
7
4m(1 + µ1)2m ·M2m5δ.

Summing up altogether, we get

‖SUνs‖Ω2,L1 ≤ 2γ1m · 2
9
4m(1 + µ1)2m ·M2m5δ + 2

m
4 mδ ≤ 2γ2m.

Similarly, ‖USνy‖ ≤ 2γ2m. It only remains to show that for γ2 = γ1 + 9
4 + 2 log2(1 + µ1) − α

and for M and m sufficiently large

‖SSνs‖Ω2,L1 ≤ 2γ2m. (4.56)

Recall Corollary 1 of Lemma 4.3.10:

∑

�

∑

�

∣∣(SSG)klij
∣∣ ≤ 24−2m.

We can get an upper bound for the central part

∥∥∥
∑

�

∑

�

(SSG)klijν
ij
s χ

u
Ω2

kl

∥∥∥
Ω2,L1

=
∑

�

∑

�

∣∣(SSG)klij
∣∣ · |νijs | · 2−m ≤

≤ sup |νijs | · 2−m ·
∑

�

∑

�

∣∣(SSG)klij
∣∣ ≤ 24−2m · 2− 3

4m · 2−m < 4 · 2−3m/2.
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Repeating the estimates (4.54) and (4.55) for the matrix SS and taking into account an upper

bound ‖SS‖∞ ≤ 2γ1m from Proposition 4.3.2, we get

∥∥∥
( ∑

R2\�

∑

�

+
∑

�

∑

R2\�

+
∑

R2\�

∑

R2\�

)
SSklij ν

ij
s χ

u
Ω2

kl

∥∥∥
Ω2,L1

≤

≤ sup
∣∣SUklij

∣∣ · (1 + µ1)2m(M1 +M2m52
5
2mδ) ≤ 2(γ1+ 5

2 )m · (1 + µ1)2m ·M2m5δ.

Thus

∥∥SSνs
∥∥

Ω2,L1
=

∥∥∥
∑

kl

∑

ij

SSklij ν
ij
s χ

s
Ω2

kl

∥∥∥
Ω2,L1

≤

≤ 2(γ1+ 5
2 )m · (1 + µ1)2m ·M2m5δ + 23−3m/2 ≤ 2γ2m.

�

Corollary 1. Under the hypothesis and in the notations of Lemma 4.3.18, the norm of the

operator ‖A‖Ω2 ≤ 22m+2. Namely, ‖Aν‖2 ≤ 22m+2‖ν‖1.

Proof. Recall the definition (4.17) of the operator A : XΩ1 → XΩ2

Aν =
∑

ij

A
(
νijs χ

s
Ω1

ij
+ νiju χ

u
Ω1

ij

)
=

=
∑

ij

∑

kl

(
νijs

(
SSklijχ

s
Ω2

kl
+ SUklij χ

u
Ω2

kl

)
+ νiju

(
USklijχ

s
Ω2

kl
+ UUklij χ

u
Ω2

kl

))
,

The upper bound for L1-norm follows from the parts 4.3.18.1 and 4.3.18.2 of Lemma 4.3.18.
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Now we proceed to the supremum norm.

sup
z

|Aν(z)| =

= sup
z

∣∣∣
∑

ij

∑

kl

(
νijs

(
SSklijχ

s
Ω2

kl
(z)+ SUklij χ

u
Ω2

kl
(z)

)
+ νiju

(
USklijχ

s
Ω2

kl
(z)+ UUklij χ

u
Ω2

kl
(z)

))∣∣∣ ≤

≤
1

inf |πx(Ω2
kl)|

sup
kl

∣∣∣
∑

ij

(
νijs

(
SSklij + SUklij

)
+ νiju

(
USklij + UUklij

))∣∣∣ ≤

≤
1

inf |πx(Ω2
kl)|

· (‖SS‖∞ + ‖SU‖∞ + ‖US‖∞ + ‖UU‖∞) ·
(∑

ij

(|νijs | + |νiju |)
)

≤

≤ 2m · 4 · 2γ1m · 2m ≤ 22+(2+γ1)m.

The Corollary follows from the definition of the norm on p. 100. �

The result we were seeking follows immediately

Proposition 4.3.3. The operators WδA and WδP 2
ξ∗ are close. Namely,

‖Wδ(P 2
ξ∗ − A)ν‖Ω2,L1 ≤

4 sup diam(Ω2
kl)

δ
·

sup |πy(Ω1
ij)|

inf |πy(Ω2
kl)|

· 22m‖ν‖1; (4.57)

‖Wδ(P 2
ξ∗ − A)ν‖∞ ≤

4 sup diam(Ω2
kl)

δ
· 2(2+γ1)m‖ν‖1. (4.58)

Proof. Follows from Lemma 4.3.14, Lemma 4.3.16, the first and second parts of Lemma 4.3.18,

and Corollary 1 of Lemma 4.3.18. �

Corollary 2.

‖Wδ(P 2
ξ∗ − A)ν‖2 ≤

8 sup diam(Ω2
kl)

δ
· 22m‖ν‖1

4.3.3 A pair of cones for the operator A

In this Subsection we construct two cones C1 ⊂ XΩ1 and C2 ⊂ XΩ2 such that A(C1) ⊂ C2,

C2 ≪ C1, and ‖A |C1 ‖ ≥ 2m−1. This is the main result of Section 4.3, which is presented in

Preliminary Dynamo Theorem 8 below.
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Lemma 4.3.19. The operator UU is a small perturbation of the operator
◦
UU . Namely

‖(UU−
◦
UU)ν‖2 ≤ 2(γ1+2 3

4 )mδ‖ν‖1.

Proof. We begin with (Ω2,L1)-norm. Consider a vector field ν ∈ XΩ1 with ‖ν‖1 = 1. We

may assume that
∑

ij
|νiju | ≤ 2m and sup |νiju | ≤ 2− 3

4m. Then

‖(UU−
◦
UU)ν‖Ω2,L1 =

∥∥∥
∑

kl

∑

ij

(UUklij −
◦
UUklij )ν

ij
u χ

u
Ω2

kl

∥∥∥
Ω2,L1

=

=
∑

kl

∣∣∣
∑

ij

(UUklij −
◦
UUklij )ν

ij
u

∣∣∣ · 2−m ≤
∑

kl

∑

ij

∣∣UUklij −
◦
UUklij

∣∣ ·
∣∣νiju

∣∣ · 2−m ≤

≤
∑

�

∑

�

∣∣UUklij −
◦
UUklij

∣∣ ·
∣∣νiju

∣∣ · 2−m+

+
( ∑

R2\�

∑

�

+
∑

�

∑

R2\�

+
∑

R2\�

∑

R2\�

)∣∣UUklij −
◦
UUklij

∣∣ ·
∣∣νiju

∣∣ · 2−m

We have for the first term

∑

�

∑

�

∣∣UUklij −
◦
UUklij

∣∣ ·
∣∣νiju

∣∣ · 2−m =
∑

�

∑

�

∣∣UUklij − 1
∣∣ ·

∣∣νiju
∣∣ · 2−m ≤

≤ ‖UU‖∞ · #{(i, j, k, l) ∈ � × � | UUklij 6= 1} · sup |νiju | · 2−m ≤

≤ 2γ1m · 24 1
2mδ · 2− 3

4m · 2−m ≤ 2(2 3
4 +γ1−α)m.

Recall Remark 10: for R = M2(1 + µ1)2m ·mδ+ 1, any quartet (i, j, k, l) such that (i, j) ∈ �

and (k, l) ∈ R2 \ �R or (i, j) ∈ R2 \ �R and (k, l) ∈ �

SSklij ≡ 0, SUklij ≡ 0, USklij ≡ 0, UUklij ≡ 0.

Since
◦
UUklij ≡ 0 for all (i, j, k, l) ∈ � × (R2 \ �) ∪ (R2 \ �) × � we may write for the second
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term

( ∑

R2\�

∑

�

+
∑

�

∑

R2\�

)∣∣UUklij −
◦
UUklij

∣∣ ·
∣∣νiju

∣∣ · |πy(Ω2
kl)| =

=
( ∑

R2\�

∑

�

+
∑

�

∑

R2\�

)∣∣UUklij
∣∣ ·

∣∣νiju
∣∣ · |πy(Ω2

kl)| =

=
( ∑

�R\�

∑

�

+
∑

�

∑

�R\�

)∣∣UUklij
∣∣ ·

∣∣νiju
∣∣ · |πy(Ω2

kl)| ≤

≤ 21−m#
{

(i, j, k, l) ∈ � × (�R \ �) ∪ (�R \ �) × �
}

· ‖UU‖∞ · sup |νiju | ≤

≤ 21−m · 24m(1 + µ1)2m ·M2m5δ · 2γ1m · 2− 3
4m ≤ m22( 9

4 +γ1−α)m,

where γ2 = 5
2 + γ1 − α+ 2 log(1 + µ1). Finally, for the last term we calculate

∑

R2\�

∑

R2\�

∣∣UUklij −
◦
UUklij

∣∣ ·
∣∣νiju

∣∣ · 2−m ≤ 2−m ·
∑

R2\�

∑

R2\�

(∣∣UUklij
∣∣ +

∣∣ ◦
UUklij

∣∣
)

·
∣∣νiju

∣∣ ≤

≤ 2−m · 2M1(1 + µ1)2m‖UU‖∞
∑

R2\�

|νiju | ≤ (1 + µ1)2m · 2γ1m.

Summing up,

‖(UU−
◦
UU)ν‖Ω2,L1 ≤ m22(2 3

4 +γ1)δ‖ν‖1.

The upper bound for the supremum norm is easy:

‖(UU−
◦
UU)ν‖∞ = sup

z

∥∥∥
∑

kl

∑

ij

(UUklij −
◦
UUklij )ν

ij
u χ

u
Ω2

kl
(z)

∥∥∥ ≤

≤
1

inf |πx(Ω2
kl)|

· sup
kl

∑

ij

∣∣UUklij −
◦
UUklij

∣∣ ·
∣∣νiju

∣∣ ≤

≤
2‖UU‖∞

inf |πx(Ω2
kl)|

·
∑

ij

|νiju | ≤ 2(γ1+2)m+1.

Then

max(‖(UU −
◦
UU)ν‖Ω2,L1 , 2

− 3
4m‖(UU −

◦
UU)ν‖∞) ≤ 2(2 3

4 +γ1)δ‖ν‖1.

�

Let Υ be a chain of partitions associated to the sequence η ∈ Σδ. Let Ω1 = Υk, Ω2 = Υk+1,

and Ω3 = Υk+2 be three consecutive partitions from the chain Υ. Consider the sequence
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ξ def= σ2m(k−1)η (See definition of the chain Υ in subsection 4.2.3, p. 101). Let A : XΩ1 → XΩ2

be a linear operator, approximating the operator P 2
ξ∗, defined according to (4.17). Consider

Cone
(
1,Ω1)

⊂ XΩ1 and Cone
(

2( 3
4 +γ1−α)m,Ω2

)
⊂ XΩ2 ; defined according to the general

definition from p. 100.

Cone
(
1,Ω1) def=

{
ν = ( 0

d )χ� + ψ, ψ ∈ Ω1, ‖ψ‖1 ≤ d,
∑

�

ψiju = 0
}

; (4.59)

Cone
(

2( 3
4 +γ1−α)m,Ω2

)
def=

{
ν = ( 0

d )χ� + ψ, ψ ∈ Ω2, ‖ψ‖2 ≤ d2(γ1+ 3
4 −α)m,

∑

�

ψiju = 0
}
.

(4.60)

Theorem 8 (Preliminary Dynamo Theorem). In the notations introduced above for arbitrary

partition Ω3 of the class G(m, δ),

A : Cone
(
1,Ω1)

→ Cone
(

2( 3
4 +γ1−α)m,Ω2

)

Proof. Consider a piecewise constant vector field ν ∈ Cone
(
1,Ω1)

. By definition of the

Cone
(
1,Ω1)

, we may write ν = ( 0
d )χ� + ψ, where ‖ψ‖ ≤ d and

∑

�
ψiju = 0. We deduce

‖νs‖ = ‖ψs‖ ≤ d and ‖ψu‖ ≤ d. Moreover, since

∫

�

◦
UUψu =

∫

�

∑

�

∑

ij

◦
UUklijψ

ij
u χ

u
Ω2

kl
=

∑

�

∫

�

∑

kl

ψiju χ
u
Ω2

kl
=

=
∑

�

ψiju

∫

�

∑

�

1
|πx(Ωkl)|

χΩ2
kl

=
∑

�

ψiju
∑

�

|πy(Ω2
kl)| = 2m+1

∑

�

ψiju . (4.61)

We conclude that the condition
∫

�

◦
UUψu = 0 is equivalent to

∑

�

ψiju = 0 (4.62)
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By definition of A we write

Aν =
∑

ij

A
(
νijs χ

s
Ω1

ij
+ νiju χ

u
Ω1

ij

)
=

=
∑

ij

∑

kl

(
νijs

(
SSklijχ

s
Ω2

kl
+ SUklij χ

u
Ω2

kl

)
+ νiju

(
USklijχ

s
Ω2

kl
+ UUklij χ

u
Ω2

kl

))
=

=
∑

ij

∑

kl

(
νijs

(
SSklijχ

s
Ω2

kl
+ SUklij χ

u
Ω2

kl

)
+ νiju US

kl
ij χ

s
Ω2

kl

)
+

+
∑

kl

∑

ij

(
UUklij −

◦
UUklij

)
νiju χ

u
Ω2

kl
+

∑

kl

∑

ij

◦
UUklijν

ij
u χ

u
Ω2

kl
. (4.63)

By Lemma 4.3.19 we know

∥∥∥
∑

kl

∑

ij

(
UUklij −

◦
UUklij

)
νiju χ

u
Ω2

kl

∥∥∥
2

≤ 22 3
4 +γ1−αd. (4.64)

Using the third equality of Lemma 4.3.18, we get (recall γ2 = γ1 + 21
4 + 2 log2(1 + µ1) − α)

∥∥∥
∑

ij

∑

kl

(
νijs

(
SSklij χ

s
Ω2

kl
+ SUklij χ

u
Ω2

kl

)
+ νiju US

kl
ijχ

s
Ω2

kl

)∥∥∥
Ω2,L1

≤ 3 · 2γ2md.

The supremum norm estimate is similar to the supremum norm of A

sup
z

∣∣∣
∑

ij

∑

kl

(
νijs

(
SSklij χ

s
Ω2

kl
(z) + SUklij χ

u
Ω2

kl
(z)

)
+ νiju US

kl
ijχ

s
Ω2

kl
(z)

)∣∣∣ ≤

≤
1

inf |πx(Ω2
kl)|

sup
kl

∣∣∣
∑

ij

(
νijs

(
SSklij + SUklij

)
+ νiju US

kl
ij

)∣∣∣ ≤

≤
1

inf |πx(Ω2
kl)|

· (‖SS‖∞ + ‖SU‖∞ + ‖US‖∞) ·
(∑

ij

(|νijs | + |νiju |)
)

≤

≤ 2m · 4 · 2γ1m · 2md ≤ 22+(2+γ1)md.

Thus

∥∥∥
∑

ij

∑

kl

(
νijs

(
SSklijχ

s
Ω2

kl
+ SUklij χ

u
Ω2

kl

)
+ νiju US

kl
ijχ

s
Ω2

kl

)∥∥∥
2

≤

≤ max(22+( 3
2 +γ1)m, 3 · 2γ2m)d = 3 · 2γ2md. (4.65)
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We expand νu = dχ� + ψu and observe, using Lemma 4.3.1 and equality (4.22)

◦
UUχ� =

∑

�

∑

�

◦
UUklijχΩ2

kl
= 22mχ�. (4.66)

By definition of the (Ω2,L1)-norm,

∥∥∥χuΩ2
kl

∥∥∥
Ω2,L1

=
2−m

|πy(Ωkl)|

∫

Ω2
kl

χΩ2
kl

(z)

|πx(Ω2
kl)|

dz = 2−m.

Using (4.62), we calculate the norm

∥∥∥
∑

kl

∑

ij

◦
UUklijψ

ij
u χ

u
Ω2

kl

∥∥∥
Ω2,L1

≤
∥∥∥

∑

�

∑

�

◦
UUklijψ

ij
u χ

u
Ω2

kl

∥∥∥
Ω2,L1

+ (4.67)

+
∥∥∥

( ∑

R2\�

∑

�

+
∑

�

∑

R2\�

+
∑

R2\�

∑

R2\�

) ◦
UUklijψ

ij
u χ

u
Ω2

kl

∥∥∥
Ω2,L1

≤

≤ 2−m
∑

�

∣∣∣
∑

�

ψiju
∣∣∣ + 2−m

∑

R2\�

∑

R2\�

|
◦
UUklij | · |ψiju | · |πy(Ω2

kl)| ≤

≤ 2−m(1 + µ1)2m sup
R4\�×�

|
◦
UUklij | · sup |ψiju | ≤ 2−m(1 + µ1)2m · 2γ1m · d2−m/2 ≤

≤ d2−3m/2(1 + µ1)2m · 2γ1m. (4.68)

We shall estimate the supremum norm as well

sup
z

∣∣∣
∑

kl

sup
ij

◦
UUklijψ

ij
u χ

u
Ω2

kl
(z)

∣∣∣ ≤
1

|πx(Ω2
kl)|

sup
kl

∣∣∣
∑

ij

◦
UUklijψ

ij
u

∣∣∣ ≤

≤
1

|πx(Ω2
kl)|

· sup |
◦
UUklij | ·

∑

ij

|ψiju | ≤ d(1 + µ)2m · 22m.

Then

∥∥∥
∑

kl

∑

ij

◦
UUklijψ

ij
u χ

u
Ω2

kl

∥∥∥
Ω2

≤

≤ d · max
(
2−3m/2(1 + µ1)2m · 2γ1m, (1 + µ)2m · 23m/2)

= d(1 + µ)2m · 23m/2. (4.69)
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Now we substitute (4.64), (4.65), and (4.66) to (4.63) and obtain Aν = d22mχ� +ψ1, where

ψ1 =
∑

ij

∑

kl

(
νijs

(
SSklij χ

s
Ω2

kl
+ SUklij χ

u
Ω2

kl

)
+ νiju US

kl
ij χ

s
Ω2

kl

)
+

+
∑

kl

∑

ij

(
UUklij −

◦
UUklij

)
νiju χ

u
Ω2

kl
+

∑

kl

∑

ij

◦
UUklijψ

ij
u χ

u
Ω2

kl
. (4.70)

with the norm (recall γ2 = γ1 + 9
4 + 2 log2(1 + µ1) − α).

‖ψ1‖Ω2 ≤ d2γ2m + d2(2 3
4 +γ1−α)m + d(1 + µ)2m2

3
2m ≤ d21+(2 3

4 +γ1−α)m ≤

≤ d‖
◦
UUχ�‖Ω2 · 2( 3

4 +γ1−α)m.

We would like to write ψ1
y as a sum ψ1

y = bχ� + φ with
∫

�

◦
UUφ = 0. We may choose

b =
∫

�

◦
UUψ1

y
∫

�

◦
UUχ�

. (4.71)

Using (4.66) we get
∫

�

◦
UUχ� = 22m+2. Using (4.70) we get

ψ1
y =

∑

kl

∑

ij

νijs SU
kl
ij χ

u
Ω2

kl
+

∑

kl

∑

ij

(
UUklij −

◦
UUklij

)
νiju χ

u
Ω2

kl
+

∑

kl

∑

ij

◦
UUklijψ

ij
u χ

u
Ω2

kl
. (4.72)

Apply (4.61) to ψ1
y

∫

�
ψ1
y = 2m+1

∑

kl

∑

ij

(
SUklij ν

ij
u +

(
UUklij −

◦
UUklij

)
νiju +

◦
UUklijψ

ij
u

)
.

We may obtain an upper bound

∣∣∣
∫

�
ψ1
y

∣∣∣ ≤ 2m+1
(∣∣∣

∑

kl

∑

ij

SUklij ν
ij
s

∣∣∣ +
∣∣∣
∑

kl

∑

ij

(
UUklij −

◦
UUklij

)
νiju

∣∣∣ +
∣∣∣
∑

kl

∑

ij

◦
UUklijψ

ij
u

∣∣∣
)
.

From Lemma 4.3.19 it follows that

∣∣∣
∑

kl

∑

ij

(
UUklij −

◦
UUklij

)
νiju

∣∣∣ ≤ 2m · 2(2 3
4 +γ1−α)md.

Using (4.68) we deduce

∣∣∣
∑

kl

∑

ij

◦
UUklijψ

ij
u

∣∣∣ ≤ d(1 + µ)2m · 2− m
2 · 2γ1m(1 + µ)2m.
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From the third part (4.3.18.2) of Lemma 4.3.18 we get

∣∣∣
∑

ij

∑

kl

SUklij ν
ij
s

∣∣∣ ≤ 2(γ2+1)md.

Summing up the last three together, we get

∣∣∣
∫

�
ψ1
y

∣∣∣ ≤ 3d · 2(3 3
4 +γ1−α)m. (4.73)

We conclude that the ratio (4.71) is bounded by b ≤ 2(1 3
4 +γ1−α)m ≪ 22m.

Therefore Aν = d(22m + b)( 0
1 )χ� + ( ψ

1
x
φ ) ∈ Cone

(
2( 3

4 +γ1−α)m,Ω2
)

and ‖Aν‖ ≥ d22m−1.

�

4.4 An invariant cone for the operator W δ
2m

P 2
t∗W δ

2m

The main goal of this Section is to get rid of the dependence of the sequence in the Pre-

liminary Dynamo Theorem. We exploit properties of the Weierstrass transform, and con-

struct an invariant cone for the operator W δ
2m
P 2
t∗W δ

2m
, which is independent of the choice

of ‖t‖ ≤ δ = 2−mα.

4.4.1 Discretization and the Weierstrass transform toolbox

In this Subsection we establish the fact that the image of the Weierstrass transform may

be very well approximated by piecewise-constant vector fields associated to some canonical

partition.

Two-dimensional discretization operator on vector fields on the real plane, associated to a

partition Ω, we define by

DΩ : L(R2) ∩ L∞(R2) → X DΩv
def=

∑

ij

(
dijs χ

s
Ωij

+ diju χ
u
Ωij

)
, (4.74)

where

dijs
def=

1
|πy(Ωij)|

∫

Ωij

vs and diju
def=

1
|πy(Ωij)|

∫

Ωij

vu. (4.75)
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In this section we assume that Ω1, Ω2, and Ω3, are three arbitrary partitions of the

class G(m, δ), defined on p. 102. In particular, all three partitions satisfy Lemma 4.2.2.

Lemma 4.4.1. Let ν ∈ X be a bounded vector field with absolutely integrable components

in R2. Then there exists a constant γ3 > 0, that depends on δ and on the size of partition

elements, such that

‖W δ
m
ν −DΩ2W δ

m
ν‖2 ≤ 2−γ3m‖ν‖1.

One may choose γ3 = 1 − log2 δ
m + 2 log2 m

m = 1 − α+ 2 log2 m
m < 1 − α+ γ1.

Proof. We shall show that the inequality holds true for any bounded and integrable function

f : R2 → R first. We may write by definition

Wδf(z) =
∫

R2
wδ(z − t)f(t)dt,

and for the discretization operator we have that

DΩ2Wδf(z) =
∑

ij

1
|πy(Ω2

ij)|

∫

Ω2
ij

∫

R2
wδ(s− t)f(t)dtds · χuΩ2

ij
(z) =

=
∫

R2
f(t)

∑

ij

1
|Ω2
ij|

∫

Ω2
ij

wδ(s− t)ds · χΩ2
ij

(z)dt.
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Therefore, (Ω2,L1) norm may be bounded as following:

‖Wδf −DΩ2Wδf‖Ω2,L1 =
∑

ij

2−m

|πy(Ω2
ij)|

∫

Ω2
ij

∣∣Wδf(z) −WδDΩ2f(z)
∣∣dz =

=
∑

ij

2−m

|πy(Ω2
ij)|

∫

Ω2
ij

∣∣∣
∫

R2
f(t)

(
wδ(z − t) −

∑

kl

1
|Ω2
kl|

∫

Ω2
kl

wδ(s− t)ds · χΩ2
kl

(z)
)

dt
∣∣∣dz ≤

≤
∫

R2
|f(t)|

∑

ij

2−m

|πy(Ω2
ij)|

∫

Ω2
ij

∣∣∣wδ(z − t) −
∑

kl

1
|Ω2
kl|

∫

Ω2
kl

wδ(s − t)ds · χΩ2
kl

(z)
∣∣∣dzdt ≤

≤
∫

R2
|f(t)|dt · sup

t

∑

ij

2−m

|πy(Ω2
ij)|

∫

Ω2
ij

∣∣∣wδ(z − t) −
∑

kl

1
|Ω2
kl|

∫

Ω2
kl

wδ(s− t)ds · χΩ2
kl

(z)
∣∣∣dz ≤

≤
∫

R2
|f(t)|dt · sup

t

∑

ij

2−m

|πy(Ω2
ij)|

∫

Ω2
ij

∣∣∣wδ(z − t) −
1

|Ω2
ij |

∫

Ω2
ij

wδ(s − t)ds
∣∣∣dz ≤

≤
∫

R2
|f(t)|dt · sup

t

∑

ij

2−m

|πy(Ω2
ij)|

∫

Ω2
ij

∣∣∣max
z
wδ(z − t) − min

z
wδ(z − t)

∣∣∣dz. (4.76)

We have to find an upper bound for the last term:

sup
t

∑

ij

2−m

|πy(Ω2
ij)|

∫

Ω2
ij

∣∣∣max
s∈Ω2

ij

wδ(s − t) − min
s∈Ω2

ij

wδ(s − t)
∣∣∣dz ≤

≤ 2−m sup
t

∑

ij

|πx(Ω2
ij)| ·

∣∣max
z∈Ω2

ij

wδ(z − t) − min
z∈Ω2

ij

wδ(z − t)
∣∣ ≤

≤ 2−m sup
t

∑

ij

|πx(Ω2
ij)| · |diam(Ω2

ij)| · sup
z∈Ω2

ij

|∇zwδ(z − t)| =

= 2−m sup
t

∑

ij

|diam(Ω2
ij)|

|πy(Ω2
ij)|

· sup
z∈Ω2

ij

|∇zwδ(z − t)| · |Ω2
ij| ≤

≤ 2−m sup
ij

|diam(Ω2
ij)|

|πy(Ω2
ij)|

· sup
t

∑

ij

sup
z∈Ω2

ij

|∇zwδ(z − t)| · |Ω2
ij| ≤

≤ 2−m sup
ij

|diam(Ω2
ij)|

|πy(Ω2
ij)|

·
∫

R2
|∇zwδ(z)|dz ≤

2−m

δ
sup
ij

|diam(Ω2
ij)|

|πy(Ω2
ij)|

. (4.77)

Therefore substituting (4.77) to (4.76) we conclude

‖Wδf −DΩ2Wδf‖Ω2,L1 ≤
sup |πy(Ω1

ij)|
δ

· sup
kl

|diam(Ω2
kl)|

|πy(Ω2
kl)|

‖f‖Ω1,L1 . (4.78)
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Similarly, for the supremum norm

‖DΩ2Wδνs −Wδνs‖∞ =

= sup
s

∣∣∣
∫

R2
wδ(s− t)νs(t)dt−

∑

ij

1
|Ω2
ij|

∫

R2
wδ(z − t)dtdzχΩ2

ij
(s)

∣∣∣ =

= sup
ij

sup
s∈Ω2

ij

∣∣∣
∫

R2
wδ(s− t)νs(t)dt−

1
|Ω2
ij|

∫

Ω2
ij

∫

R2
wδ(z − t)νs(t)dtdz

∣∣∣ =

= sup
ij

∣∣∣max
s∈Ω2

ij

∫

R2
wδ(s− t)νs(t)dt− min

s∈Ω2
ij

∫

R2
wδ(s − t)νs(t)dt

∣∣∣ ≤

≤ sup
Ω2

ij

∫

γ(Ω2
ij )

∣∣∇
∫

R2
wδ(s− t)νs(t)dt

∣∣ds, (4.79)

where γ(Ω2
ij) is a line segment connecting the points of maxima and minima of the integrand

in Ω2
ij. We proceed therefore

‖DΩ2Wδνs −Wδνs‖∞ ≤ sup diam(Ω2
ij) · sup

s

∣∣∣∇s

∫

R2
wδ(s− t)νs(t)dt

∣∣∣ ≤

≤ sup diam(Ω2
ij) · sup |ν| · sup

s

∫

R2

∣∣∣∇swδ(s− t)
∣∣∣dt ≤

≤ sup diam(Ω2
ij) · sup |ν| ·

∫

R2

1
π2δ4

√
t2x + t2y · e−

t2
x−t2

y
2δ2 dt ≤

≤
sup diam(Ω2

ij)
πδ

‖ν‖∞. (4.80)

We put (4.78) and (4.80) together, and conclude that we may find a constant γ3 > 0 such

that

max
(m sup |πy(Ω1

ij)|
δ

· sup
kl

|diam(Ω2
kl)|

|πy(Ω2
kl)|

,
m sup diam(Ω2

ij)
δ

)
= 2−γ3m.

�

Remark 15. It follows from the properties of partitions of the class G(m, δ), Lemma 4.2.2,

that γ3 < 1 − α and it may be chosen arbitrary close to 1 − α.
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Lemma 4.4.2. Let Ω be a partition of R2 the class G(m, δ). Then

‖Wδχ� −DΩWδχ�‖Ω ≤ 2−m/4; (4.4.2.1)

‖Wδχ� − χ�‖Ω ≤ 2−m/4. (4.4.2.2)

Proof. We start with the first inequality. The upper bound for the supremum norm is trivial.

Indeed, observe that for any non-negative integrable function f and any element Ωij

sup
Ωij

f ≥
1

|Ωij|

∫

Ωij

f > 0,

and, consequently,

sup
Ωij

∣∣∣f −
1

|Ωij |

∫

Ωij

f
∣∣∣ ≤ sup

Ωij

|f |.

Therefore

sup
z

∣∣∣
∫

�
wδ(z − t)dt−

∑

ij

1
|Ωij|

∫

Ωij

∫

�
wδ(z − t)dtdsχΩij(z)

∣∣∣ =

= sup
ij

sup
z∈Ωij

∣∣∣
∫

�
wδ(z − t)dt−

1
|Ωij |

∫

Ωij

∫

�
wδ(s− t)dtds

∣∣∣ ≤ sup
ij

sup
z∈Ωij

∣∣∣
∫

�
wδ(z − t)dt

∣∣∣≤ 1.

Now we consider (Ω,L1)-norm. Let k be such that ek > 2m and k < m. Introduce three sets

of indices:

r1 : = {(i, j) ∈ Z2 | Ωij ⊂ �1−kδ};

r2 : = {(i, j) ∈ Z2 | Ωij ⊂ �1+kδ, Ωij 6⊂ �1−kδ};

r3 : = {(i, j) ∈ Z2 | Ωij 6⊂ �1+kδ}.

We split the sum of integrals in three parts:

∑

kl

2−m

|πy(Ωkl|

∫

Ωkl

∣∣∣
∫

�
wδ(z − t)dt−

∑

ij

1
|Ωij |

∫

Ωij

∫

�
wδ(s− t)dtdsχΩij(z)

∣∣∣dz =

∑

ij

2−m

|πy(Ωij|

∫

Ωij

∫

Ωij

∣∣∣
∫

�
wδ(z − t)dt−

1
|Ωij |

∫

Ωij

∫

�
wδ(s− t)dtds

∣∣∣dz

=
(∑

r1

+
∑

r2

+
∑

r3

) 2−m

|πy(Ωij |

∫

Ωij

∣∣∣
∫

�
wδ(z − t)dt−

1
|Ωij |

∫

Ωij

∫

�
wδ(s− t)dtds

∣∣∣dz. (4.81)
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We estimate the three sums separately.

Observe that for any (i, j) ∈ r1 and any z ∈ Ωij ⊂ �1−kδ

1 >
∫

�
wδ(z − t)dt =

∫

�−z
wδ(t)dt ≥

∫ kδ

−kδ

∫ kδ

−kδ
wδ(t)dtxdty =

∫ k

−k

∫ k

−k
w1(t)dt ≥ 1 − 4e−k.

Therefore

∑

r1

2−m

|πy(Ωij)|

∫

Ωij

∣∣∣
∫

�
wδ(z − t)dt−

1
|Ωij|

∫

Ωij

∫

�
wδ(s − t)dtds

∣∣∣dz ≤

≤
∑

r1

2−m

|πy(Ωij)|

∫

Ωij

∣∣∣1 −
1

|Ωij |

∫

Ωij

(1 − 4e−k)
∣∣∣dz ≤

2−m

inf |πy(Ωij)|

∑

r1

4e−k|Ωij| ≤

≤
(1 − kδ)2

2mek inf |πy(Ωij)|
≤ sup diam|Ωij |. (4.82)

Observe that for any (i, j) ∈ r2 and any z ∈ Ωij

sup
z∈Ωij

∣∣∣
∫

�
wδ(z − t)dt−

1
|Ωij|

∫

Ωij

∫

�
wδ(s− t)dtds

∣∣∣ ≤

≤ sup
z∈Ωij

∣∣∣∇z

∫

�
wδ(z − t)dt

∣∣∣ · diam(Ωij) ≤ sup
z∈Ωij

∫

�

∣∣∣∇zwδ(z − t)
∣∣∣dt · diam(Ωij) =

= sup
z∈Ωij

∫

�

1
π2δ4

√
(zx − tx)2 + (zy − ty)2 · e− (zx−tx)2−(zy−ty)2

2δ2 dt · diam(Ωij) ≤

≤ sup
z∈Ωij

∫

�

1
π2δ4

(
|zx − tx| + |zy − ty|

)
· e− (zx−tx)2−(zy−ty)2

2δ2 dt · diam(Ωij) ≤
4diam(Ωij)

π2δ
.

Therefore

∑

r2

∫

Ωij

∣∣∣
∫

�
wδ(z − t)dt−

1
|Ωij|

∫

Ωij

∫

�
wδ(s− t)dtds · χΩij (z)

∣∣∣dz ≤

≤
∑

r2

|Ωij |
4diam(Ωij)

δ
≤

(
(1 + kδ)2 − (1 − kδ)2)4 sup diam(Ωij)

δ
≤ 16k sup diam(Ωij).

(4.83)

Finally, for the third term we cut r3 into squared annuli

ain : = {(i, j) ∈ r1, | Ωij ⊂ �1+(k+n)δ, Ωij 6⊂ �1+(k+n−1)δ}.
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Obviously,
∞⋃

n=0
ain = r1, and

∑

ain
|Ωij | ≤ 2δ + δ2(2k + 2n− 1). Therefore,

∑

r1

∫

Ωij

∣∣∣
∫

�
wδ(z − t)dt−

1
|Ωij|

∫

Ωij

∫

�
wδ(s− t)dtds

∣∣∣dz =

=
∞∑

n=0

∑

ain

∫

Ωij

∣∣∣
∫

�
wδ(z − t)dt−

1
|Ωij|

∫

Ωij

∫

�
wδ(s− t)dtds

∣∣∣dz =

=
∞∑

n=0

∑

ain

|Ωij | · sup
z∈Ωij

∣∣∣
∫

�
wδ(z − t)dt−

1
|Ωij |

∫

Ωij

∫

�
wδ(s− t)dtds

∣∣∣ ≤

≤
∞∑

n=0

∑

ain

|Ωij | · diam(Ωij) · sup
z∈Ωij

∫

�

∣∣∣∇zwδ(z − t)
∣∣∣dt ≤

≤
∞∑

n=0

∑

ain

|Ωij| · diam(Ωij) ·
4
π2δ

· e− (k+n)2

2 ≤ 4 sup diam(Ωij). (4.84)

Substituting up (4.82), (4.83), and (4.84) to (4.81):

‖W δ
m
χ� −DΩW δ

m
χ�‖Ω < 32m sup diam(Ωij).

We conclude, using the second part of Lemma 4.2.2: Ωij ⊂ Rec(21−m, 21−m)

‖Wδχ� −DΩWδχ�‖Ω ≤ max(32m sup diam(Ωij), 2−m/4) = 2−m/4.

Now we consider the second inequality (4.4.2.2). Obviously, ‖Wδχ� − χ�‖∞ ≤ 1. We

proceed to the weighted (Ω,L1)-norm. We shall show that

‖Wδχ� − χ�‖Ω,L1 =
∑

ij

2−m

|πy(Ωij)|

∫

Ωij

|Wδχ� − χ�| ≤
12δ

2m inf |πy(Ωij)|
. (4.85)

By straightforward calculation

∑

ij

2−m

|πy(Ωij)|

∫

Ωij

|Wδχ� − χ�| =
∑

ij

2−m

|πy(Ωij)|

∫

Ωij

∣∣∣
∫

�
wδ(z − t)dt− χ�(z)

∣∣∣dz ≤

≤
2−m

inf |πy(Ωij)|
·
(∫

R2\�

∣∣∣
∫

�
wδ(z − t)dt

∣∣∣dz +
∫

�

∣∣∣
∫

�
wδ(z − t)dt− 1

∣∣∣dz
)
. (4.86)

Recall the error function

erf(z) : =
∫ z

0

2√
π
e− x2

2 dx;
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and its antiderivative
∫

erf(z)dz = z erf(z) +
e−z2

√
π
.

We estimate each of two terms of (4.86) separately.

∫

�

1√
2πδ

e− (x1−t1)2

2δ2 dx1dt1 =

=
∫ 1

−1

∫ 1−t1

−1−t1

1
√

2πδ
e− x2

1
2δ2 dx1dt1 =

∫ 1

−1

∫ 1−t1√
2δ

−1−t1√
2δ

1
√
π
e−x2

1dx1dt1 =

=
1
2

∫ 1

−1

(∫ 1−t1√
2δ

0

2
√
π
e−x2

1dx1 +
∫ 1+t1√

2δ

0

2
√
π
e−x2

1dx1

)
dt1 =

=
1
2

∫ 1

−1
erf

(1 − t1√
2δ

)
+ erf

(1 + t1√
2δ

)
dt1 =

=
δ

√
2

(∫ √
2/δ

0
erf(z)dz −

∫ 0

−
√

2/δ
erf(z)dz

)
=

=
δ

√
2

((
z erf(z) +

e−z2

√
π

)∣∣∣
√

2/δ

0
−

(
z erf(z) +

e−z2

√
π

)∣∣∣
0

−
√

2/δ

)
=

= 2 erf
(√

2
δ

)
+

√
2
π
δ(e−2/δ2

− 1) ≥ (2 − δ)(1 − e−2/δ2
).

Therefore for the first term of (4.86) we have

∫

�

∣∣∣
∫

�
wδ(z − t)dt− 1

∣∣∣dz =
∫

�

(
1 −

∫

�
wδ(z − t)dt

)
dz =

= 4 −
(∫

�

1
√

2πδ
e− (x1−t1)2

2δ2 dx1dt1
)2

≤ 4 − (2 − δ)2(1 − e−2/δ2
)2 ≤ 4δ. (4.87)

We claim
∫

R2\�

∫

�
wδ(z − t)dtdz ≤ 8δ. (4.88)

Indeed, using approximation erf(x) = 1 − 2√
π

∫ ∞
x e−x2dx ≥ 1 − e−x for large x,

∫ 1

−1

∫ +∞

1

1√
2πδ

e− (x1−t1)2

2δ2 dx1dt1 =
1
2

∫ 1

−1

∫ +∞

1−t1√
2δ

√
2πe−x2

1dx1dt1 =

= 1 −
1
2

∫ 1

−1
erf

(1 − t1√
2δ

)
dt1 = 1 +

1
2

∫ 0

−
√

2/δ
erf(z)dz = 1 +

1
2

(
z erf(z) +

e−z2

√
π

)∣∣∣
0

−
√

2/δ
=

= 1 +
1
2

( 1
√
π

−
√

2
δ

erf
(√

2
δ

)
−
e−2/δ2

√
π

)
≤ 1 −

(
1 − e−2/δ2 )

+
δ

√
2π

−
e−2/δ2

√
2π

≤ δ.
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Therefore,
∫ +∞

1

∫ +∞

1

∫

�
wδ(z − t)dtdz ≤ 4δ2;

and, similarly,
∫ +∞

1

∫ 1

−1

∫ 1

−1

∫ 1

−1
wδ(z − t)dtdz ≤ 2δ.

The claim (4.88) follows and hence the inequality (4.85). �

Lemma 4.4.3. Let Ω1 and Ω2 be two arbitrary partitions of R2 of the class G(m, δ). Then

An upper bound for the norm of the Weiertstrass transform is given by

‖Wδν‖2 ≤ sup |πy(Ω2
kl)| · sup |πx(Ω1

ij)| ·m2Nδ
δ2 · ‖ν‖1.

Proof. Consider a function f ∈ L1(R2) ∩ L∞(R2) with ‖f‖Ω1 = 1. Then

∑

ij

2−m

|πy(Ω1
ij)|

∫

Ω1
ij

|f | ≤ 1; sup |f | ≤ 2
m
4 .

By straightforward calculation

‖Wδf‖Ω2,L1 =
∑

ij

2−m

|πy(Ω2
ij)|

∫

Ω2
ij

∣∣∣
∑

kl

∫

Ω1
kl

wδ(z − t)f(t)dt
∣∣∣dz ≤

≤ 2−m
∑

kl

∫

Ω1
kl

|f(t)|
∑

ij

1
|πy(Ω2

ij)|

∫

Ω2
ij

wδ(z − t)dzdt ≤

≤ 2−m
∑

kl

∫

Ω1
kl

|f(t)|
( ∑

|Ω1
kl−Ω2

ij |>mδ

+
∑

|Ω1
kl−Ω2

ij |<mδ

) 1
|πy(Ω2

ij)|

∫

Ω2
ij

wδ(z − t)dzdt.

(4.89)

We have to estimate two sums separately. We know that ‖wδ‖∞ ≤ 1
δ2 ; thus

1
|πy(Ω2

ij)|

∫

Ω2
ij

wδ(z − t)dz ≤
|πx(Ω2

ij)|
δ2 .

Therefore, since for a fixed Ω1
kl, the total number of elements of another partition Ω2

ij satisfying

|Ω2
ij − Ω1

kl| < mδ is bounded by m2Nδ:

∑

|Ω1
kl−Ω2

ij |<mδ

1
|πy(Ω2

ij)|

∫

Ω2
ij

wδ(z − t)dz ≤ sup |πx(Ω2
ij)| ·m2 ·

Nδ
δ2 . (4.90)
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We also observe that for any t ∈ Ω1
kl

∑

|Ω1
kl−Ω2

ij |>mδ

1
|πy(Ω2

ij)|

∫

Ω2
ij

wδ(z − t)dz ≤
1

inf |πy(Ω2
ij)|

∫

R2\�1+mδ

wδ(z − t)dz ≤
4e−m

inf |πy(Ω2
ij)|

.

(4.91)

Substituting (4.90) and (4.91) to (4.89) we get

‖Wδf‖Ω2,L1 = 2−m
∑

kl

∫

Ω1
kl

|f(t)|
( 4e−m

inf |πy(Ω2
ij)|

+ sup |πx(Ω2
ij)| ·m2Nδ

δ2

)
dt ≤

≤ sup |πx(Ω2
ij)| · sup |πy(Ω1

kl)| ·m2Nδ
δ2 ‖f‖Ω1,L1 .

The upper bound of the supremum norm is easy

‖Wδf‖∞ = sup
z∈R2

∣∣∣
∫

R2
wδ(z − t)f(t)dt

∣∣∣ ≤ sup
z∈R2

|f(z)|.

The upper bound for the vector fields follows immediately.

�

4.4.2 Constructing an invariant cone

In this Subsection we use approximations we obtained earlier and two cones constructed for

the operator A (Section 4.3, Theorem 8) to get an invariant cone in the space X for the

operator W δ
2m
P 2
ξ∗W δ

2m
. The main result is Theorem 7. We shall prove two Lemmas first.

Lemma 4.4.4. There exists γ4 > 0 such that for any ν ∈ Cone
(

2( 3
4 +γ1−α)m,Ω1

)
and for

arbitrary partition Ω2 of R2 of the class G(m, δ):

‖DΩ2Wδν‖2 ≥ (1 − 2−γ4m)‖ν‖1.

(See p. 100 for a general definition of a cone in X.)

Proof. Let ν ∈ XΩ2 be a bounded and integrable vector field. Then similarly to one-
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dimensional case, by Lemma 4.4.3

‖W δ
m
ν‖Ω2,L1 =

∑

ij

2−m

|πy(Ω2
ij)|

∫

Ω2
ij

∣∣∣
∫

R2
wδ(z − t)ν(t)dt

∣∣∣dz ≤

≤ sup |πy(Ω2
kl)| · sup |πx(Ω2

ij)| ·m4Nδ
δ2 · ‖ν‖Ω1,L1 .

By Lemma 4.4.2 we know that

‖Wδ( 0
1 )χ� −DΩ2Wδ( 0

1 )χ�‖2 ≤ 2− m
4 .

Now we find a lower bound for the norm of ‖DΩ2Wδ( 0
1 )χ�‖Ω2 . Observe that the integral

over the unit square
∫

�wδ(z)dz ≥ 1 − e−1/δ2 .

‖DΩ2Wδ( 0
1 )χ�‖2 ≥ ‖Wδ( 0

1 )χ�‖2 − ‖Wδ( 0
1 )χ� −DΩ2Wδ( 0

1 )χ�‖2 ≥ 1 − 2− m
4 − e−1/δ2

.

Consider ψ ∈ XΩ1 , with ‖ψ‖1 ≤ d2( 3
4 +γ1−α)m,

∫
�

◦
UUψu = 0. Then by Lemma 4.4.1

‖W δ
m
ψ −DΩ2W δ

m
ψ‖2 ≤ d · 2( 3

4 +γ1−γ3−α)m, (4.92)

where γ3 = 1 − α+ 2 log2 m
m ; and thus by Lemma 4.4.3

‖DΩ2W δ
m
ψ‖2 ≤ ‖W δ

m
ψ‖2 + d · 2( 3

4 +γ1−γ3−α)m ≤

≤ d · sup |πy(Ω2
ij)| · sup |πx(Ω1

ij)| ·
m2Nδ
δ2 + d · 2( 3

4 +γ1−γ3−α)m. (4.93)

We use Lemma 4.4.2 and (4.92), to estimate the approximation error for the field Wδν:

‖W δ
m
ν −DΩ2W δ

m
ν‖2 ≤ d‖W δ

m
( 0

1 )χ� −DΩ2W δ
m

( 0
1 )χ�‖2 + ‖W δ

m
ψ −DΩ2W δ

m
ψ‖2 ≤

≤ d2−m/4 + d · 2( 3
4 +γ1−γ3−α)m.

Observe that by Lemma 4.4.3, since ‖ψ‖ ≤ 2
3
4 +γ1−α,

‖W δ
m
ν‖2 = ‖dW δ

m
( 0

1 )χ� +W δ
m
ψ‖2 ≥ ‖dW δ

m
( 0

1 )χ�‖2 − ‖W δ
m
ψ‖2 ≥

≥ d(1 − e−m2/δ2
) − sup |πy(Ω2

ij)| · sup |πx(Ω1
ij)| ·

Nδ
δ2 m

2‖ψ‖1 ≥

≥ d(1 − e−m2/δ2
) − d sup |πy(Ω2

ij)| · sup |πx(Ω1
ij)| · 2( 3

4 +γ1)mm2Nδ
δ

.
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Summing up altogether

‖DΩ2W δ
m
ν‖2 ≥ ‖W δ

m
ν‖2 − ‖W δ

m
ν −DΩ2W δ

m
ν‖2 ≥ d

(
1 − 2−m/4 − e−m2/δ2 )

−

− d
(

sup |πy(Ω2
ij)| · sup |πx(Ω1

ij)| · 2( 3
4 +γ1)m ·

m2Nδ
δ

+ 2( 3
4 +γ1−γ3−α)m

)
.

We know that ‖ν‖ ≤ d(1 + 2(γ1+ 3
4 −α)m). Hence

‖DΩ2Wδν‖ ≥ (1 − 2−γ4m)‖ν‖,

where γ4 > 0 has been chosen such that

sup |πy(Ω2
ij)| · sup |πx(Ω1

ij)| · 2(γ1+ 3
4 )m ·

m2Nδ
δ

+ 2( 3
4 +γ1−γ3−α)m ≤ 2−γ4m.

�

Remark 16. It follows from Lemma 4.2.2 and Remark 15 that we can choose the constant γ4

to be 0 < γ4 < 1
4 − γ1 < 1

4 .

Proposition 4.4.4. Let Υ be a chain of partitions associated to the sequence η ∈ Σδ. Let

Ω1 = Υk and Ω2 = Υk+1 be two consecutive partitions from the chain Υ. Let ξ def= σ2m(k−1)η

Consider a linear operator A : XΩ1 → XΩ2 , approximating the operator P 2
ξ∗, defined according

to (4.17). Let Ω3 be another partition of the class G(m, δ).

DΩ3W δ
m

A : Cone (1,Ω1) → Cone
(
2−γ4m,Ω3)

.

(See p. 100 for definition of a cone and the chain Υ.)

Proof. According to Theorem 8 p. 141, A : Cone
(
1,Ω1)

→ Cone
(

2( 3
4 +γ1−α)m,Ω2

)
. We may

write then

Aν = 22m( 0
d )χ� + ψ, ψ ∈ XΩ2 , ‖ψ‖2 ≤ d2(2 3

4 +γ1−α)m,
∑

�

ψiju = 0.
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By straightforward calculation

DΩ3W δ
m

Aν = 22mDΩ3W δ
m

( 0
d )χ� +DΩ3W δ

m
ψ.

Using Lemma 4.4.1

‖DΩ3W δ
m
ψ −W δ

m
ψ‖3 ≤ 2−γ3m‖ψ‖2 ≤ d2(2 3

4 +γ1−γ3−α)m.

Thus introducing γ4 defined by Lemma 4.4.4 and using Lemma 4.4.3,

‖DΩ3W δ
m
ψ‖3 ≤ ‖W δ

m
ψ‖3 + ‖DΩ3W δ

m
ψ −W δ

m
ψ‖3 ≤

≤ d2(γ1+2 3
4 )m sup |πy(Ω3

ij)| · sup |πx(Ω2
ij)| ·m2Nδ

δ
+ d2(2 3

4 +γ1−γ3−α)m ≤ d2(2−γ4)m. (4.94)

By Lemma 4.4.2 we deduce

‖DΩ3W δ
m

( 0
1 )χ� − ( 0

1 )χ�‖3 ≤ 2−m/4

Thus we may conclude

d22mDΩ3W δ
m

( 0
1 )χ� = d22m( 0

1 )χ� + ϕ ∈ XΩ3 ,

where ‖ϕ‖3 ≤ d23m/2. Together with (4.94) we get the result. �

Theorem 7. Let Ω be a partition of R2 of the class G(m, δ); and let ‖ξ‖∞ ≤ δ be a sequence

of real vectors. There exists r1(m) ≪ r2(m) and ε1(m) ≪ ε2(m) such that

W δ
2m
P 2
ξ∗W δ

2m
: Cone (r1, ε1,Ω) → Cone (r2, ε2,Ω) ( Cone (r1, ε1,Ω) .

∥∥W δ
2m
P 2
ξ∗W δ

2m
|Cone(r1,ε1,Ω)

∥∥ ≥ 2m−5

(See p. 100 for definition of a cone in the space of vector fields).

Proof. Let Ω1 be a canonical partition for the map P 2
ξ . First of all we shall find a number

r1 such that for any η ∈ Cone (r1,Ω) we have DΩ1W δ
2m
η ∈ Cone

(
1,Ω1)

. We may write

η = ( 0
d )χ� + ψ, with

∑
� ψ

ij
y = 0 and ‖ψ‖Ω ≤ dr1. Then

DΩ1W δ
2m
η = ( 0

d )DΩ1W δ
2m
χ� +DΩ1W δ

2m
ψ;
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and using Lemmas 4.4.1 and 4.4.3, we calculate

‖DΩ1W δ
2m
ψ‖1 ≤ ‖Wδψ‖1 + ‖DΩ1W δ

2m
ψ −W δ

2m
ψ‖1 ≤

≤
(

2−γ3m + 22−2mm4Nδ
δ2

)
‖ψ‖Ω ≤ 5dr1m42−2mNδ

δ2 ; (4.95)

Using Lemma 4.4.2, we calculate

‖DΩ1W δ
2m
χ� − χ�‖1 ≤ 21−m/4, (4.96)

which implies DΩ1Wδ( 0
d )χ� = ( 0

d )χ� + ψ1, where ψ1 ∈ XΩ1 and ‖ψ1‖1 ≤ 21−m/4. Hence

DΩ1W δ
2m
η = ( 0

d )χ� +DΩ1W δ
2m
χ� + ψ1, where

‖DΩ1W δ
2m
χ� + ψ1‖1 ≤ dr1

(
m42−2mNδ

δ2 + 21−m/4
)
.

In order to guarantee DΩ1W δ
2m
η ∈ Cone

(
1,Ω1)

it is sufficient to choose r1 such that

m42−2mNδ
δ2 ≤

1
r1
.

We set

r1
def=

22mδ2

4m4Nδ
. (4.97)

We can also notice using Lemma 4.4.1 that

‖DΩ1W δ
2m
η −W δ

2m
η‖1 ≤ dr12−γ3m.

Taking into account DΩ1W δ
2m
η ∈ Cone

(
1,Ω1)

we deduce W δ
2m
η ∈ Ĉone

(
1, r12−γ3m,Ω1)

. We

also observe that by Lemma 4.4.3 for any v = η + g ∈ Ĉone (r1, ε1,Ω) we have

∥∥W δ
2m
g

∥∥ ≤ 4ε1m2 Nδ
22mδ2 =

16ε1

m2r1
=: ε̃1.

We will be assuming that ε̃1 ≥ r12−γ3m. Then without loss of generality

W δ
2m

: Ĉone (r1, ε1,Ω) → Ĉone (1, ε̃1,Ω) . (4.98)
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Let A : XΩ1 → XΩ2 be a linear operator approximating P 2
ξ∗ and defined by (4.17), p. 104. It

follows from Theorem 8 p. 141, that A : Cone
(
1,Ω1)

→ Cone
(

2( 3
4 +γ1−α)m,Ω1

)
⊂ XΩ2 ; more-

over, the norm is growing exponentially with number of iterations ‖A |Cone(1,Ω1) ‖ ≥ 22m−1.

In particular, we see that for any vector field ν ∈ Cone
(
1,Ω1)

,

‖Aν‖2 = ‖A(( 0
d )χ� + ψ)‖2 ≥ d‖A( 0

1 )χ�‖2 − ‖Aψ‖2 ≥ d22m(
1 − 2(γ1+ 3

4 −α)m)

Consider a vector field v = ν + g ∈ Ĉone
(
1, ε̃1,Ω1)

, where ν ∈ Cone
(
1,Ω1)

⊂ XΩ1 is

a piecewise constant part with the norm ‖ν‖1 ≤ d and ‖g‖1 < ε̃1d. Then by linearity

P 2
ξ∗v = P 2

ξ∗ν + P 2
ξ∗g. By inequality (4.3.17) of Lemma 4.3.17,

‖P 2
ξ∗g‖Ω ≤ m22m+2‖g‖1 ≤ mdε̃122m+2. (4.99)

By Proposition 4.3.3 for ν ∈ Cone
(
1,Ω1)

⊂ XΩ1

‖W δ
2m

(P 2
ξ∗ − A)ν‖Ω ≤ 8

sup diam(Ωij)
δ

22m‖ν‖1 ≤ d2m+4δ. (4.100)

We have decomposition

W δ
2m
P 2
ξ∗v = W δ

2m
P 2
ξ∗ν +W δ

2m
P 2
ξ∗g = W δ

2m
(P 2
ξ∗ − A)ν +W δ

2m
Aν +W δ

2m
P 2
ξ∗g. (4.101)

We write W δ
2m

Aν and W δ
2m
P 2
ξ∗u as a sum of piecewise-constant part and a remainder

W δ
2m

Aν = ν1 + g1, where ν1 = DΩW δ
2m

Aν ∈ XΩ, and g1 = W δ
2m

Aν −DΩW δ
2m

Aν; (4.102)

W δ
2m
P 2
ξ∗g=ν2 + g2, where ν2 = DΩW δ

2m
P 2
ξ∗g ∈ XΩ, and g2 =W δ

2m
P 2
ξ∗g −DΩW δ

2m
P 2
ξ∗g.

(4.103)

We estimate all four terms separately.

Using Lemmas 4.4.1 and 4.3.18, since ‖ν‖1 ≤ d, we get

‖g1‖Ω = ‖W δ
2m

Aν −DΩW δ
2m

Aν‖Ω ≤ 2−γ3m‖Aν‖Ω ≤ d2(2−γ3)m. (4.104)
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By Lemmas 4.4.1 and 4.3.18, using ‖g‖1 ≤ dε̃1, and (4.99)

‖g2‖Ω = ‖W δ
2m
P 2
ξ∗g −DΩW δ

2m
P 2
ξ∗g‖Ω ≤ 2−γ3m‖P 2

ξ∗g‖Ω ≤ mdε̃12(2−γ3)m+2. (4.105)

Finally, using (4.99) and (4.105),

‖ν2‖Ω = ‖DΩW δ
2m
P 2
ξ∗g‖Ω ≤ ‖P 2

ξ∗g‖Ω + ‖W δ
2m
P 2
ξ∗g −DΩW δ

2m
P 2
ξ∗g‖Ω ≤

≤ mdε̃122m+2(
1 + 2−γ3m

)
. (4.106)

We now need a lower bound for the norm of ν1 defined by (4.102). By Theorem 8 p. 141 we

have Aν ∈ Cone
(

2( 3
4 +γ1−α)m,Ω1

)
, and Lemma 4.4.4 is applicable:

‖ν1‖Ω = ‖DΩW δ
2m

Aν‖Ω ≥ (1 − 2−γ4m) · ‖Aν‖2 ≥ d22m(
1 − 2( 3

4 +γ1−α)m)
(1 − 2−γ4m). (4.107)

We need to check that

ν1 + ν2 = DΩW δ
2m

Aν +DΩW δ
2m
P 2
ξ∗g ∈ Cone (r2,Ω) ; (4.108)

and to verify the inequality

‖g1‖Ω + ‖g2‖Ω + ‖W δ
2m

(P 2
ξ∗ − A)ν‖Ω ≤ ‖ν1 + ν2‖Ω · ε2. (4.109)

Consider a vector field ν = ( 0
d )χ� + ψ ∈ Cone

(
1,Ω1)

with ‖ψ‖1 ≤ d and
∑

�
ψiju = 0. Using

Theorem 8 p. 141 we write Aν = d22m( 0
1 )χ� + ϕ, where ϕ ∈ XΩ2 , and ‖ϕ‖2 ≤ 2(2 3

4 +γ1−α)m.

For the first inclusion (4.108), we expand DΩW δ
2m

Aν as following.

DΩW δ
2m

Aν = DΩW δ
2m

(d22m( 0
1 )χ� + ϕ) = d22mDΩW δ

2m
( 0

1 )χ� +DΩW δ
2m
ϕ =

= d22m( 0
1 )χ� + d22m

(
DΩW δ

2m
( 0

1 )χ� −W δ
2m

( 0
1 )χ� +W δ

2m
( 0

1 )χ� − ( 0
1 )χ�

)
+

+ (DΩW δ
2m
ϕ−W δ

2m
ϕ) +W δ

2m
ϕ.

We see that by Lemma 4.4.2

d22m‖DΩW δ
2m

( 0
1 )χ� −W δ

2m
( 0

1 )χ�‖Ω ≤ d2
7
4m; (4.110)

d22m‖W δ
2m

( 0
1 )χ� − ( 0

1 )χ�‖Ω ≤ d2
7
4m. (4.111)
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By Lemma 4.4.1 again, since ‖ϕ‖2 ≤ d2(2 3
4 +γ1−α)m

‖DΩW δ
2m
ϕ−W δ

2m
ϕ‖Ω ≤ d2(2 3

4 +γ1−γ3−α)m. (4.112)

Therefore we may write

DΩW δ
2m

Aν = d22m( 0
1 )χ� + ϕ ∈ XΩ, (4.113)

where

φ = d22m(DΩW δ
2m

( 0
1 )χ� − ( 0

1 )χ�) +DΩW δ
2m
ϕ ∈ XΩ;

with the norm that can be bounded using (4.110), (4.111) and (4.112)

‖φ‖Ω ≤ d22m‖DΩW δ
2m

( 0
1 )χ� − ( 0

1 )χ�‖Ω + ‖DΩW δ
2m
ϕ−W δ

2m
ϕ‖Ω + ‖W δ

2m
ϕ‖Ω ≤

≤ d
(

2
7
4m+1 + 2(γ1+2 3

4 −α)m ·
(

2−γ3m + sup |πy(Ω2
kl)| · sup |πx(Ω1

ij)| ·m2Nδ
δ2

))
≤

≤ 4d · 2(2−γ4)m. (4.114)

Thus using (4.113) and (4.102), (4.103), we write

DΩW δ
2m

Aν +DΩW δ
2m
P 2m
ξ∗ g = ν1 + ν2 = d22m( 0

1 )χ� + φ+ ν2. (4.115)

Then the condition (4.108): ν1 + ν2 ∈ Ĉone (r2, ε2,Ω) is equivalent to ‖φ + ν2‖Ω ≤ dr222m.

We see using (4.114) and (4.106) that

‖φ+ ν2‖Ω ≤ ‖φ‖Ω + ‖ν2‖Ω ≤ 4d · 2(2−γ4)m + 4dmε̃122m(
1 + 2−γ3m

)
=

= 4d22m(
2−γ4m +mε̃1

(
1 + 2−γ3m

))
(4.116)

Now recall the second inequality (4.109)

‖g1‖Ω + ‖g2‖Ω + ‖W δ
2m

(P 2
ξ∗ − A)ν‖Ω ≤ ε2‖ν1 + ν2‖Ω. (4.117)

We know already from (4.100), (4.104) and (4.105),

‖g1‖Ω + ‖g2‖Ω + ‖W δ
2m

(P 2
ξ∗ − A)ν‖Ω ≤ d22m

(
2−γ3m + ε̃12−γ3m + 2(α−1)m+1

)
≤ 3dε̃12(2−γ3)m.
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Using (4.107) and (4.106), we deduce, taking into account Remark 15 and Remark 16

γ3 < 1 − α and γ4 < 1
4 − γ1, and α = 15

16 :

‖ν1 + ν2‖ ≥ d22m(
1 − 2( 3

4 +γ1−α)m)(
1 − 2−γ4m

)
− d22mε̃1

(
1 + 2−γ3m

)
≥

≥ d22m(
1 − 2( 3

4 +γ1−α)m − 2−γ4m − ε̃12−γ3m
)

≥ d22m(
1 − ε̃12− m

24
)

(4.118)

Therefore (4.108) and (4.109) would follow from

3ε̃12−γ3m ≤ ε2
(
1 − ε̃12− m

24
)

(4.119)

2−γ4m + ε̃1 + ε̃12−γ3m < r2. (4.120)

Recall now that ε̃1 = 4ε1m2 Nδ
22mδ2 . We may choose the following parameters for the cones

r2 = 2−m 1−α
4 = 2− mα

64 , ε1 = 2−m 1−α
2 = 2− mα

32 , and ε2 = 2−2m 1−α
2 = 2− mα

16 . It is clear that

r2 ≪ r1 = 22mδ2

4m4Nδ
and the second condition on the norm follows immediately from (4.115),

(4.116), and (4.117).

�

The proof of the existence of an invariant cone is complete. The fast dynamo theorem in

dimension two follows as shown in Section 2.2. It is the main result of the present work.

Theorem 9. There exists a volume preserving piecewise diffeomorphism F : R2 → R2 such

that for some vector field B0 in R2

lim
ε→0

lim
n→∞

1
n

ln ‖(exp(ε∆)F∗)nB0‖L1
> 0.

The map F may be realised as a Poincaré map of an incompressible fluid flow filling a compact

domain in R3 (an immersed 3-dimensional manifold with a boundary).
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