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Main questions: Is a commuting variety irreducible? If not, what are
the irreducible components?
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Reductive Lie algebras and commuting varieties Matrix varieties

Pairs of commuting matrices

The ground field is C.

Definition
C(2,n) = {(A,B) | AB = BA} ⊂ gln × gln

Theorem
C(2,n) is irreducible for any n.

T.S. MOTZKIN and OLGA TAUSSKY (1955)
M. GERSTENHABER (1961)
R.W. RICHARDSON (1979)
YU. NERETIN (1987)
R. GURALNICK (1992)
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Reductive Lie algebras and commuting varieties Matrix varieties

Neretin’s proof of irreducibility

One has to prove that (A,B) ∈ C(2,n) can simultaneously be
diagonalised after a "small" deformation.

Wλ,µ = ker (A− λI)n ∩ ker (B − µI)n;
Replace Cn with Wλ,µ and assume that A,B are nilpotent;
(The argument is by induction on max dim Wλ,µ).
∃ p,q ∈ C s.t. R := pA + qB is non-regular.
Then ∃ a semisimple C such that tr(C) = 0 and [C,R] = 0.
Deformation in Wλ,µ: (A,B) 7→ (A− εqC,B + εpC), ε ∈ C.
By the induction assumption, (A− εqC,B + εpC) can be
approximated by commuting semisimple matrices.
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Reductive Lie algebras and commuting varieties Richardson’s theorem

H is a connected algebraic group, h = Lie (H).
For x ∈ h, zh(x) is the centraliser of x in h.

Definition
The commuting variety of a Lie algebra h is
C(h) = {(x , y) ∈ h× h | [x , y ] = 0}.

Example: C(2,n) = C(gln).

If a ⊂ h is commutative, then H·(a× a) ⊂ C(h).

The very first step:

Consider the projection C(h)→ h and look at the dimension of fibres.

One readily obtains that
dim C(h) > dim h + min dim zh(x) = 2 dim h−max dim{H-orbits in h}.
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Reductive Lie algebras and commuting varieties Richardson’s theorem

Richardson’s theorem–1

Theorem (R.W. Richardson, 1979)
If g is reductive, then C(g) is irreducible.
More precisely, if t is a Cartan subalgebra, then C(g) = G·(t× t).

Plan of proof
1 We have to approximate any (x , y) ∈ C(g) by a pair of commuting

semisimple elements.
2 The Jordan decomposition and induction on rk [g, g] allow us to

assume that x , y are nilpotent.
3 Next, one can assume that zg(x) contains no semisimple

elements. (Such an x is called distinguished.)
4 For x distinguished, one uses some properties of sl2-triples.
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Reductive Lie algebras and commuting varieties Richardson’s theorem

Richardson’s theorem–2

Suppose x is distinguished and {x ,h, y} is an sl2-triple.
Then x + αy ∼G h for any α 6= 0.
Since dim zg(x) = dim zg(h), we have zg(x + αy) →

α→0
zg(x).

(x + αy , zg(x + αy)) ⊂ G·(t× t) by induction assumption.
Hence (x ,q) ∈ G·(t× t) for any q ∈ zg(x).

Corollary
dim C(g) = dim g + dim t.

Example
son = {skew-symmetric n × n matrices}.
Therefore Calt(2,n) is irreducible.
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Reductive Lie algebras and commuting varieties Richardson’s theorem

Related problems on C(g)

Algebraic-geometric properties
I prove that C(g) is a normal variety
I prove that C(g) has rational singularities
I construct a resolution of singularities of C(g)
I compute the degree of C(g)
I compute the Hilbert polynomial of C[C(g)]

Prove that the natural quadratic equations generate the ideal of
C(g) in C[g× g]

What is known:

the quotient variety C(g)//G is normal (A. JOSEPH, 1996)
The degree is computed for g = gl(V ) (A. KNUTSON,
P. ZINN-JUSTIN, 2006), see Sequence A029729.
results for small ranks
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Generalisations Triples of matrices

d-tuples of commuting matrices

Definition
C(d ,n) = {(A1, . . . ,Ad) | [Ai ,Aj ] = 0 ∀ i , j} ⊂ (gln)

d

C(d ,n) is reducible for n > 4,d > 5 (Gerstenhaber, 1961);
C(d ,2), C(d ,3) are irreducible for any d , C(4,4) is reducible
(Kirillov–Neretin, 1984);
C(3,n) is reducible for n > 32 (Guralnick, 1992), now n > 30;
C(3,n) is irreducible for n 6 8 (Guralnick-Sethuraman, Holbrook,
Omladič, Han, Šivic.)

For more details, attend Šivic’s talk tomorrow !

D. Panyushev (Moscow) On the irreducibility of commuting varieties LAW ’08 9 / 21



Generalisations Non-reductive subalgebras of gln

Triangular matrices–1

b = {upper-triangular n × n matrices} ⊃ t = {diagonal matrices}.
Then B·t = b.

It can be shown that B·(t× t) is always an irreducible component of
C(b).

Problem
Is it true that C(b) = B·(t× t) ?

The general answer is “no”.
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Generalisations Non-reductive subalgebras of gln

Triangular matrices–2

Example

n = 3m, dim B·(t× t) = dim b + dim t = 9
2(m2 + m).

Take a =


0 ∗ ∗

0 0 ∗
0 0 0

 ⊂ b.

Then dim a = 3m2 and dim[a, a] = m2.

Therefore dim
(
(a× a) ∩ C(b)

)
= dim C(a) > 5m2.

Hence C(a) 6⊂ B·(t× t) for m > 10 and C(b) is reducible.

Related problem
Determine parabolic subalgebras p ⊂ gln having the property that C(p)
is irreducible.
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Generalisations Non-reductive subalgebras of gln

Centralisers of nilpotent elements of gln — I
The nilpotent orbits are parametrised by partitions of n.
Let λ = (λ1, . . . , λs) be a partition of n. (Notation: λ a n.)
Then O(λ) and z(λ) denote the corresponding orbit and centraliser,
respectively.

Examples
if λ = (n), then O(λ) is regular and z(λ) is abelian,
if λ = (2,1, . . . ,1), then O(λ) is the minimal (nonzero) orbit.

Theorem (M.G. Neubauer and B. A. Sethuraman, 1999)
If λ has two nonzero parts, then C(z(λ)) is irreducible.

If a matrix is 2-regular and nilpotent, then it has at most two Jordan
blocks.
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Generalisations Non-reductive subalgebras of gln

Centralisers of nilpotent elements of gln — II

There is a connection between C(z(λ)) and commuting triples:

Theorem (O. Yakimova, 2006)
If C(z(λ)) is irreducible for any λ a m with m 6 n, then C(3,n) is
irreducible as well.

Corollary
For n > 30, there is a λ a n such that C(z(λ)) is reducible.

However, no explicit examples is known.
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Generalisations Nilpotent commuting varieties

Nilpotent commuting varieties – I

N ⊂ g – the cone of nilpotent elements.

Definition
The nilpotent commuting variety is C(N ) := C(g) ∩ (N ×N ).

Theorem (A. Premet, 2003)
(i) The irreducible components of C(N ) are parametrised by the

distinguished nilpotent G-orbits in g.
(ii) The variety C(N ) is of pure dimension dim g.

Consider the projection p : C(N )→ N
If O ⊂ N is an orbit, then dim p−1(O) 6 dim g and the equality
exactly means that O is distinguished.
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Generalisations Nilpotent commuting varieties

Nilpotent commuting varieties – II

Corollary (Baranovsky, 2001; Basili, 2003)
For g = sln, the variety C(N ) is irreducible.

(The only other cases are so5 and so7.)

It is an interesting problem to describe nilpotent matrices
commuting with a given nilpotent matrix (→ talk of P. Oblak
tomorrow).
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Generalisations Knutson’s diagonal scheme

The diagonal commutator scheme

Suppose g is semisimple
ψ = [ , ] : g× g→ g – the usual bracket and C(g) = ψ−1(0).
ψ is onto and the generic fibre of ψ is of dimension dim g.
The expected dimension of ψ−1(t) is dim g + dim t.

Theorem (Knutson, 2005)

If g = sln, then ψ−1(t) is a reduced complete intersection. It has two
irreducible components of dimension dim g + dim t.

Knutson constructs a degeneration of ψ−1(t) into the scheme
{(A,B) | AB is upper triangular, BA is lower triangular}.

The latter has n ! irreducible components, which are parametrised by
permutations. Knutson also studies the degree of irreducible
components.
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Involutions and commuting varieties

Involutions and commuting varieties

For an involution ϑ ∈ Aut(g), let g = g0 ⊕ g1 be the corresponding
Z2-grading. Then (g, g0) is called a symmetric pair.

Definition
The commuting variety associated with ϑ is C(g1) = C(g) ∩ (g1 × g1).

C(g1) is the zero fibre of ψ1 : g1 × g1 → g0 ;
The group G0 acts on g1 and C(g1);
If c is a Cartan subspace of g1, then G0·c = g1.
G0·(c× c) is an irreducible component of C(g1).
dim G0·(c× c) = dim g1 + dim c.

The induction scheme of Richardson basically applies here. The
problem reduces to study of ϑ-distinguished (nilpotent) G0-orbits in g1.
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Involutions and commuting varieties

Involutions of maximal rank

We say that ϑ is of maximal rank if dim c = rk g. In this case c is Cartan
and dim g1 − dim g0 = rk g.

Theorem (Panyushev, 1994)
If ϑ is of maximal rank, then C(g1) is an irreducible normal complete
intersection. The ideal of C(g1) in C[g1 × g1] is generated by quadrics.

ψ1 is onto, hence dim C(g1) > 2 dim g1 − dim g0 = dim g1 + rk g;
dim G0·(c× c) = dim g1 + rk g;
The complement of G0·(c× c) forms a subvariety of dimension
less than dim g1 + rk g;

Here ψ1 : g1 × g1 → g0 is flat and all the fibres are irreducible, normal,
etc.
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Involutions and commuting varieties

Some examples

Example
For g = gln, the involution of maximal rank is given by ϑ(A) = −At . It
follows that g0 = son and g1 = {symmetric n × n matrices}.
Therefore Csym(2,n) is irreducible.

Unpleasant fact: C(g1) is not always irreducible.

Example (Panyushev and Yakimova, 2007)
s = diag(1, . . . ,1︸ ︷︷ ︸

m

,−1, . . . ,−1︸ ︷︷ ︸
n

) ∈ GLn+m and ϑ = Int(s). Then

g0 =

{(
∗ 0
0 ∗

)}
' glm ⊕ gln, g1 =

{(
0 ∗
∗ 0

)}
, and dim c = min{n,m}.

Here C(g1) is reducible unless n = m.
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Involutions and commuting varieties

The rank one case

Theorem (Panyushev, 2004)
If dim c = 1, then #Irr(C(g1)) = #{nonzero G0-orbits in N ∩ g1}.

Number of irreducible components
(son, son−1) (sp2n, sp2n−2 × sp2) (F4, so9) (sln, sln−1 × T1)

n > 3 n > 2 n > 3
1 2 2 3

Fact: The standard component G0·(c× c) is always a unique
irreducible component of maximal dimension.

If dim c = 1, then all other components are of dimension dim g1.
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Some open problems

Open problems

For what partitions λ is the variety C(z(λ)) irreducible?
Study the triples of commuting nilpotent matrices.
Study the triples of commuting symmetric matrices.
Is the variety {(A1,A2,A3) ∈ C(3,n) | A1A2 = A2

3} irreducible ?
Describe Irr C(g1) for the symmetric pair (gln+m, gln × glm), n 6= m.
The irreducibility of C(g1) is not known for 3 cases. Two serial
cases concern classical symmetric pairs: (so4n, gl2n) and
(sp2n+2m, sp2n × sp2m), min(n,m) > 3.
There is no general principle for the irreducibility of C(g1) !
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