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The reverse operator on antichains

Main definitions
(P,4) is an arbitrary finite poset. For any S ⊂ P, let Smin and Smax
denote the set of minimal and maximal elements of S, respectively.

Definitions
An antichain in P is a subset of mutually incomparable elements.
An upper ideal (or filter) is a subset I ⊂ P such that if γ ∈ I and
γ 4 β, then β ∈ I.

The set of all antichains in P is denoted by An(P).

Γ ∈ An(P) if and only if Γ = Γmin (or Γ = Γmax ).
If Γ ∈ An(P), then I(Γ) denotes the upper ideal of P generated by
Γ. That is, I(Γ) = {ε ∈ P | ∃γ ∈ Γ such that γ 4 ε} .
If I is an upper ideal of P, then Imin ∈ An(P).

This yields a natural bijection between the upper ideals and antichains
of P.
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The reverse operator on antichains

Letting Γ′ l Γ if I(Γ′) ⊂ I(Γ), we make An(P) a poset.

Example
Γ = ∅ is an antichain and I(∅) is the empty upper ideal.

For Γ ∈ An(P), we set X(Γ) := (P \ I(Γ))max . This defines the map
X = XP : An(P)→ An(P). Clearly, X is one-to-one, i.e., it is a
permutation of the finite set An(P).

We say that X is the reverse operator for P.

If #An(P) = m, then X is an element of the symmetric group Σm. The
order of X, ord(X), is the order of the group generated by X.

Main problem: Study connections between combinatorial properties of
P and algebraic properties of X.
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The reverse operator on antichains

Definition
P is graded (of level r ) if there is a function d : P→ {1,2, . . . , r} such
that both d−1(1) and d−1(r) are non-empty, and d(y) = d(x) + 1
whenever y covers x . Then d−1(1) ⊂ Pmin and d−1(r) ⊂ Pmax .

Lemma
Suppose P is graded of level r , d−1(1) = Pmin and d−1(r) = Pmax .
Then X has an orbit of cardinality r + 1.

P(i) := d−1(i) is an antichain for any i .
By our hypotheses, X(P(i)) = P(i−1) for i = 2, . . . , r ,
X(P(1)) = ∅, and X(∅) = P(r).
Thus, {∅,P(r), . . . ,P(1)} is an X-orbit.

Such an orbit of X is said to be standard.
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Reverse operators for posets associated with root systems Conjectures for P = ∆+

Notation for root systems

∆ is a reduced irreducible root system in V (dim V = n).
∆+ is a set of positive roots, with the corresponding simple roots
Π = {α1, . . . , αn}.
W ⊂ GL(V ) is the Weyl group of ∆; w0 ∈W is the longest
element.

Definition
The root order in ∆+ is given by letting x 4 y if y − x is a non-negative
integral combination of positive roots. In particular, y covers x if y − x
is a simple root.

θ ∈ ∆+ is the highest root. It is the maximal element of (∆+,4).
If γ =

∑n
i=1 aiαi ∈ ∆+, then ht(γ) :=

∑
ai is the height of γ.

h = h(∆) is the Coxeter number of ∆.
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Reverse operators for posets associated with root systems Conjectures for P = ∆+
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Figure: The poset ∆+(sl7)
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Reverse operators for posets associated with root systems Conjectures for P = ∆+

Some properties of ∆+ and An(∆+)

The function α 7→ ht(α) makes ∆+ the graded poset of level h−1.
If e1, . . . ,en are the exponents of ∆, then

#(An(∆+)) =
n∏

i=1

h + ei + 1
ei + 1

(Cellini-Papi, 2002)).

#Γ equals the number of elements of An(∆+) covered by Γ.

(For, Γ covers Γ′ with respect to the order ‘l’ described above if and
only if Γ′ = (I(Γ) \ {γi})min for some γi ∈ Γ.) Hence

∑
Γ∈An(∆+)

#Γ equals

the total number of edges in the Hasse diagram of (An(∆+),l).∑
Γ∈An(∆+)

#Γ

#An(∆+)
=

#∆+

h
(Panyushev, 2006)
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Reverse operators for posets associated with root systems Conjectures for P = ∆+
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Figure: Antichains Γ and X(Γ) for ∆+(sln+1)
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Reverse operators for posets associated with root systems Conjectures for P = ∆+

Some orbits of X = X∆+

Set ∆(i) = {α ∈ ∆+ | ht(α) = i}.
Then ∆(1) = Π = ∆+

min and ∆(h−1) = {θ} = ∆+
max .

Example
There are two specific orbits of X = X∆+ :

By Lemma, there is an orbit of cardinality h. Namely,
{∅,∆(h−1), . . . ,∆(2),∆(1)} is the standard X-orbit in An(∆+).
There is an orbit of cardinality 2. Let A ⊂ Π a set of mutually
orthogonal roots such that Π \ A also has that property. The
partition {A,Π \ A} is uniquely determined, since the Dynkin
diagram of ∆ is a tree. Then X(A) = Π \ A and X(Π \ A) = A.

Remark
If ∆ is of rank 2, then these two orbits exhaust An(∆+).
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Reverse operators for posets associated with root systems Conjectures for P = ∆+

Conjecture 1 (for X = X∆+)
(i) If w0 = −1, then ord(X) = h;
(ii) If w0 6= −1, then Xh is the involution of An(∆+) induced by −w0

and ord(X) = 2h;
(iii) Let O be an arbitrary X-orbit in An(∆+). Then

1
#O

∑
Γ∈O

#Γ =
#∆+

h
=

n
2

.

w0 6= −1 if and only if ∆ is of type An (n > 2), D2n+1, E6.
Conjecture 1 has been verified for An (n 6 5), Cn (n 6 4), D4, F4.
∆+(Bn) ' ∆+(Cn).
Part (iii) is a refinement of the formula for the number of edges in
the Hasse diagram.
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Reverse operators for posets associated with root systems Conjectures for P = ∆+

Example (for ∆+(An))
Usual notation: αi = εi − εi+1, i = 1,2, . . . ,n, and θ = ε1 − εn+1.
Suppose Γ = {α1} and n > 3. Then X({α1}) = α2 + . . .+ αn and

Xk ({α1})={γ ∈ ∆(α1, . . . , αn−1) | ht(γ) = n + 1−k}t{αk+1 + . . .+αn}

for 1 6 k 6 n. In particular, Xn({α1}) = {α1, . . . , αn−1} and hence
Xn+1({α1}) = {αn}. Therefore the X-orbit of {α1} is of cardinality
2h = 2n + 2.

For this orbit, we have
1

#O
∑
Γ∈O

#Γ = n/2 , as required.

Challenging problem: construct “invariants” of X, i.e., functions on
An(∆+) that are constant on the X-orbits. Ideally, one could ask for a
family of invariants that separates the orbits. Below, we describe one
invariant in the case of type An.
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Reverse operators for posets associated with root systems Conjectures for P = ∆+ \ Π

∆+\Π = ∆(>2) is a subposet of ∆+.
∆+\Π the graded poset of level h−2. (Use α 7→ ht(α)−1.)
The theory of antichains in ∆+\Π resembles that for ∆+. In

particular, #(An(∆+\Π)) =
n∏

i=1

h + ei − 1
ei + 1

(Sommers, 2005).

X∆+\Π has the standard orbit of cardinality h−1.

Conjecture 2 (for X0 = X∆+\Π)

(i) If w0 = −1, then ord(X0) = h − 1;
(ii) If w0 6= −1, then Xh−1

0 is the involution of An(∆+\Π) induced by
−w0 and ord(X0) = 2h−2;

(iii) For any X0-orbit O ⊂ An(∆+\Π), we have
1

#O
∑
Γ∈O

#Γ =
#(∆+ \ Π)

h − 1
=

n
2
·h−2
h−1

.
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Reverse operators for posets associated with root systems Conjectures for P = ∆+ \ Π

Again, part (iii) is a refinement of a formula for the number of edges in
the Hasse diagram of An(∆+\Π).

Empirical evidences supporting Conjecture 2:
∆+\Π(An+1) ' ∆+(An). Therefore Conjecture 2 holds for An (n 6 6).
It has also been verified for Cn (n 6 5), Dn (n 6 5), and F4.

Warning
One might have thought that posets ∆(>j) enjoy similar good
properties for any j . However, this is not the case!

Example
For F4 and ∆(>3), the reverse operator has orbits of cardinality 10 and
8. Hence its order equals 40, while h− 2 = 10. Furthermore, the mean
value of the size of antichains along the orbits is not constant.
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Reverse operators for posets associated with root systems Conjectures for P = ∆+
s

If ∆ has two root lengths, then ∆+
s = {α ∈ ∆+ | α is short}.

∆+
s is regarded as subposet of ∆+.

θs is the only maximal element of ∆+
s and (∆+

s )min = Π∩∆+
s = Πs.

Let h∗(∆) be the dual Coxeter number of ∆. If ∆∨ = { 2α
(α,α) | α ∈ ∆} is

the dual root system, then h∗(∆∨)− 1 = ht(θs).
∆+

s is a graded poset of level h∗(∆∨)− 1.
Xs has the standard orbit of cardinality h∗(∆∨).

Conjecture 3 (for Xs = X∆+
s
)

(i) ord(Xs) = h∗(∆∨);

(ii) Let O be an Xs-orbit in An(∆+
s ). Then

1
#O

∑
Γ∈O

#Γ =
#(∆+

s )

h∗(∆∨)
.
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Reverse operators for posets associated with root systems Conjectures for P = ∆+
s

Conjecture 3 is true for Bn, F4, and G2, where the number of
Xs-orbits equals 1, 3, and 1, respectively.
It is also verified for Cn, n 6 5.
∆+\Π(Cn) ' ∆+

s (Cn) (hence An(∆+\Π) and An(∆+
s ) are also

isomorphic). There is a more precise conjecture in this case:

Conjecture 4
For ∆+

s (Cn), every Xs-orbit is of cardinality 2n − 1 = h∗(Bn). Each
Xs-orbit contains a unique antichain lying in
∆+(α1, . . . , αn−2) ' ∆+(An−2).

Since #(An(∆+
s )) =

(2n−1
n

)
for Cn (Panyushev, 2004), Conjecture 4

would imply that the number of Xs-orbits equals 1
2n−1

(2n−1
n

)
, the

(n−1)-th Catalan number. This conjecture also provides a canonical
representative in each Xs-orbit in An(∆+

s (Cn)).
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Reverse operators for posets associated with root systems The Hasse diagram for ∆+(C4)
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Reverse operators for posets associated with root systems The Hasse diagram for ∆+(C4)

More possibilities

Similar conjecture can be formulated for ∆+
s \ Πs:

I Everything is easy for Bn, F4, G2.
I We also have ∆+

s \ Πs(Cn) ' ∆+(Cn−1);

There is a unique non-reduced irreducible root system BCn,
where ∆+(BCn) ' ∆+ \ Π(Cn+1).
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The OY-invariant for An Definition and main properties

The OY-number
Here ∆ = ∆(An) = ∆(sln+1). We describe an X-invariant function
Y : An(∆+)→ N, which is found by Oksana Yakimova.
Let Γ = {γ1, . . . , γk} be an arbitrary antichain in ∆+ and I = I(Γ) the
corresponding upper ideal, so that Γ = Imin. To each γs, we attach
certain integer as follows. Clearly, I \ {γs} is again an upper ideal. Set

rΓ(γs) := #(I \ {γs})min −#Imin + 1 .

For sln+1, the difference between the numbers of minimal elements of
I and I \ {γs} always belongs to {−1,0,1}. Therefore
rΓ(γs) ∈ {0,1,2}. The OY-number of Γ is defined by

Y(Γ) :=
k∑

s=1

rΓ(γs).

We specially set Y(∅) = 0.
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The OY-invariant for An Definition and main properties

Example
For Γ = Π = {α1, . . . , αn}, we have Y(Π) = 0. More generally, the
same is true for Γ = ∆(i).
For Γ = {α1, α3, . . . } (all simple roots with odd numbers) or
Γ = {α2, α4, . . . } (all simple roots with even numbers), we have
Y(Γ) = n − 1.

Theorem (O. Yakimova)
The OY-number is X-invariant, i.e., Y(Γ) = Y(X(Γ)) for all Γ ∈ An(∆+).

The minimal (resp. maximal) value of Y is 0 (resp. n − 1).
Each of them is attained on a unique X-orbit.

The above definition of Y(Γ) can be repeated verbatim for any other
root system. However, such a function will not be X-invariant.
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The OY-invariant for An X-orbits and duality

A duality for An(∆+)

For ∆(An), there is an involutory map (“duality”)
∗ : An(∆+)→ An(∆+) (Panyushev, 2004).
Γ∗ is called the dual antichain for Γ.

For i 6 j , the root αi + . . .+ αj is denoted by (i , j). If
Γ = {(i1, j1), . . . , (ik , jk )} with i1 < · · · < ik , then it is represented as an
array:

Γ =

(
i1 . . . ik
j1 . . . jk

)
.

Set I = (i1, . . . , ik ) and J = (j1, . . . , jk ). That is, Γ = (I, J) is
determined by two strictly increasing sequences of equal cardinalities
lying in [n] := {1, . . . ,n} such that I 6 J (componentwise). Then
Γ∗ = (I∗, J∗) is defined by

I∗ := [n] \ J and J∗ := [n] \ I .
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The OY-invariant for An X-orbits and duality

X-orbits, OY-invariant, and duality

The duality has the following properties:
1 #Γ + #(Γ∗) = n;
2 If Γ ⊂ Π, then Γ∗ = Π \ Γ;
3 ∆(i)∗ = ∆(n + 2− i).

Theorem
For any Γ ∈ An(∆+), we have X(Γ)∗ = X−1(Γ∗).
Y(Γ) = Y(Γ∗).
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Appendix: computations for F4 All antichains

F4, An(∆+)

We use the numbering of simple roots from [Vinberg–Onishchik].
The positive root β =

∑4
i=1 niαi is denoted by (n1n2n3n4). For

instance, θ = (2432) and θs = (2321).

#An(∆+) = 105 and h = 12. There are eleven X-orbits: eight orbits of
cardinality 12 and orbits of cardinality 2,3, and 4.

We indicate representatives and cardinalities for all X-orbits:

{1000} – 12; {0100} – 12; {0010} – 12; {0001} – 12; {0011} – 12;

{1100} – 12; {1111} – 12; {2432} – 12 (the standard orbit);

{1000, 0010} – 2; {0110} – 3; {0001, 1110} – 4.
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Appendix: computations for F4 All antichains
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Appendix: computations for F4 Strictly positive antichains

F4, An(∆+\Π)

#An(∆+\Π) = 66 and h − 1 = 11. The notation Γ Γ′ means
Γ′ = X0(Γ). The X0-orbits are:

1) The standard one:
∆(11) = {2432} {2431} · · · ∆(2) ∅ ∆(11);

2) {1321} {2221} {1321,2211} {1221,2210} 
{0221,1211} {0211,1111,2210} {0111,1210} 
{0011,0210,1110} {0110,1100} {0011} {2210} {1321};
3) {1221} {0221,2211} {1211,2210} {0221,1111,1210} 
{0211,1110} {0111,0210,1100} {0011,0110} {1100} 
{0221} {2211} {1321,2210} {1221};
4) {1211} {0221,1111,2210} {0211,1210} {1111,0210} 
{0111,1110} {0011,0210,1100} {0110} {0011,1100} 
{0210} {1111} {0221,2210} {1211};
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Appendix: computations for F4 Strictly positive antichains

5) {1210} {0221,1111} {0211,2210} {1111,1210} 
{0221,1110} {0211,1100} {0111,0210} {0011,1110} 
{0210,1100} {0111} {0011,2210} {1210};
6) {1110} {0221,1100} {0211} {1111,2210} 
{0221,1210} {0211,1111} {0111,2210} {0011,1210} 
{0210,1110} {0111,1100} {0011,0210} {1110}.

Each orbit consists of 11 antichains.
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Appendix: computations for F4 “Short” antichains

F4, An(∆+
s )

#An(∆+
s ) = 21 and h∗ = 9. The Xs-orbits are:

1) standard: ∆s(8) = {2321} {1321} · · · ∆s(1) =
{1000,0100} ∅ ∆s(8);

2) {0100} {1000} {0111} {1210} {1111} 
{0111,1210} {1110} {0111,1100} {0110,1000} {0100};
3) {1100} {0111,1000} {0110} {1100}.
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Positive roots for H3

Bonus: H3

Question
Is there a "poset of positive roots" for H3 and H4?

The exponents of H3 are 1, 5, 9. Therefore one should have

#An(∆+) =
12 · 16 · 20

2 · 6 · 10
= 32 and #An(∆+\Π) =

10 · 14 · 18
2 · 6 · 10

= 21

The (generalised) Narayana polynomial for An(∆+) should be
1 + 15t + 15t2 + t3.
Analogues of Conjectures 1–3 should hold.

The answer for H3 is "yes"!
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Positive roots for H3 b
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Figure: The Hasse diagram of ∆+(H3)
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