On orbits of antichains of positive roots

D. Panyushev

Independent University of Moscow Russia

25.07.2008 / Lie groups, algebraic groups and transformation groups

The reverse operator on antichains

Reverse operators for posets associated with root systems

- Conjectures for $\mathcal{P} = \Delta^+$
- Conjectures for $\mathcal{P} = \Delta^+ \setminus \Pi$
- Conjectures for $\mathcal{P} = \Delta_s^+$

The OY-invariant for A_n

- Definition and main properties
- X-orbits and duality
- Appendix: computations for F₄

5 Bonus (optional)

Some related articles

- P. CELLINI and P. PAPI. ad-nilpotent ideals of a Borel subalgebra II, *J. Algebra*, **258**(2002), 112–121.
- D. FON-DER-FLAASS. Orbits of antichains in ranked posets, *Europ. J. Combinatorics*, **14**(1993), 17–22.
- P.J. CAMERON and D. FON-DER-FLAASS. Orbits of antichains revisited, *Europ. J. Combinatorics*, **16**(1995), 545–554.
- D. PANYUSHEV. The poset of positive roots and its relatives, *J. Alg. Combinatorics*, **23**(2006), 79–101.
- D. PANYUSHEV. On orbits of antichains of positive roots, arXiv: math 0711.3353, 12 pp., to appear in *Europ. J. Combinatorics*.
- E. SOMMERS. *B*-stable ideals in the nilradical of a Borel subalgebra, *Canad. Math. Bull.* **48**(2005), 460–472.

Main definitions

 $(\mathcal{P},\preccurlyeq)$ is an arbitrary finite poset. For any $\mathcal{S} \subset \mathcal{P}$, let \mathcal{S}_{min} and \mathcal{S}_{max} denote the set of minimal and maximal elements of \mathcal{S} , respectively.

Definitions

- An antichain in \mathcal{P} is a subset of mutually incomparable elements.
- An upper ideal (or filter) is a subset $\mathfrak{I} \subset \mathfrak{P}$ such that if $\gamma \in \mathfrak{I}$ and $\gamma \preccurlyeq \beta$, then $\beta \in \mathfrak{I}$.

The set of all antichains in \mathcal{P} is denoted by $\mathfrak{An}(\mathcal{P})$.

- $\Gamma \in \mathfrak{An}(\mathfrak{P})$ if and only if $\Gamma = \Gamma_{min}$ (or $\Gamma = \Gamma_{max}$).
- If Γ ∈ 𝔄𝔅(𝒫), then 𝔅(Γ) denotes the upper ideal of 𝒫 generated by
 Γ. That is, 𝔅(Γ) = {ε ∈ 𝒫 | ∃γ ∈ Γ such that γ ≼ ε}.
- If \mathcal{I} is an upper ideal of \mathcal{P} , then $\mathcal{I}_{min} \in \mathfrak{An}(\mathcal{P})$.

This yields a natural bijection between the upper ideals and antichains of $\ensuremath{\mathcal{P}}.$

Letting $\Gamma' \lessdot \Gamma$ if $\mathfrak{I}(\Gamma') \subset \mathfrak{I}(\Gamma)$, we make $\mathfrak{An}(\mathfrak{P})$ a poset.

Example

 $\Gamma = \emptyset$ is an antichain and $\mathfrak{I}(\emptyset)$ is the empty upper ideal.

For $\Gamma \in \mathfrak{An}(\mathcal{P})$, we set $\mathfrak{X}(\Gamma) := (\mathcal{P} \setminus \mathfrak{I}(\Gamma))_{max}$. This defines the map $\mathfrak{X} = \mathfrak{X}_{\mathcal{P}} : \mathfrak{An}(\mathcal{P}) \to \mathfrak{An}(\mathcal{P})$. Clearly, \mathfrak{X} is one-to-one, i.e., it is a permutation of the finite set $\mathfrak{An}(\mathcal{P})$.

We say that \mathfrak{X} is the reverse operator for \mathcal{P} .

If $#\mathfrak{An}(\mathcal{P}) = m$, then \mathfrak{X} is an element of the symmetric group Σ_m . The order of \mathfrak{X} , $\operatorname{ord}(\mathfrak{X})$, is the order of the group generated by \mathfrak{X} .

Main problem: Study connections between combinatorial properties of \mathcal{P} and algebraic properties of \mathfrak{X} .

Definition

 \mathcal{P} is graded (of level *r*) if there is a function $d : \mathcal{P} \to \{1, 2, ..., r\}$ such that both $d^{-1}(1)$ and $d^{-1}(r)$ are non-empty, and d(y) = d(x) + 1 whenever *y* covers *x*. Then $d^{-1}(1) \subset \mathcal{P}_{min}$ and $d^{-1}(r) \subset \mathcal{P}_{max}$.

Lemma

Suppose \mathcal{P} is graded of level r, $d^{-1}(1) = \mathcal{P}_{min}$ and $d^{-1}(r) = \mathcal{P}_{max}$. Then \mathfrak{X} has an orbit of cardinality r + 1.

- $\mathcal{P}(i) := d^{-1}(i)$ is an antichain for any *i*.
- By our hypotheses, $\mathfrak{X}(\mathfrak{P}(i)) = \mathfrak{P}(i-1)$ for i = 2, ..., r, $\mathfrak{X}(\mathfrak{P}(1)) = \emptyset$, and $\mathfrak{X}(\emptyset) = \mathfrak{P}(r)$.
- Thus, $\{\emptyset, \mathfrak{P}(r), \dots, \mathfrak{P}(1)\}$ is an \mathfrak{X} -orbit.

Such an orbit of \mathfrak{X} is said to be standard.

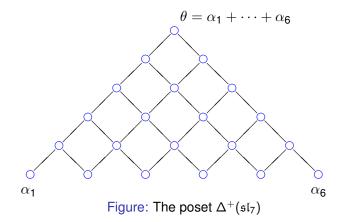
Notation for root systems

- Δ is a reduced irreducible root system in V (dim V = n).
- Δ^+ is a set of positive roots, with the corresponding simple roots $\Pi = \{\alpha_1, \ldots, \alpha_n\}.$
- *W* ⊂ *GL*(*V*) is the Weyl group of Δ; *w*₀ ∈ *W* is the longest element.

Definition

The root order in Δ^+ is given by letting $x \preccurlyeq y$ if y - x is a non-negative integral combination of positive roots. In particular, y covers x if y - x is a simple root.

- $\theta \in \Delta^+$ is the highest root. It is the maximal element of (Δ^+, \preccurlyeq) .
- If $\gamma = \sum_{i=1}^{n} a_i \alpha_i \in \Delta^+$, then $ht(\gamma) := \sum a_i$ is the height of γ .
- $h = h(\Delta)$ is the Coxeter number of Δ .



Some properties of Δ^+ and $\mathfrak{An}(\Delta^+)$

• The function $\alpha \mapsto ht(\alpha)$ makes Δ^+ the graded poset of level h-1.

• If
$$e_1, \ldots, e_n$$
 are the exponents of Δ , then
 $\#(\mathfrak{An}(\Delta^+)) = \prod_{i=1}^n \frac{h + e_i + 1}{e_i + 1}$ (Cellini-Papi, 2002)).

• $\#\Gamma$ equals the number of elements of $\mathfrak{An}(\Delta^+)$ covered by Γ .

(For, Γ covers Γ' with respect to the order '<' described above if and only if $\Gamma' = (\mathfrak{I}(\Gamma) \setminus {\gamma_i})_{min}$ for some $\gamma_i \in \Gamma$.) Hence $\sum_{\Gamma \in \mathfrak{An}(\Delta^+)} \#\Gamma$ equals

the total number of edges in the Hasse diagram of $(\mathfrak{An}(\Delta^+), \lessdot)$.

•
$$\sum_{\Gamma \in \mathfrak{An}(\Delta^+)} \frac{\#\Gamma}{\#\mathfrak{An}(\Delta^+)} = \frac{\#\Delta^+}{h}$$

(Panyushev, 2006)

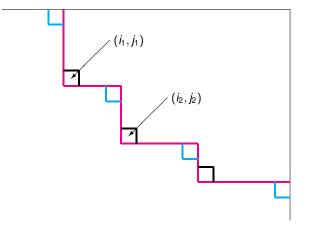


Figure: Antichains Γ and $\mathfrak{X}(\Gamma)$ for $\Delta^+(\mathfrak{sl}_{n+1})$

D. Panyushev (Moscow)

On orbits of antichains of positive roots

Some orbits of $\mathfrak{X} = \mathfrak{X}_{\Delta^+}$

Set $\Delta(i) = \{ \alpha \in \Delta^+ \mid \mathsf{ht}(\alpha) = i \}.$

Then $\Delta(1) = \Pi = \Delta_{min}^+$ and $\Delta(h-1) = \{\theta\} = \Delta_{max}^+$.

Example

There are two specific orbits of $\mathfrak{X} = \mathfrak{X}_{\Delta^+}$:

- By Lemma, there is an orbit of cardinality *h*. Namely, $\{\emptyset, \Delta(h-1), \ldots, \Delta(2), \Delta(1)\}$ is the standard \mathfrak{X} -orbit in $\mathfrak{An}(\Delta^+)$.
- There is an orbit of cardinality 2. Let A ⊂ Π a set of mutually orthogonal roots such that Π \ A also has that property. The partition {A, Π \ A} is uniquely determined, since the Dynkin diagram of Δ is a tree. Then X(A) = Π \ A and X(Π \ A) = A.

Remark

If Δ is of rank 2, then these two orbits exhaust $\mathfrak{An}(\Delta^+)$.

Conjecture 1 (for $\mathfrak{X} = \mathfrak{X}_{\Delta^+}$)

- (i) If $w_0 = -1$, then $\operatorname{ord}(\mathfrak{X}) = h$;
- (ii) If $w_0 \neq -1$, then \mathfrak{X}^h is the involution of $\mathfrak{An}(\Delta^+)$ induced by $-w_0$ and $\operatorname{ord}(\mathfrak{X}) = 2h$;
- (iii) Let \mathcal{O} be an arbitrary \mathfrak{X} -orbit in $\mathfrak{An}(\Delta^+)$. Then

$$\frac{1}{\#\mathcal{O}}\sum_{\Gamma\in\mathcal{O}}\#\Gamma=\frac{\#\Delta^+}{h}=\frac{n}{2}.$$

- $w_0 \neq -1$ if and only if Δ is of type \mathbf{A}_n ($n \ge 2$), \mathbf{D}_{2n+1} , \mathbf{E}_6 .
- Conjecture 1 has been verified for A_n ($n \leq 5$), C_n ($n \leq 4$), D_4 , F_4 .
- $\Delta^+(\mathbf{B}_n) \simeq \Delta^+(\mathbf{C}_n).$
- Part (iii) is a refinement of the formula for the number of edges in the Hasse diagram.

Example (for $\Delta^+(\mathbf{A}_n)$)

Usual notation: $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$, i = 1, 2, ..., n, and $\theta = \varepsilon_1 - \varepsilon_{n+1}$. Suppose $\Gamma = {\alpha_1}$ and $n \ge 3$. Then $\mathfrak{X}({\alpha_1}) = \alpha_2 + ... + \alpha_n$ and

$$\mathfrak{X}^{k}(\{\alpha_{1}\}) = \{\gamma \in \Delta(\alpha_{1}, \ldots, \alpha_{n-1}) \mid \mathsf{ht}(\gamma) = n+1-k\} \sqcup \{\alpha_{k+1} + \ldots + \alpha_{n}\}$$

for $1 \le k \le n$. In particular, $\mathfrak{X}^n(\{\alpha_1\}) = \{\alpha_1, \dots, \alpha_{n-1}\}$ and hence $\mathfrak{X}^{n+1}(\{\alpha_1\}) = \{\alpha_n\}$. Therefore the \mathfrak{X} -orbit of $\{\alpha_1\}$ is of cardinality 2h = 2n + 2.

• For this orbit, we have
$$\frac{1}{\#O}\sum_{\Gamma\in O} \#\Gamma = n/2$$
, as required.

Challenging problem: construct "invariants" of \mathfrak{X} , i.e., functions on $\mathfrak{An}(\Delta^+)$ that are constant on the \mathfrak{X} -orbits. Ideally, one could ask for a family of invariants that separates the orbits. Below, we describe one invariant in the case of type \mathbf{A}_n .

- $\Delta^+ \setminus \Pi = \Delta (\geqslant 2)$ is a subposet of Δ^+ .
- $\Delta^+ \setminus \Pi$ the graded poset of level *h*-2. (Use $\alpha \mapsto ht(\alpha)-1$.)
- The theory of antichains in $\Delta^+ \setminus \Pi$ resembles that for Δ^+ . In particular, $\#(\mathfrak{An}(\Delta^+ \setminus \Pi)) = \prod_{i=1}^n \frac{h + e_i 1}{e_i + 1}$ (Sommers, 2005).
- $\mathfrak{X}_{\Delta^+ \setminus \Pi}$ has the standard orbit of cardinality *h*-1.

Conjecture 2 (for $\mathfrak{X}_0 = \mathfrak{X}_{\Delta^+ \setminus \Pi}$)

(i) If
$$w_0 = -1$$
, then $\operatorname{ord}(\mathfrak{X}_0) = h - 1$;

- (ii) If $w_0 \neq -1$, then \mathfrak{X}_0^{h-1} is the involution of $\mathfrak{An}(\Delta^+ \setminus \Pi)$ induced by $-w_0$ and $\operatorname{ord}(\mathfrak{X}_0) = 2h-2$;
- (iii) For any \mathfrak{X}_0 -orbit $\mathcal{O} \subset \mathfrak{An}(\Delta^+ \setminus \Pi)$, we have

$$\frac{1}{\#\mathcal{O}}\sum_{\Gamma\in\mathcal{O}}\#\Gamma=\frac{\#(\Delta^+\setminus\Pi)}{h-1}=\frac{n}{2}\cdot\frac{h-2}{h-1}$$

Again, part (iii) is a refinement of a formula for the number of edges in the Hasse diagram of $\mathfrak{An}(\Delta^+ \setminus \Pi)$.

Empirical evidences supporting Conjecture 2:

 $\Delta^+ \setminus \Pi(\mathbf{A}_{n+1}) \simeq \Delta^+(\mathbf{A}_n)$. Therefore Conjecture 2 holds for \mathbf{A}_n ($n \leq 6$). It has also been verified for \mathbf{C}_n ($n \leq 5$), \mathbf{D}_n ($n \leq 5$), and \mathbf{F}_4 .

Warning

One might have thought that posets $\Delta(\ge j)$ enjoy similar good properties for any *j*. However, this is not the case!

Example

For **F**₄ and $\Delta(\geq 3)$, the reverse operator has orbits of cardinality 10 and 8. Hence its order equals 40, while h - 2 = 10. Furthermore, the mean value of the size of antichains along the orbits is not constant.

- If Δ has two root lengths, then $\Delta_s^+ = \{ \alpha \in \Delta^+ \mid \alpha \text{ is short} \}.$
- Δ_s^+ is regarded as subposet of Δ^+ .
- θ_s is the only maximal element of Δ_s^+ and $(\Delta_s^+)_{min} = \Pi \cap \Delta_s^+ = \Pi_s$.

Let $h^*(\Delta)$ be the dual Coxeter number of Δ . If $\Delta^{\vee} = \{\frac{2\alpha}{(\alpha,\alpha)} \mid \alpha \in \Delta\}$ is the dual root system, then $h^*(\Delta^{\vee}) - 1 = ht(\theta_s)$.

- Δ_s^+ is a graded poset of level $h^*(\Delta^{\vee}) 1$.
- X_s has the standard orbit of cardinality h^{*}(Δ[∨]).

Conjecture 3 (for $\mathfrak{X}_s = \mathfrak{X}_{\Delta_s^+}$)

(i) $\operatorname{ord}(\mathfrak{X}_{s}) = h^{*}(\Delta^{\vee});$

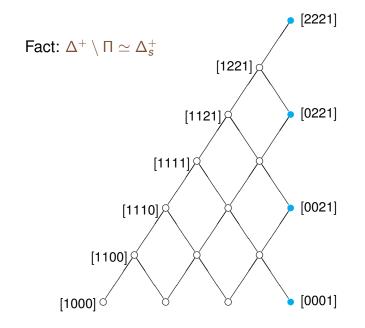
(ii) Let \mathcal{O} be an \mathfrak{X}_s -orbit in $\mathfrak{An}(\Delta_s^+)$. Then $\frac{1}{\#\mathcal{O}}\sum_{\Gamma \in \mathcal{O}} \#\Gamma = \frac{\#(\Delta_s^-)}{h^*(\Delta^\vee)}$.

- Conjecture 3 is true for \mathbf{B}_n , \mathbf{F}_4 , and \mathbf{G}_2 , where the number of \mathfrak{X}_s -orbits equals 1, 3, and 1, respectively.
- It is also verified for C_n , $n \leq 5$.
- Δ⁺\Π(C_n) ≃ Δ⁺_s(C_n) (hence 𝔄n(Δ⁺\Π) and 𝔄n(Δ⁺_s) are also isomorphic). There is a more precise conjecture in this case:

Conjecture 4

For $\Delta_s^+(\mathbf{C}_n)$, every \mathfrak{X}_s -orbit is of cardinality $2n - 1 = h^*(\mathbf{B}_n)$. Each \mathfrak{X}_s -orbit contains a unique antichain lying in $\Delta^+(\alpha_1, \ldots, \alpha_{n-2}) \simeq \Delta^+(\mathbf{A}_{n-2})$.

Since $\#(\mathfrak{An}(\Delta_s^+)) = \binom{2n-1}{n}$ for \mathbf{C}_n (Panyushev, 2004), Conjecture 4 would imply that the number of \mathfrak{X}_s -orbits equals $\frac{1}{2n-1}\binom{2n-1}{n}$, the (n-1)-th Catalan number. This conjecture also provides a canonical representative in each \mathfrak{X}_s -orbit in $\mathfrak{An}(\Delta_s^+(\mathbf{C}_n))$.



More possibilities

- Similar conjecture can be formulated for $\Delta_s^+ \setminus \Pi_s$:
 - Everything is easy for B_n, F₄, G₂.
 - We also have $\Delta_s^+ \setminus \Pi_s(\mathbf{C}_n) \simeq \Delta^+(\mathbf{C}_{n-1});$
- There is a unique non-reduced irreducible root system \mathbf{BC}_n , where $\Delta^+(\mathbf{BC}_n) \simeq \Delta^+ \setminus \Pi(\mathbf{C}_{n+1})$.

The OY-number

Here $\Delta = \Delta(\mathbf{A}_n) = \Delta(\mathfrak{sl}_{n+1})$. We describe an \mathfrak{X} -invariant function $\mathfrak{Y} : \mathfrak{An}(\Delta^+) \to \mathbb{N}$, which is found by Oksana Yakimova. Let $\Gamma = \{\gamma_1, \ldots, \gamma_k\}$ be an arbitrary antichain in Δ^+ and $\mathfrak{I} = \mathfrak{I}(\Gamma)$ the corresponding upper ideal, so that $\Gamma = \mathfrak{I}_{min}$. To each γ_s , we attach certain integer as follows. Clearly, $\mathfrak{I} \setminus \{\gamma_s\}$ is again an upper ideal. Set

$$r_{\Gamma}(\gamma_{m{s}}) \mathrel{\mathop:}= \# (\mathfrak{I} \setminus \{\gamma_{m{s}}\})_{\textit{min}} - \# \mathfrak{I}_{\textit{min}} + \mathsf{1}$$
 .

For \mathfrak{sl}_{n+1} , the difference between the numbers of minimal elements of \mathfrak{I} and $\mathfrak{I} \setminus \{\gamma_s\}$ always belongs to $\{-1, 0, 1\}$. Therefore $r_{\Gamma}(\gamma_s) \in \{0, 1, 2\}$. The OY-number of Γ is defined by

$$\mathfrak{Y}(\Gamma) := \sum_{s=1}^{k} r_{\Gamma}(\gamma_{s}).$$

We specially set $\mathcal{Y}(\emptyset) = 0$.

Example

- For Γ = Π = {α₁,..., α_n}, we have 𝔅(Π) = 0. More generally, the same is true for Γ = Δ(*i*).
- For $\Gamma = \{\alpha_1, \alpha_3, ...\}$ (all simple roots with odd numbers) or $\Gamma = \{\alpha_2, \alpha_4, ...\}$ (all simple roots with even numbers), we have $\mathcal{Y}(\Gamma) = n 1$.

Theorem (O. Yakimova)

The OY-number is \mathfrak{X} -invariant, i.e., $\mathfrak{Y}(\Gamma) = \mathfrak{Y}(\mathfrak{X}(\Gamma))$ for all $\Gamma \in \mathfrak{An}(\Delta^+)$.

- The minimal (resp. maximal) value of \mathcal{Y} is 0 (resp. n-1).
- Each of them is attained on a unique \mathfrak{X} -orbit.

The above definition of $\mathcal{Y}(\Gamma)$ can be repeated verbatim for any other root system. However, such a function will not be \mathfrak{X} -invariant.

A duality for $\mathfrak{An}(\Delta^+)$

- For $\Delta(\mathbf{A}_n)$, there is an involutory map ("duality") * : $\mathfrak{An}(\Delta^+) \rightarrow \mathfrak{An}(\Delta^+)$ (Panyushev, 2004).
- Γ^* is called the dual antichain for Γ .

For $i \leq j$, the root $\alpha_i + \ldots + \alpha_j$ is denoted by (i, j). If $\Gamma = \{(i_1, j_1), \ldots, (i_k, j_k)\}$ with $i_1 < \cdots < i_k$, then it is represented as an array:

$$\Gamma = \begin{pmatrix} i_1 & \dots & i_k \\ j_1 & \dots & j_k \end{pmatrix}.$$

Set $I = (i_1, \ldots, i_k)$ and $J = (j_1, \ldots, j_k)$. That is, $\Gamma = (I, J)$ is determined by two strictly increasing sequences of equal cardinalities lying in $[n] := \{1, \ldots, n\}$ such that $I \leq J$ (componentwise). Then $\Gamma^* = (I^*, J^*)$ is defined by

$$I^* := [n] \setminus J$$
 and $J^* := [n] \setminus I$.

\mathfrak{X} -orbits, OY-invariant, and duality

The duality has the following properties:

2 If
$$\Gamma \subset \Pi$$
, then $\Gamma^* = \Pi \setminus \Gamma$;

Theorem

F_4 , $\mathfrak{An}(\Delta^+)$

We use the numbering of simple roots from [Vinberg–Onishchik]. The positive root $\beta = \sum_{i=1}^{4} n_i \alpha_i$ is denoted by $(n_1 n_2 n_3 n_4)$. For instance, $\theta = (2432)$ and $\theta_s = (2321)$.

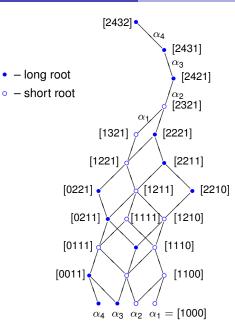
 $#\mathfrak{An}(\Delta^+) = 105$ and h = 12. There are eleven \mathfrak{X} -orbits: eight orbits of cardinality 12 and orbits of cardinality 2,3, and 4.

We indicate representatives and cardinalities for all \mathfrak{X} -orbits:

 $\{1000\} - 12; \{0100\} - 12; \{0010\} - 12; \{0001\} - 12; \{0011\} - 12;$

 $\{1100\} - 12; \{1111\} - 12; \{2432\} - 12$ (the standard orbit);

 $\{1000, 0010\} - 2; \{0110\} - 3; \{0001, 1110\} - 4.$



$\mathbf{F}_4, \mathfrak{An}(\Delta^+ \setminus \Pi)$

 $#\mathfrak{An}(\Delta^+ \setminus \Pi) = 66 \text{ and } h - 1 = 11.$ The notation $\Gamma \rightsquigarrow \Gamma'$ means $\Gamma' = \mathfrak{X}_0(\Gamma)$. The \mathfrak{X}_0 -orbits are:

1) The standard one: $\Delta(11) = \{2432\} \rightsquigarrow \{2431\} \rightsquigarrow \cdots \rightsquigarrow \Delta(2) \rightsquigarrow \emptyset \rightsquigarrow \Delta(11);$ 2) $\{1321\} \rightarrow \{2221\} \rightarrow \{1321, 2211\} \rightarrow \{1221, 2210\} \rightarrow \{1321, 2210\}$ $\{0221, 1211\} \rightsquigarrow \{0211, 1111, 2210\} \rightsquigarrow \{0111, 1210\} \rightsquigarrow$ $\{0011, 0210, 1110\} \rightarrow \{0110, 1100\} \rightarrow \{0011\} \rightarrow \{2210\} \rightarrow \{1321\};$ 3) $\{1221\} \rightarrow \{0221, 2211\} \rightarrow \{1211, 2210\} \rightarrow \{0221, 1111, 1210\} \rightarrow \{0211, 121$ {0211, 1110} ~~ {0111, 0210, 1100} ~~ {0011, 0110} ~~ {1100} ~~ $\{0221\} \rightarrow \{2211\} \rightarrow \{1321, 2210\} \rightarrow \{1221\};$ 4) $\{1211\} \rightarrow \{0221, 1111, 2210\} \rightarrow \{0211, 1210\} \rightarrow \{1111, 0210\} \rightarrow \{0211, 1210\} \rightarrow \{1111, 0210\} \rightarrow \{$ $\{0111, 1110\} \rightarrow \{0011, 0210, 1100\} \rightarrow \{0110\} \rightarrow \{0011, 1100\} \rightarrow \{001$ $\{0210\} \rightarrow \{1111\} \rightarrow \{0221, 2210\} \rightarrow \{1211\};$

5)
$$\{1210\} \rightarrow \{0221, 1111\} \rightarrow \{0211, 2210\} \rightarrow \{1111, 1210\} \rightarrow \{0221, 1110\} \rightarrow \{0211, 1100\} \rightarrow \{0111, 0210\} \rightarrow \{0011, 1110\} \rightarrow \{0210, 1100\} \rightarrow \{0111\} \rightarrow \{0011, 2210\} \rightarrow \{1210\};$$

6) $\{1110\} \rightarrow \{0221, 1100\} \rightarrow \{0211\} \rightarrow \{1111, 2210\} \rightarrow \{0221, 1210\} \rightarrow \{0211, 1111\} \rightarrow \{0111, 2210\} \rightarrow \{0011, 1210\} \rightarrow \{0210, 1110\} \rightarrow \{0111, 1100\} \rightarrow \{0011, 0210\} \rightarrow \{1110\}.$

Each orbit consists of 11 antichains.

$$\begin{split} \#\mathfrak{An}(\Delta_{s}^{+}) &= 21 \text{ and } h^{*} = 9. \text{ The } \mathfrak{X}_{s}\text{-orbits are:} \\ 1) \text{ standard: } \Delta_{s}(8) &= \{2321\} \rightsquigarrow \{1321\} \rightsquigarrow \cdots \rightsquigarrow \Delta_{s}(1) = \\ \{1000, 0100\} \rightsquigarrow \varnothing \rightsquigarrow \Delta_{s}(8); \\ 2) \ \{0100\} \rightsquigarrow \{1000\} \rightsquigarrow \{0111\} \rightsquigarrow \{1210\} \rightsquigarrow \{1111\} \rightsquigarrow \\ \{0111, 1210\} \rightsquigarrow \{1110\} \rightsquigarrow \{0111, 1100\} \rightsquigarrow \{0110, 1000\} \rightsquigarrow \{0100\}; \\ 3) \ \{1100\} \rightsquigarrow \{0111, 1000\} \rightsquigarrow \{0110\} \rightsquigarrow \{1100\}. \end{split}$$

Bonus: **H**₃

Question

Is there a "poset of positive roots" for H_3 and H_4 ?

The exponents of H_3 are 1, 5, 9. Therefore one should have

$$\#\mathfrak{An}(\Delta^+) = \frac{12 \cdot 16 \cdot 20}{2 \cdot 6 \cdot 10} = 32 \ \mathrm{and} \ \#\mathfrak{An}(\Delta^+ \setminus \Pi) = \frac{10 \cdot 14 \cdot 18}{2 \cdot 6 \cdot 10} = 21$$

- The (generalised) Narayana polynomial for $\mathfrak{An}(\Delta^+)$ should be $1 + 15t + 15t^2 + t^3$.
- Analogues of Conjectures 1–3 should hold.

The answer for **H**₃ is "yes"!

