Periodic contractions of semisimple Lie algebras and their invariants

D. Panyushev

Independent University of Moscow, Russia (z.Z. MPIM)

09.12.2008 / Bonn-Köln Algebra seminar

Classical results for semisimple groups

Contractions and semi-direct products

- Contractions of Lie algebras
- Invariants of semi-direct products
- Properties of coadjoint representations
- 3 \mathbb{Z}_2 -contractions of semisimple Lie algebras
 - Contractions of invariants
 - \mathfrak{N} -regular \mathbb{Z}_2 -gradings

Arbitrary periodic contractions

- Adjoint representations
- Coadjoint representations

Chevalley, Kostant, Vinberg

 $\mathbb{k} = \overline{\mathbb{k}}, \mathfrak{g}$ semisimple, *G* adjoint, $r = \operatorname{rk}(\mathfrak{g}), \quad \pi_G : \mathfrak{g} \to \mathfrak{g}/\!\!/ G = \operatorname{Spec} \mathbb{k}[\mathfrak{g}]^G - \mathfrak{l}$ the quotient morphism; $\mathfrak{g}_{reg} := \{x \in \mathfrak{g} \mid \dim G \cdot x = \dim \mathfrak{g} - r\};$

•
$$\mathbb{k}[\mathfrak{g}]^G = \mathbb{k}[f_1, \dots, f_r]$$
 is a polynomial algebra;

- $\pi_G^{-1}(0) = \mathfrak{N}$ the set of nilpotent elements of \mathfrak{g} ;
- π_G is equidimensional, dim $\pi_G^{-1}(\xi) = \dim \mathfrak{g} r$;
- each fibre contains a dense *G*-orbit.

Kostant-Rallis (1971), \mathbb{Z}_2 -gradings: $\sigma \in Inv(\mathfrak{g}) \Rightarrow \mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1, G \supset G_0; \quad G_0 \to SO(\mathfrak{g}_1).$

Vinberg (1975), periodic gradings: $\theta \in \operatorname{Aut}(\mathfrak{g}), \ \theta^m = id \implies \mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_{m-1}; \quad G_0 \to GL(\mathfrak{g}_1)$

There are similar results for the G_0 -action on \mathfrak{g}_1 and $\pi : \mathfrak{g}_1 \to \mathfrak{g}_1 /\!\!/ G_0$, e.g. $\pi^{-1}(0) = \mathfrak{N} \cap \mathfrak{g}_1$ and $\Bbbk[\mathfrak{g}_1]^{G_0}$ is polynomial.

Contractions of Lie algebras

Let q be a Lie algebra of dimension *n* and $c : \mathbb{k}^{\times} \to GL_n$ a polynomial mapping. Define the new Lie algebra structure on the vector space q by

$$[x,y]_{(t)} := \mathsf{c}_t^{-1}[\mathsf{c}_t(x),\mathsf{c}_t(y)], \quad t \in \mathbb{k}^{\times}.$$

Then $q_{(1)} = q$ and all algebras $q_{(t)}$ are isomorphic. If $\lim_{t\to 0} [x, y]_{(t)}$ exists for all $x, y \in q$, then we obtain a new Lie algebra, say \mathfrak{s} , which is called a contraction of \mathfrak{q} . We write $\lim_{t\to 0} \mathfrak{q}_{(t)} = \mathfrak{s}$ or $\mathfrak{q} \rightsquigarrow \mathfrak{s}$. Conversely, \mathfrak{q} is a deformation of \mathfrak{s} .

Examples

- $\mathfrak{q} \supset \mathfrak{h}$ are Lie algebras. Take any decomposition $\mathfrak{q} = \mathfrak{h} \oplus \mathfrak{p}$, and set $c_t(h+p) = h + tp, h \in \mathfrak{h}, p \in \mathfrak{p}$. Then $\lim_{t\to 0} \mathfrak{q}_{(t)} = \mathfrak{h} \ltimes \mathfrak{q}/\mathfrak{h}$. If \mathfrak{p} is an \mathfrak{h} -module, then $\mathfrak{q} \rightsquigarrow \mathfrak{h} \ltimes \mathfrak{p}$.
- Solution For any θ ∈ Aut(q) of finite order *m*, one can construct a contraction, which is called periodic or a Z_m-contraction.

Q is a connected algebraic group, q = Lie(Q).

Notation:
$$\operatorname{Inv}(\mathfrak{q}, \operatorname{ad}) := \Bbbk[\mathfrak{q}]^Q$$
, $\operatorname{Inv}(\mathfrak{q}, \operatorname{ad}^*) := \Bbbk[\mathfrak{q}^*]^Q = \mathcal{S}(\mathfrak{q})^Q$

Suppose q is a contraction of a semisimple Lie algebra \mathfrak{g} .

Problem: When is $\mathbb{k}[q]^Q$ or $\mathbb{k}[q^*]^Q$ polynomial?

Simplest contractions lead to semi-direct products; therefore we begin with considering invariants of arbitrary semi-direct products.

R is a connected algebraic group, $\phi : R \to GL(V) \Rightarrow \mathfrak{r} \to \mathfrak{gl}(V)$. Let $\mathfrak{q} = \mathfrak{r} \ltimes V$ be the semi-direct product of \mathfrak{r} and V. Then

- $Q = R \ltimes V$ is the corresponding connected algebraic group;
- 1 \ltimes V is a commutative unipotent normal subgroup of Q (and 0 \ltimes V is a nilpotent ideal of q).

The adjoint representation of Q is given by:

$$\operatorname{ad}(z,u)\cdot(x,v) = ((\operatorname{ad} z)x, z\cdot v - x\cdot u), \quad u,v \in V, \ z \in R, x \in \mathfrak{r}.$$

Examples (interesting cases)

- $\mathfrak{r} + \mathfrak{r} \rightsquigarrow \mathfrak{r} \ltimes \mathfrak{r}$ Takiff Lie algebra;
- $\mathfrak{r} \ltimes \mathfrak{r}^*$ quadratic Lie algebra;
- $\mathfrak{so}_{n+1} \rightsquigarrow \mathfrak{so}_n \ltimes \mathbb{k}^n$, the Lie algebra of the affine orthogonal group;
- $\mathfrak{so}(1,3) \ltimes \mathbb{R}^4$ is the Lie algebra of the Poincaré group.

Ingredients for $Inv(\mathfrak{r} \ltimes V, ad)$:

•
$$\mathfrak{r} \ltimes V \to \mathfrak{r} \ltimes V/(0 \ltimes V) \simeq \mathfrak{r}$$
 is *Q*-equivariant $\Rightarrow \mathbb{k}[\mathfrak{r}]^R \hookrightarrow \operatorname{Inv}(\mathfrak{r} \ltimes V, \operatorname{ad}).$

• $F \in \operatorname{Mor}_{R}(\mathfrak{r}, V^{*}) - \text{covariant. Define } \hat{F} \in \Bbbk[\mathfrak{r} \ltimes V] \text{ by } \hat{F}(x, v) := \langle F(x), v \rangle \ (x \in \mathfrak{r}, v \in V).$

Lemma

$$\hat{F} \in \operatorname{Inv}(\mathfrak{r} \ltimes V, \operatorname{ad})$$

Proof reduces to assertion that $x \cdot F(x) = 0$ for all $x \in \mathfrak{r}$.

 Mor_R(τ, V^{*}) ≃ (k[τ] ⊗ V^{*})^R and it is a graded k[τ]^R-module. (It is a finitely generated module whenever τ is reductive.)

Ingredients for $Inv(\mathfrak{r} \ltimes V, ad^*)$:

- $(\mathfrak{r} \ltimes V)^* \to V^*$ is Q-equivariant $\Rightarrow \Bbbk[V^*]^R \hookrightarrow \operatorname{Inv}(\mathfrak{r} \ltimes V, \operatorname{ad}^*).$
- for $F \in \operatorname{Mor}_{R}(V^{*}, \mathfrak{r})$, define $\check{F} \in \Bbbk[(\mathfrak{r} \ltimes V)^{*}]$ by $\check{F}(\eta, \xi) := \langle F(\xi), \eta \rangle$ $(\eta \in \mathfrak{r}^{*}, \xi \in V^{*})$
- *F* is *R*-invariant, but is not always *Q*-invariant!
- \check{F} is *Q*-invariant $\Leftrightarrow F(\xi) \in \mathfrak{r}_{\xi} \ \forall \xi \in V^*$
- Then, by *R*-equivariance of *F*, we obtain [*F*(ξ), τ_ξ] = 0, i.e., *F*(ξ) belongs to the centre of τ_ξ.
 Hence if such a covariant *F* exists, then for generic ξ ∈ V*, τ_ξ has a non-trivial centre.

Lemma

Both $\operatorname{Inv}(\mathfrak{r} \ltimes V, \operatorname{ad})$ and $\operatorname{Inv}(\mathfrak{r} \ltimes V, \operatorname{ad}^*)$ are bi-graded.

The "reductive" adjoint case: $(q = g \ltimes V, ad)$.

Theorem (A)

For any G-module V, $Inv(\mathfrak{g} \ltimes V, ad)$ is polynomial, of Krull dimension $rk(\mathfrak{g}) + \dim V^T$. It is generated by $k[\mathfrak{g}]^G$ and "covariants".

- let f_1, \ldots, f_r be the free generators of $\mathbb{k}[\mathfrak{g}]^G$;
- let F_1, \ldots, F_m be a basis of the free $\mathbb{k}[\mathfrak{g}]^G$ -module $Mor_G(\mathfrak{g}, V^*)$;
- φ = (f₁,..., f_r, F̂₁,..., F̂_m) : g κ V → A^{m+r} is surjective, and generic fibre of φ contains a dense *Q*-orbit.
- This implies that $Inv(\mathfrak{g} \ltimes V, ad) \simeq \mathbb{k}[f_1, \ldots, f_r, \hat{F}_1, \ldots, \hat{F}_m].$

[One needs: $x \in \mathfrak{g}_{reg} \Rightarrow F_1(x), \ldots, F_m(x) \in V^*$ are linearly independent.]

A stronger result:

 $\mathbb{k}[\mathfrak{g} \ltimes V]^{Q^u} = \mathbb{k}[\mathfrak{g}][\hat{F}_1, \dots, \hat{F}_m]$ is also a polynomial algebra! ($Q^u = 1 \ltimes V$.)

Hence $\mathbb{k}[\mathfrak{g} \ltimes V]^Q = \mathbb{k}[\mathfrak{g}]^G[\hat{F}_1, \dots, \hat{F}_m].$

The "reductive" coadjoint case: $(q = g \ltimes V, ad^*)$.

- Bad: The covariant method doesn't work properly;
 Inv(g ⋉ V, ad*) is free ⇒ k[V*]^G is free;
 Good: S(q) is a Poisson algebra;
 If generic stabiliser for (G: V) is finite, then Inv(g ⋉ V, ad*) = k[V*]^G.
 - $S(q)^Q$ is isomorphic to the centre of U(q).

 $\operatorname{trdeg} \Bbbk(\mathfrak{q}^*)^Q =: \operatorname{ind}(\mathfrak{q})$ is the index of \mathfrak{q} .

$$\mathfrak{q}_{reg}^* := \{\xi \in \mathfrak{q}^* \mid \dim Q \cdot \xi \geqslant \dim Q \cdot \eta \text{ for all } \eta \in \mathfrak{q}^*\} = \{\xi \in \mathfrak{q}^* \mid \dim \mathfrak{q}_{\xi} = \operatorname{ind}(\mathfrak{q})\}$$

 $\underline{\textit{Def}} \ (\mathfrak{g}, \mathrm{ad}^*) \text{ has } \textit{codim-2 property if } \mathrm{codim} \left(\mathfrak{q}^* \setminus \mathfrak{q}^*_{\textit{reg}}\right) \geqslant 2.$

Theorem (B)

Suppose $Quot(\Bbbk[\mathfrak{q}^*]^Q) = \Bbbk(\mathfrak{q}^*)^Q$ and (\mathfrak{q}, ad^*) has codim–2 property.

- (i) If $f_1, \ldots, f_r \in \mathbb{k}[q^*]^Q$ are homogeneous algebraically independent $(r = \operatorname{ind} q)$, then $\sum_{i=1}^r \deg f_i \ge (\dim q + \operatorname{ind} q)/2$.
- (ii) if the equality holds, then k[q*]^Q = k[f₁,..., f_r] is polynomial and "Kostant's criterion" is satisfied, i.e.,
 - $\xi \in \mathfrak{q}_{reg}^*$ if and only if $(df_1)_{\xi}, \ldots, (df_r)_{\xi}$ are linearly independent.

\mathbb{Z}_2 -contractions

 $\sigma \in \operatorname{Inv}(\mathfrak{g}) \Rightarrow \mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$. Let $\mathfrak{q} = \mathfrak{g}_0 \ltimes \mathfrak{g}_1$. It is a \mathbb{Z}_2 -contraction of \mathfrak{g} . By Theorem (A), $\operatorname{Inv}(\mathfrak{q}, \operatorname{ad})$ is a polynomial algebra of Krull dimension $\operatorname{rk}(\mathfrak{g}_0) + \dim(\mathfrak{g}_1)^{T_0} = \operatorname{rk}(\mathfrak{g})$.

What happens for the coadjoint representation? Since $\mathfrak{g} \rightsquigarrow \mathfrak{q}$, we have $\operatorname{ind}(\mathfrak{q}) \ge \operatorname{ind}(\mathfrak{g})$.

Lemma

•
$$\operatorname{ind}(\mathfrak{q}) = \operatorname{ind}(\mathfrak{g}) = \operatorname{rk}(\mathfrak{g});$$

(
$$q$$
, ad^{*}) has *codim–2* property;

) The algebra
$$Inv(q, ad^*)$$
 is bi-graded.

The reason for (1) is that G/G_0 is a spherical homogeneous space. To prove (2), we argue by induction on $rk(\mathfrak{g})$; (3) holds for any semi-direct product.

To apply Theorem (B), we need a method for producing invariants of (q, ad^*) from invariants of $(g, ad = ad^*)$.

Contractions of G-invariants

We may identify $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1, \mathfrak{q}, \mathfrak{q}^*$ as vectors spaces and \mathfrak{g}_0 -modules. $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \Rightarrow S = S(\mathfrak{g})$ is bi-graded, $S = \bigoplus_{a,b} S_{(a,b)}$. $f \in S_n \Rightarrow f = \sum f_i$, where $f_i \in S_{(n-i,i)}$ Set $\begin{cases} f^{\bullet} = f_i \neq 0 \text{ with maximal } i, \\ f_{\bullet} = f_j \neq 0 \text{ with minimal } j. \end{cases}$ Notice that deg $f = \deg f^{\bullet} = \deg f_{\bullet}$.

Lemma

$$f \in \mathcal{S}(\mathfrak{g})^G \simeq \Bbbk[\mathfrak{g}]^G \Rightarrow f^{\bullet} \in \mathcal{S}(\mathfrak{q})^Q \text{ and } f_{\bullet} \in \Bbbk[\mathfrak{q}]^Q.$$

Practical conclusion:

Suppose $f_1, \ldots, f_r \in \mathbb{k}[\mathfrak{g}]^G$ are alg. indep. homogeneous generators such that $f_1^{\bullet}, \ldots, f_r^{\bullet}$ are algebraically independent. Then $\mathcal{S}(\mathfrak{q})^Q = \mathbb{k}[f_1^{\bullet}, \ldots, f_r^{\bullet}]$ and Kostant's criterion holds for \mathfrak{q} .

Definition

 $f_1, \ldots, f_r \in \mathbb{k}[\mathfrak{g}]^G$ is a good generating system (g.g.s.) for σ , if $f_1^{\bullet}, \ldots, f_r^{\bullet}$ are algebraically independent.

Example (symmetric pairs $\mathfrak{g} \supset \mathfrak{g}_0$ with g.g.s.)

$$\mathbf{S} \mathbf{F}_4 \supset \mathbf{B}_4 = \mathfrak{so}_9.$$

In the first two cases, the coefficients of the characteristic polynomial of a matrix form a g.g.s.

```
A necessary condition for the existence of a g.g.s.:
```

```
\Bbbk[\mathfrak{g}]^G \to \Bbbk[\mathfrak{g}_1]^{G_0} is onto.
```

There are four bad cases! E.g. $\textbf{E}_6 \supset \textbf{F}_4, \textbf{E}_8 \supset \textbf{E}_7 \times \textbf{A}_1.$

 \mathbb{Z}_2 -grading is called $\mathfrak{N}\text{-}\text{regular},$ if \mathfrak{g}_1 contains a regular nilpotent element.

Theorem (C)

If $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$ is $\mathfrak{N}\text{-regular, then}$

- there is a g.g.s.
- $S(\mathfrak{q})^Q$ is generated by $S(\mathfrak{g}_1)^{G_0}$ and certain "covariants" $F_i : \mathfrak{g}_1^* \to \mathfrak{g}_0$.
- $\pi_Q: \mathfrak{q}^* \to \mathfrak{q}^* /\!\!/ Q \simeq \mathbb{A}^r$ is equidimensional (flat).

Conclusion:

- g.g.s cannot provide a description of $Inv(\mathfrak{g}_0 \ltimes \mathfrak{g}_1, ad^*)$ for all σ .
- There are some cases, where we expect the presence of g.g.s., but it is not proved yet. (It is difficult to check by hand whether a generating system is good.)
- Recently, O.Yakimova proved by another method that Inv(g₀ κ g₁, ad^{*}) is polynomial for all σ.

Arbitrary periodic contractions

 $\theta \in \operatorname{Aut}(\mathfrak{g}), \ \theta^m = id, \ \mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_{m-1};$ Periodic (or \mathbb{Z}_m -) contraction: $\mathfrak{g} \rightsquigarrow \mathfrak{q}$. $c_t(x_0 + x_1 + \ldots + x_{m-1}) = x_0 + tx_1 + \ldots + t^{m-1}x_{m-1}.$

• Bracket in g:
$$[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j} \ (i, j \in \mathbb{Z}_m).$$

• Bracket in q: $[\mathfrak{g}_i, \mathfrak{g}_j]_{(\mathfrak{q})} \begin{cases} \subset \mathfrak{g}_{i+j}, & i+j \leqslant m-1, \\ = 0 & i+j \geqslant m. \end{cases}$

q is \mathbb{N} -graded Lie algebra; notation: $q = g_0 \ltimes g_1 \ltimes \ldots \ltimes g_{m-1}$. The algebra S = S(q) is \mathbb{N}^m -graded: $S = \bigoplus_{i_0, i_1, \dots, i_{m-1}} S_{i_0, i_1, \dots, i_{m-1}}$

and $f = \sum f_{i_0,i_1,...,i_{m-1}} \in S$. \mathbb{N} -specialisation: $\deg_{\theta}(f_{i_0,i_1,...,i_{m-1}}) = i_1 + 2i_2 + \cdots + (m-1)i_{m-1}$. One can define f_{\bullet} and f^{\bullet} w.r.t. \deg_{θ} . Then

 $f \in \mathcal{S}(\mathfrak{g})^G \simeq \Bbbk[\mathfrak{g}]^G \Rightarrow f^{\bullet} \in \mathcal{S}(\mathfrak{q})^Q \text{ and } f_{\bullet} \in \Bbbk[\mathfrak{q}]^Q.$

Difficulties (coadjoint case)

• It is not a priori clear that ind(q) = rk(g),

• $f_1^{\bullet}, \ldots, f_r^{\bullet}$ can be algebraically dependent.

In general, we have inclusions:

•
$$\mathcal{S}(\mathfrak{q})^Q \supset \mathcal{L}^{ullet}(\mathcal{S}(\mathfrak{g})^G) := \{ f^{ullet} \mid f \in \mathcal{S}(\mathfrak{g})^G \},$$

•
$$\Bbbk[\mathfrak{q}]^Q \supset \mathcal{L}_{\bullet}(\Bbbk[\mathfrak{g}]^G) := \{f_{\bullet} \mid f \in \Bbbk[\mathfrak{g}]^G\}.$$

nm

A more fancy contraction (quasi-graded contraction): $\mathfrak{g} + \mathfrak{g}_0 \rightsquigarrow \mathfrak{g}_0 \ltimes \mathfrak{g}_1 \ltimes \ldots \ltimes \mathfrak{g}_{m-1} \ltimes \mathfrak{g}_0 =: \mathfrak{r} \langle \mathfrak{g} + \mathfrak{g}_0 \rangle.$ Much more fancy: $\mathfrak{g}^{\oplus n} = n\mathfrak{g} \rightsquigarrow \mathfrak{g}_0 \ltimes \mathfrak{g}_1 \ltimes \ldots \ltimes \mathfrak{g}_{m-1} \ltimes \mathfrak{g}_0 \ltimes \ldots \ltimes \mathfrak{g}_{m-1} =: \mathfrak{r} \langle n\mathfrak{g} \rangle.$ $n\mathfrak{g} + \mathfrak{g}_0 \rightsquigarrow \mathfrak{g}_0 \ltimes \mathfrak{g}_1 \ltimes \ldots \ltimes \mathfrak{g}_{m-1} \ltimes \mathfrak{g}_0 =: \mathfrak{r} \langle n\mathfrak{g} + \mathfrak{g}_0 \rangle.$ Let \mathcal{O}^{reg} be the regular nilpotent orbit in \mathfrak{g} .

Theorem (good cases for adjoint representations)

Suppose θ has the property that $\mathfrak{g}_0 \cap \mathcal{O}^{reg} \neq \emptyset$. Then

- (i) $\mathcal{L}_{\bullet}(\Bbbk[n\mathfrak{g}]^{nG}) = \operatorname{Inv}(\mathfrak{r}\langle n\mathfrak{g} \rangle, \operatorname{ad})$, and it is a polynomial algebra of Krull dimension $n \cdot \operatorname{rk}(\mathfrak{g})$. In particular, for n = 1, $\mathcal{L}_{\bullet}(\Bbbk[\mathfrak{g}]^{G}) = \Bbbk[\mathfrak{q}]^{Q}$.
- (ii) $\mathcal{L}_{\bullet}(\Bbbk[n\mathfrak{g} + \mathfrak{g}_0]^{n\mathfrak{g}+\mathfrak{g}_0}) = \operatorname{Inv}(\mathfrak{r}\langle n\mathfrak{g} + \mathfrak{g}_0 \rangle, \operatorname{ad})$, and it is a polynomial algebra of Krull dimension $\operatorname{rk}(\mathfrak{g}_0) + n \cdot \operatorname{rk}(\mathfrak{g})$.

Remark: $\mathfrak{r} \langle n\mathfrak{g} + \mathfrak{g}_0 \rangle$ is quadratic for any *n*, hence $\mathrm{ad} = \mathrm{ad}^*$.

Examples (suitable automorphisms θ)

$$m = 2: (SL_{2n}, Sp_{2n}), (SL_{2n+1}, SO_{2n+1}), (SO_{2n}, SO_{2n-1}), (\mathbf{E}_6, \mathbf{F}_4).$$

$$m = 3: (\mathbf{D}_4, \mathbf{G}_2)$$

The corresponding contractions occur in real life as centralisers of nilpotent elements.

For a
$$\mathbb{Z}_2$$
-grading $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$, set
 $\mathfrak{E}_M(\mathfrak{g}_0, \mathfrak{g}_1) := \underbrace{\mathfrak{g}_0 \ltimes \mathfrak{g}_1 \ltimes \mathfrak{g}_0 \ltimes \mathfrak{g}_1 \ltimes \ldots}_M$

- 1°. Let $e \in \tilde{\mathfrak{g}} = \mathfrak{sp}_{2ns}$ be a nilpotent element with partition $((2s)^n)$. Then $\tilde{\mathfrak{g}}^e \simeq \mathfrak{E}_{2s}(\mathfrak{so}_n, \mathsf{R}(2\varpi_1) \oplus \mathbb{I}) \simeq \mathfrak{E}_{2s}(\mathfrak{so}_n, \mathsf{R}(2\varpi_1)) \dotplus \mathfrak{z}_s$. Here $\mathfrak{so}_n \oplus (\mathsf{R}(2\varpi_1) \oplus \mathbb{I}) = \mathfrak{gl}_n$ and $\tilde{\mathfrak{g}}^e$ is a contraction of $\mathfrak{gl}_n^{\oplus s}$.
- 2°. Let $e \in \tilde{\mathfrak{g}} = \mathfrak{so}_{n(2s+1)}$ be a nilpotent element with partition $((2s+1)^n)$. Then $\tilde{\mathfrak{g}}^e \simeq \mathfrak{E}_{2s+1}(\mathfrak{so}_n, \mathsf{R}(2\varpi_1) \oplus \mathbb{I}) \simeq \mathfrak{E}_{2s+1}(\mathfrak{so}_n, \mathsf{R}(2\varpi_1)) + \mathfrak{z}_s$. Here $\mathfrak{gl}_n^{\oplus s} + \mathfrak{so}_n \rightsquigarrow \tilde{\mathfrak{g}}^e$.
- 3°. Let $e \in \tilde{\mathfrak{g}} = \mathfrak{so}_{4ns}$ be a nilpotent element with partition $((2s)^{2n})$. Then $\tilde{\mathfrak{g}}^e \simeq \mathfrak{E}_{2s}(\mathfrak{sp}_{2n}, \mathsf{R}(\varpi_2) \oplus \mathbb{1}) \simeq \mathfrak{E}_{2s}(\mathfrak{sp}_{2n}, \mathsf{R}(\varpi_2)) \dotplus \mathfrak{z}_s$. Here $\mathfrak{sp}_{2n} \oplus (\mathsf{R}(\varpi_2) \oplus \mathbb{1}) = \mathfrak{gl}_{2n}$ and $\tilde{\mathfrak{g}}^e$ is a contraction of $\mathfrak{gl}_{2n}^{\oplus s}$.
- 4°. Let $e \in \tilde{\mathfrak{g}} = \mathfrak{sp}_{2n(2s+1)}$ be a nilpotent element with partition $((2s+1)^{2n})$. Then $\tilde{\mathfrak{g}}^e \simeq \mathfrak{E}_{2s+1}(\mathfrak{sp}_{2n}, \mathsf{R}(\varpi_2) \oplus \mathbb{I}) \simeq \mathfrak{E}_{2s+1}(\mathfrak{sp}_{2n}, \mathsf{R}(\varpi_2)) + \mathfrak{z}_s$. Here $\mathfrak{gl}_{2n}^{\oplus s} + \mathfrak{sp}_{2n} \rightsquigarrow \tilde{\mathfrak{g}}^e$.

Recall that $\mathfrak{q} = \mathfrak{g}_0 \ltimes \mathfrak{g}_1 \ltimes \ldots \ltimes \mathfrak{g}_{m-1} = \mathfrak{r} \langle \mathfrak{g} \rangle$.

Proposition

If $\mathfrak{g}_1 \cap \mathfrak{g}_{reg} \neq \emptyset$, then $\operatorname{ind}(\mathfrak{q}) = \operatorname{rk}(\mathfrak{g})$.

Theorem (good cases for coadjoint representations)

Suppose that $\mathfrak{g}_1 \cap \mathcal{O}^{reg}$ is dense in $\mathfrak{N} \cap \mathfrak{g}_1$ and \mathfrak{g}_1 contains a regular semisimple element of \mathfrak{g} . Then $\mathcal{L}^{\bullet}(\mathcal{S}(\mathfrak{g})^G) = \mathcal{S}(\mathfrak{q})^Q$ and this is a polynomial algebra of Krull dimension $\mathrm{rk}(\mathfrak{g})$.

It is difficult to verify the assumptions directly!

- There are some sufficient conditions that can be stated in terms of invariant-theoretic properties of the G₀-action on g₁.
- In case of involutions, this theorem simplifies to Theorem (C).

The Lie algebra \mathfrak{gl}_{nm} has an automorphism of order *m* such that $\mathfrak{g}_0 = \mathfrak{gl}_n^{\oplus m}$ and the assumptions of the previous theorem are satisfied.

Examples

1) Let V_i be an *n*-dimensional space, i = 1, ..., m, and $\mathfrak{g} = \mathfrak{gl}(V_1 \oplus \cdots \oplus V_m)$. Define $A \in GL(V_1 \oplus \cdots \oplus V_m)$ by $A|_{V_i} = \zeta^i \cdot \mathrm{id}$, where $\zeta = \sqrt[m]{1}$. Let θ be the inner automorphism of \mathfrak{g} determined by A. Then $\mathfrak{g}_0 = \mathfrak{gl}(V_1) + \ldots + \mathfrak{gl}(V_m)$ and $\mathfrak{g}_1 = \bigoplus_{i=1}^m \mathrm{Hom}(V_i, V_{i+1})$, where $V_{m+1} = V_1$. Here dim $\mathfrak{g}_1 = mn^2$.

Using the matrix realisation, one easily verifies that \mathfrak{g}_1 contains regular semisimple and nilpotent elements. Here $\mathfrak{N} \cap \mathfrak{g}_1$ has *m* irreducible components, and each contains regular nilpotent elements of \mathfrak{g} .

2) **E**₈ has an automorphism of order 5 such that $g_0 = \mathbf{A}_4 \times \mathbf{A}_4$.

Open problems for periodic contractions

- there is no general formula for the index of \mathbb{Z}_m -contactions, $m \ge 3$.
- little is known about the flatness of the corresponding quotient morphisms, π_Q : q^{*} → q^{*} // Q. (Some partial positive results are obtained for ℤ₂-contractions.)
- In case of \mathbb{Z}_2 -contractions, it is suggested by O. Yakimova that π_Q is not flat if $\Bbbk[\mathfrak{g}]^G \to \Bbbk[\mathfrak{g}_1]^{G_0}$ is not onto (four "bad" cases!).

Some related articles

- D. PANYUSHEV. Semi-direct products of Lie algebras and their invariants, *Publ. R.I.M.S.*, **43**, no. 4 (2007), 1199–1257.
- D. PANYUSHEV. On the coadjoint representation of ℤ₂-contractions of reductive Lie algebras, *Advances in Math.*, **213**(2007), 380–404.
- D. PANYUSHEV. Periodic automorphisms of Takiff algebras, contractions, and θ-groups, *Transform. Groups*, (2009), to appear = arXiv: math 0710.2113, 21 pp