Polina Vytnova MAT3009

Exercise Sheet 8 — Unassessed Coursework 2 Smooth manifolds and tangent spaces

Submit solutions to **three** problems of your choice from §1 and **two** problems of your choice from §2. All sets are considered with the standard topology induced from \mathbb{R}^n . Manifold stands for smooth manifold.

Given a manifold $X \subset \mathbb{R}^n$ we say that a subset $Y \subset X$ is a submanifold of X if $Y \subset \mathbb{R}^n$ is a manifold.

Easy: check your understanding

Exercise 8.1.1. Find a basis of the tangent space to the cylinder

$$C := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 2\}$$

at the point P = (1, 1, 1).

Exercise 8.1.2. Let $M \subset \mathbb{R}^n$ and $N \subset \mathbb{R}^k$ be two smooth manifolds. Show that $M \times N$ and $N \times M$ are diffeomorphic.

Exercise 8.1.3. Show that if $U \subset \mathbb{R}^k$ and $V \subset \mathbb{R}^m$ are open and $\varphi \colon U \to V$ is a diffeomorphism, then k = m. Hint: Pick a point $p \in U$ and consider the induced map between the tangent spaces T_pU and $T_{f(p)}V$.

Exercise 8.1.4. Let V be a linear subspace of \mathbb{R}^n . Show that for any $x \in V$ the tangent space $T_xV = V$.

Exercise 8.1.5. Let $U \subset M$ be an open subset of a smooth manifold. Show that for any $p \in U$ we have $T_pU = T_pM$.

Exercise 8.1.6. It follows from problem 8.3.2 that ρ defines a map from $\mathbb{R}P^2$ to \mathbb{R}^4 . In particular, we can define a distance between two points on $\mathbb{R}P^2$ by $d([p_1], [p_2]) := d(\rho(p_1), \rho(p_2))$. Show that the open balls with respect to the metric d are open subsets with respect to the quotient topology in $\mathbb{R}P^2$.

Harder: working-level knowledge

Exercise 8.2.1. Let M be the image of the strip $R := \{(\varphi, t) \in \mathbb{R}^2 \mid -1 < t < 1\}$ under the map

$$F_x(\varphi, t) = \left(4 + t\cos\frac{\varphi}{2}\right)\cos\varphi$$

$$F_y(\varphi, t) = \left(4 + t\cos\frac{\varphi}{2}\right)\sin\varphi$$

$$F_z(\varphi, t) = t\sin\frac{\varphi}{2}.$$

Polina Vytnova MAT3009

Identify the surface M. Assuming without proof that F is a diffeomorphism on any domain where it is a bijection, explicitly exhibit enough parametrizations to turn \mathbb{M} into a manifold. Find the basis of the tangent space to \mathbb{M} at $(2\sqrt{2}, 2\sqrt{2}, 0)$. *Hint*: Exercise 5.2.2.

Exercise 8.2.2. Let $\mathbb{T} = \tau(\mathbb{R}^2) \subset \mathbb{R}^3$ be a torus, where τ is a map given by

$$\tau_1(x_1, x_2) = (\cos(x_1) + 5)\cos(x_2)$$
$$\tau_2(x_1, x_2) = (\cos(x_1) + 5)\sin(x_2)$$
$$\tau_3(x_1, x_2) = \sin(x_1)$$

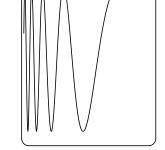
and let $\gamma \subset \mathbb{T}$ be a curve given by

$$\gamma_1(t) = (\cos(t) + 5)\cos(2t), \quad \gamma_2(t) = (\cos(t) + 5)\sin(2t), \quad \gamma_3(t) = \sin(t), \quad t \in \mathbb{R}.$$

Show that γ is a smooth submanifold. Is the complement $\mathbb{T} \setminus \gamma$ a connected subset of \mathbb{T} ? Which curve from the classification of 1-dimensional manifolds is γ diffeomorphic to? Justify your answer. *Hint*: Exercise 5.2.1.

Exercise 8.2.3. Prove that the hyperboloid of one sheet in \mathbb{R}^3 defined by $x^2 + y^2 - z^2 = a$, is a manifold if a > 0. Find the basis of the tangent space at $(0, \sqrt{a}, 0)$.

Exercise 8.2.4. Is the smooth curve pictured on the right a one-dimensional manifold? Justify your answer. (The right part makes infinitely many turns, the left interval doesn't contain the top end point).



Optional: for your curiosity

Exercise 8.3.1. Consider a function $\rho: \mathbb{S}^3 \to \mathbb{R}^4$ defined by

$$\rho(x, y, z) = (yz, xz, xy, x^2 + 2y^2 + 3z^2).$$

Show that $\rho(x_1, y_1, z_1) = \rho(x_2, y_2, z_2)$ if and only if $(x_1, y_1, z_1) = \pm(x_2, y_2, z_2)$. Hint: note that on the unit sphere $(x_1 + y_1 + z_1)^2 = 1 + 2(xy + yz + xz)$.

Exercise 8.3.2. With help of a computer draw the image of the unit sphere in \mathbb{R}^3 under the map $\rho(x,y,z) = (yz,xz,xy)$. It is another topological *immersion* of $\mathbb{R}P^2$ into \mathbb{R}^3 .