Available at

www.ElsevierMathematics.com European Journal
¥ ,.;71 . POWERED BY SCIENCE @DIHECT@ of Combinatorics
ELSEVIER European Journal of Combinatorics 25 (2004) 93112

www.elsevier.com/locate/ejc

Short antichains in root systems, semi-Catalan
arrangements, and-stable subspaces

Dmitri I. Panyushev

Independent University of Moscow, Bol'shoi Vlasevskii per. 11, 121002 Moscow, Russia

Received 26 April 2003; received in revised form 10 August 2003; accepted 11 August 2003

Let G be a complex simple algebraic group with Lie algefprgix a Borel subalgebra
An ideal ofb is calledad-nilpotent if it is contained in[b, b]. The goal of this paper is to
present a refinement of the enumerative theorgdshilpotent ideals in the case, wheye
has roots of different length.

Let 200 denote the set of ald-nilpotent ideals ofo. Any ¢ € 20 is completely
determined by the corresponding set of roots. The minimal roots in this set are called
the generatorsof an ideal. The collection of generators of an ideal formsatichainin
the poset of positive roots, and the whole theory can be expressed in the combinatorial
language, in terms of antichains. An antichain is caldctly positive if it contains
no simple roots. Enumerative results for all and strictly positive antichains were recently
obtained in the work of Athanasiadis, Cellini-Papi, Sommers, and this autkgrd, 13).

There are two different theoretical approaches to describing (enumerating) antichains.
The first approach consists of constructing a bijection between antichains and the coroot
lattice points lying in a certain simplex. An important intermediate step here is a bijection
between antichains and the so-callathimal elements of the affine Weyl groupy. It
turns out that the simplex obtained is “equivalent” to a dilation of the fundamental alcove
of W, so that the problem of counting the coroot lattice points in it can be resolved. For
strictly positive antichains, one constructs another bijection and another simplex, and the
respective elements ¥ are calledmaximal yet, everything is quite similar. The second
approach uses the Shi bijection between d@lenilpotent ideals (or antichains) and the
dominant regions of the Catalan arrangement. Under this bijection, the strictly positive
antichains correspond to the bounded regions. There is a powerful result of Zaslavsky
allowing one to compute the number of all and bounded regions, if the characteristic
polynomial of the arrangement is known. Since the characteristic polynomial of the Catalan
arrangement was recently computedih fhe result follows.

If g has roots of different length, one can distinguish the length of elements occurring
in antichains. We say that an antichain dhort, if it consists of only short roots.

This notion has a natural representation-theoretic incarnation: the short antichains are in
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a one-to-one correspondence with thatable subspaces, without nonzero semisimple
elements, in the little adjoinG-module. A short analogue of strictly positive antichains,
strictly s-positiveantichains, is also defined. We are able to carry the above two approaches
over to the short antichains. First, we introduce and characterize suitable elemi@ts of
(s-minimal ands-maximalones), establish bijections between these two sets of elements
and the coroot lattice points of certain simplices, and eventually obtain formulae for the
number of short and strictlg-positive antichains. Second, we introduce and study the
semi-Catalan arrangementvhich has the same relation to short and stristyositive
antichains as the usual Catalan arrangement has to all and strictly positive antichains. The
difference between the Catalan and semi-Catalan arrangements is that we “deform” only
the hyperplanes orthogonal to short roots in the latter. We prove various results connecting
the dominant regions of the semi-Catalan arrangement and the elem#tattched to

short antichains. Adapting Athanasiadis’ argument fréfnye compute the characteristic
polynomial for theextended semi-Catalan arrangemertsin other words, fom-semi-
Catalan arrangements, §atl), withm =0, 1, 2, .... Form = 0, one obtains the Coxeter
arrangement oV, and form = 1, the semi-Catalan arrangement.

Here is a part of our results. Let;, ..., op be the simple roots of and 6 the
highest root. Le'A4 be the fundamental alcove w andg the sum of coefficients of the
short simple roots in the expression 6f = Y ci. Then the short (resp. strictls
positive) antichains are in one-to-one correspondence with the coroot lattice points in
(g + DA (resp.(g — 1).A). If the root system is not of typEy, this leads to a closed
formula for the number of the respective antichains. E.g., the number of short antichains
is equal to[ ], g;ﬁfl whereg,i = 1,2, ..., p, are the exponents of the Weyl group

W. Using this, we flound a uniform expression, which covers@ecase as well, see
Eqg. (6.6), but it awaits a conceptual explanation. The characteristic polynomial §fQat
is x(t) = ipzl(t — mg— g) (again, if A is not of typeG,). For G2, the formula for
x (t) depends on the parity oh. We also define a “short” analogue of the extended Shi
arrangement, which we call, of course, theended semi-Shi arrangemggmd propose a
conjectural formula for its characteristic polynomial, $marks 6.8

A rough description of the contents is as followsSections Zand3, we give a review
of results concerning ideals (antichains) and Catalan arrangements, including the two
approaches described above. In particular, we consider minimal and maximal elements
of W and their connection with ideals. Some complements to known results are also given.
We attempt to present a unified treatment that can be generalized afterwards, without much
pains, to the setting of short antichains. Our main results are gathei®ekctions 47.
After a brief description inSection 4of the relationship betweebrstable subspaces of
the little adjoint G-module and short antichains, we turn, $®ction 5 to considering
s-minimal ands-maximal elements diV and related simplices. I8ection § we compute
the characteristic polynomial for thra-semi-Catalan arrangement with arbitramye N
and study the relationship between the semi-Catalan arrangement (which corresponds to
m = 1) and short antichains. As a consequence of our theory, we pres&wdgiion 7
several intriguing results whose proof uses case-by-case verification.

To a great extent, this work was inspired by the recent papers of Athanadipdis]
Sommers13.
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1. Notation and other preliminaries
1.1. Main notation

A is the root system ofg, t) andW is the usual Weyl group. Far € A, g, is the
corresponding root space gn

At is the set of positive roots and= 3 >, 1+ a.

= {a1, ..., ap} is the set of simple roots i+ andd is the highest root imA *.

We setV := tg = ®"_,Ra; and denote by , ) a W-invariant inner product ol . As
usual,u" = 2u/(u, 1) is the coroot fo € A.

C={xeV | (X a) > 0Va I} is the (open) fundamental Weyl chamber.

A={XxeV]|X a)>0Va eIl & (X,0) < 1} is the fundamental alcove.

Qt = (X naiIn=012..}andQ" = ®",Za" C V is the coroot lattice.

Letting V = V @ RS @ Ri, we extend the inner produgt, ) on V so that
6, V)Y=n,V)=(,8) =, A =0and(s, 1) = 1.

A= {A+ké | k € Z} is the set of affine real roots amd is the affine Weyl group.

ThenA ¥ = A+ U{A+ks | k > 1} is the set of positive affine roots afitl= ITU {«o)
is the corresponding set of affine simple roots, whege= § — 6. The inner product
(, )on\7 is W-invariant. The notatiog > 0 (respg < 0) is shorthand fog € A * (resp.
B e —A ) Fore; (0 <i < p)we lets denote the corresponding simple reflectloan
If the index ofe e TI is not specified, then we merely Wrm The length function oV
with respect ta, s1, . . ., Sp is denoted by. Foranyw € W, we set

Nw)=faeA  |wae—AT).

It is standard that M(w) = ¢(w) and N(w) is bi-convex The latter means that both
N(w) and Z+\N(w) are subsets oft  that are closed under addition. Furthermore,
the assignmeni — N(w) sets up a bijection between the elements\baind the finite
bi-convex subsets i

2. ldeals and antichains

Throughout the papeb is the Borel subalgebra af corresponding taA+ andu =
[b, b]. Let ¢ C b be anad-nilpotent ideal. Ther = @y g, for somel c A*. This
| is said to be andeal (of A™). More precisely, a set C At is an ideal, if whenever
y € l,u € At,andy +u € A, theny + u € 1. Our exposition will be mostly
combinatorial, i.e., in place did-nilpotent ideals ot we will deal with the respective
ideals ofA™.

Foru,y € AT, writeu < v, if y — n € QT. The notationu < y means that, < y
andy # u. We regardA™ as poset underL”. Let | ¢ AT be anideal. An element € |
is called ageneratorif y —a ¢ | foranya € II. In other wordsy is a minimal element
of | with respect to X”. We write I'(1) for the set of generators df It is easily seen
thatT'(l) is anant|cha|nof At e,y £ 7i for any pair(y, yj) in I'(1). Conversely, if

' ¢ At is an antichain, then the ideal

I(T') :={u e AT | u = y; for somey; € I'}
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hasI™ as the set of generators. L#h denote the set of all antichains ifi*. In view of

the above bijectio(d PN An, we will freely switch between ideals and antichains. An
ideall is calledstrictly positive if | NIl = @. The set of strictly positive ideals is denoted
by 2000.

2. ldeals, maximal and minimal elements of W

In this section we review some recent results by Athanasiadis, Cellini—-Papi, Sommers,
and this author. A few complements are also given.

The idea of describing ideals af* through the use of elements 7] goes back to
D. Peterson, who exploited minuscule elements for counting Abelian ide@|seé []. In
the general case, givénc AT, we want to havey € W such thalN(w) C Uk>1(k§—A™)
andN(w) N (§ — AT) =8 — |. It turns out that, for any idedl, there is a unique element
of minimal length satisfying these properties. In contrast, the element of maximal length
exists if and only ifl is strictly positive, and in this case such an element is unique, too.
Implementation of this program yields also explicit formulae for the number of all and
strictly positive ideals.

As is well known, W is isomorphic to a semi-direct product ¥ and Q¥. Given
w € W, there is a unique decomposition

w=v-t, (2.1)

wherev € W andt; is the translation correspondingttoe QY. The word “translation”
means the following. The grolQy has two natural actions:

(a) the linear action o = V @& RS & RA;

(b) the affine-linear action o\.

We use %" to denote the second action. Foe QV, the linear action of; < WonV @RS
is given byt; (x) = x — (X, r)é (we do not need the formulas for the whole\?;)‘, while
the affine-linear action oW is given byt, x y = y +r. So thatt; is a true translation for
thex-action onV.

Let us say thatv € W is dominant if w(a) > 0 foralla € IT. Obviously,w is domi-
nantif and only ifN(w) C Uk>1(k§ — A™). It also follows from B, 1.1] thatw is dominant
if and only if w=! % A c ©. Write Wiom for the set of dominant elements.

Proposition 2.2.

() If w=v-t € Wgom thenre —C;

(i) The mappingVgom — QY given byw = v - t; — v(r) is a bijection.
Proof. (i) We havew™ « x = v=1(x) —r foranyx € V. In particularw =t % 0 = —r.
Since 0e A andw is dominant, we are done.

(i) Given » € Q¥, we want to findw = v-t; such thaiv 1« A = v=1(A)—r c Cand
v(r) = ». In view of the last equality, the previous containment read¥.4 — ») c C.
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Thereforev must be the unique elementdf taking the alcoveA — s« into the dominant
Weyl chambe. Thenr = v=1(30).

This argument proves both the injectivity and surjectivity of the mapping in
question. O

Lettings — | := N(w) N (§ — A™), we easily deduce thdtis an ideal, ifw e Wdom.
We says — | is thefirst layer of N(w) and | is thefirst layer idealof w. However,

an ideall may well arise from different dominant elements. To obtain a bijection, one
has to impose further constraints on dominant elements. One may attempt to consider
either maximal or minimal bi-convex subsets with first layer |. This naturally leads

to notions of “minimal” and “maximal” elements. This terminology suggested.8 is

also explained by the relationship between these elements and dominant regions of the
Shi arrangement; se®ection 3 However, the formal definitions do not require invoking
arrangements. Furthermore, we want to stress that many results relating the ideals and
these two kinds of dominant elements can be obtained without ever mentioning the Shi (or
Catalan) arrangement.

Definition 2.3. w € W is calledminimal, if
() w is dominant;

(ii) if o € T andw («) = k§ +  for someu € A, thenk > —1.

Using (i), condition (ii) can be mqje more precisek I€ {—1, 0}, thenu € AT, The set
of minimal elements is denoted Bymin.

Proposition 2.4 ([3, Proposition 2.12]).There is a bijection betweeVmin and 2.
Namely,

e givenw € Winin, the corresponding ideal igu € AT | § — u € N(w)};

e given | € 2o, the corresponding minimal element is determined by the finite
bi-convex set

ks —1% ¢ AT
k>1

Here ¥ is defined inductively by¥l= (1*"1 4+ 1) n A*.

If N ¢ A" is a finite convex subset, containidg— 1, then it must also contain
Uk>1(KS — 1K). So, the latter is the minimal bi-convex subset contaidingl .
The first layer ideal ofv € Wi, is denoted byl,,.

Proposition 25 ([9, Theorem 2.2]13,6.3(1)]). If w € Winin, thenT'(1,) = {y e AT |
w( —y) e —I1}.

Following [4], we give a “geometric” description of the minimal elements. Set
Dmin={XeV | X a)>—-1Vaell & (X,0) <2}.

It is a certain simplex iV .
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Proposition 2.6 ([4, Propositions 2 and 3]).

w is dominant
U(r) S Dmin N Qv.

(1) U):U'tr EWm|n<:> {
(2) The mappingVmin — Dmin N QY, w = v - t — v(r), is a bijection.

Proof. (1) “=" The first condition is satisfied by the definition.
Next, we havar=1(x) = v=1(x) + (x, v(r))s for anyx € V @ R$. In particular,

w @) = v ) + (@, v(r)s, i =1,
w (o) = —v7O) + (1 — (6, v(r)))s. (2.7)

Comparing this wittDefinition 2.3ii), one concludes that(r) € Dpin.
“<" The previous argument can be reversed.
(2) This follows from part 1 an@roposition 2.2 [

Remark. The above proof applies equally well Rvopositions 2.145.3and5.10below.
It is a simplified version of the proof of Propositions 2 and 34h [

It follows that #2(0) equals the number of integral points Bwin. (Unless otherwise
stated, an “integral point” is a point lying i@V.) A pleasant feature of this situation
is that there is an eIement_W that takesDmin to a dilated closed fundamental alcove.
Namely,w(Dmin) = (h + 1).4 for somew < W, see fi, Theorem 1]. Writ& as a linear
combination of simple root$! = ) ¢ii. The integers; are said to be theoordinates

of 6. By a result of Haiman€g, 7.4], the number of integral pointsiﬁ is equal to

Ttie

(2.8)
1lite

whenevet is relatively prime with all the coordinates @f Since this condition is satisfied
fort = h + 1, one obtains

p

h+e+1
#A) = ————. (2.9)
il:[l e+1

It is the main result of4].

CombiningProposition 2.5and Eq. 2.7) yields the assertion thati#l,,) = k if and
only if v(r) lies on a face 0Dy of codimensiork [9, Theorem 2.9].

Now, we turn to considering maximal (dominant) elementélahat are introduced and
studied by Sommerd4p]. Most of the results on these elements are due to him. Because we
want to have a uniform treatment for both minimal and maximal elements, some assertions
below have no exact counterparts #8]. For these reason, we also give some proofs.

Definition 2.10. w € W is calledmaxima] if
() w is dominant;
(i) if @ € TT andw () = k& + u for someu € A, thenk < 1.

Using (i), condition (ii) can be made more precisekAl:fz 1, thenu € —AT;if k =0, then
w € AT, The set of maximal elements is denotedilyax.
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If | e Avg, then for anyu € AT we definek(u, |) as the minimal possible number of
summands in the expressign= Y"; vi, wherev; € A*\1. Notice that this definition only
makes sense for strictly positive ideals.

Proposition 2.11 ([13, Section 5]). There is a bijection betweaNmax and Ado. Namely,

e givenw € Wmax, the corresponding strictly positive ideal g € AT | § —u €
N(w)};

e given | € 20, the corresponding maximal element is determined by the finite
bi-convex set

m—ylyel&l<=m=<k(y,l)-1} ()

Proof. (1) Supposev € W is dominant, and let be the first layer ideal of). Assuming
thatl N II > «, we show thatv cannot be maximal. For any € |, letk, be the maximal
integer such thekt, s — y € N(w), i.e.,

Nw)={Is—y|yel&l=<l=<k}
Let | (@) be the ideal generated ly Clearly,| (@) C |. Set

Nw)? ={s—y|yel@&l<l<2kjU{ls—y|yel\l(
&1 <1 <k,}.

Obviously, N(w)!? is finite and has the same first layer Bgw). It is also easy to
verify that N is again bi-convex. Hencll(w)®? = N(w’) for somew’ € W. Since
N(w’) D N(w), there is a presentation’ = uw, wheref(w’) = £(u) + £(w). If s,
(ve ﬁ) is the rightmost reflection in a reduced decompositiomfdhenw —1(v) = k§—u
with k > 2, as the first layers dfl (w’) andN(w) are the same. Thus; is not maximal.

(2) Suppose € Avg, and letw € W be any dominant element with first layer idéal
SinceZ+\N(w) is convex and contains— (AT\ 1), it follows from the very definition of
numberk(y, 1) thatls —y € Z+\N(w) foralll > k(y, I). HenceN(w) is contained in
the finite set given byEg. () in Proposition 2.11It only remains to prove that the latter
is bi-convex. For this crucial fact, we refer tvb3d Lemma 5.2]. O

The strictly positive ideal correspondingioe Winax (the first layer ideal ofv) is denoted
by | ¥. For anideal c AT, we write E(1) for the set of maximal elements dft\|I. It
is immediate thaE (1) is an antichain.

Proposition 2.12 ([13, 6.3(2)]). If w € Winax then2(1%) = {y € AT | w(S — y) e I}

Remark 2.13. Note that antichains of the fornE(l1*) are not arbitrary. From the
definition of a strictly positive ideal it readily follows that, giveh € 2n, we have

—~

E = E(I) for somel € 2o if and only if for anya € II there is ay € E such that
y » «. We shall say that such an antichamversthe simple roots.

Now, we proceed to a “geometric” characterization of the maximal elements. Set
Dmax={X €V | (X,) < 1Va € 1 & (X,0) > 0}.

It is a certain simplex iV .
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Proposition 2.14 (cf. [13, Proposition 5.6]).

w is dominant
v(r) € DmaxN QY.
(2) The mappindVmax — DmaxN QY, w = v -t —> v(r), is a bijection.

Proof. (1) The argument is the same asRnoposition 2.6taking into account that the
constraints folDmax are different.
(2) This follows from part 1 an@roposition 2.2 [

Proposition 2.15 (cf. [13, Proposition 6.2(2)])Supposew = v - t; € Winax. Then
#2 (1) = k if and onlyv(r) lies on a face of codimension k ofB.

Proof. CombineProposition 2.12and Eq.2.7). O

Sincell is the only antichain of cardinality [9, 2.10(ii)] and it is certainly of the form
(1Y), we see thaDpax has a unique integral vertex.

In order to compute¢DmaxN Q"), we replaceDmax with another simplex. Le{twi\/}ip=l
denote the dual basis of for {«i}/,. Setp¥ = P, @". Since the sum of the
coordinates ob equalsh — 1, the translatiorx + t_,v * X = x — >."  @” takes
Dmax to the negative dilated fundamental alcove

—~(h—DA={xeV | (X a) <0Vaell; (X0 >1—h).

It may happen thap¥ does not belong t®QY, so that this translation, which is in the
extended affine Weyl group, does not belongA\towhile we wish to have a transformation
from W. Nevertheless, sinde— 1 is relatively prime with the index of connection 4f it
follows from [4, Lemma 1] that there is an element\Wfthat takeDmax to (1 — h).A.

Again, using the above-mentioned result of Haiman, see E@), (one obtains the
following.

Theorem 2.16 ([1, 9, 13)).

p
#2o0) = [ |
Remark. The proofs in 1] and [9] are based on the fact that the strictly positive ideals
correspond to the bounded regions of the Catalan arrangement and that the number of
bounded regions of any hyperplane arrangement can be computed via the characteristic
polynomial of this arrangement, s8ection 3

h+g -1
g+1

3. Idealsand dominant regions of the Catalan arrangement

Recall a bijection between the ideals 4f~ and the dominant regions of the Catalan
arrangement. This bijection is due to ShP[ Theorem 1.4].

Foru € AT andk € Z, define the hyperpland{,, x in V as{x € V | (x, n) = k}.
TheCatalan arrangementCat(A), is the collection of hyperplane},, x, wherep € A™
andk = —1,0, 1. Theregionsof an arrangement are the connected components of the
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complement inv of the union of all its hyperplanes. Obviously, the dominant regions of
Cat(A) are the same as those for tBhi arrangemenghi(A). The latter is the collection
of hyperplanesH,, k, wherex € A+ andk = 0, 1. But, it will be more convenient for us
to deal with the arrangement Cal), since it isW-invariant.

It is clear thatC is a union of regions of Catl). Any region lying inC is said to be
dominant The Shi bijection takes an ideblc AT to the dominant region

R=(xeClxy>1lLifyel&Xy) <l ify¢l} (3.2)

It should be noted that the proof given by Shi IrP] consists essentially in a reference to
his earlier work 11]. It is not, however, easy to extract the actual proof from Shi’'s papers.
The most subtle pointis to show that # @ for any| € (0. And this fact readily follows
from the theory of minimal elements developed by Cellini and Pas,id]f

If w e W is the minimal element corresponding taHenw= 1+ A C R;.

Indeed, }{,, 1 separate A andw =1 x A if and only if w(§ — u) € ~A " seeB, 1.1].
In fact,w™1 % A is the alcove nearest to the origini®y .

A region (of an arrangement) is calledundedif it is contained in a sphere about the
origin.

Proposition 3.2 ([1, 9]). | € 2A0(g)o if and only if the region Ris bounded.

If Ry is bounded, then it obviously contains an alcove that is most distant from the origin.
It was shown in 13 that if w is the maximal element correspondingltoe 2(0g, then
w1 % A is the most distant from the origin alcoveRj.

The number of regions and bounded regions of any hyperplane arrangement can
be counted through the use of a striking result of Zaslavsky. @4, t) denote the
characteristic polynomial of a hyperplane arrangemérih V (see e.g. 1, Section 2]
for precise definitions).

Theorem 3.3 (Zaslavsky).

(1) The number of regions into which dissects V equals-1)Py (A, —1).
(2) The number of bounded regions into whidhdissects V equalg (A, 1)|.

In [1], Athanasiadis gives a nice case-free proof of the following formula for the
characteristic polynomial of the Catalan arrangement:

p
x(CatA).ty=]Jt—h-a). (3.4)

i=1
Since CatA) is W-invariant, the valueé% give the number of bounded and
all regions inC, respectively. In this way, one obtains explicit formulae for the cardinality
of 20p and®Ao written already down irSection 2 Thus, the characteristic polynomial of
the Catalan arrangement provides an alternative approach to counting ideals and strictly
positive ideals.
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4. Short antichainsand b-stable subspacesin the little adjoint G-module

For the rest of the paper, we stick to the case in whichas roots of different length.
Then we naturally have long and short roots, long and short reflections, etc. Our goal is
to show that the theory presented in the previous sections can be extended to the setting,
where one pays attention to the length of roots involved. A piece of such theory has already
appeared in10], where we studied Abelian ideals af* consisting of only long roots.
Now, we consider the general case. Our treatment will again be combinatorial. We wish,
however, to stress that it has a related representation-theoretic picture. While the ideals
(antichains) inA™ correspond bijectively to thie-stable subspaces gnhaving no nonzero
semisimple elements, our short antichainsdim correspond bijectively to thé-stable
subspaces, without nonzero semisimple elements, in the little agjotdule.

To distinguish various objects associated with long and short roots, we use the subscripts
“I” and “s”, respectively. For instancd] is the set of long simple roots andil is the
set of short positive roots. Accordingly, each simple reflecors either short or long.
Sinced is long, the simple roakg and the reflectiorsy are regarded as long. Therefore,
ﬁ| = II U {ag}. Write 65 for the unique short dominant root in™. A simpleg-module
with highest weights, V(6s), is said to bdittle adjoint. The set of nonzero weights of
V(0s) is As, all nonzero weights are simple, and the multiplicity of the zero weight is
#(IIs) [8, 2.8].

Definition 4.1. An antichainl' ¢ A is calledshort if it consists of short roots, i.e.,
I' c A{. Similarly, one defines Bngantichain.

If T is a short antichain, thelR¥ is a long antichain in the dual root systeftY. Therefore,
it suffices, in principle, to consider only short antichains. We witg for the set of all
short antichains ofA™. The respective set of ideals is denotedlay.

Recall that, for any finite-dimensional ration@-module V, there are notions of
semisimple and nilpotent elements, generalizing thoge see 14]. An elementv € V
is calledsemisimpleif the orbit Gv is closed; it is calledilpotent if the closure ofGu
contains the origin. We shall say that a subspacé isfnilpotent if it consists of nilpotent
elements.

Proposition 4.2. There is a one-to-one correspondence betw#eg and the nilpotent
b-stable subspaces ®f(6s).

Proof. If T is a short antichain, then the corresponding subspace V(0s) is defined

as the sum of weight spac®s6s),., © € A, such that; < n for somey; € I'. Being

a subset ofA{, the weights ofUr lie in an open halfspace &f . Hence all elements of
Ur are nilpotent, see e.gl4, 5.4]. Conversely, ifU is ab-stable subspace &f(6s), then

it is @ sum of weight spaces. Assufideontains a weight spadé(©s),, with u € —AZ. It
then follows from theb-invariance thaly has non-empty intersection wit#i(6s)o. Hence

U is not nilpotent, because the orlix is closed for anyk € V(6s)o. Thus, the weights of

U form a subset ofAZ. The minimal elements of this set of weights give us the required
short antichain. O
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If T is a short antichain, then the set of weights of the corresponding nilpgtsable
subspace o¥ (6s) is | (I') N Ad.

5. Short antichains, s-minimal and s-maximal el ements of W

Our goal is to show that the theory describedSaction 2extends well to short
antichains.

Definition 5.1. w € W is calleds-minimal if

(i) w is dominant;
(ii) if « € IIs andw L(a) = k§ + p with u € A, thenk > —1;
(iii) if o € IT) andw (o) = k& 4+ u with i € A, thenk > 0.

Using (i), conditions (ii), (iii) can be made more precisek l= 0 ork = —1 in (ii), then
we At

We write W' for the set of alls-minimal elements. Notice thall'>) ¢ Wiyin.

Proposition 5.2. The bijection betweefo and Wi, described inProposition2.4 gives
rise to a bijection betweefins (or 2Ads) and W
Proof. (1) Supposew € VA\/r(Ti)n and letl,, be the corresponding ideal. It follows from
Definition 5.Xji), (iii) and Proposition 2.5that I'(l,,) C A{. Thus, we obtain a short
antichain.

(2) The use oProposition 2.gjives also the converse™

Now, we give a geometric description #iminimal elements in the spirit dection 2
Set

D(S)

min

={xeV|Xa) >-LUa e lls); (X,a) > O0(x € I); (x,0) <1},
and recall thatv = v - t;, wherev € W andr € QV.

Proposition 5.3.

(1)w=v-trew(s)<:>

w is dominant
min

v(r) e D& N QY.
(2) The mapping® — D

min mn N QY, w=v-t — v(r), is a bijection.
Proof. The argument is the same as Mroposition 2.6 taking into account that the

constraints forDr(Tfi)n are different. O

In order to compute the numbe(lﬁr(ﬁi)n N QY), we perform the following transformation.
Setpg = 4 e, @i - Itis easily seen that the translatityy takesD'"> to the dilated
closed fundamental alcove
@+DA={xeV|(Xa) =0Vaell(x0) <g+1}

Hereg = (0,) ;. @), i.e., it is the sum of thehort coordinates o# (i.e., those
corresponding to the short simple roots). It is easy to obtain other formulag.for
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E.g..g = #As)/p = (ps,0Y), Whereps is the half-sum of all positive short roots. If
we want to explicitly indicate thag depends o\, we writegx.

Although the above translation may not belong\ﬁb the very existence of such a
transformation and Lemma 1 id][show that the following is true

Lemma5.4. If g + 1 and the index of connection af are relatively prime, then there is
an element ofV that takes [¥) to (g + 1).A.

The numberg for all root systems with roots of different lengths are as follows:

A|Cp |Bp|Fa|Go
g|2p—2|2 |6 |3

It follows that Lemma 5.4always applies and hence&s) = #(VA\/r(Tf;)n) = #(g+ 1

An QY). In turn, if g + 1 is relatively prime with the coordinates &f then this number
is computed by Eq.2.8). One sees that the condition of relative primeness does not hold
only for Ga2. (However, this case can be studied by hand.) Thus, we obtain

Theorem 5.5. Supposeéd|?/|6s|? = 2. Then

p
g+e+1
sy = [[2E8 L
i=1 &+1

It is easily seen that@ins) = 4 for G».

Looking at the factors occurring in the formula ©heorem 5.50ne may notice that
there is a nice formula fa¥ng, which resembles Eq2(9) and also covers the case®¥.
Here itis.

Suppose; < & < --- < p and seh = #(Ils). Then for anyA we have

n
h+e+1
mmg:[}————. (5.6)
i=1 3"‘1

But it is not clear how to prove this a priori.

Changing the role of long and short rootsDefinition 5.1, one may definé-minimal
elements, which are in a one-to-one correspondence witlottgeantichains. Since the
proofs here are similar, we state only results. The simplex associated withrtimémal
elements is

p®

min = {X eV I (Xsa) = O(C( € HS): (Xsa) = 1((:( € M)v (Xve) = 2}1
and thd -minimal elements bijectively correspond to the integral point@,ﬁﬁfn. The shift

in the direction ofp) = 3", . @;” takesDr(T'ﬂn to (h+ 1 — g)A. Therefore, ifA is not
of type G, then

p
h—-g+e+1
#@An) =] [ —————. (5.7)
1 e+l
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Since this number can also be computed @ #) for the dual root system", a relation
betweerg for A andAY emerges. Namelga + gav = h.
Now we turn to considering a “short” analogue of maximal elements.

Definition 5.8. w € W is calleds-maxima| if

() w is dominant;
(ii) if @ € s andw™(a) = k& + p with 1 € A, thenk < 1;
(i) if o € I} andw (o) = k& 4+ p with i € A, thenk < 0.

Using (i), conditions (ii), (iii) can be made preciseklt= 0, thenu € A™; if k = 1 in (ii),
thenp e —AT.

We write WS, for the set of als-maximal elements. Notice th&¥\y ¢ Winax.

As in case of maximal elements, we wish to set up a one-to-one correspondence between
thes-maximal elements and a certain subseliaf. In order to distinguish the right subset
we need some preparations. Recall that, althadgis not a sub-root system of, itis a
root system in its own right. Clearlyd{ is the set of positive roots fadls. Let us write
I (A?) for the corresponding set of simple roots. Sintgspans the whole spasé we
have #I(As) = dimV = #II. Obviously,IIls C II(A{). Other roots inll (AY) are in a
natural bijection with/l;. Namely, eaclp € 1] is replaced by a short root as follows. Let
a be the closest t@ (in the sense of the Dynkin diagram) short simple root. The sum of
all simple roots in the string connectiagandg is a short root, which is a simple root for
Af. That one really obtains a basis fdif is easily verified case-by-case. A conceptual
proof can be given using the fact that bdthandis form connected subsets of the Dynkin
diagram.

Warning. Although we often consider antichains lying in (certain subsetg\gf)it is
always meant that the ordering" is inherited from the whole ofA+.

Proposition 5.9. The bijection betweeog andWmaXdescribed irProposition2.11gives
27(S)

rise to a bijection betweeWnax and the short antichains lying idd\ 7 (AY).
Proof. The correspondence described@roposition 2.1%attaches to a maximal element
w its first layer ideal,| . But even ifw is s-maximal, the generators ¢f* may not be
short roots. So, we do not immediately obtain a required short antichain. To correct this,
we takel ¥ N Af. (Itis also the set of weights of a nilpotetstable subspace &f(6s).)
The set of generators (minimal elements) 8fN A¢ is a short antichain ot *, which we
attach tow € Wy

Now, we prove that the resulting antichain lies ind\I7(Ad) and that this
correspondence is really a bijection.

Recall from Section 2that 2(1) is the set of maximal elements af*\l and that
in case of maximal element8(1") is described inProposition 2.12That description
implies that, forw € VA\/,fnse)lX, E(1™) consists of short roots. Siné&(1 ") covers all simple
roots (seeRemark 2.1Band consists of short roots, it also covers all roots fl@iA).
(Use the explicit description aff (A7) given above.) This means that the short antichain

(1% N AY) does not contain roots frodd (AY).

Injectivity. If w, w’ € Wi are different, therE (1) # E(1*). Since these two sets

consist of short roots, we obviously havé N A = 1" N Af.
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Surjectivity If I" is an antichain ofA* lying in A\ 11 (AY), then take all maximal short
roots inA*\1(I"). More precisely, leE be the set of short roogssuch that ifv € A and
v > puthenthereig e I' such thav = y. ThenE is a short antichain that covers all roots
in I1(A¢) and hence the whole df . In view of Remark 2.13E is of the formZ (1*) for
somew € Wmax. Finally, sinceE consists of short roots, this is s-maximal. [

The antichains ofA™ lying in AF\I/I(A{) are said to bestrictly s-positive.The
corresponding subset Bifns is denoted bying o.
Once again, the next part of our program is a geometric description. Set

D= (X €V | (X,@) < La € IIs); (x,a) <O € If); (X,0) > 1}.
Proposition 5.10.

w is dominant
u(r) € DN QY.
(2) The mapping/A\/r(ﬁgx — D,(T?;Xm QY,w=v-t — v(r), is abijection.

L) w=v -t € W= {

Proof. The argument is the same as Hroposition 2.6 taking into account that the
constraints forD,(T?;X are different. O

The translation in the direction of py, which belongs to the extended affine Weyl
group, takesD,ﬁr?;X to (1 — g)A. Sinceg — 1 is always relatively prime with the index of
connection, there is also an elementWfthat does the same, dfemma 5.4 As in the
case ofs-minimal elements, we hawg— 1 is relatively prime with the coordinates &fif

A is not of typeG,. Therefore, ifA € {Bp, Cp, F4}, then

p
#(2ns 0) = #Win) = [ |
i=1

g+e -1

511
g +1 ( )

For G, this set consists of two elements.

6. Short antichainsand the semi-Catalan arrangement

In this section, we study a hyperplane arrangemeit that has the same connection
with short antichains inA* as the Catalan arrangement has with all antichains. This
provides yet another approach to counting the short and stsigitysitive antichains.

Definition 6.1. (1) The semi-Catalan arrangemenin V, Cat(4), consists of the
hyperplanesH,, k (u € Ad, k= —1,0,1)and H, 0 (v € 4]").

(2) Them-semi-Catalan arrangemeintV, Cafl'(A), consists of the hyperplanH, k
(meAf k=-m,...,-1,0,1,....,m)and H,o (v € 4).

All these arrangements are deformations of the Coxeter arrangement. Notice also that
CaQ(A) is the usual Coxeter arrangement, andsCaj = Caé(A).

First, we are interested in the dominant regions of;C&t and their relation to short
antichains. Define a mapping

Y : Ang — {the dominant regions of CaAtA)}
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as follows. Fol™ € Ang, let

P RO = (xeCl (. >1 if pel(M)NAT& (x.p) <1,
if we AD\I()}).
Theorem 6.2.

(i) The mapping/ is well-defined, and it is a bijection;
(i) RY is bounded if and only i € 2Ans,o.

Proof. (i) 1. Regardingl" as a “usual” antichain, we can construct a reglRnr), as
prescribed by Eq.3.1). Obviously,R ry C R(rs). Hence the latter is non-empty.

2. Since the definition of the sa? includes a constraint for any hyperplane in )
meetingC, R(FS) cannot contain more than one region. It is also clear Rfﬁt;é R(FS,), if
I # I For, ify € T\I(I"), then K, 1 separate®R"> andR. Hencey is injective.

3. The surjectivity ofyr follows from the existence of the inverse map. Given a region
R, take the set of walls oR separatingR from the origin. Then the corresponding set of
roots form a short antichain.

(i) If (A N 1IN = o, then RY belong to the bounded domaix € C |
X, ) <1, e I(AD).

Conversely, assumg € | N I1(AY). Recall fromSection Sthat 17 (AY) is in bijection
with IT (B either belong tdlls or is obtained via a simple procedure from a long simple
root). Letg’ be the simple root il corresponding t@ andgg the respective fundamental
weight ofg. Then we claim that ik Rﬁs), thenx +tgg € Rﬁs) for anyt € R>o. Indeed,

B is the minimal short root having nonzeg6-coordinate. Therefore all short roots having
nonzeragd’-coordinate are im(I"). This means thafR(FS) has no upper bound in the direction
of . Thus,R? is unbounded. O

Let us look at the relationship betwegiminimal ands-maximal elements on one hand,
and dominant regions of GAtd) on the other hand.

Proposition 6.3.

(i) Supposew € VA\/r(Tﬁ)n and letI’ e 2ns be the corresponding antichain. Then

wlx A c RY, and itis the alcove nearest to the origin iR
(iiy Supposew € VA\/,SnS;X, and letlI’ € RAngo be the corresponding antichain. Then
wtx A c RY, and itis the alcove most distant from the origin ifPR

Proof. (i) It was already observed before that® « A ¢ Ry ¢ RY. Suppose we
are insidew—1 x A. To get in an alcove that is closer to the origin, we must cross a wall
separatingo—! x 4 from the origin. These walls correspond to the raots I such that
w™(a) < 0. Butthenw™1(a) = —8 + p, wherep € A. So that having crossed this
wall, we get in another dominant region of gat).

(ii) Supposew € Ar(ﬁ;x and we are inside—! x A. To get in an alcove that is more
distant from the origin, we must cross a walkof x4 that does not separaie 1 x4 from
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the origin. These walls correspond to the rosts T such thatw () > 0. In view of
the definition ofs-maximal elements, there are two possibilities: (a)if'(a) = u € AT,
then crossing such a wall we leaCe(b) if w™(e) = 8 — u, u € A, then crossing such
a wall we get in another dominant region of Qat). Hencew ! % A is the most distant
from the origin alcove in a certain region.

The hyperplanes of CatA) separatingv—! « A from the origin (not necessarily walls
of w! x A) correspond to the short roots such thatw(s — u) < 0, i.e., these roots
are exactly the short roots in the first layer ideakafAccording to the correspondence
described in the proof dProposition 5.9the minimal elements of this set form the short
antichainl” attached tav. Thus,w™! % A lies in the required alcove.

Theorem 6.dmplies that the number of short or strictiypositive antichains can be
found through the use of the characteristic polynomial o£@&}Y. In fact, we are able to
compute the characteristic polynomial for Catl) with anym. One should just follow the
scheme of Athanasiadis’ proof for the usualCatalan arrangement, see Theorem 3.1].
Let PY be the coweight lattice anfl = [PY : QV]. (Hencef is the index of connection
of A))

Theorem 6.4. Suppose £ N, t > mg, and both t, + mg are relatively prime with all the
coordinates ob. Then

#W
x(Caf'(4),1) = — (- mg.A N PY).

Proof. We give only a sketch of the proof, where we indicate essential distinction from
Athanasiadis’ proof for am-Catalan arrangement, referring tg for all details.

Let P denote the fundamental parallelepip{eﬁip:1 vim” | 0 <y < 1}. Set
Pi=Pn %PV. Also, letV] be the set of hyperplanes

H (n,keZ,In| <m, u € Asg) and HykkeZ,y e A).

kg

Note that fractional indices are allowed only for hyperplanes orthogonal to short roots, so
that ourvg‘)t is different from that of Athanasiadis.

Given an arrangememd in V, according to a general result (AthanasiadisyrBgr-
Ekedahl), the value (A, t) is equal to the number of points in the complement of all
hyperplanes, counted after reduction modullice., in(Z;)P. More precisely, this equality
holds for infinitely manyt (this can be made even more precise, de&gction 2]). In our
situation, as well as inl], this means thatmust be relatively prime with all the coefficients
of 6.

Then the above general result leads to the equaliGatl’(A), t) = #{ ﬂ?t\vg{t }. Using
the standard fact theP containg#W)/f alcoves, this can be transformed to

X(CaQ‘(A), t) = ﬂ '#<(.Aﬂ %Pv)\VZ‘,t) — ﬂ H(AN PV)\tVXt).

It easily follows from the definition o/}, that (t.A N PY)\tVY, is obtained from
t A N PY by deleting the coweights lying on the hyperplar}, i with « € IIs and
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1 <i < m. Thatis, the set in question is equal to
XePY | (X a) >me lls); (X,a) > O« € I); (X,0) <t}.

Finally, the translation by the negativerapy (which lies inP") takes this set to the points
of PY lying in the open simplext — gm\.A. O

Let us discuss consequences of this result. We use valuggiven in Section 5 If
A € {Bp, Cp, F4} andt is relatively prime with the coordinates 6f then the same holds
for t — mgwith anym. It follows that

p
x(Caf(4), 1) = x(Caf(4),t —mg) =] [t —mg—e).
i=1
(The first equality holds for infinitely many valuestghence it holds always, as both parts

are polynomials irt. The second equality is a statement about Coxeter arrangements.) In
particular,

p
x(Cas(d), ) =[ [t —g—e). (6.5)
i=1
CombiningTheorems 3.2ind6.2, we conclude that
#(Ans) = [x(Cak(4), —DI/#W  and  #Anso) = [x(Cak(Q), DI/#HW,

which coincides, of course, with the formulaiimeorem 5.5nd Eq. 5.11).
ForGa2, we haveg = 3 and the assumption @heorem 6.4s satisfied only ifnis even.
Therefore

x(Ca™(Gy), t) = x(Cal(Gy),t — 6m) = (t — 6m — 1)(t — 6m — 5).
Using ad hoc arguments, one may derive the “odd” formula
x(Ca€™(Gy), t) = (t — 6m — 5)(t — 6m — 7). (6.6)

It is also easy to computy;(Caé(Gz), t) directly from the definition of a characteristic
polynomial.

Again, it is noteworthy that formulaé& (5 and €.6) for x (Cag(A4), t) admit a uniform
presentation for all non-simply laced cases, cf. Bop)(

Theorem 6.7. If n = #(IIs) and the exponents af are increasingly ordered, then
x(Ca(d), =]t -—h—e) [T t—e.
i<n i>n+1
Of course, it would be interesting to have a uniform proof (explanation) for this.
Remarks 6.8. (1) One may consider “short” analogues for other arrangements associated
with root systems. For instance, thextended semi-Shi arrangemerghil'(4), is

the collection of hyperplaneH,x (v € Af,k = -m+1,...,-1,0,...,m)
and H,o(v e A|+). It is not hard to compute that, @5, the characteristic polynomial is
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equal to(t — 2m — 1)2. ForGy, it is equal to(t — 3m — 1)(t — 3m — 2), at least ifm < 3.
| conjecture that the following formula holds in general:

p
x(ShE'(2). ) = [Tt — maav — & (4),
i=1

where{g (4))} are the exponents for the root systein For instance, in the case Bf
we havegn = gav = 6 and 4, is of typeD4. Therefore the conjectural expression is
(t —6m— 1)(t — 6m — 3)2(t — 6m — 5).

(2) The dominant regions of GAtA) provide a connection, in the spirit 5]} with
nilpotentG-orbits inV(6s). | hope to discuss this topic in a forthcoming publication.

7. Somenumerical complements

In this section, we collect several results that can be proved in a case-by-case fashion.
7.1.

We know the number of all and short antichains for all irreducible reduced root systems.
Using this, one may observe tha®ths) divides #2In) in all cases. Furthermore, the ratio
has, a posteriori, an interesting description. NamelyAefi) be the root system whose
set of simple roots id];. Notice thatA(I1)) is smaller thand,, and that the former is
irreducible, sincel]} is a connected subset of the Dynkin diagram. WRitg 7])) for the
set of all antichains imA\(Z7)) ™.

Theorem 7.1. #2in) = #(3Ang) - #QAn(Ih)).

Proof. Case-by-case verification. For instance, in casé&pfve have #An) = 105,
#2ing) = 21, andA(Ih) is of typeA,, where one has five antichains]

Of course, this proof is not illuminating. One may consider a natural maging- 2Ang

that taked" to the set of minimal elements 6fI") N AZ . ForCy, all fibres of this mapping

have the same cardinality, which is 2. To some extent, this is an explanation in this case.
Unfortunately, the “equicardinality” property does not holdFarandG.,. The statement of
Theorem 7.Xan be compared with another equality, which is easy to prove. The reflection
s, € W is called short, ify € Ad. Let Ws be the (normal) subgroup &% generated by

all short reflections, and 1&V (/1)) be the Weyl group ofA(1]}). ThenW ~ Ws x W(I])

(a semidirect product).

7.2

We have shown that the short antichaingof lying in Af\ 17 (A{) are in a one-to-one
correspondence wittrmaximal elements, and then computed their number. However, it is
also natural to enumerate the short antichains lyinddn /7s. (Recall that/Is is a proper
subset ofl] (AY).) SetIngs = {I" € 2Ang | I' N IIs = 2}. | did not find a suitable bijection
for 2ngs, but the following formula for the cardinality is true:

Thte -1

#(RAngg) = l_[
i1 g+1

: (7.2)
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where the notation is the same asTiheorem 6.7 Again, this formula bears a striking
resemblance witfTheorem 2.16Direct calculations show that this gives us the correct
number forB, (this is easy, because there is only a few short robig)s2.

The argument foCp goes as follows. The set of positive roats™(Cp) is naturally
represented by the shifted Ferrers diagram of sh@pe— 1,2p — 3,...,1), and the
ideals are represented by suitable subdiagrams of it, see slightly different versions in
[12, Section 2], B, Section 3], §, Section 5]. In these interpretations, the long roots are
represented by the boxes in an extreme diagonal of this shifted Ferrers diagram, and the
simple roots correspond to the boxes of another (“opposite”) diagonal. These two diagonals
have a unique common box, corresponding to the long simple root. If we want to obtain an
ideal whose generators are short and contain no short simple roots, then we just erase both
these diagonals and consider a subdiagram of the smaller shifted diagram. But this smaller
shifted Ferrers diagram, which is of sha@g@ — 3, 2p—5, .. ., 1), can be thought of as the
set of positive roots fo€p_1. Thus, the number@nss) for Cp equals the numben(®n)
for Cp_1. The latter is known to equzﬁ?p”:lz), which is consistent with Eq7(2). Actually,
we obtain more. Our bijection betwe@mss(Cp) andAn(Cp_1) preserves the number of
elements. Therefore, we conclude that the numb&@ement antichains iRinss(Cp) is

equal to(pgl)z, k=0,1,...,p—1.

7.3.

Counting antichains with respect to the number of generators yields an interesting
g-analogue of #n), see ], [9]. In case of two root lengths, one may consider, of course,
a 2-parameter refinement. Set

Ank, ) ={C e An [ #T N AD) =k &#HT N AN =m},  am = #An(k, m),
and consider the generating functidiit, u) = Zk,mzo ak,mtkum. We have

Go: F(t,u) =14 3t + 3u + tu.
Fa: F(t,u) = 14 12t + 12u + 8t + 3%u + 8u? + 12%u 4 12tu® + t%u.

The symmetry of these polynomials stems from the fact the corresponding root systems are
self-dual. Since the root systems of typandC are dual to each other, the corresponding
matrices(ax m) are mutually transposed. So, it suffices to handle the caGg.dEach pair

of long roots inA*(C,) is comparable, hence any antichain contains at most one long
root. So that we are to determine the coefficieats, ax 1, (k = 0,1,..., p—1). In[9,
Section 5], we constructed an involution on the ¥a(Cp), which mapsin(k, 0) onto

An(p — 1 -k, 1). Henceap_k—1,1 = a0 and we have to only count the number of short
antichains withk elements. Using shifted Ferrers diagrams, it can be showrathat
(I‘(’)(pgl). (In this situation, short simple roots are allowed, so that one has to erase only
one diagonal and work with the shifted Ferrers diagram of sliape- 2,2p—4, ..., 2).)
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