Polina Vytnova MAT3009

Exercise Sheet 6

Projective spaces, Klein bottle, and first steps in Manifolds.

1. Easy: check your understanding

Exercise 6.1.1. Show that the circle is a smooth 1-dimensional manifold. More precisely, show that every point has a neighbourhood diffeomorphic to an open interval. First check that the map

 $f_1 \colon (-1,1) \to \mathbb{S}^2$ $f_1 \colon t \mapsto \left(t, \sqrt{1-t^2}\right)$

is a diffeomorphism between the interval $U_1 := (-1,1)$ and $V_1 := \{(x,y) \in \mathbb{S}^2 \mid y > 0\} \subset \mathbb{S}^2$. Thus every point $p \in V_1$ has a neighbourhood diffeomorphic to an interval.

Then write down explicitly a few more maps to show that every point $p \in \mathbb{S}^2$ has a neighbourhood diffeomorphic to an interval.

The pair (U_1, f_1) is called a parametrisation of the neighbourhood V_1 . The pair (V_1, f_1^{-1}) is called a chart. The collection of charts covering a manifold M is called an atlas of M.

Exercise 6.1.2. Show that the cylinder is a smooth 2-dimensional manifold by exhibiting explicitly enough parametrisations to cover it.

Exercise 6.1.3. Prove that the union of the two coordinate axes in \mathbb{R}^2 is not a manifold.

Exercise 6.1.4. Let \mathbb{B}_r be the open ball $\{x \in \mathbb{R}^k : ||x||^2 < r\}$. Show that the map

$$x \mapsto \frac{rx}{\sqrt{r^2 - |x|^2}}$$

is a diffeomorphism of \mathbb{B}^r onto \mathbb{R}^k . *Hint*: Compute its inverse directly.

Deduce that if X is a k-dimensional manifold, then every point in X has a neighborhood diffeomorphic to all of \mathbb{R}^k . Thus local parametrizations may always be chosen with all of \mathbb{R}^k for their domains.

Exercise 6.1.5. Consider the Tic-Tac-Toe game on the Klein bottle.

(a) Which of the positions below constitute a winning three-in-a-row?

Polina Vytnova MAT3009

(b) Find X's best move in each situation shown below.

Exercise 6.1.6. We now have two different models of the projective plane $\mathbb{R}P^2$:

- A sphere with opposite points identified;
- A set of lines passing through the origin in $\mathbb{R}^3 \setminus \{0\}$;

Describe open sets with respect to the quotient topology.

2. Optional: working-level knowledge

Exercise 6.2.1. Show that the quotient map $\mathbb{S}^2 \to \mathbb{S}^2/_{\{p\} \sim \{-p\}} \approx \mathbb{S}^2$ is continuous with respect to the natural topology on the circle \mathbb{S}^2 .

Exercise 6.2.2. Show that the four nets below correspond to a torus with a closed disk cut out.

Exercise 6.2.3. Watch the video showing the process of gluing a double torus from the regular octagon. We know that the double torus is a connected sum of two tori. Show how one can to obtain the octagon from the two nets corresponding to a torus with a disk removed and the net for a cylinder.

Exercise 6.2.4. The Klein bottle contains many Moebius bands. For each case shown below identify the surface one obtains after cutting the magenta Möbius band out.

Exercise 6.2.5. Let M_1 and M_2 be two smooth manifolds with atlases $(U_{\alpha}^1, f_{\alpha}^1)$ and $(U_{\beta}^2, f_{\beta}^2)$, for some index set $I \ni \alpha$, $J \ni \beta$. Show that the direct product $M_1 \times M_2$ is a smooth manifold with an atlas $\{(U_{\alpha}^1 \times U_{\beta}^2, f_{\alpha}^1 \times f_{\beta}^2)\}_{\alpha \in I, \beta \in J}$.

Polina Vytnova MAT3009

Exercise 6.2.6. Recall that $f: X \to Y$ is smooth, if for any $x \in X$ there exists an open subset $U \subset \mathbb{R}^n$ and a smooth function $F: U \to Y$ such that $F|_{U \cap X} = f$. Suppose that X is a subset of \mathbb{R}^N and Z is a subset of X. Show that the restriction to Z

Suppose that X is a subset of \mathbb{R}^N and Z is a subset of X. Show that the restriction to Z of any smooth map on X is a smooth map on Z.

Exercise 6.2.7. Let $X \subset \mathbb{R}^N$, $Y \subset \mathbb{R}^M$, $Z \subset \mathbb{R}^L$ be arbitrary subsets, and let $f: X \to Y$, $g: Y \to Z$ be smooth maps. Then the composition $g \circ f: X \to Z$ is smooth. If f and g are diffeomorphisms, so is $g \circ f$.

3. Exam-level questions

Exercise 6.3.1. We know that the real projective plane can be represented as a disk with opposite points identified. Using the net below, show that $\mathbb{R}P^2$ with a disk removed is homeomorphic to the Möbius band.

Exercise 6.3.2. Give an example of an atlas on the torus.

Exercise 6.3.3. Show that one cannot parametrize the k-sphere \mathbb{S}^k by a single parametrization.