
Let X be a projective variety defined over an algebraically closed field
k. For a polynomial f(x) =

∑n
i=1 aix

i, where ai are nonnegative integers,
and a vector bundle E on X, define the vector bundle

f(E) :=
n⊕
i=1

(E⊗i)⊕ai .

A vector bundle E is called finite if there are two such distinct polynomials
f1 , f2 such that f1(E) and f2(E) are isomorphic.

Nori proved the following:

A vector bundle E on X is finite if and only if there is a finite étale cover

φ : Y −→ X

such that φ∗E is trivial.

Let us explain the two conditions “E is finite” and “φ∗E is trivial”.

A vector bundle V on X is called decomposable if V = V1 ⊕ V2, where
both V1 and V2 are of positive ranks. A vector bundle V is called indecom-
posable if it is not decomposable.

If a vector bundle is not indecomposable, we may keep breaking it up
into direct sums of successively smaller ranks, and finally it is expressed as
a direct sum of indecomposable bundles. A well-known, and very useful,
theorem of Atiyah says:

If a vector bundle V is expressed as

⊕mi=1Ei = V = ⊕nj=1Fj ,

where every Ei and Fj are indecomposable, then m = n, and there is
a permutation σ of {1, · · · , m} such that Ei is isomorphic to Fσ(i) for
all 1 ≤ i ≤ m. The vector bundles Ei, 1 ≤ i ≤ m, are called the
indecomposable components of V . The theorem of Atiyah makes very
precise the notion of being an indecomposable component of V .

Nori showed that a vector bundle V on X is finite if and only if there
are finitely many indecomposable vector bundles V1, · · · , V` such that for
every integer b ≥ 1, the indecomposable components of V ⊗b are contained
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in {V1, · · · , V`}, equivalently

V ⊗b =
⊕̀
i=1

V
⊕nb,i
i

for all b ≥ 1, where nb,i are nonnegative integers.

Let us take k = C, and take X to be a smooth projective variety. Let D
be a flat holomorphic connection on V whose monodromy homomorphism

ρD : π1(X, x0) −→ GL(Vx0)

has finite image. Let φ : Y −→ X be the Galois étale covering corre-
sponding to kernel(ρD) ⊂ π1(X, x0). Then the flat holomorphic connec-
tion φ∗D on φ∗V has trivial monodromy. Hence φ∗V is a trivial bundle.
Conversely, let F be a vector bundle on X and φ : Y −→ X an étale Ga-
lois covering such that φ∗F is trivial. Then the trivial connection on φ∗F is
preserved by the action of Gal(φ) on φ∗F ; note that the trivial connection
on φ∗F does not depend on the choice of trivialization of φ∗F . Therefore,
the trivial connection on φ∗F descends to a connection on F . The flat
holomorphic connection on F thus obtained has finite monodromy.

Therefore, given a vector bundle V on X, there is a finite étale cover

φ : Y −→ X

such that φ∗V is trivial if and only if V admits a flat holomorphic connec-
tion with finite monodromy.

Back to the general algebraically closed field.

Comments on the strategy of the proof of Nori: If there is a finite étale
cover φ : Y −→ X such that φ∗E is trivial, then it is relatively easy to
prove that E is finite.

From the Tannakian category theory developed by Saavedra Rivano and
Nori, to prove the converse, it suffices to show that there are finitely many
vector bundles {V1, · · · , V`} satisfying the following conditions:

• E⊗a⊗(E⊗b)∗ is a direct sum of copies of {V1, · · · , V`} for all a, b ≥ 0.
• V ⊗ai ⊗(V ⊗bj )∗ is a direct sum of copies of {V1, · · · , V`} for all a, b ≥ 0

and 1 ≤ i, j ≤ `.
For any OX–linear homomorphism

γ :
⊕̀
i=1

V ⊕mi

i −→
⊕̀
i=1

V ⊕nii ,
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both kernel(γ) and cokernel(γ) are direct sums of copies of {V1, · · · , V`}.
By successively cutting X by hyperplanes, the question is reduced to

curves. For curves, Nori’s theorem is far simpler. This is mostly because of
the fact that the semistable vector bundles of degree zero on a curve form
an abelian category.

Atiyah proved the earlier mentioned theorem also for holomorphic vector
bundles on compact complex manifolds. Note that Atiyah’s theorem is not
valid in the C∞ category. Consider the unit sphere S2 embedded in R3.
We have

S2 × R3 = TS2 ⊕ (S2 × R) .

Since TS2 is indecomposable, this example shows that Atiyah’s theorem
fails in the C∞ category.

Let M be a compact connected complex manifold. As before, a holo-
morphic vector bundle E on M is called finite if there are two distinct
polynomials f1 , f2, whose coefficients are nonnegative integers, such that
f1(E) and f2(E) are isomorphic.

We proved the following (Adv. Math., Vol. 369):

A vector bundle E onX is finite if and only if E admits a flat holomorphic
connection with finite monodromy.

When M is Kähler, this was proved with Y. Holla and G. Schumacher.
When M is a Gauduchon astheno-Kähler, this was proved with V. Pingali.
The key step in these two works: A finite bundle is numerically flat.

The notion of numerically flat bundles was introduced by Demailly, Pe-
ternell and Schneider. A holomorphic line bundle L on a compact complex
manifold Y is called nef if for a fixed Hermitian structure g on Y and ev-
ery ε > 0, there is a Hermitian structure h(ε) on L whose curvature Θh(ε)

satisfies the inequality

1

2π
√
−1

Θh(ε) > −εωg ,

where ωg is the (1, 1)-form on Y associated to g. This condition does not
depend on the choice of the Hermitian structure g. A holomorphic vector
bundle F on Y is called nef if the tautological line bundle OP(F )(1) is nef.
A holomorphic vector bundle F on Y is called numerically flat if both E
and E∗ are nef.

Demailly–Peternell–Schneider proved that a holomorphic vector bundle
F on a compact Kähler manifold Y is numerically flat if and only if F
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admits a filtration of holomorphic subbundles such that each successive
quotient admits a unitary flat connection. This theorem was extended to
bundles on Gauduchon astheno-Kähler manifolds in the work with Pingali.
But this theorem is not known for bundles on compact complex manifolds.
For stable vector bundles with vanishing Chern classes on a Gauduchon
astheno-Kähler manifold, the corresponding Hermitian–Einstein connec-
tion is flat. This is also not known for bundles on compact complex man-
ifolds. For these reasons, the proofs in the works with Holla–Schumacher
and Pingali do not extend to compact complex manifolds.

On the proof of the theorem: We go back to the original work of Nori
and prove the following: Let E be a finite bundle on a compact complex
manifold M . Then there are finitely many holomorphic vector bundles
{V1, · · · , V`} satisfying the following conditions:

• E⊗a⊗(E⊗b)∗ is a direct sum of copies of {V1, · · · , V`} for all a, b ≥ 0.
• V ⊗ai ⊗(V ⊗bj )∗ is a direct sum of copies of {V1, · · · , V`} for all a, b ≥ 0

and 1 ≤ i, j ≤ `.
For any OX–linear homomorphism

γ :
⊕̀
i=1

V ⊕mi

i −→
⊕̀
i=1

V ⊕nii ,

both kernel(γ) and cokernel(γ) are direct sums of copies of {V1, · · · , V`}.
We construct {V1, · · · , V`} without using hyperplanes.

We won’t go into the details of the construction. We will just explain
the starting point of our approach, which is a very simple lemma.

Lemma: Let E be a finite bundle on M and s ∈ H0(M, E). If s(x) = 0
for some point x ∈ M , then s = 0.

Proof: Since E is finite, there are vector bundles {W1, · · · , W`}, such
that

E⊗b =
⊕̀
i=1

W
⊕nb,i
i

for all b ≥ 1. Suppose that s(x0) = 0 but s 6= 0. Then s⊗b ∈
H0(M, E⊗b) vanishes at x of order at least b. Therefore, some Wi has
a nonzero holomorphic section which vanishes at x of order at least b.

On the other hand for fixed i, the set of integers

{k | Wi has a nonzero holomorphic section vanishing at x of order ≥ k}
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is finite. This is because dimH0(M, Wi) < ∞ and H0(M, Wi) is filtered
by subspaces H0(M, Wi)k consisting of sections that vanish at x of order
at least k.

Therefore, we get a contradiction, and hence s = 0 if s(x0) = 0.

Steps in the proof of the theorem:

(1) If f : E −→ F is a homomorphism of finite bundles, then both
kernel(f) and cokernel(f) are locally free.

(2) Fix a Gauduchon metric on M . Any finite bundle E is semistable.
(3) If E is finite, all the successive quotients of the Jordan-Hölder filtra-

tion of E are locally free.
(4) A finite stable bundle admits a flat holomorphic connection with

finite monodromy.
(5) If a finite bundle E admits a filtration of holomorphic subbundles

such that each successive quotient is a trivial bundle, then E is triv-
ial. (This step is already there in the work with Pingali.)


