On the irreducibility of commuting varieties

D. Panyushev

Independent University of Moscow Russia

30.05.2008 / LAW '08

- Reductive Lie algebras and commuting varieties
 - Matrix commuting varieties
 - Richardson's theorem
- Generalisations
 - Triples of matrices
 - Natural non-reductive subalgebras of gl_n
 - Nilpotent commuting varieties
 - Knutson's diagonal scheme
- 3 Involutions and commuting varieties
- Some open problems

Main questions: Is a commuting variety irreducible? If not, what are the irreducible components?

Pairs of commuting matrices

The ground field is \mathbb{C} .

Definition

$$\mathcal{C}(2,n) = \{(A,B) \mid AB = BA\} \subset \mathfrak{gl}_n \times \mathfrak{gl}_n$$

Theorem

C(2, n) is irreducible for any n.

- T.S. MOTZKIN and OLGA TAUSSKY (1955)
- M. GERSTENHABER (1961)
- R.W. Richardson (1979)
- Yu. Neretin (1987)
- R. Guralnick (1992)

Neretin's proof of irreducibility

One has to prove that $(A, B) \in \mathcal{C}(2, n)$ can simultaneously be diagonalised after a "small" deformation.

- $W_{\lambda,\mu} = \ker (A \lambda I)^n \cap \ker (B \mu I)^n$;
- Replace \mathbb{C}^n with $W_{\lambda,\mu}$ and assume that A,B are nilpotent; (The argument is by induction on max dim $W_{\lambda,\mu}$).
- $\exists p, q \in \mathbb{C}$ s.t. R := pA + qB is non-regular.
- Then \exists a semisimple C such that tr(C) = 0 and [C, R] = 0.
- Deformation in $W_{\lambda,\mu}$: $(A,B) \mapsto (A \varepsilon qC, B + \varepsilon pC), \varepsilon \in \mathbb{C}$.
- By the induction assumption, $(A \varepsilon qC, B + \varepsilon pC)$ can be approximated by commuting semisimple matrices.

- H is a connected algebraic group, $\mathfrak{h} = \text{Lie}(H)$.
- For $x \in \mathfrak{h}$, $\mathfrak{z}_{\mathfrak{h}}(x)$ is the centraliser of x in \mathfrak{h} .

Definition

The commuting variety of a Lie algebra \mathfrak{h} is $\mathcal{C}(\mathfrak{h}) = \{(x, y) \in \mathfrak{h} \times \mathfrak{h} \mid [x, y] = 0\}.$

Example:
$$C(2, n) = C(\mathfrak{gl}_n)$$
.

If $\mathfrak{a} \subset \mathfrak{h}$ is commutative, then $\overline{H \cdot (\mathfrak{a} \times \mathfrak{a})} \subset \mathcal{C}(\mathfrak{h})$.

The very first step:

Consider the projection $\mathcal{C}(\mathfrak{h}) \to \mathfrak{h}$ and look at the dimension of fibres.

One readily obtains that

 $\dim \mathcal{C}(\mathfrak{h}) \geqslant \dim \mathfrak{h} + \min \dim \mathfrak{z}_{\mathfrak{h}}(x) = 2 \dim \mathfrak{h} - \max \dim \{H\text{-orbits in }\mathfrak{h}\}.$

Richardson's theorem-1

Theorem (R.W. Richardson, 1979)

If $\mathfrak g$ is reductive, then $\mathcal C(\mathfrak g)$ is irreducible. More precisely, if $\mathfrak t$ is a Cartan subalgebra, then $\mathcal C(\mathfrak g) = \overline{G \cdot (\mathfrak t \times \mathfrak t)}$.

Plan of proof

- We have to approximate any $(x, y) \in \mathcal{C}(\mathfrak{g})$ by a pair of commuting semisimple elements.
- ② The Jordan decomposition and induction on rk[g, g] allow us to assume that x, y are nilpotent.
- Next, one can assume that $\mathfrak{z}_{\mathfrak{g}}(x)$ contains no semisimple elements. (Such an x is called distinguished.)
- **1** For x distinguished, one uses some properties of \mathfrak{sl}_2 -triples.

Richardson's theorem-2

- Suppose x is distinguished and $\{x, h, y\}$ is an \mathfrak{sl}_2 -triple.
- Then $x + \alpha y \sim_G h$ for any $\alpha \neq 0$.
- Since $\dim \mathfrak{z}_{\mathfrak{g}}(x) = \dim \mathfrak{z}_{\mathfrak{g}}(h)$, we have $\mathfrak{z}_{\mathfrak{g}}(x + \alpha y) \underset{\alpha \to 0}{\longrightarrow} \mathfrak{z}_{\mathfrak{g}}(x)$.
- $(x + \alpha y, \mathfrak{z}_{\mathfrak{g}}(x + \alpha y)) \subset \overline{G(\mathfrak{t} \times \mathfrak{t})}$ by induction assumption.
- Hence $(x,q) \in \overline{G \cdot (\mathfrak{t} \times \mathfrak{t})}$ for any $q \in \mathfrak{z}_{\mathfrak{g}}(x)$.

Corollary

 $\dim \mathcal{C}(\mathfrak{g}) = \dim \mathfrak{g} + \dim \mathfrak{t}.$

Example

 $\mathfrak{so}_n = \{ \text{skew-symmetric } n \times n \text{ matrices} \}.$

Therefore $C^{alt}(2, n)$ is irreducible.

Related problems on $C(\mathfrak{g})$

- Algebraic-geometric properties
 - prove that $C(\mathfrak{g})$ is a normal variety
 - prove that $C(\mathfrak{g})$ has rational singularities
 - construct a resolution of singularities of $C(\mathfrak{g})$
 - compute the degree of $C(\mathfrak{g})$
 - compute the Hilbert polynomial of $\mathbb{C}[\mathcal{C}(\mathfrak{g})]$
- Prove that the natural quadratic equations generate the ideal of $\mathcal{C}(\mathfrak{g})$ in $\mathbb{C}[\mathfrak{g} \times \mathfrak{g}]$

What is known:

- the quotient variety $\mathcal{C}(\mathfrak{g})/\!\!/ G$ is normal (A. JOSEPH, 1996)
- The degree is computed for g = gl(V) (A. KNUTSON, P. ZINN-JUSTIN, 2006), see Sequence A029729.
- results for small ranks

d-tuples of commuting matrices

Definition

$$\mathcal{C}(d,n) = \{(A_1,\ldots,A_d) \mid [A_i,A_i] = 0 \quad \forall i,j\} \subset (\mathfrak{gl}_n)^d$$

- C(d, n) is reducible for $n \ge 4, d \ge 5$ (Gerstenhaber, 1961);
- C(d,2), C(d,3) are irreducible for any d, C(4,4) is reducible (Kirillov–Neretin, 1984);
- C(3, n) is reducible for $n \ge 32$ (Guralnick, 1992), now $n \ge 30$;
- C(3, n) is irreducible for $n \le 8$ (Guralnick-Sethuraman, Holbrook, Omladič, Han, Šivic.)

For more details, attend Šivic's talk tomorrow!

Triangular matrices-1

 $\mathfrak{b} = \{\text{upper-triangular } n \times n \text{ matrices}\} \supset \mathfrak{t} = \{\text{diagonal matrices}\}.$

Then $\overline{B \cdot \mathfrak{t}} = \mathfrak{b}$.

It can be shown that $\overline{B \cdot (\mathfrak{t} \times \mathfrak{t})}$ is always an irreducible component of $\mathcal{C}(\mathfrak{b})$.

Problem

Is it true that $C(\mathfrak{b}) = \overline{B \cdot (\mathfrak{t} \times \mathfrak{t})}$?

The general answer is "no".

Triangular matrices-2

Example

$$n = 3m$$
, $\dim \overline{B \cdot (\mathfrak{t} \times \mathfrak{t})} = \dim \mathfrak{b} + \dim \mathfrak{t} = \frac{9}{2}(m^2 + m)$.

Take
$$\mathfrak{a}=\left\{\begin{pmatrix}0&*&*\\0&0&*\\0&0&0\end{pmatrix}\right\}\subset\mathfrak{b}.$$

Then dim $a = 3m^2$ and dim $[a, a] = m^2$.

Therefore $dim((\mathfrak{a} \times \mathfrak{a}) \cap \mathcal{C}(\mathfrak{b})) = dim \, \mathcal{C}(\mathfrak{a}) \geqslant 5m^2$.

Hence $C(\mathfrak{a}) \not\subset \overline{B \cdot (\mathfrak{t} \times \mathfrak{t})}$ for $m \geqslant 10$ and $C(\mathfrak{b})$ is reducible.

Related problem

Determine parabolic subalgebras $\mathfrak{p} \subset \mathfrak{gl}_n$ having the property that $\mathcal{C}(\mathfrak{p})$ is irreducible.

Centralisers of nilpotent elements of \mathfrak{gl}_n — I

The nilpotent orbits are parametrised by partitions of n. Let $\underline{\lambda} = (\lambda_1, \dots, \lambda_s)$ be a partition of n. (Notation: $\underline{\lambda} \dashv n$.) Then $\mathcal{O}(\underline{\lambda})$ and $\mathfrak{z}(\underline{\lambda})$ denote the corresponding orbit and centraliser, respectively.

Examples

- if $\underline{\lambda} = (n)$, then $\mathcal{O}(\underline{\lambda})$ is regular and $\mathfrak{z}(\underline{\lambda})$ is abelian,
- if $\underline{\lambda} = (2, 1, ..., 1)$, then $\mathcal{O}(\underline{\lambda})$ is the minimal (nonzero) orbit.

Theorem (M.G. Neubauer and B. A. Sethuraman, 1999)

If $\underline{\lambda}$ has two nonzero parts, then $\mathcal{C}(\mathfrak{z}(\underline{\lambda}))$ is irreducible.

If a matrix is 2-regular and nilpotent, then it has at most two Jordan blocks.

Centralisers of nilpotent elements of \mathfrak{gl}_n — II

• There is a connection between $\mathcal{C}(\mathfrak{z}(\underline{\lambda}))$ and commuting triples:

Theorem (O. Yakimova, 2006)

If $C(\mathfrak{z}(\underline{\lambda}))$ is irreducible for any $\underline{\lambda}\dashv m$ with $m\leqslant n$, then C(3,n) is irreducible as well.

Corollary

For $n \geqslant 30$, there is a $\underline{\lambda} \dashv n$ such that $\mathcal{C}(\mathfrak{z}(\underline{\lambda}))$ is reducible.

However, no explicit examples is known.

Nilpotent commuting varieties – I

 $\mathcal{N} \subset \mathfrak{g}$ – the cone of nilpotent elements.

Definition

The nilpotent commuting variety is $C(\mathcal{N}) := C(\mathfrak{g}) \cap (\mathcal{N} \times \mathcal{N})$.

Theorem (A. Premet, 2003)

- (i) The irreducible components of $\mathcal{C}(\mathcal{N})$ are parametrised by the distinguished nilpotent G-orbits in \mathfrak{g} .
- (ii) The variety $C(\mathcal{N})$ is of pure dimension dim g.
 - Consider the projection $p : \mathcal{C}(\mathcal{N}) \to \mathcal{N}$
 - If $\mathcal{O} \subset \mathcal{N}$ is an orbit, then $\dim p^{-1}(\mathcal{O}) \leqslant \dim \mathfrak{g}$ and the equality exactly means that \mathcal{O} is distinguished.

Nilpotent commuting varieties – II

Corollary (Baranovsky, 2001; Basili, 2003)

For $\mathfrak{g} = \mathfrak{sl}_n$, the variety $\mathcal{C}(\mathcal{N})$ is irreducible.

(The only other cases are \$05 and \$07.)

 It is an interesting problem to describe nilpotent matrices commuting with a given nilpotent matrix (→ talk of P. Oblak tomorrow).

The diagonal commutator scheme

Suppose g is semisimple

- $\psi = [\ ,\] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ the usual bracket and $\mathcal{C}(\mathfrak{g}) = \psi^{-1}(0)$.
- ullet ψ is onto and the generic fibre of ψ is of dimension dim \mathfrak{g} .
- The expected dimension of $\psi^{-1}(\mathfrak{t})$ is $\dim \mathfrak{g} + \dim \mathfrak{t}$.

Theorem (Knutson, 2005)

If $\mathfrak{g}=\mathfrak{sl}_n$, then $\psi^{-1}(\mathfrak{t})$ is a reduced complete intersection. It has two irreducible components of dimension $\dim\mathfrak{g}+\dim\mathfrak{t}$.

Knutson constructs a degeneration of $\psi^{-1}(\mathfrak{t})$ into the scheme $\{(A,B) \mid AB \text{ is upper triangular}, BA \text{ is lower triangular}\}.$

The latter has n! irreducible components, which are parametrised by permutations. Knutson also studies the degree of irreducible components.

Involutions and commuting varieties

For an involution $\vartheta \in \operatorname{Aut}(\mathfrak{g})$, let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be the corresponding \mathbb{Z}_2 -grading. Then $(\mathfrak{g},\mathfrak{g}_0)$ is called a symmetric pair.

Definition

The commuting variety associated with ϑ is $\mathcal{C}(\mathfrak{g}_1) = \mathcal{C}(\mathfrak{g}) \cap (\mathfrak{g}_1 \times \mathfrak{g}_1)$.

- $\mathcal{C}(\mathfrak{g}_1)$ is the zero fibre of $\psi_1:\mathfrak{g}_1\times\mathfrak{g}_1\to\mathfrak{g}_0$;
- The group G_0 acts on \mathfrak{g}_1 and $\mathcal{C}(\mathfrak{g}_1)$;
- If \mathfrak{c} is a Cartan subspace of \mathfrak{g}_1 , then $\overline{G_0 \cdot \mathfrak{c}} = \mathfrak{g}_1$.
- $\overline{G_0 \cdot (\mathfrak{c} \times \mathfrak{c})}$ is an irreducible component of $\mathcal{C}(\mathfrak{g}_1)$.
- $\dim \overline{G_0 \cdot (\mathfrak{c} \times \mathfrak{c})} = \dim \mathfrak{g}_1 + \dim \mathfrak{c}$.

The induction scheme of Richardson basically applies here. The problem reduces to study of ϑ -distinguished (nilpotent) G_0 -orbits in \mathfrak{g}_1 .

Involutions of maximal rank

We say that ϑ is of maximal rank if dim $\mathfrak{c}=\mathsf{rk}\,\mathfrak{g}$. In this case \mathfrak{c} is Cartan and dim $\mathfrak{g}_1-\mathsf{dim}\,\mathfrak{g}_0=\mathsf{rk}\,\mathfrak{g}$.

Theorem (Panyushev, 1994)

If ϑ is of maximal rank, then $\mathcal{C}(\mathfrak{g}_1)$ is an irreducible normal complete intersection. The ideal of $\mathcal{C}(\mathfrak{g}_1)$ in $\mathbb{C}[\mathfrak{g}_1 \times \mathfrak{g}_1]$ is generated by quadrics.

- ψ_1 is onto, hence dim $C(\mathfrak{g}_1) \geqslant 2 \dim \mathfrak{g}_1 \dim \mathfrak{g}_0 = \dim \mathfrak{g}_1 + \operatorname{rk} \mathfrak{g}$;
- $\dim \overline{G_0 \cdot (\mathfrak{c} \times \mathfrak{c})} = \dim \mathfrak{g}_1 + \operatorname{rk} \mathfrak{g};$
- The complement of $G_0 \cdot (\mathfrak{c} \times \mathfrak{c})$ forms a subvariety of dimension less than $\dim \mathfrak{g}_1 + \operatorname{rk} \mathfrak{g}$;

Here $\psi_1:\mathfrak{g}_1\times\mathfrak{g}_1\to\mathfrak{g}_0$ is flat and all the fibres are irreducible, normal, etc.

Some examples

Example

For $\mathfrak{g} = \mathfrak{gl}_n$, the involution of maximal rank is given by $\vartheta(A) = -A^t$. It follows that $\mathfrak{g}_0 = \mathfrak{so}_n$ and $\mathfrak{g}_1 = \{\text{symmetric } n \times n \text{ matrices}\}.$

Therefore $C^{sym}(2, n)$ is irreducible.

Unpleasant fact: $C(\mathfrak{g}_1)$ is not always irreducible.

Example (Panyushev and Yakimova, 2007)

$$s = \text{diag}(\underbrace{1,\ldots,1}_m,\underbrace{-1,\ldots,-1}_n) \in GL_{n+m} \text{ and } \vartheta = \text{Int}(s).$$
 Then

$$\mathfrak{g}_0 = \left\{ \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right\} \simeq \mathfrak{gl}_m \oplus \mathfrak{gl}_n, \, \mathfrak{g}_1 = \left\{ \begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix} \right\}, \, \text{and dim} \, \mathfrak{c} = \min\{n, m\}.$$

Here $C(\mathfrak{g}_1)$ is reducible unless n=m.

The rank one case

Theorem (Panyushev, 2004)

If dim $\mathfrak{c}=1$, then $\#Irr(\mathcal{C}(\mathfrak{g}_1))=\#\{\text{nonzero }G_0\text{-orbits in }\mathcal{N}\cap\mathfrak{g}_1\}.$

Number of irreducible components

	$(\mathfrak{so}_n,\mathfrak{so}_{n-1})$	$(\mathfrak{sp}_{2n},\mathfrak{sp}_{2n-2}\times\mathfrak{sp}_2)$	$(\mathbf{F}_4, \mathfrak{so}_9)$	$(\mathfrak{sl}_n,\mathfrak{sl}_{n-1}\times T_1)$
	<i>n</i> ≥ 3	n ≥ 2		<i>n</i> ≥ 3
ĺ	1	2	2	3

Fact: The standard component $\overline{G_0 \cdot (\mathfrak{c} \times \mathfrak{c})}$ is always a unique irreducible component of maximal dimension.

If dim c = 1, then all other components are of dimension dim g_1 .

Open problems

- For what partitions λ is the variety $C(\mathfrak{z}(\lambda))$ irreducible?
- Study the triples of commuting *nilpotent* matrices.
- Study the triples of commuting symmetric matrices.
- Is the variety $\{(A_1, A_2, A_3) \in \mathcal{C}(3, n) \mid A_1 A_2 = A_3^2\}$ irreducible ?
- Describe $\operatorname{Irr} \mathcal{C}(\mathfrak{g}_1)$ for the symmetric pair $(\mathfrak{gl}_{n+m},\mathfrak{gl}_n \times \mathfrak{gl}_m)$, $n \neq m$.
- The irreducibility of $\mathcal{C}(\mathfrak{g}_1)$ is not known for 3 cases. Two serial cases concern *classical* symmetric pairs: $(\mathfrak{so}_{4n},\mathfrak{gl}_{2n})$ and $(\mathfrak{sp}_{2n+2m},\mathfrak{sp}_{2n}\times\mathfrak{sp}_{2m})$, $\min(n,m)\geqslant 3$.
- There is no general principle for the irreducibility of $\mathcal{C}(\mathfrak{g}_1)$!

