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Let G be a complex simple algebraic group with Lie algebrag. Fix a Borel subalgebrab.
An ideal ofb is calledad-nilpotent, if it is contained in[b, b]. The goal of this paper is to
present a refinement of the enumerative theory ofad-nilpotent ideals in the case, whereg
has roots of different length.

Let Ad denote the set of allad-nilpotent ideals ofb. Any c ∈ Ad is completely
determined by the corresponding set of roots. The minimal roots in this set are called
thegeneratorsof an ideal. The collection of generators of an ideal forms anantichainin
the poset of positive roots, and the whole theory can be expressed in the combinatorial
language, in terms of antichains. An antichain is calledstrictly positive, if it contains
no simple roots. Enumerative results for all and strictly positive antichains were recently
obtained in the work of Athanasiadis, Cellini–Papi, Sommers, and this author [1–4, 9, 13].

There are two different theoretical approaches to describing (enumerating) antichains.
The first approach consists of constructing a bijection between antichains and the coroot
lattice points lying in a certain simplex. An important intermediate step here is a bijection
between antichains and the so-calledminimal elements of the affine Weyl group,̂W. It
turns out that the simplex obtained is “equivalent” to a dilation of the fundamental alcove
of Ŵ, so that the problem of counting the coroot lattice points in it can be resolved. For
strictly positive antichains, one constructs another bijection and another simplex, and the
respective elements of̂W are calledmaximal; yet, everything is quite similar. The second
approach uses the Shi bijection between thead-nilpotent ideals (or antichains) and the
dominant regions of the Catalan arrangement. Under this bijection, the strictly positive
antichains correspond to the bounded regions. There is a powerful result of Zaslavsky
allowing one to compute the number of all and bounded regions, if the characteristic
polynomial of the arrangement is known. Since the characteristic polynomial of the Catalan
arrangement was recently computed in [1], the result follows.

If g has roots of different length, one can distinguish the length of elements occurring
in antichains. We say that an antichain isshort, if it consists of only short roots.
This notion has a natural representation-theoretic incarnation: the short antichains are in
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a one-to-one correspondence with theb-stable subspaces, without nonzero semisimple
elements, in the little adjointG-module. A short analogue of strictly positive antichains,
strictly s-positiveantichains, is also defined. We are able to carry the above two approaches
over to the short antichains. First, we introduce and characterize suitable elements ofŴ
(s-minimalands-maximalones), establish bijections between these two sets of elements
and the coroot lattice points of certain simplices, and eventually obtain formulae for the
number of short and strictlys-positive antichains. Second, we introduce and study the
semi-Catalan arrangement, which has the same relation to short and strictlys-positive
antichains as the usual Catalan arrangement has to all and strictly positive antichains. The
difference between the Catalan and semi-Catalan arrangements is that we “deform” only
the hyperplanes orthogonal to short roots in the latter. We prove various results connecting
the dominant regions of the semi-Catalan arrangement and the elements ofŴ attached to
short antichains. Adapting Athanasiadis’ argument from [1], we compute the characteristic
polynomial for theextended semi-Catalan arrangements, or in other words, form-semi-
Catalan arrangements, Catm

s (∆), with m = 0,1,2, . . .. Form= 0, one obtains the Coxeter
arrangement ofW, and form = 1, the semi-Catalan arrangement.

Here is a part of our results. Letα1, . . . , αp be the simple roots ofg and θ the
highest root. Let be the fundamental alcove of̂W andg the sum of coefficients of the
short simple roots in the expression ofθ = ∑

ciαi . Then the short (resp. strictlys-
positive) antichains are in one-to-one correspondence with the coroot lattice points in
(g + 1) (resp.(g − 1) ). If the root system is not of typeG2, this leads to a closed
formula for the number of the respective antichains. E.g., the number of short antichains
is equal to

∏p
i=1

g+ei+1
ei+1 , whereei , i = 1,2, . . . , p, are the exponents of the Weyl group

W. Using this, we found a uniform expression, which covers theG2-case as well, see
Eq. (5.6), but it awaits a conceptual explanation. The characteristic polynomial of Catm

s (∆)
is χ(t) = ∏p

i=1(t − mg− ei ) (again, if∆ is not of typeG2). For G2, the formula for
χ(t) depends on the parity ofm. We also define a “short” analogue of the extended Shi
arrangement, which we call, of course, theextended semi-Shi arrangement, and propose a
conjectural formula for its characteristic polynomial, seeRemarks 6.8.

A rough description of the contents is as follows. InSections 2and3, we give a review
of results concerning ideals (antichains) and Catalan arrangements, including the two
approaches described above. In particular, we consider minimal and maximal elements
of Ŵ and their connection with ideals. Some complements to known results are also given.
We attempt to present a unified treatment that can be generalized afterwards, without much
pains, to the setting of short antichains. Our main results are gathered inSections 4–7.
After a brief description inSection 4of the relationship betweenb-stable subspaces of
the little adjoint G-module and short antichains, we turn, inSection 5, to considering
s-minimal ands-maximal elements of̂W and related simplices. InSection 6, we compute
the characteristic polynomial for them-semi-Catalan arrangement with arbitrarym ∈ N

and study the relationship between the semi-Catalan arrangement (which corresponds to
m = 1) and short antichains. As a consequence of our theory, we present, inSection 7,
several intriguing results whose proof uses case-by-case verification.

To a great extent, this work was inspired by the recent papers of Athanasiadis [1] and
Sommers [13].
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1. Notation and other preliminaries

1.1. Main notation

∆ is the root system of(g, t) and W is the usual Weyl group. Forα ∈ ∆, gα is the
corresponding root space ing.

∆+ is the set of positive roots andρ = 1
2

∑
α∈∆+ α.

Π = {α1, . . . , αp} is the set of simple roots in∆+ andθ is the highest root in∆+.
We setV := tR = ⊕p

i=1Rαi and denote by( , ) a W-invariant inner product onV . As
usual,µ∨ = 2µ/(µ,µ) is the coroot forµ ∈ ∆.

= {x ∈ V | (x, α) > 0 ∀α ∈ �} is the (open) fundamental Weyl chamber.
= {x ∈ V | (x, α) > 0 ∀α ∈ � & (x, θ) < 1} is the fundamental alcove.

Q+ = {∑p
i=1 niαi | ni = 0,1,2, . . .} andQ∨ = ⊕p

i=1Zα∨i ⊂ V is the coroot lattice.
Letting V̂ = V ⊕ Rδ ⊕ Rλ, we extend the inner product( , ) on V̂ so that

(δ,V) = (λ,V) = (δ, δ) = (λ, λ) = 0 and(δ, λ) = 1.
∆̂ = {∆+ kδ | k ∈ Z} is the set of affine real roots and̂W is the affine Weyl group.
Then∆̂ + = ∆+∪{∆+kδ | k ≥ 1} is the set of positive affine roots and̂� = �∪{α0}

is the corresponding set of affine simple roots, whereα0 = δ − θ . The inner product
( , ) on V̂ is Ŵ-invariant. The notationβ > 0 (resp.β < 0) is shorthand forβ ∈ ∆̂ +

(resp.
β ∈ −∆̂ +

). Forαi (0≤ i ≤ p) we letsi denote the corresponding simple reflection inŴ.
If the index ofα ∈ �̂ is not specified, then we merely writesα . The length function on̂W
with respect tos0, s1, . . . , sp is denoted by�. For anyw ∈ Ŵ, we set

N(w) = {α ∈ ∆̂ + | w(α) ∈ −∆̂ +}.
It is standard that #N(w) = �(w) and N(w) is bi-convex. The latter means that both
N(w) and ∆̂ +\N(w) are subsets of̂∆ +

that are closed under addition. Furthermore,
the assignmentw �→ N(w) sets up a bijection between the elements ofŴ and the finite
bi-convex subsets of̂∆ +

.

1.2. Ideals and antichains

Throughout the paper,b is the Borel subalgebra ofg corresponding to∆+ andu =
[b, b]. Let c ⊂ b be anad-nilpotent ideal. Thenc = ⊕α∈I gα for someI ⊂ ∆+. This
I is said to be anideal (of ∆+). More precisely, a setI ⊂ ∆+ is an ideal, if whenever
γ ∈ I , µ ∈ ∆+, andγ + µ ∈ ∆, thenγ + µ ∈ I . Our exposition will be mostly
combinatorial, i.e., in place ofad-nilpotent ideals ofb we will deal with the respective
ideals of∆+.

Forµ, γ ∈ ∆+, writeµ � γ , if γ − µ ∈ Q+. The notationµ ≺ γ means thatµ � γ

andγ �= µ. We regard∆+ as poset under “�”. Let I ⊂ ∆+ be an ideal. An elementγ ∈ I
is called agenerator, if γ − α /∈ I for anyα ∈ Π . In other words,γ is a minimal element
of I with respect to “�”. We write �(I ) for the set of generators ofI . It is easily seen
that�(I ) is anantichainof ∆+, i.e.,γi γ j for any pair(γi , γ j ) in �(I ). Conversely, if

� ⊂ ∆+ is an antichain, then the ideal

I 〈�〉 := {µ ∈ ∆+ | µ � γi for someγi ∈ �}
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has� as the set of generators. LetAn denote the set of all antichains in∆+. In view of

the above bijectionAd
1:1←→ An, we will freely switch between ideals and antichains. An

ideal I is calledstrictly positive, if I ∩Π = ∅. The set of strictly positive ideals is denoted
by Ad0.

2. Ideals, maximal and minimal elements of Ŵ

In this section we review some recent results by Athanasiadis, Cellini–Papi, Sommers,
and this author. A few complements are also given.

The idea of describing ideals of∆+ through the use of elements of̂W goes back to
D. Peterson, who exploited minuscule elements for counting Abelian ideals ofb, see [7]. In
the general case, givenI ⊂ ∆+, we want to havew ∈ Ŵ such thatN(w) ⊂ ∪k≥1(kδ−∆+)
andN(w) ∩ (δ −∆+) = δ − I . It turns out that, for any idealI , there is a unique element
of minimal length satisfying these properties. In contrast, the element of maximal length
exists if and only ifI is strictly positive, and in this case such an element is unique, too.
Implementation of this program yields also explicit formulae for the number of all and
strictly positive ideals.

As is well known,Ŵ is isomorphic to a semi-direct product ofW and Q∨. Given
w ∈ Ŵ, there is a unique decomposition

w = v · tr , (2.1)

wherev ∈ W andtr is the translation corresponding tor ∈ Q∨. The word “translation”
means the following. The group̂W has two natural actions:

(a) the linear action on̂V = V ⊕Rδ ⊕ Rλ;

(b) the affine-linear action onV .

We use “∗” to denote the second action. Forr ∈ Q∨, the linear action oftr ∈ Ŵ onV⊕Rδ

is given bytr (x) = x − (x, r )δ (we do not need the formulas for the whole ofV̂ ), while
the affine-linear action onV is given bytr ∗ y = y + r . So thattr is a true translation for
the∗-action onV .

Let us say thatw ∈ Ŵ is dominant, if w(α) > 0 for all α ∈ �. Obviously,w is domi-
nant if and only ifN(w) ⊂ ∪k≥1(kδ−∆+). It also follows from [3, 1.1] thatw is dominant
if and only ifw−1 ∗ ⊂ . Write Ŵdom for the set of dominant elements.

Proposition 2.2.

(i) If w = v · tr ∈ Ŵdom, then r∈ − ;

(ii) The mappinĝWdom→ Q∨ given byw = v · tr �→ v(r ) is a bijection.

Proof. (i) We havew−1 ∗ x = v−1(x) − r for anyx ∈ V . In particular,w−1 ∗ 0 = −r .
Since 0∈ andw is dominant, we are done.

(ii) Givenκ ∈ Q∨, we want to findw = v · tr such thatw−1∗ = v−1( )−r ⊂ and
v(r ) = κ. In view of the last equality, the previous containment readsv−1( − κ) ⊂ .
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Thereforev must be the unique element ofW taking the alcove − κ into the dominant
Weyl chamber . Thenr = v−1(κ).

This argument proves both the injectivity and surjectivity of the mapping in
question. �

Letting δ − I := N(w) ∩ (δ − ∆+), we easily deduce thatI is an ideal, ifw ∈ Ŵdom.
We sayδ − I is the first layer of N(w) and I is the first layer idealof w. However,
an ideal I may well arise from different dominant elements. To obtain a bijection, one
has to impose further constraints on dominant elements. One may attempt to consider
either maximal or minimal bi-convex subsets with first layerδ − I . This naturally leads
to notions of “minimal” and “maximal” elements. This terminology suggested in [13] is
also explained by the relationship between these elements and dominant regions of the
Shi arrangement; seeSection 3. However, the formal definitions do not require invoking
arrangements. Furthermore, we want to stress that many results relating the ideals and
these two kinds of dominant elements can be obtained without ever mentioning the Shi (or
Catalan) arrangement.

Definition 2.3. w ∈ Ŵ is calledminimal, if

(i) w is dominant;

(ii) if α ∈ �̂ andw−1(α) = kδ + µ for someµ ∈ ∆, thenk ≥ −1.

Using (i), condition (ii) can be made more precise. Ifk ∈ {−1,0}, thenµ ∈ ∆+. The set
of minimal elements is denoted bŷWmin.

Proposition 2.4 ([3, Proposition 2.12]).There is a bijection between̂Wmin and Ad.
Namely,

• givenw ∈ Ŵmin, the corresponding ideal is{µ ∈ ∆+ | δ − µ ∈ N(w)};
• given I ∈ Ad, the corresponding minimal element is determined by the finite

bi-convex set⋃
k≥1

(kδ − I k) ⊂ ∆̂ +
.

Here Ik is defined inductively by Ik = (I k−1 + I ) ∩∆+.

If N ⊂ ∆̂ +
is a finite convex subset, containingδ − I , then it must also contain

∪k≥1(kδ − I k). So, the latter is the minimal bi-convex subset containingδ − I .
The first layer ideal ofw ∈ Ŵmin is denoted byIw.

Proposition 2.5 ([9, Theorem 2.2] [13, 6.3(1)]). If w ∈ Ŵmin, then�(Iw) = {γ ∈ ∆+ |
w(δ − γ ) ∈ −�̂}.
Following [4], we give a “geometric” description of the minimal elements. Set

Dmin = {x ∈ V | (x, α) ≥ −1 ∀α ∈ Π & (x, θ) ≤ 2}.
It is a certain simplex inV .
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Proposition 2.6 ([4, Propositions 2 and 3]).

(1) w = v · tr ∈ Ŵmin

{
w is dominant,
v(r ) ∈ Dmin ∩ Q∨.

(2) The mappinĝWmin → Dmin ∩ Q∨, w = v · tr �→ v(r ), is a bijection.

Proof. (1) “⇒” The first condition is satisfied by the definition.
Next, we havew−1(x) = v−1(x)+ (x, v(r ))δ for anyx ∈ V ⊕ Rδ. In particular,

w−1(αi ) = v−1(αi )+ (αi , v(r ))δ, i ≥ 1,

w−1(α0) = −v−1(θ)+ (1− (θ, v(r )))δ. (2.7)

Comparing this withDefinition 2.3(ii), one concludes thatv(r ) ∈ Dmin.
“⇐” The previous argument can be reversed.
(2) This follows from part 1 andProposition 2.2. �

Remark. The above proof applies equally well toPropositions 2.14, 5.3and5.10below.
It is a simplified version of the proof of Propositions 2 and 3 in [4].

It follows that #(Ad) equals the number of integral points inDmin. (Unless otherwise
stated, an “integral point” is a point lying inQ∨.) A pleasant feature of this situation
is that there is an element of̂W that takesDmin to a dilated closed fundamental alcove.
Namely,w(Dmin) = (h + 1) for somew ∈ Ŵ, see [4, Theorem 1]. Writeθ as a linear
combination of simple roots:θ = ∑

i ciαi . The integersci are said to be thecoordinates

of θ . By a result of Haiman [6, 7.4], the number of integral points int is equal to
p∏

i=1

t + ei

1+ ei
(2.8)

whenevert is relatively prime with all the coordinates ofθ . Since this condition is satisfied
for t = h + 1, one obtains

#(Ad) =
p∏

i=1

h + ei + 1

ei + 1
. (2.9)

It is the main result of [4].
CombiningProposition 2.5and Eq. (2.7) yields the assertion that #�(Iw) = k if and

only if v(r ) lies on a face ofDmin of codimensionk [9, Theorem 2.9].
Now, we turn to considering maximal (dominant) elements ofŴ that are introduced and

studied by Sommers [13]. Most of the results on these elements are due to him. Because we
want to have a uniform treatment for both minimal and maximal elements, some assertions
below have no exact counterparts in [13]. For these reason, we also give some proofs.

Definition 2.10. w ∈ Ŵ is calledmaximal, if

(i) w is dominant;
(ii) if α ∈ �̂ andw−1(α) = kδ + µ for someµ ∈ ∆, thenk ≤ 1.

Using (i), condition (ii) can be made more precise. Ifk = 1, thenµ ∈ −∆+; if k = 0, then
µ ∈ ∆+. The set of maximal elements is denoted byŴmax.
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If I ∈ Ad0, then for anyµ ∈ ∆+ we definek(µ, I ) as the minimal possible number of
summands in the expressionµ = ∑

i νi , whereνi ∈ ∆+\I . Notice that this definition only
makes sense for strictly positive ideals.

Proposition 2.11 ([13, Section 5]).There is a bijection between̂Wmax andAd0. Namely,

• givenw ∈ Ŵmax, the corresponding strictly positive ideal is{µ ∈ ∆+ | δ − µ ∈
N(w)};

• given I ∈ Ad0, the corresponding maximal element is determined by the finite
bi-convex set

{mδ − γ | γ ∈ I & 1 ≤ m≤ k(γ, I )− 1}. (♦)

Proof. (1) Supposew ∈ Ŵ is dominant, and letI be the first layer ideal ofw. Assuming
that I ∩Π  α, we show thatw cannot be maximal. For anyγ ∈ I , let kγ be the maximal
integer such thatkγ δ − γ ∈ N(w), i.e.,

N(w) = {lδ − γ | γ ∈ I & 1 ≤ l ≤ kγ }.
Let I (α) be the ideal generated byα. Clearly,I (α) ⊂ I . Set

N(w)〈2〉 = {lδ − γ | γ ∈ I (α) & 1 ≤ l ≤ 2kγ } ∪ {lδ − γ | γ ∈ I \I (α)

& 1 ≤ l ≤ kγ }.
Obviously, N(w)〈2〉 is finite and has the same first layer asN(w). It is also easy to
verify that N〈2〉 is again bi-convex. HenceN(w)〈2〉 = N(w′) for somew′ ∈ Ŵ. Since
N(w′) ⊃ N(w), there is a presentationw′ = uw, where�(w′) = �(u) + �(w). If sν
(ν ∈ �̂) is the rightmost reflection in a reduced decomposition foru, thenw−1(ν) = kδ−µ
with k ≥ 2, as the first layers ofN(w′) andN(w) are the same. Thus,w is not maximal.

(2) SupposeI ∈ Ad0, and letw ∈ Ŵ be any dominant element with first layer idealI .
Since∆̂ +\N(w) is convex and containsδ−(∆+\I ), it follows from the very definition of
numbersk(γ, I ) thatlδ− γ ∈ ∆̂ +\N(w) for all l ≥ k(γ, I ). HenceN(w) is contained in
the finite set given byEq. (♦) in Proposition 2.11. It only remains to prove that the latter
is bi-convex. For this crucial fact, we refer to [13, Lemma 5.2]. �
The strictly positive ideal corresponding tow ∈ Ŵmax (the first layer ideal ofw) is denoted
by I w. For an idealI ⊂ ∆+, we write�(I ) for the set of maximal elements of∆+\I . It
is immediate that�(I ) is an antichain.

Proposition 2.12 ([13, 6.3(2)]). If w ∈ Ŵmax, then�(I w) = {γ ∈ ∆+ | w(δ − γ ) ∈ �̂}.
Remark 2.13. Note that antichains of the form�(I w) are not arbitrary. From the
definition of a strictly positive ideal it readily follows that, given� ∈ An, we have
� = �(I ) for someI ∈ Ad0 if and only if for anyα ∈ Π there is aγ ∈ � such that
γ � α. We shall say that such an antichaincoversthe simple roots.

Now, we proceed to a “geometric” characterization of the maximal elements. Set

Dmax = {x ∈ V | (x, α) ≤ 1 ∀α ∈ � & (x, θ) ≥ 0}.
It is a certain simplex inV .
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Proposition 2.14 (cf. [13, Proposition 5.6]).

(1) w = v · tr ∈ Ŵmax

{
w is dominant,
v(r ) ∈ Dmax∩ Q∨.

(2) The mappinĝWmax→ Dmax∩ Q∨, w = v · tr �→ v(r ), is a bijection.

Proof. (1) The argument is the same as inProposition 2.6, taking into account that the
constraints forDmax are different.

(2) This follows from part 1 andProposition 2.2. �

Proposition 2.15 (cf. [13, Proposition 6.2(2)]).Supposew = v · tr ∈ Ŵmax. Then
#�(I w) = k if and onlyv(r ) lies on a face of codimension k of Dmax.

Proof. CombineProposition 2.12and Eq. (2.7). �

Since� is the only antichain of cardinalityp [9, 2.10(ii)] and it is certainly of the form
�(I w), we see thatDmax has a unique integral vertex.

In order to compute #(Dmax∩Q∨), we replaceDmax with another simplex. Let{�∨
i }p

i=1
denote the dual basis ofV for {αi }p

i=1. Set ρ∨ = ∑p
i=1�

∨
i . Since the sum of the

coordinates ofθ equalsh − 1, the translationx �→ t−ρ∨ ∗ x = x − ∑p
i=1�

∨
i takes

Dmax to the negative dilated fundamental alcove

−(h − 1) = {x ∈ V | (x, α) ≤ 0 ∀α ∈ Π ; (x, θ) ≥ 1− h}.
It may happen thatρ∨ does not belong toQ∨, so that this translation, which is in the
extended affine Weyl group, does not belong toŴ, while we wish to have a transformation
from Ŵ. Nevertheless, sinceh− 1 is relatively prime with the index of connection of∆, it
follows from [4, Lemma 1] that there is an element of̂W that takesDmax to (1− h) .

Again, using the above-mentioned result of Haiman, see Eq. (2.8), one obtains the
following.

Theorem 2.16 ([1, 9, 13]).

#(Ad0) =
p∏

i=1

h+ ei − 1

ei + 1
.

Remark. The proofs in [1] and [9] are based on the fact that the strictly positive ideals
correspond to the bounded regions of the Catalan arrangement and that the number of
bounded regions of any hyperplane arrangement can be computed via the characteristic
polynomial of this arrangement, seeSection 3.

3. Ideals and dominant regions of the Catalan arrangement

Recall a bijection between the ideals of∆+ and the dominant regions of the Catalan
arrangement. This bijection is due to Shi [12, Theorem 1.4].

Forµ ∈ ∆+ andk ∈ Z, define the hyperplane µ,k in V as{x ∈ V | (x, µ) = k}.
TheCatalan arrangement, Cat(∆), is the collection of hyperplanes µ,k, whereµ ∈ ∆+
andk = −1,0,1. Theregionsof an arrangement are the connected components of the
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complement inV of the union of all its hyperplanes. Obviously, the dominant regions of
Cat(∆) are the same as those for theShi arrangementShi(∆). The latter is the collection
of hyperplanes µ,k, whereµ ∈ ∆+ andk = 0,1. But, it will be more convenient for us
to deal with the arrangement Cat(∆), since it isW-invariant.

It is clear that is a union of regions of Cat(∆). Any region lying in is said to be
dominant. The Shi bijection takes an idealI ⊂ ∆+ to the dominant region

RI = {x ∈ | (x, γ ) > 1, if γ ∈ I & (x, γ ) < 1, if γ /∈ I }. (3.1)

It should be noted that the proof given by Shi in [12] consists essentially in a reference to
his earlier work [11]. It is not, however, easy to extract the actual proof from Shi’s papers.
The most subtle point is to show thatRI �= ∅ for any I ∈ Ad. And this fact readily follows
from the theory of minimal elements developed by Cellini and Papi in [3, 4]:

If w ∈ Ŵ is the minimal element corresponding to I, thenw−1 ∗ ⊂ RI .

Indeed, µ,1 separates andw−1 ∗ if and only ifw(δ − µ) ∈ −∆̂ +
, see [3, 1.1].

In fact,w−1 ∗ is the alcove nearest to the origin inRI .
A region (of an arrangement) is calledbounded, if it is contained in a sphere about the

origin.

Proposition 3.2 ([1, 9]). I ∈ Ad(g)0 if and only if the region RI is bounded.

If RI is bounded, then it obviously contains an alcove that is most distant from the origin.
It was shown in [13] that if w is the maximal element corresponding toI ∈ Ad0, then
w−1 ∗ is the most distant from the origin alcove inRI .

The number of regions and bounded regions of any hyperplane arrangement can
be counted through the use of a striking result of Zaslavsky. Letχ(A, t) denote the
characteristic polynomial of a hyperplane arrangementA in V (see e.g. [1, Section 2]
for precise definitions).

Theorem 3.3 (Zaslavsky).

(1) The number of regions into whichA dissects V equals(−1)pχ(A,−1).

(2) The number of bounded regions into whichA dissects V equals|χ(A,1)|.

In [1], Athanasiadis gives a nice case-free proof of the following formula for the
characteristic polynomial of the Catalan arrangement:

χ(Cat(∆), t) =
p∏

i=1

(t − h − ei ). (3.4)

Since Cat(∆) is W-invariant, the values|χ(Cat(∆),±1)|
#(W)

give the number of bounded and
all regions in , respectively. In this way, one obtains explicit formulae for the cardinality
of Ad0 andAd written already down inSection 2. Thus, the characteristic polynomial of
the Catalan arrangement provides an alternative approach to counting ideals and strictly
positive ideals.
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4. Short antichains and b-stable subspaces in the little adjoint G-module

For the rest of the paper, we stick to the case in which∆ has roots of different length.
Then we naturally have long and short roots, long and short reflections, etc. Our goal is
to show that the theory presented in the previous sections can be extended to the setting,
where one pays attention to the length of roots involved. A piece of such theory has already
appeared in [10], where we studied Abelian ideals of∆+ consisting of only long roots.
Now, we consider the general case. Our treatment will again be combinatorial. We wish,
however, to stress that it has a related representation-theoretic picture. While the ideals
(antichains) in∆+ correspond bijectively to theb-stable subspaces ing having no nonzero
semisimple elements, our short antichains in∆+ correspond bijectively to theb-stable
subspaces, without nonzero semisimple elements, in the little adjointg-module.

To distinguish various objects associated with long and short roots, we use the subscripts
“ l ” and “s”, respectively. For instance,Πl is the set of long simple roots and∆+

s is the
set of short positive roots. Accordingly, each simple reflectionsi is either short or long.
Sinceθ is long, the simple rootα0 and the reflections0 are regarded as long. Therefore,
�̂l = Πl ∪ {α0}. Write θs for the unique short dominant root in∆+. A simpleg-module
with highest weightθs, V(θs), is said to belittle adjoint. The set of nonzero weights of
V(θs) is ∆s, all nonzero weights are simple, and the multiplicity of the zero weight is
#(Πs) [8, 2.8].

Definition 4.1. An antichain� ⊂ ∆+ is calledshort, if it consists of short roots, i.e.,
� ⊂ ∆+

s . Similarly, one defines alongantichain.

If � is a short antichain, then�∨ is a long antichain in the dual root system∆∨. Therefore,
it suffices, in principle, to consider only short antichains. We writeAns for the set of all
short antichains of∆+. The respective set of ideals is denoted byAds.

Recall that, for any finite-dimensional rationalG-module V, there are notions of
semisimple and nilpotent elements, generalizing those ing, see [14]. An elementv ∈ V

is calledsemisimple, if the orbit Gv is closed; it is callednilpotent, if the closure ofGv
contains the origin. We shall say that a subspace ofV is nilpotent, if it consists of nilpotent
elements.

Proposition 4.2. There is a one-to-one correspondence betweenAns and the nilpotent
b-stable subspaces ofV(θs).

Proof. If � is a short antichain, then the corresponding subspaceU� ⊂ V(θs) is defined
as the sum of weight spacesV(θs)µ, µ ∈ ∆+

s , such thatγi � µ for someγi ∈ �. Being
a subset of∆+

s , the weights ofU� lie in an open halfspace ofV . Hence all elements of
U� are nilpotent, see e.g. [14, 5.4]. Conversely, ifU is ab-stable subspace ofV(θs), then
it is a sum of weight spaces. AssumeU contains a weight spaceV(θs)µ with µ ∈ −∆+

s . It
then follows from theb-invariance thatU has non-empty intersection withV(θs)0. Hence
U is not nilpotent, because the orbitGx is closed for anyx ∈ V(θs)0. Thus, the weights of
U form a subset of∆+

s . The minimal elements of this set of weights give us the required
short antichain. �
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If � is a short antichain, then the set of weights of the corresponding nilpotentb-stable
subspace ofV(θs) is I 〈�〉 ∩∆+

s .

5. Short antichains, s-minimal and s-maximal elements of Ŵ

Our goal is to show that the theory described inSection 2extends well to short
antichains.

Definition 5.1. w ∈ Ŵ is calleds-minimal, if

(i) w is dominant;
(ii) if α ∈ Πs andw−1(α) = kδ + µ with µ ∈ ∆, thenk ≥ −1;
(iii) if α ∈ �̂l andw−1(α) = kδ + µ with µ ∈ ∆, thenk ≥ 0.

Using (i), conditions (ii), (iii) can be made more precise. Ifk = 0 or k = −1 in (ii), then
µ ∈ ∆+.

We writeŴ(s)
min for the set of alls-minimal elements. Notice that̂W(s)

min ⊂ Ŵmin.

Proposition 5.2. The bijection betweenAd and Ŵmin described inProposition2.4 gives
rise to a bijection betweenAns (or Ads) andŴ(s)

min.

Proof. (1) Supposew ∈ Ŵ(s)
min, and let Iw be the corresponding ideal. It follows from

Definition 5.1(ii), (iii) and Proposition 2.5that �(Iw) ⊂ ∆+
s . Thus, we obtain a short

antichain.
(2) The use ofProposition 2.5gives also the converse.�
Now, we give a geometric description ofs-minimal elements in the spirit ofSection 2.

Set

D(s)
min = {x ∈ V | (x, α) ≥ −1(α ∈ Πs); (x, α) ≥ 0(α ∈ Πl ); (x, θ) ≤ 1},

and recall thatw = v · tr , wherev ∈ W andr ∈ Q∨.

Proposition 5.3.

(1) w = v · tr ∈ Ŵ(s)
min

{
w is dominant,
v(r ) ∈ D(s)

min ∩ Q∨.
(2) The mappinĝW(s)

min → D(s)
min ∩ Q∨, w = v · tr �→ v(r ), is a bijection.

Proof. The argument is the same as inProposition 2.6, taking into account that the
constraints forD(s)

min are different. �

In order to compute the number #(D(s)
min ∩ Q∨), we perform the following transformation.

Setρ∨s = ∑
αi ∈Πs

�∨
i . It is easily seen that the translationtρ∨s takesD(s)

min to the dilated
closed fundamental alcove

(g+ 1) = {x ∈ V | (x, α) ≥ 0 ∀ α ∈ Π ; (x, θ) ≤ g+ 1}.
Here g = (θ,

∑
αi∈Πs

�∨
i ), i.e., it is the sum of theshort coordinates ofθ (i.e., those

corresponding to the short simple roots). It is easy to obtain other formulae forg.
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E.g., g = (#∆s)/p = (ρs, θ
∨), whereρs is the half-sum of all positive short roots. If

we want to explicitly indicate thatg depends on∆, we writeg∆.
Although the above translation may not belong tôW, the very existence of such a

transformation and Lemma 1 in [4] show that the following is true

Lemma 5.4. If g + 1 and the index of connection of∆ are relatively prime, then there is
an element of̂W that takes D(s)min to (g+ 1) .

The numbersg for all root systems with roots of different lengths are as follows:

∆ Cp Bp F4 G2

g 2p− 2 2 6 3

It follows that Lemma 5.4always applies and hence #(Ans) = #(Ŵ(s)
min) = #((g + 1)

∩ Q∨). In turn, if g+ 1 is relatively prime with the coordinates ofθ , then this number
is computed by Eq. (2.8). One sees that the condition of relative primeness does not hold
only for G2. (However, this case can be studied by hand.) Thus, we obtain

Theorem 5.5. Suppose|θ |2/|θs|2 = 2. Then

#(Ans) =
p∏

i=1

g+ ei + 1

ei + 1
.

It is easily seen that #(Ans) = 4 for G2.
Looking at the factors occurring in the formula ofTheorem 5.5, one may notice that

there is a nice formula forAns, which resembles Eq. (2.9) and also covers the case ofG2.
Here it is.

Supposee1 < e2 < · · · < ep and setn = #(Πs). Then for any∆ we have

#(Ans) =
n∏

i=1

h+ ei + 1

ei + 1
. (5.6)

But it is not clear how to prove this a priori.
Changing the role of long and short roots inDefinition 5.1, one may definel -minimal

elements, which are in a one-to-one correspondence with thelong antichains. Since the
proofs here are similar, we state only results. The simplex associated with thel -minimal
elements is

D(l)
min = {x ∈ V | (x, α) ≥ 0(α ∈ Πs); (x, α) ≥ 1(α ∈ Πl ); (x, θ) ≤ 2},

and thel -minimal elements bijectively correspond to the integral points ofD(l)
min. The shift

in the direction ofρ∨l = ∑
αi∈Πl

�∨
i takesD(l)

min to (h + 1− g) . Therefore, if∆ is not
of typeG2, then

#(Anl ) =
p∏

i=1

h − g+ ei + 1

ei + 1
. (5.7)
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Since this number can also be computed as #(Ans) for the dual root system∆∨, a relation
betweeng for ∆ and∆∨ emerges. Namely,g∆ + g∆∨ = h.

Now we turn to considering a “short” analogue of maximal elements.

Definition 5.8. w ∈ Ŵ is calleds-maximal, if

(i) w is dominant;
(ii) if α ∈ Πs andw−1(α) = kδ + µ with µ ∈ ∆, thenk ≤ 1;
(iii) if α ∈ �̂l andw−1(α) = kδ + µ with µ ∈ ∆, thenk ≤ 0.

Using (i), conditions (ii), (iii) can be made precise. Ifk = 0, thenµ ∈ ∆+; if k = 1 in (ii),
thenµ ∈ −∆+.

We writeŴ(s)
max for the set of alls-maximal elements. Notice that̂W(s)

max ⊂ Ŵmax.
As in case of maximal elements, we wish to set up a one-to-one correspondence between

thes-maximal elements and a certain subset ofAns. In order to distinguish the right subset
we need some preparations. Recall that, although∆s is not a sub-root system of∆, it is a
root system in its own right. Clearly,∆+

s is the set of positive roots for∆s. Let us write
Π (∆+

s ) for the corresponding set of simple roots. Since∆s spans the whole spaceV , we
have #Π (∆s) = dimV = #Π . Obviously,Πs ⊂ Π (∆+

s ). Other roots inΠ (∆+
s ) are in a

natural bijection withΠl . Namely, eachβ ∈ Πl is replaced by a short root as follows. Let
α be the closest toβ (in the sense of the Dynkin diagram) short simple root. The sum of
all simple roots in the string connectingα andβ is a short root, which is a simple root for
∆+

s . That one really obtains a basis for∆+
s is easily verified case-by-case. A conceptual

proof can be given using the fact that bothΠl andΠs form connected subsets of the Dynkin
diagram.

Warning. Although we often consider antichains lying in (certain subsets of)∆+
s , it is

always meant that the ordering “�” is inherited from the whole of∆+.

Proposition 5.9. The bijection betweenAd0 andŴmaxdescribed inProposition2.11gives
rise to a bijection between̂W(s)

max and the short antichains lying in∆+
s \Π (∆+

s ).

Proof. The correspondence described inProposition 2.11attaches to a maximal element
w its first layer ideal,I w. But even ifw is s-maximal, the generators ofI w may not be
short roots. So, we do not immediately obtain a required short antichain. To correct this,
we takeI w ∩∆+

s . (It is also the set of weights of a nilpotentb-stable subspace ofV(θs).)
The set of generators (minimal elements) ofI w ∩∆+

s is a short antichain of∆+, which we

attach tow ∈ Ŵ(s)
max.

Now, we prove that the resulting antichain lies in∆+
s \Π (∆+

s ) and that this
correspondence is really a bijection.

Recall fromSection 2that �(I ) is the set of maximal elements of∆+\I and that
in case of maximal elements�(I w) is described inProposition 2.12. That description
implies that, forw ∈ Ŵ(s)

max, �(I w) consists of short roots. Since�(I w) covers all simple
roots (seeRemark 2.13) and consists of short roots, it also covers all roots fromΠ (∆+

s ).
(Use the explicit description ofΠ (∆+

s ) given above.) This means that the short antichain
�(I w ∩∆+

s ) does not contain roots fromΠ (∆+
s ).

Injectivity. If w,w′ ∈ Ŵ(s)
max are different, then�(I w) �= �(I w

′
). Since these two sets

consist of short roots, we obviously haveI w ∩∆+
s �= I w

′ ∩∆+
s .
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Surjectivity. If � is an antichain of∆+ lying in ∆+
s \Π (∆+

s ), then take all maximal short
roots in∆+\I 〈�〉. More precisely, let� be the set of short rootsµ such that ifν ∈ ∆+

s and
ν % µ then there isγ ∈ � such thatν � γ . Then� is a short antichain that covers all roots
in Π (∆+

s ) and hence the whole ofΠ . In view of Remark 2.13,� is of the form�(I w) for
somew ∈ Ŵmax. Finally, since� consists of short roots, thisw is s-maximal. �

The antichains of∆+ lying in ∆+
s \Π (∆+

s ) are said to bestrictly s-positive.The
corresponding subset ofAns is denoted byAns,0.

Once again, the next part of our program is a geometric description. Set

D(s)
max = {x ∈ V | (x, α) ≤ 1(α ∈ Πs); (x, α) ≤ 0(α ∈ Πl ); (x, θ) ≥ 1}.

Proposition 5.10.

(1) w = v · tr ∈ Ŵ(s)
max

{
w is dominant,
v(r ) ∈ D(s)

max∩ Q∨.
(2) The mappinĝW(s)

max→ D(s)
max∩ Q∨, w = v · tr �→ v(r ), is a bijection.

Proof. The argument is the same as inProposition 2.6, taking into account that the
constraints forD(s)

max are different. �
The translation in the direction of−ρ∨s , which belongs to the extended affine Weyl

group, takesD(s)
max to (1− g) . Sinceg − 1 is always relatively prime with the index of

connection, there is also an element ofŴ that does the same, cf.Lemma 5.4. As in the
case ofs-minimal elements, we haveg− 1 is relatively prime with the coordinates ofθ , if
∆ is not of typeG2. Therefore, if∆ ∈ {Bp, Cp, F4}, then

#(Ans,0) = #(Ŵ(s)
max) =

p∏
i=1

g+ ei − 1

ei + 1
. (5.11)

For G2, this set consists of two elements.

6. Short antichains and the semi-Catalan arrangement

In this section, we study a hyperplane arrangement inV that has the same connection
with short antichains in∆+ as the Catalan arrangement has with all antichains. This
provides yet another approach to counting the short and strictlys-positive antichains.

Definition 6.1. (1) The semi-Catalan arrangementin V , Cats(∆), consists of the
hyperplanes µ,k (µ ∈ ∆+

s , k = −1,0,1) and ν,0 (ν ∈ ∆+
l ).

(2) Them-semi-Catalan arrangementin V , Catms (∆), consists of the hyperplanes µ,k
(µ ∈ ∆+

s , k = −m, . . . ,−1,0,1, . . . ,m) and ν,0 (ν ∈ ∆+
l ).

All these arrangements are deformations of the Coxeter arrangement. Notice also that
Cat0s(∆) is the usual Coxeter arrangement, and Cats(∆) = Cat1s(∆).

First, we are interested in the dominant regions of Cats(∆) and their relation to short
antichains. Define a mapping

ψ : Ans → {the dominant regions of Cats(∆)}



D.I. Panyushev / European Journal of Combinatorics 25 (2004) 93–112 107

as follows. For� ∈ Ans, let

�
ψ�→ R(s)� := {x ∈ | (x, µ) > 1, if µ ∈ I 〈�〉 ∩∆+

s & (x, µ) < 1,

if µ ∈ ∆+
s \I 〈�〉}.

Theorem 6.2.

(i) The mappingψ is well-defined, and it is a bijection;

(ii) R(s)� is bounded if and only if� ∈ Ans,0.

Proof. (i) 1. Regarding� as a “usual” antichain, we can construct a regionRI 〈�〉, as

prescribed by Eq. (3.1). Obviously,RI 〈�〉 ⊂ R(s)� . Hence the latter is non-empty.

2. Since the definition of the setR(s)� includes a constraint for any hyperplane in Cats(∆)
meeting , R(s)� cannot contain more than one region. It is also clear thatR(s)� �= R(s)

�′ , if

� �= �′. For, if γ ∈ �\I 〈�′〉, then γ,1 separatesR(s)� andR(s)
�′ . Henceψ is injective.

3. The surjectivity ofψ follows from the existence of the inverse map. Given a region
R, take the set of walls ofR separatingR from the origin. Then the corresponding set of
roots form a short antichain.

(ii) If Π (∆+
s ) ∩ I 〈�〉 = ∅, then R(s)� belong to the bounded domain{x ∈ |

(x, µ) < 1, µ ∈ Π (∆+
s )}.

Conversely, assumeβ ∈ I ∩ Π (∆+
s ). Recall fromSection 5thatΠ (∆+

s ) is in bijection
with Π (β either belong toΠs or is obtained via a simple procedure from a long simple
root). Letβ ′ be the simple root inΠ corresponding toβ andϕβ ′ the respective fundamental

weight ofg. Then we claim that ifx ∈ R(s)� , thenx+ tϕβ ′ ∈ R(s)� for anyt ∈ R≥0. Indeed,
β is the minimal short root having nonzeroβ ′-coordinate. Therefore all short roots having
nonzeroβ ′-coordinate are inI 〈�〉. This means thatR(s)� has no upper bound in the direction

of ϕβ ′ . Thus,R(s)� is unbounded. �

Let us look at the relationship betweens-minimal ands-maximal elements on one hand,
and dominant regions of Cats(∆) on the other hand.

Proposition 6.3.

(i) Supposew ∈ Ŵ(s)
min, and let � ∈ Ans be the corresponding antichain. Then

w−1 ∗ ⊂ R(s)� , and it is the alcove nearest to the origin in R(s)� .

(ii) Supposew ∈ Ŵ(s)
max, and let� ∈ Ans,0 be the corresponding antichain. Then

w−1 ∗ ⊂ R(s)� , and it is the alcove most distant from the origin in R(s)
� .

Proof. (i) It was already observed before thatw−1 ∗ ⊂ RI 〈�〉 ⊂ R(s)� . Suppose we
are insidew−1 ∗ . To get in an alcove that is closer to the origin, we must cross a wall
separatingw−1 ∗ from the origin. These walls correspond to the rootsα ∈ �̂ such that
w−1(α) < 0. But thenw−1(α) = −δ + µ, whereµ ∈ ∆+

s . So that having crossed this
wall, we get in another dominant region of Cats(∆).

(ii) Supposew ∈ Ŵ(s)
max and we are insidew−1 ∗ . To get in an alcove that is more

distant from the origin, we must cross a wall ofw−1∗ that does not separatew−1∗ from
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the origin. These walls correspond to the rootsα ∈ �̂ such thatw−1(α) > 0. In view of
the definition ofs-maximal elements, there are two possibilities: (a) ifw−1(α) = µ ∈ ∆+,
then crossing such a wall we leave; (b) if w−1(α) = δ − µ, µ ∈ ∆+

s , then crossing such
a wall we get in another dominant region of Cats(∆). Hencew−1 ∗ is the most distant
from the origin alcove in a certain region.

The hyperplanes of Cats(∆) separatingw−1 ∗ from the origin (not necessarily walls
of w−1 ∗ ) correspond to the short rootsµ such thatw(δ − µ) < 0, i.e., these roots
are exactly the short roots in the first layer ideal ofw. According to the correspondence
described in the proof ofProposition 5.9, the minimal elements of this set form the short
antichain� attached tow. Thus,w−1 ∗ lies in the required alcove.�

Theorem 6.2implies that the number of short or strictlys-positive antichains can be
found through the use of the characteristic polynomial of Cats(∆). In fact, we are able to
compute the characteristic polynomial for Catm

s (∆) with anym. One should just follow the
scheme of Athanasiadis’ proof for the usualm-Catalan arrangement, see [1, Theorem 3.1].
Let P∨ be the coweight lattice andf = [P∨ : Q∨]. (Hence f is the index of connection
of ∆.)

Theorem 6.4. Suppose t∈ N, t > mg, and both t, t−mg are relatively prime with all the
coordinates ofθ . Then

χ(Catms (∆), t) =
#W

f
#((t −mg) ∩ P∨).

Proof. We give only a sketch of the proof, where we indicate essential distinction from
Athanasiadis’ proof for anm-Catalan arrangement, referring to [1] for all details.

Let denote the fundamental parallelepiped{∑p
i=1 yi�

∨
i | 0 ≤ yi ≤ 1}. Set

t = ∩ 1
t P∨. Also, letVm

∆,t be the set of hyperplanes

µ,k+n
t
(n, k ∈ Z, |n| ≤ m, µ ∈ ∆s) and γ,k(k ∈ Z, γ ∈ ∆l ).

Note that fractional indices are allowed only for hyperplanes orthogonal to short roots, so
that ourVm

∆,t is different from that of Athanasiadis.
Given an arrangementA in V , according to a general result (Athanasiadis, Bj¨orner-

Ekedahl), the valueχ(A, t) is equal to the number of points in the complement of all
hyperplanes, counted after reduction modulot , i.e., in(Zt )

p. More precisely, this equality
holds for infinitely manyt (this can be made even more precise, see [1, Section 2]). In our
situation, as well as in [1], this means thatt must be relatively prime with all the coefficients
of θ .

Then the above general result leads to the equalityχ(Catms (∆), t) = #{ t\Vm
∆,t }. Using

the standard fact that contains(#W)/ f alcoves, this can be transformed to

χ(Catms (∆), t) =
#W

f
· #

((
∩ 1

t
P∨

)∖
Vm
∆,t

)
= #W

f
· #((t ∩ P∨)\tVm

∆,t ).

It easily follows from the definition ofVm
∆,t that (t ∩ P∨)\tVm

∆,t is obtained from
t ∩ P∨ by deleting the coweights lying on the hyperplanesα,i with α ∈ Πs and
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1 ≤ i ≤ m. That is, the set in question is equal to

{x ∈ P∨ | (x, α) > m(α ∈ Πs); (x, α) > 0(α ∈ Πl ); (x, θ) < t}.
Finally, the translation by the negative ofmρ∨s (which lies inP∨) takes this set to the points
of P∨ lying in the open simplex(t − gm) . �

Let us discuss consequences of this result. We use values ofg given in Section 5. If
∆ ∈ {Bp,Cp,F4} andt is relatively prime with the coordinates ofθ , then the same holds
for t −mgwith anym. It follows that

χ(Catms (∆), t) = χ(Cat0s(∆), t −mg) =
p∏

i=1

(t − mg− ei ).

(The first equality holds for infinitely many values oft ; hence it holds always, as both parts
are polynomials int . The second equality is a statement about Coxeter arrangements.) In
particular,

χ(Cats(∆), t) =
p∏

i=1

(t − g− ei ). (6.5)

CombiningTheorems 3.3and6.2, we conclude that

#(Ans) = |χ(Cats(∆),−1)|/#W and #(Ans,0) = |χ(Cats(∆),1)|/#W,

which coincides, of course, with the formula inTheorem 5.5and Eq. (5.11).
ForG2, we haveg = 3 and the assumption ofTheorem 6.4is satisfied only ifm is even.

Therefore

χ(Cat2m
s (G2), t) = χ(Cat0s(G2), t − 6m) = (t − 6m− 1)(t − 6m− 5).

Using ad hoc arguments, one may derive the “odd” formula

χ(Cat2m+1
s (G2), t) = (t − 6m− 5)(t − 6m− 7). (6.6)

It is also easy to computeχ(Cat1s(G2), t) directly from the definition of a characteristic
polynomial.

Again, it is noteworthy that formulae (6.5) and (6.6) for χ(Cats(∆), t) admit a uniform
presentation for all non-simply laced cases, cf. Eq. (5.6).

Theorem 6.7. If n = #(Πs) and the exponents of∆ are increasingly ordered, then

χ(Cats(∆), t) =
∏
i≤n

(t − h − ei )
∏

i≥n+1

(t − ei ).

Of course, it would be interesting to have a uniform proof (explanation) for this.

Remarks 6.8. (1) One may consider “short” analogues for other arrangements associated
with root systems. For instance, theextended semi-Shi arrangement, Shims (∆), is
the collection of hyperplanes µ,k (µ ∈ ∆+

s , k = −m + 1, . . . ,−1,0, . . . ,m)
and ν,0 (ν ∈ ∆+

l ). It is not hard to compute that, forC2, the characteristic polynomial is
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equal to(t − 2m− 1)2. ForG2, it is equal to(t − 3m− 1)(t − 3m− 2), at least ifm ≤ 3.
I conjecture that the following formula holds in general:

χ(Shims (∆), t) =
p∏

i=1

(t −mg∆∨ − ei (∆l )),

where{ei (∆l )} are the exponents for the root system∆l . For instance, in the case ofF4
we haveg∆ = g∆∨ = 6 and∆l is of typeD4. Therefore the conjectural expression is
(t − 6m− 1)(t − 6m− 3)2(t − 6m− 5).

(2) The dominant regions of Cats(∆) provide a connection, in the spirit of [5], with
nilpotentG-orbits inV(θs). I hope to discuss this topic in a forthcoming publication.

7. Some numerical complements

In this section, we collect several results that can be proved in a case-by-case fashion.

7.1.

We know the number of all and short antichains for all irreducible reduced root systems.
Using this, one may observe that #(Ans) divides #(An) in all cases. Furthermore, the ratio
has, a posteriori, an interesting description. Namely, let∆(Πl ) be the root system whose
set of simple roots isΠl . Notice that∆(Πl ) is smaller than∆l , and that the former is
irreducible, sinceΠl is a connected subset of the Dynkin diagram. WriteAn(Πl ) for the
set of all antichains in∆(Πl )

+.

Theorem 7.1. #(An) = #(Ans) · #(An(Πl )).

Proof. Case-by-case verification. For instance, in case ofF4 we have #(An) = 105,
#(Ans) = 21, and∆(Πl ) is of typeA2, where one has five antichains.�
Of course, this proof is not illuminating. One may consider a natural mappingAn → Ans

that takes� to the set of minimal elements ofI 〈�〉∩∆+
s . ForCp, all fibres of this mapping

have the same cardinality, which is 2. To some extent, this is an explanation in this case.
Unfortunately, the “equicardinality” property does not hold forF4 andG2. The statement of
Theorem 7.1can be compared with another equality, which is easy to prove. The reflection
sγ ∈ W is called short, ifγ ∈ ∆+

s . Let Ws be the (normal) subgroup ofW generated by
all short reflections, and letW(Πl ) be the Weyl group of∆(Πl ). ThenW & Ws � W(Πl )

(a semidirect product).

7.2.

We have shown that the short antichains of∆+ lying in ∆+
s \Π (∆+

s ) are in a one-to-one
correspondence withs-maximal elements, and then computed their number. However, it is
also natural to enumerate the short antichains lying in∆+

s \Πs. (Recall thatΠs is a proper
subset ofΠ (∆+

s ).) SetAnss= {� ∈ Ans | � ∩Πs = ∅}. I did not find a suitable bijection
for Anss, but the following formula for the cardinality is true:

#(Anss) =
n∏

i=1

h + ei − 1

ei + 1
, (7.2)
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where the notation is the same as inTheorem 6.7. Again, this formula bears a striking
resemblance withTheorem 2.16. Direct calculations show that this gives us the correct
number forBp (this is easy, because there is only a few short roots),F4, G2.

The argument forCp goes as follows. The set of positive roots∆+(Cp) is naturally
represented by the shifted Ferrers diagram of shape(2p − 1,2p − 3, . . . ,1), and the
ideals are represented by suitable subdiagrams of it, see slightly different versions in
[12, Section 2], [3, Section 3], [9, Section 5]. In these interpretations, the long roots are
represented by the boxes in an extreme diagonal of this shifted Ferrers diagram, and the
simple roots correspond to the boxes of another (“opposite”) diagonal. These two diagonals
have a unique common box, corresponding to the long simple root. If we want to obtain an
ideal whose generators are short and contain no short simple roots, then we just erase both
these diagonals and consider a subdiagram of the smaller shifted diagram. But this smaller
shifted Ferrers diagram, which is of shape(2p−3,2p−5, . . . ,1), can be thought of as the
set of positive roots forCp−1. Thus, the number #(Anss) for Cp equals the number #(An)

for Cp−1. The latter is known to equal
(2p−2

p−1

)
, which is consistent with Eq. (7.2). Actually,

we obtain more. Our bijection betweenAnss(Cp) andAn(Cp−1) preserves the number of
elements. Therefore, we conclude that the number ofk-element antichains inAnss(Cp) is

equal to
(p−1

k

)2
, k = 0,1, . . . , p− 1.

7.3.

Counting antichains with respect to the number of generators yields an interesting
q-analogue of #(An), see [2], [9]. In case of two root lengths, one may consider, of course,
a 2-parameter refinement. Set

An〈k,m〉 = {� ∈ An | #(� ∩∆+
s ) = k & #(� ∩∆+

l ) = m}, ak,m = #An〈k,m〉,
and consider the generating functionF(t,u) = ∑

k,m≥0 ak,mtkum. We have

G2: F(t,u) = 1+ 3t + 3u+ tu.
F4: F(t,u) = 1+ 12t + 12u+ 8t2 + 39tu+ 8u2 + 12t2u+ 12tu2 + t2u2.

The symmetry of these polynomials stems from the fact the corresponding root systems are
self-dual. Since the root systems of typeB andC are dual to each other, the corresponding
matrices(ak,m) are mutually transposed. So, it suffices to handle the case ofCp. Each pair
of long roots in∆+(Cp) is comparable, hence any antichain contains at most one long
root. So that we are to determine the coefficientsak,0,ak,1, (k = 0,1, . . . , p − 1). In [9,
Section 5], we constructed an involution on the setAn(Cp), which mapsAn〈k,0〉 onto
An〈p− 1− k,1〉. Henceap−k−1,1 = ak,0 and we have to only count the number of short
antichains withk elements. Using shifted Ferrers diagrams, it can be shown thatak,0 =(p

k

)(p−1
k

)
. (In this situation, short simple roots are allowed, so that one has to erase only

one diagonal and work with the shifted Ferrers diagram of shape(2p−2,2p−4, . . . ,2).)
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