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Regions in the dominant chamber
and nilpotent orbits
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Abstract

LetG be a complex semisimple algebraic group with Lie algebrag. The goal of this note is to show
that combining some ideas of Gunnells and Sommers [Math. Res. Lett. 10 (2–3) (2003) 36
and Vinberg and Popov [Invariant Theory, in: Algebraic Geometry IV, in: Encyclopaedia Math.
Vol. 55, Springer, Berlin, 1994, pp.123–284] yields a geometric description of the characterist
nilpotentG-orbit in an arbitrary (finite-dimensional) rationalG-module.
 2003 Elsevier SAS. All rights reserved.
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Let G be a complex semisimple algebraic group with Lie algebrag. The goal of this
note is to show that combining some ideas of [5] and [1] quickly yields a geom
description of the characteristic of a nilpotentG-orbit in an arbitrary (finite-dimensiona
rationalG-module.

Fix a Borel subalgebrab ⊂ g and a Cartan subalgebrat in it. For eacht-weight µ
of a G-moduleV, consider the affine hyperplaneHµ,2 = {x | (x,µ) = 2} ⊂ tR. These
hyperplanes cut the dominant chamber in finitely many regions, and to any regionR one
may attach ab-stable subspace ofV by the following rule:

VR =
⊕
µ∈IR

Vµ,
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whereIR is the set of weights ofV such that(x,µ) > 2 for some (equivalently, any
x ∈ R. Given a nilpotentG-orbit O ⊂ V, consider the closure of the union of all regio
R such thatO ∩ VR �= ∅. Let’s call this setCO . Our first observation is thatCO contains
a unique element of minimal length, and this element is just the dominant charact
of O in the sense of [5, 5.5]. Next, we show that if the representationG → GL(V) is
associated with either a periodic or aZ-grading of a reductive algebraic Lie algebra, th
the condition “O ∩ VR �= ∅” can be replaced with “O ∩ VR is dense inVR”. This new
condition determines a smaller setC̃O ⊂ CO, but these two sets still have the same elem
of minimal length. This provides another proof and also a generalization of the main
of [1]. It is worth noting that the representations associated withZm-gradings arevisible,
i.e., contain finitely many nilpotent orbits, and in this case different orbits have diff
characteristics.

We also give an example showing that, for an arbitrary visibleG-moduleV, it may
happen that different orbits have the same characteristic and that for some orbitsO there
are no subspaces of the formVR such thatO ∩ VR is dense inVR .

Main notation. ∆ is the root system of(g, t) andW is the Weyl group of(t,∆).
∆+ is the set of positive roots andΠ = {α1, . . . , αp} is the set of simple roots in∆+.
We definetR to be set of all elements oft having real eigenvalues in anyG-module

(a Cartan subalgebra of a split real form ofg). Denote by( , ) aW -invariant inner produc
on tR. Using( , ), we identifytR andt∗

R
. So that, one may think thattR = ⊕p

i=1 Rαi .
C = {x ∈ V | (x,α) > 0 ∀α ∈Π} is the (open) fundamental Weyl chamber.

1. The characteristic of a nilpotent orbit

In this section we recall some results published in the survey article [5,
Unfortunately, that simple approach to questions of stability, optimal one-para
subgroups, and a stratification of the null-cone remained largely unnoticed by the ex

Let V be aG-module. WriteVµ for theµ-weight space ofV. Hereµ is regarded as
element oftR. Henceµ(x)= (µ,x) for anyx ∈ tR.

Supposeh ∈ tR, i.e.,h is a rational semisimple element. For aG-moduleV andc ∈ Q,
we set

Vh〈c〉 = {v ∈ V | h·v = cv}, Vh〈�c〉 =
⊕
k�c

Vh〈k〉, and Vh〈>c〉 =
⊕
k>c

Vh〈k〉.

For instance,gh〈0〉 is the centralizer ofh in g (a Levi subalgebra ofg), gh〈�0〉 is a
parabolic subalgebra ofg, andgh〈>0〉 is the nilpotent radical ofgh〈�0〉. Clearly,

Vh〈c〉 =
⊕

µ: µ(h)=c

Vµ and gh〈a〉·Vh〈c〉 ⊂ Vh〈a + c〉.

Recall that an elementv ∈ V, or the orbitG·v, is callednilpotent, if G·v � 0. It is easy to
verify that, for anyh ∈ tR, the subspaceVh〈>0〉 consists of nilpotent elements. Converse
the Hilbert–Mumford criterion asserts that any nilpotentG-orbit in V meets a subspace
this form for a suitableh.
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Definition 1.1. Thecharacteristicof a nilpotent orbitO is a shortest elementh ∈ tR such
thatO ∩ Vh〈�2〉 �= ∅.

Remark. In principle, one may choose an arbitrary normalization “(� c)” in the definition.
The choicec = 2 is explained by the fact that forV = g this leads to the usual (Dynkin
characteristic of a nilpotent element.

It was shown in [5, 5.5] that each nilpotent orbit has a characteristic. Moreov
h1, h2 ∈ tR are two characteristics ofO, then they areW -conjugate. Thus, to any nilpote
orbitO ⊂ V one may attach uniquely thedominant characteristic, which is denoted byhO .

If we are given anh ∈ tR andu ∈ Vh〈�2〉, then it is helpful to have a criterion to decid
whetherh is a characteristic ofG·u. The following result, attributed in [5, Theorem 5.4]
F. Kirwan and L. Ness, solves the problem. LetZG(h) denote the centralizer ofh in G and
Z̃G(h)⊂ZG(h) thereduced centralizer. That is, the Lie algebra of̃ZG(h) is the orthogona
complement toh in gh〈0〉 = LieZG(h). Clearly,Vh〈c〉 is aZG(h)-module for anyc.

Theorem 1.2. Under the previous notation,h is a characteristic ofG·u if and only if the
projection ofu to Vh〈2〉 is not a nilpotent element with respect to the action ofZ̃G(h).

2. Regions and characteristics

Let V be aG-module. WriteP∗(V) for the set of nonzero weights ofV with respect
to t. For anyµ ∈ P∗(V), consider the affine hyperplaneHµ,2 = {x ∈ tR | (x,µ)= 2}. The
number “2” is determined by the normalization in Definition 1.1. We will be intereste
the hyperplanes meeting the dominant Weyl chamber. It is easily seen that the follow
true.

Lemma 2.1. We have

Hµ,2 ∩ C �= ∅ ⇔ µ has a positive coefficient in the expression

µ=
p∑
i=1

aiαi (ai ∈ Q).

The set of all such hyperplanes cutsC in regions. That is, aregion(associated withV) is a
connected component ofC \ ⋃

µ Hµ,2. The set of all regions is denoted byR = R(V).
Clearly, the closure of each region is a convex polytope. Given a regionR, consider all

hyperplanes separatingR from the origin, and the corresponding weights inP∗(V). This
set of weights is denoted byIR . More precisely, ifx ∈ R, then

IR = {
µ ∈ P∗(V) | (x,µ) > 2

}
.

Lemma 2.2. LetR ∈ R.

(i) if µ ∈ IR , γ ∈ ∆+, andµ+ γ ∈∆+, thenµ+ γ ∈ IR .
(ii) The subspaceVR := ⊕

µ∈I Vµ ⊂ V is b-stable.

R
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(iii) EachG-orbit meetingVR is nilpotent.

Proof. (i) – obvious; (ii) follows from (i); (iii) we have limt→−∞ exp(tx)·u = 0 for any
x ∈R andu ∈ VR. ✷

SupposeO ⊂ V is a nilpotentG-orbit. One may attach toO a collection of regions, a
follows. Set

MO = {R ∈ R |O ⊂G·VR} = {R ∈ R |O ∩ VR �= ∅}, (2.1)

and

CO =
⋃

R∈MO

�R ⊂�C.

Thus,CO is a closed subset of�C determined byO. Let h′ ∈ CO be an element of minima
length.

Proposition 2.3. h′ is a unique element of minimal length inCO , andh′ = hO .

Proof. By the very construction,h′ has the property thatO ∩ Vh′ 〈� 2〉 �= ∅ and it is a
shortest dominant element with this property. It then follows from results describ
Section 1 thath′ = hO andCO contains a unique element of minimal length.✷

The above construction is inspired by [1], where the caseV = g is considered. Howeve
condition (2.1) was slightly different there. Namely, the set of regions attached toO was
determined by the condition thatO∩gR be dense ingR. But this stronger condition cann
lead in general to satisfactory results, unlessV is avisibleG-module. For, the number o
subspaces of the formVR is finite and therefore the set of such regions would be empt
infinitely many nilpotent orbits, ifV is not visible. Moreover, even ifV is visible, it may
happen that, for a given nilpotent orbit, there is no subspaceVR (R ∈ R) such thatO∩VR

is dense inVR (see example below).
However, one may formally set

M̃O = {R ∈ R |O is dense inG·VR}
= {R ∈ R |O ∩ VR is dense inVR}, (2.2)

and

C̃O =
⋃

R∈M̃O

�R ⊂�C.

Clearly,M̃O ⊂ MO andC̃O ⊂ CO . We also definẽhO to be an element of̃CO of minimal

length (if C̃O �= ∅!).

Example 2.4. Here we give an example of a visible module such that (i)M̃O = ∅ for
someO, and (ii)hO1 = hO2 for different nilpotent orbits.



D.I. Panyushev / Bull. Sci. math. 128 (2004) 1–6 5

r is the
t,

ve
his to

t
t

LetG= SL(V1)× SL(V2), dimV1 = dimV2 = 2, andV = (V1 ⊗V2)⊕ V1. Identifying
V with the space of 2 by 3 matrices, we write

v =
(
m n x

p q y

)
for a generic element inV. Here

V1 ⊗ V2 =
{(

m n 0
p q 0

)}
.

There are five nilpotent orbits inV, and representatives of the non-trivial orbits are:

O2: v2 =
(

0 0 1
0 0 0

)
, O3: v3 =

(
1 0 0
0 0 0

)
,

O4: v4 =
(

1 0 1
0 0 0

)
, O5: v5 =

(
1 0 0
0 0 1

)
.

One has dimOi = i for 2 � i � 5. Since rkG = 2, we havetR is R2 and it is not hard
to depict all the regions and determine the characteristics. The dominant chambe
positive quadrant. There are four lines of the formHµ,2 meeting the positive quadran
which correspond to the rootsα1, α1 + α2, α1 − α2,−α1 + α2. Hereαi is the simple root
of SL(Vi). Hence one gets six regions marked by Roman numbers. We haveM̃O2 = ∅,
M̃O3 = {II, III }, M̃O4 = {IV,V }, M̃O5 = {VI}. SinceO4 ⊃ O2 andO3 �⊃ O2, we conclude
thath3 = (1,1), h2 = h4 = (2,0), andh5 = (2,4). The elementshi are circled in Fig. 1.

Therefore one should not expect thath̃O is always defined and that different orbits ha
different characteristics. At the rest of the section, we give a sufficient condition for t
happen.

Let l be a reductive algebraic Lie algebra. Consider aZm-grading ofl, wherem ∈ N

or m = ∞. That is, we havel = ⊕
i∈Zm

li if m is finite, andl = ⊕
i∈Z

li is a Z-grad-
ing in the second case. Herel0 is reductive and eachli is an l0-module. LetG be a
connected (reductive) group with Lie algebral0, and setV = l1. Then we shall say tha
the representationG → GL(V) is associated with aZm-grading (ofl). By a famous resul
of Vinberg [3, § 2],V is a visibleG-module in this situation.

Fig. 1.
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Theorem 2.5. Suppose the representationG → GL(V) is associated with aZm-grading.
Then different nilpotentG-orbits in V have different characteristics and for any nilpote
G-orbit O ⊂ V we haveh̃O = hO .

Proof. (1) Let e ∈ V = l1 be a nilpotent element, andO = G·e. By a generalization o
the Morozov–Jacobson theorem [4, Theorem 1(1)], there is ansl2-triple (e,h,f ) such
that h ∈ l0 = g andf ∈ l−1. The rational semisimple elementh determines aZ-grading
of l, and we havee ∈ Vh〈2〉 ⊂ lh〈2〉. It is well known that, in the Lie algebral, we have
Z̃L(h)·e is closed inlh〈2〉. Hence, by the Richardson–Vinberg lemma [3, § 2],Z̃G(h)·e is
closed inVh〈2〉. Without loss of generality, one may assume thath is a dominant elemen
in tR. Then, in view of Theorem 1.2,h = hO is the dominant characteristic ofO. Next,
L·e∩ lh〈�2〉 is dense inlh〈�2〉 and henceO∩Vh〈�2〉 is dense inVh〈�2〉. Thus,h = h̃O .

(2) That different nilpotent orbits have different characteristics stems from
Theorem 1(4)]. ✷

This result applies, in particular, to the adjoint representations (m = 1), where one
obtains another proof for the main result in [1]. Another interesting case is that o
little adjointG-module, ifg is a simple Lie algebra having roots of different lengths. Leθs
be the short dominant root. Then the simpleG-module with highest weightθs is called the
little adjoint. It is denoted bygla . The setP∗(gla) is∆s , the set of short roots. This modu
is always associated with aZm-grading (m = 2 for Bp , Cp , F4; m = 3 for G2). Therefore
the set of regionsR(gla) allows us to determine the characteristics of the nilpotentG-orbits
in gla . The arrangement of hyperplanesHµ,2 (µ ∈ ∆+

s ) inside ofC was studied in [2],
where it was shown that there is a bijection between the set of regionsR(gla) and the set o
all b-stable subspaces ofgla without semisimple elements. We also give in [2] an expl
formula for the number #R(gla).

References

[1] P. Gunnells, E. Sommers, A characterization of Dynkin elements, Math. Res. Lett. 10 (2–3) (2003) 36
[2] D. Panyushev, Short antichains in root systems, semi-Catalan arrangements, andB-stable subspaces, Eur.

Combin. (in press).
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