Polina Vytnova MAT3009

Exercise Sheet 9

Compactness in topological spaces.

Immersions, Embeddings, and Inverse Function Theorem.

All sets are considered with the standard topology induced from \mathbb{R}^n . A manifold stands for a smooth manifold.

Easy: check your understanding

Exercise 9.1.1. Show that any topological space with only finite number of points is compact.

Exercise 9.1.2. Which of the following subspaces is compact in A if (i) $A = \mathbb{R}$, (ii) $A = \mathbb{R} \setminus \{0.5\}$ with respect to the induced topology from \mathbb{R} ?

(a)
$$A \cap ([0,1] \cup [2,3]);$$
 (b) $A \cap [0,\infty);$ (c) $A \cap Q \cap [0,1]$

Exercise 9.1.3. Which of the following subspaces is compact in A if (i) $A = \mathbb{R}^2$, (ii) $A = \mathbb{R}^2 \setminus \{(0,0)\}$ with respect to the induced topology from \mathbb{R} ?

(d)
$$A \cap \{x^2 + y^2 = 1\}$$
; (e) $A \cap \{|x| + |y| \le 1\}$; (f) $A \cap \{x \ge 1, \ 0 \le y \le \frac{1}{x}\}$;

Exercise 9.1.4. Let A be a linear map of \mathbb{R}^n . Show that the mapping $x \mapsto Ax + b$ is a diffeomorphism of \mathbb{R}^n if and only if A is nonsingular.

Exercise 9.1.5. Show that if f and q are immersions, then $q \circ f$ and $q \times f$ are also immersions.

Exercise 9.1.6. Check that the map $\varphi \colon \mathbb{R} \to \mathbb{R}^2$ given by $\varphi(t) = \frac{1}{2} (e^t + e^{-t}, e^t - e^{-t})$ is an embedding. Prove that its image is one nappe of the hyperbola $x^2 - y^2 = 1$.

Harder: working-level knowledge

We say that a set $X \subset \mathbb{R}^n$ has the property \mathcal{E} if for any compact set $C \subset X$ there exists another compact set K such that $C \subseteq K \subseteq X$ and $X \setminus K$ is connected.

Exercise 9.2.1. Show that \mathbb{R}^n has the property \mathcal{E} .

Exercise 9.2.2. Show that the Möbius band without boundary has the property \mathcal{E} .

Exercise 9.2.3. Show that the cylinder surface doesn't have the property \mathcal{E} .

Exercise 9.2.4. Prove that if $A \subset \mathbb{R}^n$ is not compact, then there exists a continuous function $f: A \to \mathbb{R}$ which is not bounded on A.

Exercise 9.2.5. Let $f: \mathbb{R} \to \mathbb{R}$ be a local diffeomorphism. Prove that the image of f is an open interval and that, in fact, f maps \mathbb{R} diffeomorphically onto this interval.

Exercise 9.2.6. In contrast with the previous problem, construct a local diffeomorphism $f: \mathbb{R}^2 \to \mathbb{R}^2$ that is not a diffeomorphism onto its image.

Polina Vytnova MAT3009

Optional: for your curiosity

Exercise 9.3.1. Show that if $A \subset \mathbb{R}^n$ is compact, then there exists a < b such that A is contained in a cube $[a, b] \times [a, b] \times \ldots \times [a, b]$ (n factors).

Exercise 9.3.2. Show that if $C \subset \mathbb{R}^n$ is closed and $K \subset \mathbb{R}^n$ is compact, then $K \cap C$ is compact.

Exercise 9.3.3. Show that $f: \mathbb{R} \to \mathbb{S}^2$, $f(t) = (\cos 2\pi t, \sin 2\pi t)$, is, in fact, a local diffeomorphism. Given a line $\gamma \subset \mathbb{R}^2$, show that the restriction $f \times f: \gamma \to \mathbb{S}^2 \times \mathbb{S}^2$ is an immersion.