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WEIGHT MULTIPLICITY FREE REPRESENTATIONS,
g-ENDOMORPHISM ALGEBRAS, AND DYNKIN POLYNOMIALS

DMITRI I. PANYUSHEV

Introduction

Throughout this paper, G is a connected semisimple algebraic group defined over
an algebraically closed field k of characteristic zero, and g is its Lie algebra.

Recently, Kirillov introduced an interesting class of associative algebras connected
with the adjoint representation of G [16]. In our paper, such algebras are called g-
endomorphism algebras. Each g-endomorphism algebra is a module over the algebra
of invariants k[g]G; furthermore, it is a direct sum of modules of covariants. Hence
it is a free graded finitely generated module over k[g]G. The aim of this paper is
to show that commutative g-endomorphism algebras have intriguing connections
with representation theory, combinatorics, commutative algebra, and equivariant
cohomology.

Let πλ : G −→ GL(Vλ) be an irreducible representation, where λ stands for the
highest weight of Vλ. Following Kirillov, one can form an associative k-algebra by
taking the G-invariant elements in the G-module EndVλ ⊗ k[g]. That is, we set

Cλ(g) = (EndVλ ⊗ k[g])G.

This algebra will be referred to as the g-endomorphism algebra (of type λ). We do
not use Kirillov’s term ‘classical family algebra’ for Cλ(g); nor we consider ‘quantum
family algebras’ in our paper. It is proved in [16] that Cλ(g) is commutative if
and only if all weight spaces in Vλ are 1-dimensional. That paper also contains a
description of g-endomorphism algebras for simplest representations of the classical
Lie algebras. In our paper we do not attempt to dwell upon consideration of
particular cases, but rather we try to investigate general properties of such algebras.
As a tool for studying g-endomorphism algebras, we use t-endomorphism algebras.
Let t be a Cartan subalgebra of g and let W be the corresponding Weyl group. Let
End T (Vλ) denote the set of T -equivariant endomorphisms of Vλ, where T is the
maximal torus with Lie algebra t. Then

Cλ(t) = (End T (Vλ) ⊗ k[t])W

is called the t-endomorphism algebra of type λ. Both Cλ(t) and Cλ(g) are free graded
k[g]G-modules of the same rank, and there exists an injective homomorphism of
k[g]G-modules r̂λ : Cλ(g) −→ Cλ(t). Moreover, k[g]G is a subalgebra in both Cλ(t)
and Cλ(g), and r̂λ is a monomorphism of k[g]G-algebras. We show that r̂λ becomes
an isomorphism after inverting the discriminant D ∈ k[g]G.
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Most of our results concern the case in which Cλ(g) is commutative, that is, Vλ

is weight multiplicity free (wmf). A considerable amount of wmf representations
are minuscule ones. We show that if Vλ is minuscule, then Cλ(g) � k[t]Wλ . Here
Wλ ⊂ W is the stabilizer of λ. The proof relies on a recent result of Broer concerning
‘small’ G-modules [5]. If Vλ is wmf but not minuscule, then both Cλ(t) and Cλ(g)
have zero-divisors. We prove that Spec Cλ(t) is a disjoint union of affine spaces of
dimension rkg, while Spec Cλ(g) is connected. However, both varieties have the
same number of irreducible components, which is equal to the number of dominant
weights of Vλ. As a by-product, we obtain the assertion that r̂λ is an isomorphism
if and only if λ is minuscule. Since Cλ(g) and Cλ(t) are graded k-algebras, one may
consider their Poincaré series. We explicitly compute these series for any λ.

The principal result of the paper is that any commutative algebra Cλ(g)
is Gorenstein. The proof goes as follows. Any set f1, . . . , fl of algebraically
independent homogeneous generators of k[g]G form a system of parameters for
Cλ(g). Therefore Cλ(g) is Gorenstein if and only if R(λ) := Cλ(g)/Cλ(g)f1 + . . . +
Cλ(g)fl is. The finite-dimensional k-algebra R(λ) is isomorphic with (EndVλ)A,
where A ⊂ G is the connected centraliser of a regular nilpotent element. Using
this fact, we prove that the socle of R(λ) is one-dimensional, that is, R(λ) is
Gorenstein. It is also shown that the Poincaré polynomial of R(λ) is equal to the
Dynkin polynomial for Vλ. The Dynkin polynomial is defined for any Vλ. It can
be regarded as a q-analogue of dimVλ that describes the distribution of weight
spaces with respect to some level function. According to an old result of Dynkin
[7], it is a symmetric unimodal polynomial with integral coefficients. Later on,
Stanley observed that Dynkin polynomials have rich combinatorial applications
and there is a multiplicative formula for them (see [20]). In our setting, the Dynkin
polynomial of a wmf G-module Vλ appears as the numerator of the Poincaré series
of Cλ(g). It is natural to suspect that any reasonable finite-dimensional Gorenstein
k-algebra is the cohomology algebra of a ‘good’ variety. Following this harmless
idea, we construct for any wmf representation of a simple group G a certain variety
Xλ ⊂ P(Vλ). We conjecture that H∗(Xλ) � R(λ) and H∗

Gc
(Xλ) � Cλ(g), where

Gc ⊂ G is a maximal compact subgroup. If λ is a minuscule dominant weight, then
Xλ is nothing but G/Pλ, a generalised flag variety. In this case, the conjecture
follows from the equality Cλ(g) = k[t]Wλ (Theorem 2.6) and the well known
description of H∗

Gc
(G/Pλ). We also verify (a part of) the conjecture for some non-

minuscule weights.
The paper is organised as follows. In Section 1, we collect necessary information

on modules of covariants. Section 2 is devoted to basic properties of endomorphism
algebras. We describe the structure of these algebras in the commutative case, in
particular, for the minuscule weights. Dynkin polynomials and their applications are
discussed in Section 3. In Section 4, we give explicit formulas for the Poincaré series
of endomorphism algebras. The Gorenstein property is considered in Section 5.
Finally, in Section 6, we construct varieties Xλ ⊂ P(Vλ) and discuss connections
between g-endomorphism algebras and (equivariant) cohomology of Xλ.

1. Generalities on modules of covariants

Fix a Borel subgroup B ⊂ G and a maximal torus T ⊂ B. We will always work
with roots, simple roots, positive roots, and dominant weights that are determined
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by this choice of the pair (B, T ). For instance, the roots of B are positive and
a highest weight vector in some G-module is a B-eigenvector. More specifically,
write P for the T -weight lattice, and P+ for the dominant weights in P. Next, ∆
(respectively ∆+) is the set of all (respectively positive) roots, Π is the set of simple
roots, and Q is the root lattice. For a G-module M , let Mµ denote the µ-weight
space of M (µ ∈ P). If λ ∈ P+, then Vλ stands for the simple G-module with highest
weight λ. Set mµ

λ = dimVµ
λ. The notation µ � Vλ means that mµ

λ �= 0. For instance,
we have 0 � Vλ if and only if λ ∈ Q.

Given λ ∈ P+, the space (Vλ ⊗k[g])G is called the module of covariants (of type
λ). We will write Jλ(g) for it. Clearly, Jλ(g) is a module over J0(g) = k[g]G, and
Jλ(g) �= 0 if and only if λ ∈ Q. The elements of Jλ(g) can be identified with the G-
equivariant morphisms from g to Vλ. More precisely, an element

∑
vi ⊗ fi ∈ Jλ(g)

defines the morphism that takes x ∈ g to
∑

fi(x)vi ∈ Vλ. This interpretation of
Jλ(g) will freely be used in the sequel. Since k[g]G is a graded algebra, each Jλ(g)
is a graded module too:

Jλ(g) =
⊕
n�0

Jλ(g)n,

the component of grade n being (Vλ ⊗k[g]n)G. The Poincaré series of Jλ(g) is the
formal power series

F(Jλ(g); q) =
∑
n�0

dim Jλ(g)nqn ∈ Z[[q]].

More generally, C being an arbitrary graded object, we write F(C; q) for its
Poincaré series.

The following fundamental result is due to Kostant [17, Theorem 11].

Theorem 1.1. Jλ(g) is a free graded J0(g)-module of rank m0
λ.

Let d1, . . . , dl be the degrees of basic invariants in k[g]G, where l = rkg. It follows
from the theorem that F(Jλ(g); q) is a rational function of the form

F(Jλ(g); q) =

∑
j qej (λ)∏l

i=1(1 − qdi )
.

The numbers {ej(λ)} (1 � j � m0
λ), which are merely the degrees of a set of

free homogeneous generators of Jλ(g), are called the generalised exponents for
Vλ. Another interpretation of generalised exponents is obtained as follows. Let
f1, . . . , fl ∈ k[g]G be a set of basic invariants, with deg fi = di. It is a homogeneous
system of parameters for Jλ(g). Therefore Jλ(g) = (f1, . . . , fl)Jλ(g) ⊕ Hλ, where
Hλ is a graded finite-dimensional k-vector space such that dimHλ = m0

λ. Any
homogeneous k-basis for Hλ is also a basis for Jλ(g) as k[g]G-module. Let
N ⊂ g denote the set of nilpotent elements of g (the nilpotent cone). Since
k[g]G/(f1, . . . , fl) � k[N ], we see that

Hλ � (Vλ ⊗ k[N ])G and F(Hλ; q) =
m0

λ∑
i=1

qej (λ).

The polynomial F(Hλ; q) has non-negative integral coefficients and F(Hλ; q)|q=1 =
m0

λ. It is a q-analogue of m0
λ. A combinatorial formula for F(Hλ; q) was found by

Hesselink [13] and Peterson, independently.
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Now we describe another approach to computing F(Hλ; q), which is due to
Brylinski. Let e ∈ N be a regular nilpotent element. Then G·e is dense in N
and k[N ] � k[G]Ge [17]. Hence Hλ � (Vλ)Ge , and in particular, dim(Vλ)Ge =
m0

λ. Thus the space (Vλ)Ge is equipped with a grading coming from the above
isomorphism. A direct description of this grading can be obtained in terms of
‘jump polynomials’. Fix a principal sl2-triple {e, h, f} such that Gh = T and e
is a sum of root vectors corresponding to the simple roots. We have Ge ⊂ B and
Ge � Z(G) ×A, where Z(G) is the centre of G and A is a connected commutative
unipotent group. As [h, e] = 2e, the space (Vλ)A is ad h-stable. It follows from the
sl2-theory that adh-eigenvalues on (Vλ)A are nonnegative. Moreover, since λ ∈ Q,
we see that Z(G) acts trivially on Vλ, (Vλ)Ge = (Vλ)A, and these eigenvalues are
even. Therefore it is convenient to consider h̃ = 1

2h and its eigenvalues. Set

(Vλ)A
i = {x ∈ (Vλ)A | [h̃, x] = ix}

and JVλ
(q) =

∑
i dim(Vλ)A

i qi. This polynomial is called the jump polynomial for
Vλ.

Theorem 1.2 [4, Theorem 2.4; 6, Theorem 3.4]. For any λ ∈ Q ∩ P+, we have
JVλ

(q) = F(Hλ; q).

Let t denote the Lie algebra of T and let W be the Weyl group of T . For any
λ ∈ Q, the space V0

λ is a W -module. Therefore, one can form the space Jλ(t) =
(V0

λ ⊗ k[t])W . It is a module over J0(t) = k[t]W . By Chevalley’s theorem, the
restriction homomorphism k[g] −→ k[t] induces an isomorphism of J0(g) and J0(t),
so that this common algebra will be denoted by J . Since W is a finite reflection
group in t, we have Jλ(t) is a free graded J-module of rank m0

λ. Restricting a
G-equivariant morphism g −→ Vλ to t ⊂ g yields a W -equivariant morphism
t −→ V0

λ. In other words, we obtain a map resλ : Jλ(g) −→ Jλ(t), which, in view
of Chevalley’s theorem, is a homomorphism of J-modules. Since G·t is dense in
g, the homomorphism resλ is injective. It is not, however, always surjective. The
following elegant result is due to Broer [5, Theorem 1].

Theorem 1.3. Suppose that λ ∈ Q∩P+. Then the homomorphism resλ is onto
⇐⇒ m2µ

λ = 0 for all µ ∈ ∆.

In other words, resλ is an isomorphism if and only if twice a root is not a weight
for Vλ. The G-modules satisfying the last condition are said to be small.

Looking at the elements of Jλ(g) as G-equivariant morphisms

g
ϕ−→ Vλ,

one can consider the evaluation map

εx : Jλ(g) −→ (Vλ)Gx

for any x ∈ g. Namely, set εx(ϕ) = ϕ(x). The following is a particular case of a
more general statement [18, Theorem 1], which applies to arbitrary G-actions.

Theorem 1.4. Suppose that G·x is normal. Then εx is onto.
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2. g-endomorphism and t-endomorphism algebras

Following Kirillov, define the g-endomorphism algebra of type λ by the formula

Cλ(g) = (EndVλ ⊗ k[g])G.

It is immediate that Cλ(g) is a J-module and an associative k-algebra. Since
EndVλ � Vλ ⊗ V∗

λ =
⊕

cνVν , one sees that Cλ(g) is a direct sum of modules of
covariants (possibly with multiplicities). Hence Cλ(g) �

⊕
cνJν(g). It is important

that all ν belong to Q. Therefore dim(EndVλ)A = dim(EndVλ)0 =
∑

cνm0
ν .

Notice that Cλ(g) is not only a J-module, but it also contains J as subalgebra,
since idVλ

∈ EndVλ. In particular, Cλ(g) is a J-algebra. Clearly, Cλ(g) is a graded
k-algebra, the component of grade n being (EndVλ ⊗ k[g]n)G.

The zero-weight space in the G-module EndVλ is the set of T -equivariant
endomorphisms of Vλ; that is, we have End T (Vλ) = (EndVλ)0. Define the t-
endomorphism algebra of type λ by the formula

Cλ(t) = (End T (Vλ) ⊗ k[t])W .

Using the above notation, one sees that Cλ(t) =
⊕

cνJν(t). It follows that, patching
together the homomorphisms resν , one obtains the monomorphism of J-algebras
r̂λ : Cλ(g) −→ Cλ(t). Thus we have two associative J-algebras such that both are
free graded J-modules of the same rank, dim End T (Vλ).

Lemma 2.1. Let D ∈ J be the discriminant. Then Cλ(g)D and Cλ(t)D are
isomorphic as JD-modules.

Proof. Both Cλ(t) and Cλ(g) are built of modules of covariants. Therefore the
result stems from the analogous statement for the modules of covariants, which was
proved in [5, Lemma 1(iii)]; see also [18, Proposition 4] for another proof in a more
general context.

We will primarily be interested in commutative g- and t-endomorphism algebras.
The following proposition contains a criterion of commutativity. Part (i) has been
proved in [16, Corollary 1]. However, we give a somewhat different proof for
it, which has the potential to be applied in more general situations; cf. [18,
Proposition 3].

Proposition 2.2. (i) Cλ(g) is commutative ⇐⇒ mµ
λ = 1 for all µ � Vλ.

(ii) Cλ(g) is commutative ⇐⇒ Cλ(t) is commutative.

Proof. (i) ‘⇐’: Because End T (Vλ)�
⊕

µ End (V µ
λ ), the algebra Cλ(t) is

commutative whenever mµ
λ = 1 for all µ � Vλ. Since r̂λ is injective, we are done.

‘⇒’: Interpreting elements of Cλ(g) as G-equivariant morphisms, consider the
evaluation map

εx : Cλ(g) −→ (EndVλ)Gx (x ∈ g).
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Taking x∈ t with Gx = T and applying Theorem 1.4, we obtain a surjective k-
algebra homomorphism Cλ(g)−→End T (Vλ)=

⊕
µ End (V µ

λ ). Thus commutativity
of Cλ(g) forces that of End (V µ

λ ) for all µ � Vλ, whence mµ
λ = 1.

(ii) This readily follows from part (i) and from the fact that Cλ(g) is a subalgebra
of Cλ(t).

Definition 2.3. A G-module Vλ is called weight multiplicity free (wmf) if
mµ

λ = 1 for all µ � Vλ.

Although we do not need this directly, it is worth mentioning that a classification
of the wmf G-modules with G simple is contained in [14, 4.6].

Lemma 2.4. Suppose that Vλ is wmf. Then EndVλ is a multiplicity free G-
module; that is, in the decomposition EndVλ =

⊕
cνVν , all nonzero coefficients

cν are equal to 1.

Proof. An explicit formula for the multiplicities in tensor products can be found
in [19, Theorem 2.1]. In particular, that formula says that cν � mν−λ∗

λ (� 1). Here
λ∗ is the highest weight of the dual G-module V∗

λ.

We regard roots and weights as elements of the Q-vector space P
⊗

Z
Q sitting

in t∗; next, (, ) is a fixed W -invariant bilinear form on t∗ that is positive-definite
on P

⊗
Z

Q. Then, as usual, γ∨ = 2γ/(γ, γ) for all γ ∈ ∆.
Of all wmf G-modules, the minuscule ones occupy a distinguished position. Recall

that Vλ is called minuscule if λ is minuscule. Some properties of minuscule dominant
weights are presented in the following proposition, where either of two items can
be taken as a definition of a minuscule dominant weight.

Proposition 2.5. For λ ∈ P+, the following conditions are equivalent.
(i) If µ � Vλ, then µ ∈ Wλ.
(ii) (λ, α∨) � 1 for all α ∈ ∆+.

It follows from Proposition 2.5(i) that the corresponding simple G-module is wmf,
while Proposition 2.5(ii) implies that if g is simple, then a minuscule dominant
weight is fundamental.

Theorem 2.6. If λ is minuscule, then Cλ(g) � Cλ(t) � k[t]Wλ .

Proof. (1) Let us look again at the decomposition

Vλ ⊗ V∗
λ =

⊕
ν∈I

cνVν = Vλ+λ∗ ⊕
( ⊕

ν<λ+λ∗

cνVν

)
.

By Lemma 2.4, all cν = 1.
(2) We claim that each Vν (ν ∈ I) is small in the sense of Broer. Indeed, assume

that m2γ
ν �= 0 for some dominant root γ. By a standard property of weights of

Vλ ⊗ V∗
λ, we have γ = λ + λ∗ −

∑
α∈Π nαα, where nα � 0. Then 4 = (2γ, γ∨) �

(λ + λ∗, γ∨) � 2, a contradiction!
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(3) It follows from the previous part and Theorem 1.3 that r̂λ =
⊕

ν∈I resν :
Cλ(g)−−→Cλ(t) is an isomorphism of J-algebras. Since all weight spaces in Vλ are
one-dimensional and all weights are W -conjugate,

End T (Vλ) =
⊕

µ∈Wλ

End
(
V µ

λ

)
� k[W/Wλ]

as W -modules. Thus
Cλ(t) = (k[W/Wλ] ⊗ k[t])W � k[t]Wλ .

The last equality is a manifestation of the transfer principle in invariant theory;
see [10, Chapter 2].

Remark 2.7. Another proof of this result, which does not appeal to Broer’s
theorem, follows from the description of Poincaré series given in Theorem 4.1.

By a result of Steinberg, Wλ is a reflection group in t. Hence Cλ(g) is a polynomial
algebra if Vλ is minuscule. However, for the other wmf G-modules, the situation
is not so good. Since Cλ(g) and Cλ(t) are commutative k-algebras in the wmf-case,
one can consider the varieties Mλ(t) := Spec Cλ(t) and Mλ(g) := Spec Cλ(g). The
chain of algebras J ⊂ Cλ(g) ⊂ Cλ(t) yields the following commutative diagram.

Mλ(t)
τ
� ↘

Mλ(g) −→ g//G � t/W

All maps here are finite flat morphisms.

Theorem 2.8. Let Vλ be a wmf G-module. Then the following hold.
(i) Cλ(t) and Cλ(g) are commutative Cohen–Macaulay k-algebras.
(ii) Cλ(t) and Cλ(g) are reduced.
(iii) Mλ(t) is a disjoint union of affine spaces of dimension l. The connected

(= irreducible) components of Mλ(t) are parametrised by the dominant weights in
Vλ.

(iv) The morphism τ yields a one-to-one correspondence between the irreducible
components of Mλ(t) and Mλ(g). The variety Mλ(g) is connected.

Proof. (1) Cohen–Macaulayness follows, since both Cλ(t) and Cλ(g) are graded
free modules over the polynomial ring J .

(2) Since Cλ(g) is a subalgebra of Cλ(t) via r̂λ, it is enough to prove that Cλ(t)
has no nilpotent elements. Let ϕ ∈ Cλ(t). Regard ϕ as a T -equivariant morphism
from t to

⊕
µ End (V µ

λ ). If ϕ �= 0, then there is µ � Vλ such that ϕ(t)(vµ) = cµvµ

for t ∈ t, 0 �= vµ ∈ V µ
λ , and some cµ ∈ k \ {0}. Hence ϕn(t)(vµ) = (cµ)nvµ �= 0.

(3) (Cf. the proof of Theorem 2.6.) Let µ1, . . . , µk be all dominant weights in Vλ.
Then ⊕

µ

EndV µ
λ =

k⊕
i=1

( ⊕
w∈W

End
(
Vwµi

λ

))
=

k⊕
i=1

k
[
W/Wµi

]
as W -modules. Hence

Cλ(t) =

((
k⊕

i=1

k
[
W/Wµi

])
⊗ k[t]

)W

=
k⊕

i=1

(
k

[
W/Wµi

]
⊗ k[t]

)W =
k⊕

i=1

k[t]Wµi.
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(4) Because Cλ(t) is a free J-module, none of the elements of J becomes a zero-
divisor in Cλ(t) (and hence in Cλ(g)). Therefore, given any f ∈ J , the principal
open subset Mλ(t)f (respectively Mλ(g)f ) has the same irreducible components as
Mλ(t) (respectively Mλ(g)). Let us apply this to f = D ∈ J , the discriminant. In
the commutative case, one can consider Cλ(t)D not only as JD-module, which is a
localisation of a J-module, but also as k-algebra in its own right. By Lemma 2.1,
we then conclude that the k-algebras Cλ(t)D and Cλ(g)D are isomorphic.

That Mλ(g) is connected follows from the fact that Cλ(g) is graded, and the
component of grade 0 is just k. (Recall that Cλ(g)n = (EndVλ ⊗ k[g]n)G.)

We have shown that Cλ(t) �
⊕k

i=1 k[t]Wµi . Since J � k[t]W and k[t]W ⊂k[t]Wµi ,
it is not hard to realise that J embeds diagonally in the above sum.

Corollary 2.9. Cλ(g) � Cλ(t) if and only if λ is minuscule.

Proof. One implication is proved in Theorem 2.6. Conversely, if the algebras are
isomorphic, then parts (iii) and (iv) show that k = 1, that is, λ is minuscule.

In view of Theorem 1.3, the corollary states that if λ is not minuscule, then at
least one simple g-module occurring in Vλ ⊗ V∗

λ is not small.
The discrepancy between Cλ(t) and Cλ(g) can be seen on the level of Poincaré

series. We give below precise formulae for F(Cλ(t); q) and F(Cλ(g); q).

3. Dynkin polynomials

In 1950, Dynkin showed that to any simple G-module Vλ, one can attach a
symmetric unimodal polynomial [7]. This polynomial represents the distribution of
the weight spaces in Vλ with respect to some level function. In Dynkin’s paper,
the properties of symmetricity and unimodality were also expressed in terms of the
weight system of Vλ being ‘spindle-like’. To prove this, Dynkin introduced what is
now called ‘a principal sl2-triple in g’. We say that the resulting polynomial is the
Dynkin polynomial (of type λ). In this section, we give some formulae for Dynkin
polynomials and some applications of them.

The lowest weight vector in Vλ is −λ∗. Recall that Π is the set of simple roots.
Given µ � Vλ, let us say that µ is on the nth floor if µ− (−λ∗) =

∑
α∈Π nαα with∑

nα = n. Thus the lowest weight is on the zero (ground) floor and the highest
weight is on the highest floor.

Definition 3.1 (cf. [7, p. 222]). Letting (Vλ)n =
∑

µ: floor(µ)=n dim V µ
λ and

an(λ) = dim(Vλ)n, define the Dynkin polynomial Dλ(q) to be
∑

n an(λ)qn. (If
we wish to indicate explicitly the dependence of this polynomial on g, we write
Dλ(g)(q).

To obtain a more formal presentation, consider the element ρ∨ = 1
2

∑
α∈∆+ α∨.

Since (α, ρ∨) = 1 for any α ∈ Π, we have (γ, ρ∨) = htγ, the height of γ, for any
γ ∈ ∆. If µ ∈ Q, then (µ, ρ∨) ∈ Z. Since λ − (−λ∗) ∈ Q and (λ, ρ∨) = (λ∗, ρ∨), we
see that ht(µ) := (µ, ρ∨) ∈ 1

2Z for an arbitrary µ ∈ P. In view of these properties
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of ρ∨, the following is an obvious reformulation of the previous definition:

Dλ(q) = q(λ,ρ∨)
∑

µ�Vλ

mµ
λ q(µ,ρ∨) =

∑
µ�Vλ

mµ
λ qht(λ+µ). (3.1)

Thus ρ∨ defines a grading of Vλ, and Dλ(q) is nothing but the shifted Poincaré
polynomial of this grading.

Theorem 3.2 [7, Theorem 4]. For any λ ∈ P+, the polynomial Dλ is symmetric
(that is, ai(λ) = am−i(λ), m = degDλ) and unimodal (that is, a0(λ) � a1(λ) �
. . . � a[m/2](λ)).

Idea of proof. Having identified t and t∗, we see that 2ρ∨ becomes h, the
semisimple element of our fixed principal sl2-triple. Therefore (Vλ)n = {v ∈ Vλ |
h·v = 2(n − ht(λ))v}. Hence, up to a shift of degree, Dλ(q2) gives the character of
Vλ as sl2-module. From (3.1), one also sees that degDλ = 2(ρ∨, λ) = 2 ht(λ).

The next proposition provides a multiplicative formula for the Dynkin
polynomials. Apparently, this formula was first proved, in a slightly different form,
in [20]. It was Stanley who realised that Dynkin’s result has numerous combinatorial
applications. Of course, the proof exploits Weyl’s character formula.

Proposition 3.3.

Dλ(q) =
∏

α∈∆+

1 − q(ρ+λ,α∨)

1 − q(ρ,α∨)
,

where ρ = 1
2

∑
α∈∆+ α.

Remark 3.4. A similar formula also appears in [22, Lemma 2.5] (and probably
in many other places) as a q-analogue of Weyl’s dimension formula (or a
specialization of Weyl’s character formula). However, Stembridge did not make
the degree shift q(ρ∨,λ) and did not mention a connection of this q-analogue with
Dynkin’s results.

Example 3.5. Suppose that g = sln+1, and let ϕi be the ith fundamental
weight of it. Then a direct calculation based on Proposition 3.3 gives

Dmϕ1(sln+1)(q) =
(1 − qm+1) . . . (1 − qm+n)

(1 − q) . . . (1 − qn)
=:

[
m + n

n

]
=

[
m + n

m

]
,

Dϕm
(sln+1)(q) =

[
n + 1

m

]
.

As a consequence of this example, one can deduce the following (well known)
assertions.

Proposition 3.6. Suppose that dim V = 2. Then there are two isomorphisms
of sl(V )-modules:

Sn(Sm(V )) � Sm(Sn(V )) (Hermite’s reciprocity)
∧m(Sn+m−1(V )) = Sm(Sn(V )).



282 dmitri i. panyushev

Proof. The first formula follows from the equality Dmϕ1(sln+1) = Dnϕ1(slm+1)
and the fact that Vmϕ1(sln+1)|sl2 = Sm(Sn(V )), where sl2 = sl(V ) is a principal
sl2 in sln+1. Similarly, the second formula follows from the equality Dmϕ1(sln+1) =
Dϕm

(slm+n).

Now we show that Dynkin polynomials arise in connection with g-endomorphism
algebras for the minuscule dominant weights.

For any λ ∈ P+, we have Wλ is a parabolic subgroup of W . Let di(Wλ), 1 � i � l,
be the degrees of basic invariants in k[t]Wλ . In particular, di = di(W0) = di(W ).
Note that if λ �= 0, then some di(Wλ) are equal to 1. Let n : W −−→N ∪ {0}
be the length function with respect to the set of simple reflections. Set tλ(q) =∑

w∈Wλ
qn(w). It is well known (see for example [15, 3.15]) that

tλ(q) =
l∏

i=1

1 − qdi (Wλ )

1 − q
. (3.2)

These polynomials will appear frequently in the following exposition.

Proposition 3.7. Suppose that λ ∈ P+ is minuscule. Then

Dλ(q) =
t0(q)
tλ(q)

=
l∏

i=1

1 − qdi

1 − qdi (Wλ )
.

Proof. Set ∆(λ) = {α ∈ ∆ | (α, λ) = 0}. Using Propositions 3.3 and 2.5(ii), we
obtain

Dλ(q) =
∏

α∈∆+\∆(λ)+

1 − q(ρ,α∨)+1

1 − q(ρ,α∨)
=

∏
α∈∆+

1 − q(ρ,α∨)+1

1 − q(ρ,α∨)
·

∏
α∈∆(λ)+

1 − q(ρ,α∨)

1 − q(ρ,α∨)+1
.

Note that (ρ, α∨) = htα∨, the height of α∨ in the dual root system ∆∨. By a result
of Kostant (see [15, 3.20]),

t0(q) =
∏

α∈∆+

1 − qht(α)+1

1 − qht(α)
.

Applying this formula to ∆∨ and ∆(λ)∨ and substituting in the previous expression
for Dλ, we complete the proof.

Let us look at the Poincaré series of Cλ(g), where λ is minuscule. Since
Cλ(g) = k[t]Wλ (Theorem 2.6) and F(J ; q) =

∏l
i=1(1/(1 − qdi )), we deduce from

Proposition 3.7 that
F(Cλ(g); q) = Dλ(q) · F(J ; q). (3.3)

It is shown in Section 5 that this relation holds for all wmf G-modules.

4. The Poincaré series of endomorphism algebras

In this section we find explicit formulas for the Poincaré series F(Cλ(g); q) and
F(Cλ(t); q) with arbitrary λ ∈ P+.

Let mµ
λ(q) be Lusztig’s q-analogue of weight multiplicity. It is a certain polynomial

in q, with integral coefficients, such that mµ
λ(1) = mµ

λ. Defining these q-analogues
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consists of two steps. First, one defines a q-analogue of Kostant’s partition function
P by ∏

α∈∆+

1
1 − eαq

=
∑
ν∈Q

Pq(ν)eν .

Then we set mµ
λ(q) =

∑
w∈W det(w)Pq(w(λ + ρ) − µ − ρ). Proofs of the next

properties of polynomials mµ
λ(q) can be found in [4, 11].

(1) If both λ, µ are dominant, then the following hold.
(i) The coefficients of mµ

λ(q) are nonnegative.
(ii) mµ

λ(q) �= 0 ⇔ µ � Vλ.
(iii) deg mµ

λ(q) = (λ − µ, ρ∨) = ht(λ − µ).
(2) If λ ∈ Q, then m0

λ(q) is the numerator of the Poincaré series for the module of
covariants Jλ(g); that is, in the notation of Section 1, we have F(Hλ; q) = JVλ

(q) =
m0

λ(q).

Theorem 4.1. Let λ be an arbitrary dominant weight.
(i)

F(Cλ(g); q) =
∑

ν∈P+

(
mν

λ(q)
)2 t0(q)

tν(q)

/
l∏

i=1

(1 − qdi )

=
∑

ν∈P+

(
mν

λ(q)
)2 t0(q)

tν(q)
· F(J ; q).

(ii)

F(Cλ(t); q) =
∑

ν�Vλ , ν∈P+

t0(q)
tν(q)

/
l∏

i=1

(1 − qdi ) =
∑

ν�Vλ , ν∈P+

t0(q)
tν(q)

· F(J ; q).

Proof. (i) Recall that J = k[f1, . . . , fl] and deg fi = di. Since f1, . . . , fl is a
homogeneous system of parameters for Cλ(g) as J-module, we have

Cλ(g)/Cλ(g)f1 + . . . + Cλ(g)fl � (EndVλ ⊗ k[N ])G � (EndVλ)A

(cf. Section 1). Hence F(Cλ(g); q) = F((EndVλ)A; q)/
∏l

i=1(1 − qdi ). Using the
decomposition EndVλ =

⊕
ν∈I cνVν and Theorem 1.2, we see that the numerator

is just the jump polynomial corresponding to the (reducible) G-module EndVλ.
That is, F((EndVλ)A; q) =

∑
cνm0

ν(q). It is remarkable, however, that, for the
G-modules of the form Vλ ⊗ V∗

µ, there is a formula for the jump polynomial that
does not appeal to the explicit decomposition of this tensor product. Namely, by
[12, Corollary 2.4], we have

JVλ ⊗V∗
µ
(q) =

∑
ν∈P+

mν
λ(q)mν

µ(q)
t0(q)
tν(q)

. (4.1)

Letting µ = λ, one obtains the required formula.

(ii) Recall from Section 2 that Cλ(t) �
⊕

ν k[t]Wν , where ν ranges over all
dominant weights of Vλ. Making use of equation (3.2), we obtain

F(k[t]Wν ; q) = 1

/
l∏

i=1

(
1 − qdi (Wν )

)
=

t0(q)
tν(q)

/
l∏

i=1

(1 − qdi) ,

which completes the proof.
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In the case when λ is minuscule, Theorem 4.1 shows that

F(Cλ(g); q) = F(Cλ(t); q) =
t0(q)
tλ(q)

· F(J ; q),

since mλ
λ(q) = 1. Thus we recover in this way equation (3.3) and the fact that

Cλ(g) = Cλ(t). From the last equality, we deduce the following claim. (This yields
another proof for part of Broer’s results.)

Corollary 4.2. Suppose that λ is minuscule, and let Vν be any irreducible
constituent of Vλ⊗V∗

λ. Then the restriction homomorphism resν : Jν(g) −→ Jν(t)
is onto.

Let Fλ(q) denote the right-hand side of equation (4.1) with λ = µ, that is, the
jump polynomial for the G-module EndVλ.

Lemma 4.3. (i) degFλ(q) = 2 ht(λ).
(ii) Fλ(1) =

∑
µ�Vλ

(mµ
λ)2.

(iii) If Vλ is wmf, then

Fλ(q) =
∑

µ�Vλ , µ∈P+

q2ht(λ−µ) · t0(q)
tµ(q)

.

Proof. (1) Fλ(q) is a sum (with multiplicities) of the jump polynomials for the
irreducible constituents of EndVλ. The jump polynomial for Vλ+λ∗ is of degree
ht(λ + λ∗) = 2ht(λ). For all other simple G-submodules in EndVλ, the height of
the highest weight is strictly less.

(2) Fλ(1) = dim(EndVλ)A = dim(EndVλ)T =
∑

µ dim End (V µ
λ ).

(3) In view of Theorem 4.1(i), it suffices to prove that mµ
λ(q) = qht(λ−µ). Because

mµ
λ = 1 and the coefficients of mµ

λ(q) are nonnegative integers, mµ
λ(q) = qa. Since

deg mµ
λ(q) = ht(λ − µ), we are done.

The last expression demonstrates an advantage of using equation (4.1) in the
wmf case. We obtain a closed formula for the jump polynomial of a reducible
representation that requires no bulky computations.

5. The Gorenstein property for the commutative g-endomorphism algebras

The goal of this section is to prove that if Vλ is wmf, then Cλ(g) is a Gorenstein
algebra. We also give another expression for the Poincaré series of Cλ(g), which
includes the Dynkin polynomial of type λ.

To begin with, we recall some facts about graded Gorenstein algebras. A nice
exposition of relevant material is found in [21]. Let C =

⊕
n�0 Cn be a graded

Cohen–Macaulay k-algebra with C0 = k. Suppose that the Krull dimension of C is n
and let f1, . . . , fn be a homogeneous system of parameters. Then C = C/(f1, . . . , fn)
is a graded Artinian Cohen–Macaulay k-algebra. We have C =

⊕d
i=0 Ci for some d,

and m =
⊕d

i=1 Ci is the unique maximal ideal in C. The annihilator of m in C is
called the socle of C:

soc(C) = {c ∈ C | c·m = 0}.
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Then the following are true.
(1) C is Gorenstein if and only if C is.
(2) C is Gorenstein if and only if soc(C) is one-dimensional.
In the rest of the section, Vλ is a wmf G-module, and hence Cλ(g) is commutative.

Consider the k-algebra (EndVλ)A =: R(λ). Being a homomorphic image of Cλ(g),
it is commutative as well. We also have dimR(λ) = dimVλ.

Proposition 5.1. Let v−λ∗ be a lowest weight vector in Vλ. Then

R(λ)(v−λ∗) = Vλ.

Proof. Set N = R(λ)(−vλ∗), and consider N⊥, the annihilator of N in the dual
space Vλ∗ . Let vλ∗ be a highest weight vector in Vλ∗ . By definition, N contains v−λ∗

and therefore vλ∗ �∈ N⊥. Since A ⊂ G ⊂ EndVλ and A is commutative, N is an
A-module and hence N⊥ is an A-module too. Assume that N⊥ �= 0. Since A is uni-
potent, N⊥ must contain a non-trivial A-fixed vector. By a result of Graham (see [9,
1.6]), dim(Vλ∗)A = 1 in the wmf case. As A ⊂ B, we conclude that (Vλ∗)A = kvλ∗ .
Thus N⊥ ∩ (Vλ∗)A = 0. This contradiction shows that N⊥ = 0.

Proposition 5.2. Fλ(q) = Dλ(q) if and only if Vλ is wmf. In particular, Fλ(q)
is symmetric and unimodal in the wmf case.

Proof. (1) ‘⇒’: Suppose that Fλ(q) = Dλ(q). Then∑
µ�Vλ

(
mµ

λ

)2 = Fλ(1) = Dλ(1) = dimVλ =
∑

µ�Vλ

mµ
λ,

whence Vλ is wmf.
(2) ‘⇐’: The polynomial Fλ(q) is determined via the 1

2h-grading in R(λ) =
(EndVλ)A, whereas Dλ(q) is determined via the shifted ‘ρ∨-grading’ in Vλ.
Identifying t and t∗, we obtain h = 2ρ∨. Obviously, the bijective linear map
R(λ) −→ Vλ, x �−→ x(v−λ∗), respects both gradings and has degree zero. Hence

R(λ)
i

∼−→ (Vλ)i.

Remark 5.3. If Vλ is not wmf, then Fλ(q) can be neither symmetric nor
unimodal. For instance, if g = sp6 and λ = ϕ2, the second fundamental weight,
then Fϕ2(q) = 1 + q + 2q2 + 2q3 + 3q4 + 2q5 + 3q6 + q7 + q8.

By a theorem of Stanley [21, 12.7], if C is a Cohen–Macaulay domain, then the
symmetricity of the Poincaré polynomial of C/(f1, . . . , fn) implies the Gorenstein
property for C. In our situation, Cλ(g) is not a domain unless λ is minuscule; see
Theorem 2.8. Therefore we still cannot conclude that Cλ(g) is always Gorenstein.

Proposition 5.4. The socle of R(λ) is one-dimensional.

Proof. Write R for R(λ) in this proof. Recall from Section 3 that Vλ is a
disjoint union of ‘floors’, the weight space V−λ∗

λ being the zero floor and Vλ
λ

being the 2 ht(λ)th floor. We know that R is commutative and R =
⊕2ht(λ)

i=0 Ri.
By Propositions 5.1 and 5.2, we have Ri(v−λ∗) = (Vλ)i, the ith floor in Vλ,
and dimR2 ht(λ) = 1. Clearly, R2 ht(λ) takes V−λ∗

λ to Vλ
λ, and R2 ht(λ)(V

µ
λ ) = 0
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for µ �= −λ∗. We wish to show that soc(R) = R2 ht(λ). Suppose x ∈ Ri, then
xv−λ∗ ∈ (Vλ)i. Let 〈, 〉 denote the natural pairing of Vλ and Vλ∗ . Using the h-
invariance, we see that 〈(Vλ)i, (Vλ∗)j〉 = 0 unless i + j = 2ht(λ). Hence there
exists ξ ∈ (Vλ∗)j , where j = 2ht(λ) − i, such that 〈ξ, xv−λ∗〉 �= 0. Applying
Proposition 5.1 to Vλ∗ , we obtain ξ = y(v−λ) for some y ∈ Rj . Here v−λ

is a lowest weight vector in Vλ∗ , and R is identified with (EndVλ∗)A. Hence
〈v−λ, yx(v−λ∗)〉 �= 0. Thus, for any x ∈ Ri, there exists y ∈ R2 ht(λ)−i such that
xy �= 0, which is exactly what we need.

Combining all previous results of this section, we obtain the following.

Theorem 5.5. Let Vλ be a wmf G-module. Then the following hold.
(i) The map (EndVλ)A −→ Vλ, x �−→ x(v−λ∗), is bijective.
(ii) (EndVλ)A is an Artinian Gorenstein k-algebra.
(iii) Dλ(q) = Fλ(q).
(iv) Cλ(g) is a Gorenstein k-algebra.

It is worth mentioning the following property of wmf G-modules whose proof also
uses Graham’s result; cf. Proposition 5.1.

Proposition 5.6. For any n ∈ N, the vector en(v−λ∗) has nonzero projections
to all weight spaces in (Vλ)n.

Proof. Let E be the k-subalgebra of R(λ) generated by e. Then M := (E(v−λ∗))⊥

is an E-stable subspace of Vλ∗ , and, obviously, vλ∗ �∈ M . Assume that E(v−λ∗) has
the zero projection to some weight space, say V−ν

λ . Then M contains the weight
space Vν

λ∗ . Let vν be a nonzero vector in Vν
λ∗ and let k be the maximal integer

such that ek(vν) �= 0. By [6, 2.6], ek(vν) ∈ (Vλ∗)A, and by [9, 1.6], (Vλ∗)A = kvλ∗ .
As ek(vν) ∈ M , we obtain a contradiction.

All wmf representations of simple algebraic groups were found by Howe in [14,
4.6]. This information is included in the first two columns of Table 1; the last column
gives the corresponding Dynkin polynomial. We write ϕi for the ith fundamental
weight of G, according to the numbering of [23].

One can observe that each λ in Table 1 is a multiple of a fundamental weight.
Using polynomials mµ

λ(q), one can give a conceptual proof of this fact. This will
appear elsewhere.

6. A connection with (equivariant) cohomology

Let C be an Artinian graded commutative associative k-algebra, C =
⊕d

i=0 Ci.
Suppose that dim Cd = 1, and let ξ be a nonzero linear form on C that annihilates
the space C0 ⊕· · ·⊕Cd−1. Then C is called a Poincaré duality algebra if the bilinear
form (x, y) �−→ ξ(xy), x, y ∈ C, is nondegenerate. This name suggests that C looks
very much as if it were the cohomology algebra of some ‘good’ manifold. It is easily
seen that C is a Poincaré duality algebra if and only if dim soc(C) = 1, that is, C is
Gorenstein.

In the previous section, we proved that R(λ) = (EndVλ)A is an Artinian
Gorenstein k-algebra if Vλ is wmf. (Here d = 2ht(λ), which is not necessarily
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Table 1. Dynkin polynomials for the weight multiplicity free representations.

Type λ Minuscule Dλ(q)

An ϕi Yes See Example 3.5

mϕ1, mϕn No See Example 3.5

(m � 2)

Bn ϕn Yes (1 + q)(1 + q2) . . . (1 + qn)

ϕ1 No 1 + q + . . . + q2n

Cn ϕ1 Yes 1 + q + . . . + q2n−1

ϕ3 (n = 3) No 1 + q + q2 + 2(q3 + . . . + q6) + q7 + q8 + q9

Dn ϕ1 Yes (1 + qn−1)(1 + q + . . . + qn−1)

ϕn−1, ϕn Yes (1 + q)(1 + q2) . . . (1 + qn−1)

E6 ϕ1 Yes (1 + q4 + q8)(1 + q + . . . + q8)

E7 ϕ1 Yes (1 + q5)(1 + q9)(1 + q + . . . + q13)

G2 ϕ1 No 1 + q + . . . + q6

even.) In this situation, one has more evidence in favour of the assertion that R(λ)

can be a cohomology algebra. Recall that e is a sum of root vectors corresponding
to the simple roots. Hence e(v−λ∗) ∈ (Vλ)1, that is, e ∈ R(λ)

1 .

Proposition 6.1. The multiplication operator e : R(λ)
i −→ R(λ)

i+1 is injective
for i � [(2ht(λ) − 1)/2] and surjective for i � [ht(λ)].

Proof. The proof follows from the sl2-theory and the equality Dλ(q) = Fλ(q).

Hence, if R(λ) = H∗(X) for some algebraic variety X, then e ∈ R(λ)
1 can be

regarded as the class of a hyperplane section, and the hard Lefschetz theorem holds
for X. If G is simple, then λ is necessarily fundamental. Therefore the subspace
(Vλ)1 ⊂ Vλ is one-dimensional. Indeed, if α ∈ Π is the unique root such that
(α, λ∗) �= 0, then (Vλ)1 = Vα−λ∗

λ . In terms of R(λ), this means that R(λ)
1 = ke.

That is, such X should satisfy the condition b2(X) = 1.
In the rest of the paper, we assume that k = C, and consider cohomology with

complex coefficients. Now we give a hypothetical description of such X in the case
when G is simple. More precisely, we conjecture that there exists Xλ ⊂ P(Vλ)
such that odd cohomology of Xλ vanishes and R(λ) � H∗(Xλ); moreover, the g-
endomorphism algebra Cλ(g) gives the equivariant cohomology of Xλ. We refer to
[3] for a nice introduction to equivariant cohomology. As usual, Vλ is a wmf G-
module. The variety we are seeking should satisfy the constraints χ(Xλ) = dimVλ
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and dimXλ = 2ht(λ). Notice that the set of T -fixed points in P(Vλ) is finite:

P(Vλ)T =
⋃

ν�Vλ

〈vν〉,

where 〈vν〉 is the image of vν ∈ Vν
λ in the projective space. Since χ(Y ) = χ(Y T )

for any algebraic variety Y acted upon by a torus T [1], we see that our variety
Xλ must contain all 〈vν〉, ν � Vλ. This provides some explanation for the following
description. Let µ � Vλ be the unique dominant minuscule weight. For instance,
µ = 0 if and only if λ ∈ Q.

(1) If (G,λ) �= (An,mϕ1) or (An,mϕn) with m > n + 1, then we define Xλ to
be the closure of the G-orbit of the line 〈vµ〉 in the projective space P(Vλ).

(2) Alternatively, for G = An and λ = mϕ1 with any m � 1, let Xλ

be the projectivisation of the variety of decomposable forms of degree m in
Vmϕ1 = Sm(Vϕ1), where a form of degree m is said to be decomposable if it is
a product of m linear forms. (A similar definition applies to λ = mϕn.)

As is easily seen, the two constructions coincide if they both apply, that is, for
(An,mϕ1 or mϕn) with m � n + 1. However, I do not see how to give a uniform
description of Xλ in all cases. Direct calculations show that dim Xλ = 2ht(λ); for
example, for (An,mϕ1), we have dim Xλ = mn.

Conjecture 6.2. Let Vλ be a wmf G-module. Then the following hold.

(1) The variety Xλ ⊂P(Vλ) is rationally smooth, odd cohomology of Xλ

vanishes, and H∗(Xλ) � R(λ). In particular, the Poincaré polynomial of H∗(Xλ)
is equal to Dλ(q2).

(2) Let Gc ⊂ G be a maximal compact subgroup of G. Then H∗
Gc

(Xλ) � Cλ(g).

Let J+ ⊂ J be the augmentation ideal. Since Cλ(g)/J+Cλ(g) � R(λ), J �
H∗

Gc
({pt}), and H∗

Gc
(Xλ)/(J+) � H∗(Xλ) (see [3, Proposition 2]), the first part

of the conjecture follows from the second one. Actually, the conjecture is true for
most of items in Table 1, and in particular for all minuscule weights. We list below
all the known results supporting the conjecture.

(1) If λ is minuscule, then λ = µ, and therefore Xλ = G/Pλ, a generalised
flag variety. Here the conjecture follows from Theorem 2.6 and the well known
description of H∗

Gc
(G/Pλ). Indeed, if Pλ is an arbitrary parabolic subgroup (that

is, λ is not necessarily minuscule), then H∗
Gc

(G/Pλ) � k[t]Wλ .
(2) For the simplest representations of Bn and G2, we have µ = 0 and Xλ =

P(Vλ). On the other hand, the formulae for Dλ(q) in Table 1 shows that (EndVλ)A

is generated by e as k-algebra, and the equality H∗(Xλ) = R(λ) follows. This also
shows that Cλ(g) and H∗

Gc
(Xλ) have the same Poincaré series.

(3) We have essentially four cases with nonminuscule λ: (Bn, ϕ1), (C3, ϕ3),
(G2, ϕ1), and (An,mϕ1), m � 2. For the first three cases and for the last one
with m = 2, Xλ is a compact multiplicity-free Gc-space; in other words, Xλ is
a spherical G-variety. Therefore, making use of [3, Theorem 9], one obtains the
description of H∗

Gc
(Xλ). In these ‘spherical’ cases, the number of dominant weights

in Vλ equals 2. Therefore the structure of Cλ(g) is not too complicated, and this
can be used for proving that Cλ(g) = H∗

Gc
(Xλ).

(4) The projectivisation of the variety of decomposable forms of degree m in
n + 1 variables is isomorphic with (Pn)m/Σm, where Σm is the symmetric group
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permuting factors in Pn × . . . × Pn (m times); see [2, Theorem 1.3; 8, 4.2]. Notice
that

H∗((Pn)m/Σm) � H∗((Pn)m)Σm �
(
k[x1, . . . , xm]/

(
xn+1

1 , . . . , xn+1
m

))Σm
,

the algebra of truncated symmetric polynomials. It is easily seen that its dimension
is equal to (

m + n

m

)
= dimVmϕ1 .

A somewhat more bulky but still elementary calculation shows that the
Poincaré polynomial of H∗((Pn)m/Σm) is equal to the Dynkin polynomial for
(An,mϕ1). Our proof is purely combinatorial. We establish a natural one-to-one
correspondence between suitably chosen bases of H∗((Pn)m/Σm) and Vmϕ1 such
that Hi((Pn)m/Σm) corresponds to (Vmϕ1)i. It is not, however, clear how to
compare the multiplicative structure of H∗((Pn)m/Σm) and (EndVmϕ1)

A.
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