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ABSTRACT. The goal of this paper is to extend some previous results on abelian ideals of
Borel subalgebras to so-called spherical ideals of b. These are ideals c of b such that their
G-saturation G · c is a spherical G-variety. We classify all maximal spherical ideals of b for
all simple G.

1. INTRODUCTION

Let G be a connected reductive complex algebraic group with Lie algebra LieG = g.
Let B be a Borel subgroup of G with unipotent radical Bu. We denote the Lie algebras
of B and Bu by b and bu, respectively. The group B acts on any ideal of b by means of
the adjoint representation. There has been quite a lot of activity recently in the study of
various aspects of ad-nilpotent ideals and, in particular, abelian ideals of b , for instance,
see [5], [6], [9], [12], [14], and [16], and the additional references therein.

After a preliminary section, we recall our main finiteness results on abelian ideals from
[14]. The goal of this paper is to extend these results to so-called spherical ideals of b in
the next section. These are ideals c of b such that their G-saturation G · c is a spherical
G-variety. Our aim is to classify all maximal spherical ideals of b for all simple G.

2. PRELIMINARIES

We denote the Lie algebra of G by LieG or g; likewise for closed subgroups of G. Let T
be a fixed maximal torus in G and Ψ = Ψ(G) the set of roots of G with respect to T and let
r = dimT = rankG. Fix a Borel subgroup B of G containing T and let Π = {σ1, . . . ,σr} be
the set of simple roots of Ψ defined by B such that the positive integral span of Π in Ψ is
Ψ+ = Ψ(B). In case G is simple, the highest (long) root in Ψ is denoted by ρ = ∑nσσ, where
the sum is taken over the simple roots Π. If all roots in Ψ are of the same length, they are
all called long. A subset of Ψ+ is an ideal in Ψ+ provided it is closed under addition by
elements from Ψ+. As usual, we have the root space decomposition of g relative to T,

g = t⊕
⊕
α∈Ψ

gα.

For a T-stable subspace h ⊂ g, we denote by Ψ(h) its set of roots with respect to T. Any
parabolic subgroup P of G is assumed to be standard, i.e., it contains B. The notation
P= P(σi1, . . . ,σit ) means that σi1, . . . ,σit are the simple roots of the standard Levi subgroup
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of this parabolic subgroup. Then the number t is called the semisimple rank of P, denoted
srkP. For each α ∈Ψ, we choose a nonzero root vector eα in gα.

Following Cellini and Papi [5], we say that an ideal of b is ad-nilpotent, if it is contained
in bu. It is easily seen that any abelian ideal of b is ad-nilpotent. Since we shall consider no
other types of ideals, we usually write “b-ideal” or just “ideal” in place of “ad-nilpotent
ideal of b”. Given an ideal c ⊂ bu of b, we have c =⊕α∈Ψ(c)gα. In particular, c is uniquely
determined by its set of roots Ψ(c) which is an ideal in Ψ+, where a subset ∆ of Ψ+ is
called an ideal provided if α ∈ ∆, β ∈Ψ+ and α + β ∈Ψ+, then α + β ∈ ∆.

Our basic reference concerning results on root systems is [2]. In case G is simple, we
use the labelling of the Dynkin diagram of G (i.e. of Π) as in [2]. We refer to [1] and [19]
for terminology and standard results on algebraic groups.

Suppose a connected algebraic group Racts morphically on an algebraic variety X. The
modality of the action of R on X is defined as

mod(R : X) := max
Z

min
z∈Z

codimZ R·z,

where Z runs through all irreducible R-invariant subvarieties of X. This definition is due
to E.B. Vinberg [17]. Note that mod(R: X) = 0 if and only if Racts on X with a finite number
of orbits.

3. ABELIAN IDEALS AND SPHERICAL ORBITS

A nilpotent G-orbit (conjugacy class) O in g is called spherical whenever it is a spherical
G-variety, that is, B acts on it with a dense orbit. By a fundamental theorem, due to
M. Brion [3] and E.B. Vinberg [17], in that case B acts on O with finitely many orbits. Since
O is quasi-affine, it is spherical if and only if the algebra of polynomial functions C[O] is a
multiplicity free G-module [18].

The following characterisation of spherical nilpotent orbits is found in [10, §3.1] and
[11, Thm. 3.2].

Theorem 3.1. Let O be a nilpotent orbit in g. The following statements are equivalent:
(i) O is spherical;

(ii) (adx)4 = 0 for any x∈ O;
(iii) O contains a representative of the form eα1 + · · ·+ eαt , where {α1, . . . ,αt} ⊆ Π is a set of

mutually orthogonal simple roots.
The last property means that a minimal Levi subalgebra of g meeting O is the sum of t

copies of sl2. Since such a Levi subalgebra is determined by the orbit up to conjugation,
we see that the integer t in Theorem 3.1(iii) does not depend on the choice of a represen-
tative for O and, furthermore, the number of long and short roots among the αi ’s is an
invariant of the orbit.

The equivalence between parts (i) and (ii) of Theorem 3.1 is proved in [10, §3.1]. Some
parts of that proof relied on the use of the classification of nilpotent orbits in simple Lie
algebras. A classification-free proof is given in [13].
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Making use of Theorem 3.1, we set up a direct link between the abelian ideals of b and
spherical nilpotent orbits. The following are proved in [14, Sect. 2]:

Theorem 3.2. If a is an abelian ideal in b, then G·a is the closure of a spherical nilpotent orbit. In
particular, any G-orbit meeting a is spherical.

Corollary 3.3. Let a be an abelian ideal in b. Then B has finitely many orbits in a.

Corollary 3.4. Let P be a parabolic subgroup of G and let a be an abelian ideal of p in pu. Then P
acts on a with finitely many orbits.

It follows from the definition of modality and Corollary 3.3 that if a is an abelian ideal
of b, then mod(B : a) = 0.

We should like to point out that if c is an ad-nilpotent ideal of b of nilpotency class at
least 2, then there need not be any bound on the modality mod(B : c) of the action of B on
c, cf. [15]. In fact, examples in type Ar show that already for c of nilpotency class 2 the
values for mod(B : c) may grow quadratically in the rank of G. For instance, let g be of
type Ar where r = 3n−1 for some n∈ N. Let c be the ideal in b generated by the two root
spaces relative to the simple roots σn and σ2n. Then c is of nilpotency class 2. Using the
bound from [15, Lemma 2.1], we obtain

mod(B : c)≥ 2dimc−dimb−dim[c,c] =
1
18

(r2−7r +10).

4. SPHERICAL IDEALS OF b

A b-ideal c is said to be spherical, if its G-saturation G·c is a spherical G-variety. Then
clearly, by the discussion in the last section, we have mod(B : c) = 0. The aim of this section
is to find all spherical ad-nilpotent ideals of b (or b-ideals) in case G is simple. In view of
Theorem 3.2, we concentrate on the description of the non-abelian spherical ideals.

Proposition 4.1. Let c be an ad-nilpotent ideal of b.

(i) If g is simply-laced and [c,c] 6= {0}, then c is not spherical.
(ii) If g is doubly-laced and [c, [c,c]] 6= {0}, then c is not spherical.

(iii) If g is of type G2, then any spherical ideal is abelian.

Part (i) is already proved in [14, Prop. 2.7]. However, the proof for (i) and (ii) uses
similar ideas, so that including our proof for (i) requires only a couple of extra lines.

Proof. We call a pair of roots {γ,µ} ∈ Ψ+ an A2-configuration if |γ| = |µ| and (γ,µ) < 0 and
we call it a C2-configuration if |γ|2 = 2|µ|2 and (γ,µ) < 0. To prove that an ideal c is not
spherical, it suffices to detect inside of Ψ(c) an A2- or C2-configuration {γ,µ}. Indeed, in
that case x = eγ + eµ ∈ c is a principal nilpotent element in a simple subalgebra of type A2

or C2. Denote this subalgebra by s. Then (adx |s)4 6= 0. Hence the orbit G·x is not spherical
by Theorem 3.1 and so G·c is not spherical either.

(i) If [c,c] 6= {0}, then there exist α,β∈Ψ(c) such that α+β∈Ψ. In the simply-laced case,
this means that {α,β} is an A2-configuration, and we are done.
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(ii) If [[c, [c,c]] 6= {0}, then there exist γ1,γ2,γ3 ∈Ψ(c) such that both γ1+γ2 and γ1+γ2+γ3

are in Ψ. Now, considering the various possibilities for the lengths of the roots in question,
we see that one can always detect an A2- or C2-configuration within Ψ(c):

(a) If γ1,γ2 are long, then {γ1,γ2} is an A2-configuration.
(b) If γ1 is long and γ2 is short, then {γ1,γ2} is a C2-configuration.
(c) If γ1,γ2 are short and (γ1,γ2)< 0, then {γ1,γ2} is an A2-configuration.
(d) If γ1,γ2 are orthogonal short roots, then γ1+γ2 is long. Thus, if γ3 is short (resp. long),

then {γ1 + γ2,γ3} is a C2-configuration (resp. A2-configuration).
(iii) Straightforward. �

Remark. The proof of Proposition 4.1 shows that a non-abelian ideal c can only be spherical
if all nonzero brackets in [c,c] correspond to orthogonal short roots, i.e., [eα,eβ] 6= 0 only if
α,β are orthogonal and short.
Remark. Given an ideal c ⊂ bu, we say that γ ∈ Ψ(c) is a generator if it cannot be written
as a sum γ = µ+ ∑νi , where µ ∈ Ψ(c) and νi ∈ Ψ+. Alternatively, let c̃ be the unique
T-stable complement to [bu,c] in c. Then γ is a generator of Ψ(c) if and only if it is a T-
weight of c̃. We write Γ(c) for the set of generators. It is obvious from this description
that Γ = {γ1, . . . ,γt} ⊂ Ψ+ is a set of generators for some ad-nilpotent b-ideal if and only
if γi − γ j is not a sum of positive roots for all pairs i, j , i.e., the elements of Γ are pairwise
not comparable with respect to the standard partial ordering on Ψ+. In the combinatorial
language, this means that Γ is an antichain in Ψ+. Since an ad-nilpotent ideal is completely
determined by its set of generators, we write c(Γ) for the ideal whose set of generators is
an antichain Γ⊂Ψ+.

Our method of classifying spherical ideals is that we first determine the ad-nilpotent
ideals whose sets of roots do not contain A2- or C2-configurations (cf. proof of Proposition
4.1). Then we directly verify that all ideals obtained in this way are actually spherical.
Theorem 4.2. Suppose g is doubly-laced.

(i) Let g be of type Br (r ≥ 2). Then there is a unique maximal non-abelian spherical b-ideal.
(ii) Let g be of type Cr (r ≥ 2). Then there are r−1 maximal non-abelian spherical b-ideals.

(iii) Let g be of type F4. Then there are two maximal non-abelian spherical b-ideals.
The generators and dimensions of these ideals are listed in Table 1 below.

Proof. For Br and Cr , we use the standard expression of roots in terms of the fundamental
dominant weights ε1, . . . ,εr . For instance, σ1 = ε1− ε2 for both Br and Cr , while σr = εr for
Br and σr = 2εr for Cr .

Let c be a spherical b-ideal in g.

(i) Recall that the positive roots of Br are εi± ε j (1≤ i < j ≤ r) and εi (1≤ i ≤ r).
(a) Suppose εi−ε j ∈Ψ(c). Then we also have ε1 +ε j ∈Ψ(c), since (ε1 +ε j)− (εi−ε j) is

a sum of positive roots. Because {εi− ε j ,ε1 + ε j} is an A2-configuration if i > 1, we
conclude that εi− ε j is a root of a spherical ideal only if i = 1.

(b) Suppose ε1− ε j ∈Ψ(c) for some j ≥ 2, and j is the minimal such possible index. If
j = 2, then ε2 + ε3 6∈ Ψ(c), since {ε1− ε2,ε2 + ε3} is an A2-configuration. Hence we
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obtain the maximal abelian ideal with the generator ε1−ε2. Thus, we may assume
that j > 2.

– Since {ε1− ε j ,ε2 + ε j} is an A2-configuration, we have ε2 + ε j 6∈Ψ(c). This im-
plies that the root εk + εl belongs to Ψ(c) only if k = 1 (and l is arbitrary), or
k, l < j .

– Assume now εk ∈ Ψ(c) for k> 1. Then ε2 ∈ Ψ(c) and hence ε2 + ε j ∈ Ψ(c) for
j > 2. This yields in Ψ(c) either the C2-configuration {ε1− ε2,ε2} (for j = 2), or
the A2-configuration {ε1−ε j ,ε2+ε j} (for j > 2). This contradiction shows that
εk 6∈Ψ(c), if k≥ 2.

Thus, we conclude that Ψ(c) is contained in the set of roots of the form ε1− εk

(k≥ j), ε1, ε1 + εl (2≤ l ≤ r), and εk + εl (1< k< l < j). Clearly, such an ideal c is
abelian.

(c) It remains to consider the case when Ψ(c) does not contain roots of the form εi−ε j .
Here all roots remaining at our disposal form an ideal of Ψ+, say Ψ(c′), whose
unique generator is εr = σr . Using the canonical matrix realization of so2r+1, we
see that x3 = 0 and rank(x2)≤ 1 for any matrix x∈ c′ ⊂ so2r+1. It then follows from
[10, 4.3] that G·x is spherical.

Thus, we have found a unique maximal spherical non-abelian ideal. It is worth noting
that c̃ contains one of the maximal abelian ideals, namely the ideal whose set of generators
is {ε1,εr−1 + εr}.
(ii) The argument for Cr is similar to that for Br , so that we omit the details. Recall that the
positive roots of Cr are εi± ε j (1≤ i < j ≤ r) and 2εi (1≤ i ≤ r).

(a) Again, if εi− ε j ∈Ψ(c) and i > 1, then c cannot be spherical.
(b) If ε1− ε j ∈Ψ(c) for some j ≥ 2, and j is the minimal possible index, then Ψ(c) can

only contain the roots ε1− εk ( j ≤ k), ε1 + εl (1≤ l ≤ r), εk + εl (1< k, l < j). This
yields r−1 maximal possibilities for Ψ(c). Namely, we get the ideals c j generated
by the roots ε1− ε j ,2ε j−1, if 3≤ j ≤ r ; and by ε1− ε2, if j = 2.
Using the canonical matrix realization of sp2r , we see that x2 = 0 for any matrix
x∈ c j ⊂ sp2r . It then follows from [10, 4.2] that G·x is spherical.

(c) Notice that if Ψ(c) contains no roots of the form εi− ε j , then we obtain the unique
maximal abelian ideal, which is generated by σr = 2εr .

(iii) We denote a root ∑4
i=1niσi in the root system of type F4 simply by (n1n2n3n4). Working

directly within the root system of type F4, one easily finds that there are two maximal
non-abelian ideals without A2- or C2-configurations. These are c1 = c({(1111),(0122)})
and c2 = c({(0121)}). Here is a sketch of the argument.

• If (1120) ∈Ψ(c), then Ψ(c) contains also the A2-configuration (1122), (1220);
• If (0111) ∈Ψ(c), then Ψ(c) contains also the A2-configuration (1111), (0121);
• If (1220) ∈ Ψ(c), then either c is abelian, or Ψ(c) contains the A2-configuration

(1122), (1220).
Thus, any ideal without A2-configurations is contained in the ideal with generators
(1111), (0121). Furthermore, these two roots cannot occur together. This leads to the
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above two possibilities.
Next, we show that there are subgroups H1,H2 ⊂ G and an abelian ideal a such that
ci = Hi ·a. (That is, each ci is a “partial saturation” of an abelian ideal.) This obviously
means that G·ci contains the same dense G-orbit as G·a. Since this orbit is spherical by
Theorem 3.2, we conclude that ci is spherical, too. In both cases, the subgroup Hi is a
standard parabolic subgroup of G. Namely, we take

Γ(a) = {(0122),(1221)}, H1 = P(σ2,σ3) , andH2 = P(σ1,σ2) .

It is straightforward to verify that a is a maximal abelian ideal, dima = 9, and NG(a) =
P(σ1,σ3). Then considering the roots involved shows that ci = Hi ·a in both cases.

It follows from this construction that, similarly to the case of Br , both c1 and c2 contain the
abelian ideal a defined above. �

In Table 1, we list all the maximal non-abelian spherical ideals (i.e., in the non-simply
laced cases).

G Γ(c) dimc

Br εr r(r +1)/2
Cr ε1− ε2 2r−1

ε1− εk+1,2εk (2≤ k≤ r−1) 2r +(k2−3k)/2
F4 (1111), (0122) 11

(0121) 11

TABLE 1. The maximal spherical non-abelian ideals of b in type Br , Cr , and F4.

Remark. Clearly, if c is a spherical ideal of b, then we have mod(B : c) = 0. Sphericity,
however, is not necessary for the resulting modality zero statement, as many examples
show, e.g., see the results in [7] and [8].
Corollary 4.3. Suppose G is simple and not of type G2. The number of maximal abelian ideals of
b plus the number of maximal non-abelian spherical ideals of b equals rankg.

Proof. This follows immediately from the classification of the maximal abelian ideals of b

in [16] and the above classification of the maximal spherical non-abelian ideals. �

Remarks. 1. As indicated in the proof of Theorem 4.2, it happens for Br and F4 that a
maximal abelian ideal is properly contained in a maximal spherical non-abelian ideal.
Therefore, the number of maximal spherical ideals is equal to the rank of g if and only if
g is either simply-laced or of type Cr .

2. Thanks to a theorem of D. Peterson, for G simple, the number of abelian ideals of b

is 2r , cf. [9], [5, Thm. 2.9]. There is no analogous uniform expression for the number of
spherical ideals. For, this number is equal to 2r in the simply-laced cases and also for G2,
see Proposition 4.1. In type Br this number equals 2r +2r−2 and in type Cr it is 2r +2r−1−1.
In type F4 this number equals 21.
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3. The theory of sl2-triples readily implies that any nilpotent orbit intersects some ad-
nilpotent ideal in a dense subset. For, let e be a nilpotent element in g and let h be the
semisimple element of an sl2-triple containing e. Consider the Z-grading of g = ⊕g(i)
afforded by h. Then G ·e meets the ideal ⊕i≥2g(i) of b in a dense subset, e.g., see [4, Sect.
5.7]. In particular, any spherical nilpotent orbit intersects some spherical ideal of b in a
dense subset.
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