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Abstract

Let G be a complex semisimple algebraic group with Lie alggbiEhe goal of this note is to show
that combining some ideas of Gunnells and Sommers [Math. Res. Lett. 10 (2-3) (2003) 363-373]
and Vinberg and Popov [Invariant Theory, in: Algebraic Geometry 1V, in: Encyclopaedia Math. Sci.,
\ol. 55, Springer, Berlin, 1994, pp.123-284] yields a geometric description of the characteristic of a
nilpotentG-orbit in an arbitrary (finite-dimensional) ration@-module.
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Let G be a complex semisimple algebraic group with Lie algghr&he goal of this
note is to show that combining some ideas of [5] and [1] quickly yields a geometric
description of the characteristic of a nilpotentorbit in an arbitrary (finite-dimensional)
rationalG-module.

Fix a Borel subalgebréd C g and a Cartan subalgebtan it. For eacht-weight u
of a G-moduleV, consider the affine hyperpladé, > = {x | (x, n) = 2} C tg. These
hyperplanes cut the dominant chamber in finitely many regions, and to any regioe
may attach &-stable subspace &F by the following rule:

Vg = EBW,

nelg

E-mail addresspanyush@mccme.ru (D.l. Panyushev).
1 This research was supported in part by R.F.B.I. Grants no. 01-01-00756 and 02-01-01041.

0007-4497/$ — see front mattéi 2003 Elsevier SAS. All rights reserved.
doi:10.1016/j.bulsci.2003.07.001



2 D.l. Panyushev / Bull. Sci. math. 128 (2004) 1-6

where I is the set of weights oV such that(x, u) > 2 for some (equivalently, any)
x € R. Given a nilpotentG-orbit O C V, consider the closure of the union of all regions
R such thatO NV # (. Let’s call this setCy. Our first observation is that» contains
a unique element of minimal length, and this element is just the dominant characteristic
of O in the sense of [5, 5.5]. Next, we show that if the representation GL(V) is
associated with either a periodic oZagrading of a reductive algebraic Lie algebra, then
the condition ‘O N Vg # #” can be replaced with® N Vg is dense inVg”. This new
condition determines a smaller &b C Cp, but these two sets still have the same element
of minimal length. This provides another proof and also a generalization of the main result
of [1]. It is worth noting that the representations associated #jfhgradings arevisible,
i.e., contain finitely many nilpotent orbits, and in this case different orbits have different
characteristics.

We also give an example showing that, for an arbitrary vistlenoduleV, it may
happen that different orbits have the same characteristic and that for somea‘bthigse
are no subspaces of the foity such thatD NV is dense iVg.

Main notation. A is the root system ofg, t) andW is the Weyl group oft, A).
AT is the set of positive roots and = {a1, ..., «,} is the set of simple roots i ™.
We definetg to be set of all elements dafhaving real eigenvalues in any-module
(a Cartan subalgebra of a split real formgdf Denote by(, ) a W-invariant inner product
ontg. Using(, ), we identifytg andty. So that, one may think th&g = @{’ZlRai.
C={xeV]|(x,a)>0Va e I} is the (open) fundamental Weyl chamber.

1. Thecharacteristic of a nilpotent or bit

In this section we recall some results published in the survey article [5, 85].
Unfortunately, that simple approach to questions of stability, optimal one-parameter
subgroups, and a stratification of the null-cone remained largely unnoticed by the experts.

Let V be aG-module. WriteV# for the u-weight space o¥. Hereu is regarded as
element oftg. Henceu(x) = (u, x) for anyx € tg.

Supposé: € tg, i.e., k is a rational semisimple element. FoGamoduleV andc € Q,
we set

Vile)={veVIhv=cv), Vi(zc)=@PVik), and Vi(>c)=E)Vlk).
k>c k>c

For instanceg,(0) is the centralizer of: in g (a Levi subalgebra of), g,(=0) is a
parabolic subalgebra @f andg; (>0) is the nilpotent radical of, (>0). Clearly,

Vile)= @ V* and gila)Valc) C Vala+c).
we p(h)=c

Recall that an elemente V, or the orbitG v, is callednilpotent if G-v 3 0. It is easy to
verify that, for anyk € tg, the subspac¥}, (>0) consists of nilpotent elements. Conversely,
the Hilbert—Mumford criterion asserts that any nilpotéabrbit in V meets a subspace of
this form for a suitablé.
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Definition 1.1. The characteristicof a nilpotent orbitO is a shortest elemente tg such
thatO NV, (>2) £ @.

Remark. In principle, one may choose an arbitrary normalization ¢)” in the definition.
The choicec = 2 is explained by the fact that fof = g this leads to the usual (Dynkin)
characteristic of a nilpotent element.

It was shown in [5, 5.5] that each nilpotent orbit has a characteristic. Moreover, if
h1, ho € tg are two characteristics @, then they ardV-conjugate. Thus, to any nilpotent
orbit O C V one may attach uniquely tlimminant characteristiovhich is denoted b .

If we are given ark € tg andu € V,(>2), then itis helpful to have a criterion to decide
whetherh is a characteristic of;-u. The following result, attributed in [5, Theorem 5.4] to
F. Kirwan and L. Ness, solves the problem. [Zgf(h) denote the gentralizer afin G and
Zg(h) C Zg(h) thereduced centralizefThatis, the Lie algebra df (k) is the orthogonal
complementta: in g, (0) = Lie Zg (h). Clearly,V;,(c) is aZg(h)-module for any.

Theorem 1.2. Under the previous notatiork, is a characteristic ofG -« if and only if the
projection ofu to V;(2) is not a nilpotent element with respect to the actiogf(h).

2. Regionsand characteristics

Let V be aG-module. WriteP*(V) for the set of nonzero weights & with respect
to t. For anyu € P*(V), consider the affine hyperplafié, » = {x e tr | (x, u) = 2}. The
number “2” is determined by the normalization in Definition 1.1. We will be interested in
the hyperplanes meeting the dominant Weyl chamber. It is easily seen that the following is
true.

Lemma 2.1. We have
Hu2NC#P <« phasapositive coefficient in the expression
p
pw=> aie; (a€Q).
i=1

The set of all such hyperplanes c@n regions. That is, &egion(associated witl) is a
connected component 6f\ UM H,.2. The set of all regions is denoted By= R(V).

Clearly, the closure of each region is a convex polytope. Given a regjiconsider all
hyperplanes separatirg) from the origin, and the corresponding weightsii(V). This
set of weights is denoted biy.. More precisely, ifx € R, then

Ig={pneP V)| (x,p > 2}
Lemma22. LetR e R.

() ifuelg,yeAt,andu+y e AT, thenu + y € Ig.
(i) The subspac®&y := @ME[R V#* C Vis b-stable.
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(i) EachG-orbit meetingVg is nilpotent.

Proof. (i) — obvious; (ii) follows from (i); (iii) we have lim, _o, exp(tx)-u = 0 for any
x€RandueVg. O

Suppos&) C V is a nilpotentG-orbit. One may attach t® a collection of regions, as
follows. Set

Mo={ReR|OCGVgl={ReR|ONVg 0}, 2.1)

and

Thus,Cp is a closed subset @f determined by). Leth’ € Cp be an element of minimal
length.

Proposition 2.3. /’ is a unique element of minimal length®p, andh’ = he.

Proof. By the very construction’ has the property thad NV, (>2) # @ and it is a
shortest dominant element with this property. It then follows from results described in
Section 1 thati’ = hp andCp» contains a unique element of minimal lengthz

The above construction is inspired by [1], where the dAseg is considered. However,
condition (2.1) was slightly different there. Namely, the set of regions attach@dwas
determined by the condition thé&tNgg be dense igg. But this stronger condition cannot
lead in general to satisfactory results, unl&sts avisible G-module. For, the number of
subspaces of the forivig is finite and therefore the set of such regions would be empty for
infinitely many nilpotent orbits, ifV is not visible. Moreover, even i¥ is visible, it may
happen that, for a given nilpotent orbit, there is no subspacér € R) such thath NV
is dense iVg (see example below).

However, one may formally set

Mo ={R € R|Ois dense inG-Vg}
={ReR|ONVgisdenseiWVg}, (2.2)

Clearly,l\7lo C Mp andéo C Co. We also definé o to be an element (E@ of minimal
length (if Cp # 2!).

Example 2.4. Here we give an example of a visible module such that{p) = ¢ for
someQ, and (ii) ko, = he, for different nilpotent orbits.
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LetG =SL(V1) x SL(V2), dimVy =dimV, =2, andV = (V1 ® V2) & V1. Identifying
V with the space of 2 by 3 matrices, we write

m n X
V=
(P q )’>

for a generic element i. Here

wove={(; 5 o))

There are five nilpotent orbits i, and representatives of the non-trivial orbits are:

00 1 1.0 0
02:”22(0 0 o)’ 03:”32(0 0 o>’

1 0 1 1 0O
(’)4:v4=<0 0 0), (’)521)5:(0 0 1).

One has dinD; =i for 2 <i < 5. Since rkG = 2, we havet is R? and it is not hard

to depict all the regions and determine the characteristics. The dominant chamber is the
positive quadrant. There are four lines of the falp » meeting the positive quadrant,
which correspond to the roots, a1 + a2, 01 — a2, —a1 + 2. Herew; is the simple root

of SL(V;). Hence one gets six regions marked by Roman numbers. We Mave= ¢,

Mo, = (I}, Mo, = {IV,V}, Mo, = {VI}. SinceO4 D O, andO3 O, we conclude
thaths = (1, 1), hp = ha = (2,0), andhs = (2, 4). The elementg; are circled in Fig. 1.

Therefore one should not expect tthaj is always defined and that different orbits have
different characteristics. At the rest of the section, we give a sufficient condition for this to
happen.

Let [ be a reductive algebraic Lie algebra. Considéf,agrading ofl, wherem € N
orm = oo. That is, we havé = P, I if m is finite, andl = P, ; is a’Z-grad-
ing in the second case. Hefg is reductive and each is an [p-module. LetG be a
connected (reductive) group with Lie algelisaand sety = [;. Then we shall say that
the representatiod@ — GL(V) is associated with &,,-grading (ofl). By a famous result
of Vinberg [3, § 2],V is a visibleG-module in this situation.

X2
VI
i /
Y
I v x|

Fig. 1.
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Theorem 2.5. Suppose the representatich— GL(V) is associated with &,,-grading.
Then different nilpotenG-orbits in 'V have different characteristics and for any nilpotent
G-orbit O Cc V we haveip = hp.

Proof. (1) Lete € V = [; be a nilpotent element, anl = G-¢. By a generalization of
the Morozov—Jacobson theorem [4, Theorem 1(1)], there islatriple (e, &, f) such
thath € l[p =g and f € [_1. The rational semisimple elemehtdetermines &-grading
of [, and we have € V;,(2) C [,(2). It is well known that, in the Lie algebra we have
ZL(h)~e is closed inl; (2). Hence, by the Richardson—Vinberg lemma [3, §Z<},(h)-e is
closed inV,(2). Without loss of generality, one may assume th& a dominant element
in tg. Then, in view of Theorem 1.2, = h is the dominant characteristic ¢f. Next,
L-eN1,(>2) is dense if, (>2) and henc& NV, (>2) is dense iV, (>2). Thus,h = ho.

(2) That different nilpotent orbits have different characteristics stems from [4,
Theorem 1(4)]. O

This result applies, in particular, to the adjoint representations=(1), where one
obtains another proof for the main result in [1]. Another interesting case is that of the
little adjoint G-module, ifg is a simple Lie algebra having roots of different lengths.d,et
be the short dominant root. Then the simg@lenodule with highest weiglt; is called the
little adjoint. It is denoted byy;,. The setP*(g;,) is Ay, the set of short roots. This module
is always associated with7,-grading ¢ =2 for B,,, C,,, F4, m = 3 for G3). Therefore
the set of region®(g,,) allows us to determine the characteristics of the nilpoteotrbits
in gi,. The arrangement of hyperplan®g, » (1 € A]) inside of € was studied in [2],
where it was shown that there is a bijection between the set of re§i@ng and the set of
all b-stable subspaces gf, without semisimple elements. We also give in [2] an explicit
formula for the number®(g;,.).
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