# MA448 <br> Example Sheet 3 <br> Isometries of $\mathbb{H}$ and $\mathbb{D}$; Discrete groups - I 

In what follows $I_{\gamma}$ stands for reflection with respect to geodesic $\gamma$ and $\rho(x, y)$ stands for the hyperbolic distance between $x$ and $y$.

P1. Show that:

1. If $g \in \operatorname{Isom}(\mathbb{H})$ is parabolic, then there exists two geodesics $\gamma_{1}, \gamma_{2}$ such that $\gamma_{1} \cap \gamma_{2} \in \partial \mathbb{H}$ and $g=I_{\gamma_{1}} I_{\gamma_{2}}$.
2. If $g \in \operatorname{Isom}(\mathbb{H})$ is elliptic, then there exists two geodesics $\gamma_{1}, \gamma_{2}$ such that $\gamma_{1} \cap \gamma_{2} \in \mathbb{H}$ and $g=I_{\gamma_{1}} I_{\gamma_{2}}$.
3. If $g \in \operatorname{Isom}(\mathbb{H})$ is hyperbolic, then there exists two geodesics $\gamma_{1}, \gamma_{2}$ such that $\gamma_{1} \cap \gamma_{2}=\varnothing$ and $g=I_{\gamma_{1}} I_{\gamma_{2}}$.

P2. Show that if $g \in \operatorname{Isom}(\mathbb{D})$ is elliptic with fixed point $w$ and rotation angle $\varphi$ then

$$
\sinh \frac{1}{2} \rho(z, g z)=\sinh \rho(z, w)\left|\sin \frac{\varphi}{2}\right|, \quad \varphi \in[-\pi, \pi] .
$$

P3. Prove that $g \in \operatorname{Isom}(\mathbb{H})$ is elliptic, parabolic, or hyperbolic if the isometric circles for $g$ and $g^{-1}$ are intersecting, parallel, or disjoint, respectively.

P4. Let $g \in \operatorname{Isom}(\mathbb{H})$ and let $d=\inf _{z} \rho(z, g z)$. Show that $g$ is hyperbolic if and only if $d>0$. Show that $g$ is elliptic if there exists $z \in \mathbb{H}$ such that $\rho(z, g z)=0$ and $g$ is parabolic if parabolic $d=0$ but for all $z \in \mathbb{H}$ we have $\rho(z, g z)>0$.

P5. Find all discrete subgroups of $G L(2, \mathbb{C})$ which contain only diagonal matrices.
P6. Prove that a discrete subgroup of $G L(2, \mathbb{C})$ is countable.

P7. Assume that a subgroup $G$ of $G L(2, \mathbb{C})$ contains a discrete subgroup of finite index. Show that $G$ is also discrete.

P8. Let $f, g \in \operatorname{Isom}(\hat{\mathbb{C}})$ Assume that $g$ is loxodromic and suppose that $g$ and $f$ have exactly one fixed point in common. Show that the group $\langle f, g\rangle$ generated by $f$ and $g$ is not discrete.

Hint: consider the points $z, g^{n} z, f g^{n} z, g^{-n} f g^{n} z$ for large $n$.

P9. Let $n, k, m \in \mathbb{R}$ be such that $\frac{1}{n}+\frac{1}{k}+\frac{1}{m}<1$. Show that the group generated by reflections with respect to the sides of the hyperbolic triangle with angles $\frac{\pi}{n}, \frac{\pi}{k}, \frac{\pi}{m}$ is discrete if and only if $n, k, m \in \mathbb{N}$.

P10. Let $P \subset \mathbb{D}$ be the regular hyperbolic octagon with angles $\frac{\pi}{4}$. Let $g_{1}, g_{2}, g_{3}, g_{4}$ be the hyperbolic transformations identifying the opposite sides of $P$. Show that the group $\left\langle g_{1}, g_{2}, g_{3}, g_{4}\right\rangle$ generated by $g_{1}, g_{2}, g_{3}, g_{4}$ is discrete.

P11. Let $G \subset \operatorname{Isom}(\mathbb{H})$ be a subgroup and assume that $G$ is acting properly discontinuously on $\mathbb{H}$. Let $g \in G$ and let $z \in \mathbb{H}$ be the fixed point of $g$. Show that there exists a neighbourhood $U$ of $z$ such that $U \backslash\{z\}$ doesn't contain any fixed points of elements of $G$.
$\mathbf{P 1 2 .}$ Let $\gamma_{1}, \gamma_{2}, \gamma_{3}$ be the geodesics in $\mathbb{H}$. Assume that $\gamma_{1}$ is represented by a half circle with end points $\{ \pm 1\} \in \mathbb{R}, \gamma_{2}$ corresponds to the half circle with end points $\{0,2\} \in \mathbb{R}$, and $\gamma_{3}$ has end points $\left\{\frac{1}{2}, \infty\right\}$. Let $B(z)=\frac{2(z+1)}{3}$. Show that the group $\left\langle I_{\gamma_{1}}, I_{\gamma_{2}}, I_{\gamma_{3}}, B\right\rangle$ is not discrete.

