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Null vectors and structures on 4-dimensional vector space

Let (V4,<,> be a 4-dimensional oriented real vector space with metric
<, > of signature (2,2). The group SOq(2,2) is connected component of the

isometry group.

Then SOy(2,2) = SL(2,R) x SL(2, R) / Z,, so V* = U®W as representa-
tion space of so(2,2), where U, W are 2-dimensional real vector spaces with
volume 2-forms €1, €2, with elements called positive or negative spinors.

Then < u; ® vy, us @ v2) = €1(u1,uz)ea(vy,v2) If uy, us is basis of U, vy, v2

is a basis of W, then

U1®Ul 'U.2®'U1
uz ® 0 Uz @ V2

form null-tetrad.



Observation: If X, Y are null vectors spanning a maximal totally isotropic
(null) subspace, then they have the form X = u; ® v, Y = uy ® v,.So0 fixing
such X and Y, there are the following structures on V*

) IeEndVY), I?=—Id, IX =Y, I(u @ v1) = ug @ vy

2) S € End(V*), S?=1d,S=+Idon U ® vy and S = —Id on U @ v,

I, S are independent of the choices of u;,v;, IS = —SI, and I is isometry,
S is anti-isometry.

Such I, S, T = IS define an action of split-quaternions on V4.

The algebra of the split quaternions is H' = {a + bi + cs + dt € R%|i2 =
—1,52 = 2 = 1,is = —si = t}. For p,q € H', the product is defined by
Ip|? =< p,p >= a® + b? — ¢* — d*. Then one has:

pPq+qp=-2<p,q>

which is the definition of the Clifford algebra €(*!) determined by this scalar
product. Other algebraic relations: pg = ¢ p and |pq|* = |p|?|q|*.



Parahypercomplex structures on manifolds

Based on the algebra H' one defines a para-hypercomplex structure (also
called complex product and neutral hypercomplex structure) on M?" - 2n-
dimensional manifold as a triple of endomorphisms I, S,T of TM with I? =
—1d,S? = T? = Id, IS = T = —8SI satisfying the integrability condition
N; = Ng= Np =0, where Ny(X,Y) = A% [AX  AY | + [X,Y] — A[AX Y] —
A[X, AY] is the Nijenhuis tensor associated with A = 1,5, T.

Moreover there exists a unique torsion-free connection (called the Obata
connection) V such that VI = VS = VT = 0. The structure is the
"split analog” of hypercomplex structure. For a given neutral hypercom-
plex structure (I,.5,7) one can consider the set K30 = al +bS + cT.
Then Kfa’b’c) = (—a*+ b* + c*)Id and VK, = 0. So in particular:

i)Ifa? — b —c? =1, K(ap,¢) is a complex structure,

i) If a® — b*> — 2 = —1, K, (ab,c) 18 a product structure (called also para-
complex),

i) If a®> — b — ? = 0, Ker(K(ape)) = Im(K(ape)) is involutive middle-
dimensional distribution on M.

A pseudo-Riemannian metric g, such that I, S, T are skew-symmetric is
called para-hyperhermitian (or neutral hyperhermitian). Such metric has
split signature and exists only if dim(M) = 4n. When the metric satisfies
also Vg = 0, it is called parahyperkdhler (also hypersymplectic). Since I, S, T
are skewsymmetric they define fundamental 2-forms w; as

w(X,Y)=g(IX,Y), we(X,Y) = g(SX,Y), w3(X,Y) =g(TX,Y)

A structure is parahyperkéhler if the forms w; are closed.



Observation: Not every parahypercomplex 4 manifold admits compat-
ible global parahyperhermitian metric. For example a bi-elliptic surface I,
and an Inoue surface of type S~ admit parahyprcomplex structures with-
out such a metric. However every 4-dimensional parahypercomplex manifold
admitss such a metric after a double cover.

Observation: The structures K, ;. above lead to definitions of analogs
of twistor spaces for hypercomplex 4-manifolds. For example the space Z =
M x D, where D = {(a,b,c)|a®* — b* — ¢* = 1} has a tautological almost
complex structure JZ |(p,a,b,c) = (Kape, Ip) for p € M and Ip the structure
on the unit disc, obtained after inversion from to D. JZ is integrable when
I,S,T are.

Metrics with two null Killing or parallel vector fields

From before, if (M, g) is a (2,2)-signature pseudo-Riemannian manifold
with two nowhere vanishing null and orthogonal vector fields, then M ad-
mits an (almost) parahypercomplex structure compatible with g. We are
interested in the integrability properties. We start with:

Proposition 1 Let (M, g) be a 4-manifold with a metric g of signature (2,2).
Suppose that M admits two parallel and orthogonal null vector fields K ,L,
linearly independent at every point of M and let I be the almost complex
structure determined by (g, K, L) . Then:

(i) The structure (g,J) is (pseudo) Kdhler.
(i1) The metric g is Ricci-flat.

(111) When M is compactr (M, I) is either a torus or a primary Kodaira
surface.

(tv) M admits a para-hyperkahler structure with metric g and complex struc-
ture I.



In the non-parallel case we have:

Lemma 2 (Dunajski- West, D.Calderbank) If X is null Killing vector field
and D is a 2-dimensional null-distribution containing X, then D is integrable,
i.e. [D,D]CD

A slight generalization of this is:

Lemma 3 . Let K and L be two orthogonal null vector fields that are linearly
independent at every point.

(z) If K is conformal Killing, then VB € span{K,L} for A,B €
span{K, L}.

(12) If K and L are commuting Killing fields, the distribution span{K, L}
18 parallel.

and from here we get:

Theorem 4 Let (M,g) be a j-manifold with two orthogonal and linearly
independent null conformal Killing vector fields. Then M admits a para-
hypercomplez structure (I, S,T), such that (g,1,S,T) is para-hyperhermitian.

When the fields K, L are parallel they commute. If we only ask [K, L] = 0
we get:

Theorem 5 Let (M, g) be a neutral signature (pseudo) Riemannian 4-manifold
with two Killing vector fields K, IK where I is the compatible complex struc-
ture from Theorem 4. If K and I K commute, then they are also holomorphic
vector fields defining parallel distribution.

Note In Theorem 5 the fields do not have to be parallel, only the distri-
bution is.



Observation With respect to I (integrable or not) the fundamental form
wy is of type (1,1), and because of the commuting relations, wy + w3 is of
type (2,0).

In dimension 4 we have

Theorem 6 (S.Salamon, Davidov- G -Mushakrov-Yotov)

i) An oriented 4-dimensional smooth manifold M admits a para-hypercomplex
structure if and only if M admits two complex structures with the same ori-
entation I and I2, such that [ I+ I;Iy = 2pld for a constant p with |p| > 1.

it) M admits a para-hyperhermitian structure iff M admits three 2-forms
w1, wa, w3 such that —w? = w3 = w% =wvol, wiNwj =0 fori #j and a
1-form 6 such that dw; = 0 A\ w;.

iti) The structure is parahyperkdahler when 6 = 0.

If we fix the complex structure, we can reformulate it as:

Lemma 7 If M, I is an almost complex 4-manifold, then I is integrable and
part of a par-hyperhermitian family if and only if there is a nowhere vanishing
(2,0)-form  a (1,1)-form w and a 1-form 6 satisfying QA Q = —2w?, d) =
ONQdw=0ANw

The Lemma in particular shows that a holomorphic-symplectic 4-manifold
with pseudo-Kahler metric is parahyperkihler precisely when Q A Q = —2w?



Examples of parahyperkahler compact manifolds and parallel
null vector fields

Observation: The last Lemma leads to the fact that the anti-canonical
bundle of parahyperk”ahler surface is (holomorphically) trivial.

Proposition (Kamada). Every compact para-hyperkdhler surface is a com-
plex torus or a primary Kodaira surface

Note that K3 surfaces are excluded. This is due to the fact that they
do not admit a symplectic form of opposite orientation - a fact proven by
Seiberg-Witten theory.

Moreover, Kamada obtained a description of all para-hyperkéhler struc-
tures on both types of surfaces.

Complex tori

Proposition (Kamada). For any para-hyperkdhler structure on a complex
torus M = C?/T there exist (global) coordinates (z1,22) on C? such that the
structure is defined by means of the following symplectic forms:

w1 = Im(d21 A dzz) + (2/2)05@,
we = Re(dz Ndz), ws = Im(dz Adz),
where ¢ is a smooth function on M such that

Conversely, any three forms Q,Q5, 3 of the form given above determine a
para-hyperkahler structure on the torus. Moreover, its metric is flat if and
only if ¢ is constant.



Primary Kodaira surfaces

Consider the affine transformations p;(z1, 22) = (21 + ai, 22 + @iz1 + b;) of
C?, where a;, b;, i = 1,2, 3,4, are complex numbers such that a; = ay = 0,
Im(asas) = by. Then p; generate a group G of affine transformations acting
freely and properly discontinuously on C2. The quotient space M = C?/G is
called a primary Kodaira surface.

Proposition (Kamada). For any para-hyperkdihler structure on a primary
Kodaira surface M = C?/G there exist (global) coordinates (z1,22) on C2
such that the structure is defined by means of the following symplectic forms:

wr = Im(dz; A dZs) +iRe(z1)dz A dz, + (i/2)006,

Wy = Re(ewdzl Ndz), ws= Im(eiodzl Adz),

where 0 1s a real number and ¢ is a smooth function on M such that
4i(Im(dz, A dzy) + iRe(z)(dz A dZ,)) A 00¢ = 00p A DO¢.

Conversely, any three forms 1,5, 3 of the form given above determine a
para-hyperkahler structure on M. Moreover, its metric is flat if and only if
@ 18 constant.

Ezamples.

e The metric is flat <= ¢ = const.

e Every primary Kodaira surface M is a toric bundle over an elliptic complex
curve L and the lift ¢ of any smooth function on L to the surface M satisfies
the above equation.



Existence of null parallel vector fields: In both examples, the func-
tion ¢ which has vanishing derivatives along two null vector fields exists. In
the case of primary Kodaira, the fields are along the fibers of the elliptic
fibration. Inn both cases the fields are parallel, so in both cases we have
infinite dimensional families of metrics with two fixed null parallel vector
fields. In fact the question whether another solutions of the parahyperkéahler
equations for ¢ exist is open, but the metric with two parallel null vector
fields on compact 4-manifold is among the ones just described.

Compact 4-manifolds with two null Killing vector fields

From the existence of nowhere vanishing (2,0)-form follows that ¢;(I) = 0
for any almost parahyperhermitian structure g, I, S, 7. When [ is integrable s
M, I is a compact complex surface one can follow the Kodaira’s classification
and determine all possible such surfaces. Note that from the adjunction
formula follows that the surface is minimal. Also for Kodaira dimension
k = —oo c3(I) = —by(M), so the more "exotic” surfaces of type VII, are
excluded. This leads to:

Theorem 8 Suppose that M, g is an oriented compact 4-manifold with neu-
tral metric g and two orthogonal null Killing vector fields, independent at each
point. Then up to a finite cover M is diffeomorphic to one the following:

i) 4-torus

ii) S* x Hs, where Hj is a compact quotient of the 3-dimensional Heisen-
berg group under an action of a lattice

i) S* x S?

i) ST x AfLLUhBTe M? = SL(2,R)/T with T - a co-compact discrete
subgroup of SL(2, R). (Such M? is a Seifert bundle)

v) A compact quotient of a 4-dimensional solvable Lie group of type So,
St orS-.

If in addition the two vector fields commute, then in v) only ST is allowed.
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Now we mention what the commuting relartions between X and Y are:

Theorem 9 Suppose M is a complete j-dimensional pseudo-Riemannian
manifold with two independent Killing vector fields spanning an integrable
2-dimensional distribution D (so when they are null D is automatically in-
tegrable). Then we have one of the two cases:

i) There are non-vanishing independent vector fields X,Y generating D
at every point, such that either they commute, or [X,Y]| =Y.

i1) There are non-vanishing vector fields X,Y1,Ys generating D at every

point, such that [X,Y1] =Ys, [X,Ys] = —Y1.

This is a simple direct consequence of the classification of finite dimen-
sional Lie algebras of vector fields on a plane (Komrakov-Churyumov-Doubrov).
Note that all three options appear locally for a flat metric. In the compact
case option i7) is an open question.

Theorem 10 The smooth 4-manifolds of the types i),1i), and the compact
quotients of solvable Lie groups of type S* from iv) in Theorem 8 admit
(infinite-dimensional families of) neutral metrics with 2 commuting inde-
pendent orthogonal null vector fields. The properly elliptic elliptic surfaces
from v) in Theorem 8 admit metrics with null Killing vector fields X,Y such
that [ X, Y] =Y.

The proof is case by case and the examples are next.
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Inoue surfaces of type S* Since we are looking at examples with 2 null
Killing fields, we can select the complex structure appropriately. Consider
the 4-dimensional solvable Lie algebra sol] defined via relations

(X2, X3] = X1 [Xo, Xo] = Xo [X5, X4] = —X;

and X; commuting with all X;,7 = 1,2,3. The dual 1-forms on the corre-
sponding simply-connected Lie3 group satisfy

dogy =azNay dag=ayNay dag=a3ANay day=10

Consider the complex structure defined via I.X; = Xy, I X3 = X, which
has (1,0)-forms a; + iy, a3 + iay. Since

dlog +iag) = (a3 +ia) ANz d(as +iaq) = %(03 +iaq) A (a3 — i)

the structure [ is integrable.

Such structure defines an invariant complex structure on the simply-
connected solvable Lie group with Lie algebra sol{. It is know that the
group admits a cocompact discrete subgroup I' and the quotient equipped
with the complex structure induced by I is an Inoue surface of type S+.

Consider w = a; A az + a3 A ay. Then it is non-degenerate (1,1) form
defining a neutral metric via ¢(X,Y) = w(X,1Y). Let K = X, IK =
IX, = X,. Then LgI = Lgw = 0, so K is Kllling and real part of a
holomorphic vector field. Also one can check that /K is again Killing and
holomorphic with [K,IK] = 0. We can directly check that replacing w by
wy = w+ faz A oy, with X;(f) = X3(f) = 0 provides for small enough f
again (1, 1)-form defining neutral metric with K, IK still null and Killing.

Note that Q = (o +ia2) A (s +iag) is (2,0)-form and dQ = ey A, dwy =
a4 A wy, defines a parahyperhermitian structure
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Properly elliptic surfaces

-1 0
01 10 . .
Y=1/2 Z=1/2 the commutation relations are

Consider a basis of sl(2, R) by taking the matrices X = 1/2 ( 0 1 )

1 0 0 —1
(X, Y]|=2Y,Z|=-X,[Z,X]|=Y
and in the basis of the dual 1-forms

de=pBANvy, dB=aA~wy, dy=-aAf

Suppose that V is the invariant vector field tangent to the S'-factor and
define an invariant complex structure I by IV = Z IX =Y. If 0 is dual
to V with df = 0, then the basis of (1,0)-forms for an invariant complex
structure is given by € + ia, 8 + 77y. Notice also that

d(B + i) = —ia A (B+i7), d(8 +ia) = BA~
so I is integrable. . Now consider the form
Q= (0+1ia) A (B + i)

This is a (2,0)-form and from above follows d2 = —0 A Q. Note that w =
O N\ o — B A~y also satisfies dw = —0 A w, so it defines a para-hyperhermitian
structure, which is ;eft invariant (and locally conformally para-hyperkéhler
flat). In fact the metric defined by w and I is the bi-invariant metric g =
6% + o — 32 — 2. One can see directly that

Lyg=Lxg=Lyg=Lz9=0

which also follows from the fact that V; XY, Z are (left-)invariant. Then we
can choose

K=V+YIK=X+7Z7
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Pseudo-Hermitian surfaces with nonvanishing null Killing vec-
tor field

We can modify the observation from before about the relation between
Killing vector fields and geometric structures on 4-manifolds in the following
way:

Lemma 11 IfV,<,> is a vector space with (2,2) scalar product <,> and
I is a compatible complex structure and X is a null vector in V', Then there
is a unique endomorphism S, such that S? = 1,I1S = —SI,< SX,SY >=
— < X,)Y >, and SX = X.

The proof is obvious - take S to be identity on the null plane containing
X and different from X, I X, and -identity on the same plane containing 7.X.
Using this construction we have:

Theorem 12 If (M, g,I) is a pseudo-Hermitian surface with nowhere van-
ishing null vector field X. If M is compact, then the complex surface (M, )
1s one of the following:

i) a tori

it) a primary Kodaira surface

iti) A Hopf surface

i) an Inoue surface

v) a properly elliptic surface

For any M, if X is Killing and holomorphic, then LxS = 0 for the
structure S defined above.
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Example on S'xS?%: Consider S* = SU(2) as a Lie group and X, X5, X3, X4
the left-invariant vector fields defining its Lie algebra, where

[X2, X3] = X4a [X3a X4] = X2a [X4a X2] - X3

and X, commutes with all others. Again the dual basis of invariant 1-forms
a; defines a complex structure with oy +iay, asz +iay being (1,0)-forms Then
the form w = Re((a; + iaz) A (a3 — iay)) defines a left-invariant pseudo-
Hermitian metric. One can check that £ xa; = 0 because of the commuting
relations, so X is null Killing and real holomorphic. Here I X is not Killing.

Curvature of 4-dimensional (pseudo-)Riemannian manifolds

Let M be an oriented 4-manifold with a metric g of signature (2,2) or
(4,0). Then g induces an inner product on the bundle A? and the Hodge star
operator * : A2 — A? is an involution, so A2 = A, + A_.

Let R : A2 — A? be the curvature operator of (M, g), related to the
curvature tensor R by

JRXAY),ZAT) = g(R(X,Y)Z,T); X,Y,Z,T€TM.
Then R admits an SO(4) or SO(2,2)-irreducible decomposition

R=%I+fB+W++W_

. Here 7 is the scalar curvature, B represents the traceless Ricci tensor, W =
W, + W_ corresponds to the Weyl conformal tensor, and Wy = WIAL =

%(W + «W) € End(A+). In matrix form:

xo[Wets B
B W-_+1

The metric g is Einstein exactly when B = 0 and is conformally flat
when W = 0. It is said to be self-dual, resp. anti-self-dual, if W_ = 0, resp.
W+ - 0
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In the presence of Hermitian structure - an integrable compatible complex
structure I with fundamental form w € A, there is a further decomposition
of the curvature operator under the group U(2) or U(1,1). In particular B =
B, + B, in J-invariant and anti-invariant parts. Also W, = Wi —I—Wi + W3,
where W, = 3(g(W,(w),w))(w @ w — 31d), Wi = (W, +J oW, 0 J),
W3 =W, - W, — W2 If J is integrable W3 = 0. Moreover Spec(W,) is
degenerate iff W2 = 0.

If I is integrable, then —I is again integrable and positively oriented. We
say that complex structures are independent if they are not equal up to sign.
In this terms one has the following:

Theorem 13 (S.Salamon for positive g) Assume that an oriented Rieman-
nian 4-manifold admits 3 independent compatible positively-oriented complex
structures. Then g is anti-selfdual

The proof is unchanged for the neutral signature metrics. So one has:

Corollary 14 If (M,g,1) is a 4-dimensional manifold with complex struc-
ture I compaatible with the Hermitian metric g of signature (2,2) which ad-
mits a Killing vector field X, then either X is real-holomorphic, or g is
anti-selfdual.

16



Existence of special positive Hermitian metrics, known results

If g is positive and M is compact, then:
e W2 =0 iff (g, J) is locally conformally Kahler (df = 0).

e If (M, g,J) is Hermitian Einstein and non-Kéhler, then ¢,(J) > 0 and

(g, J) is conformally Kéhler(C. LeBrun). Existence on CP*#kCP? is known
for k = 1 (Page-Pope), k = 2 (Chen-LeBrun-Weber). For k£ > 2 Hermitian
Einstein metric is Kahler (LeBrun).

e (M,g,J) is Hermitian self-dual (W_ = 0) iff it is conformally equiv-
alent to one of the following (Apostolov-Davidov-Mushkarov): (CP?, gps),
compact quotient of the unit ball with the Bergman metric, complex torus or
hyperelliptic surface with flat metric, minimal ruled surface with conformaly
flat metric, Hopf surface with conformally flat metric.

o If (M, g,J) is anti-selfdual and b; is even, then there is a Kahler scalar
flat metric in [g]. If by is odd, (M, J, g) is locally conformally Kéahler and is of
class VII. On Hopf surface the metric is necessary conformally flat (Boyer).
There is a construction on some parabolic Inoue surfaces (LeBrun).

e If A, is trivial, there is hyperhermitian structure (M,g,1,J,, K) and
(M, I) is either conformally hyperkéahler or quaternionic Hopf surface (Boyer).

o If Spec(W, ) = 3, then there are at most 2 integrable J compatible with
g and the orientation - bihermitian structure (twisted generalized Kéahler).

17



Known results in the indefinite case:

If g is neutral, most of the topological restrictions above are no longer
valid, since they are based on vanishing of the Ly-norms or positivity. In
particular most of the known results are local. Existence of neutral metric g
leads to topological restrictions itself. When g is neutral or pseudo - Kéhler,
some restrictions arise from the Seiberg-Witten theory. Here are the main
known global results:

e (Petean) Let (M, g, J) be a compact neutral Kéahler surface and k(M, J)
its Kodaira dimension.

(i) If k(M, J) = —o0, then (M, J) is either a ruled surface, or a surface of
class V11, with no global spherical shell and with positive even second Betti
number.

(ii) If k(M, J) = 0, then (M, J) is either a hyperelliptic surface, a primary
Kodaira surface or a complex torus.

(i) If k(M,J) = 1, then (M, J) is a minimal properly elliptic surface
with zero signature.

(iv) If k(M, J) = 2, then (M,J) is a minimal surface of general type with
nonnegative even signature.

e (Petean) If in addition M is Kéhler Einstein then M is one of the
following:

i) a Complex Torus;

ii) a Hyperelliptic surface;

iii) a Primary Kodaira surface;

iv) a minimal ruled surface over a curve of genus g 2; or

v) a minimal surface of class V II0 with no global spherical shell, and
with second Betti number even and positive.

e A Zollfrei manifold is a manifold in which all maximally extended null
geodesics are closed. Using a global twistor approach LeBrun and Mason
showed that a self-dual Zollfrei 4-manifold is diffeomorphic to either S% x S?
or S? x S%/Z,.
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Parahyperhermitian reduction and instanton moduli spaces

The reduction of para-hypercomplex structures is similar to the hyper-
complex reduction as developed by D. Joyce and is based on the reduction
of hypersymplectic structures considered by N.Hitchin. Let G be a compact
group of hypercomplex automorphisms of (M, I, S, T') with Lie algebra g and
denote the algebra of the induced hyper-holomorphic vector fields with the
same g. Suppose that v = (vy,vy,v3) : M — R® ® g* is a G-equivariant map
satisfying the following:

i) The Cauchy-Riemann condition Idvy = —Sdv, = —Tdvs, and

ii) The transversality condition Idiy(X) # 0 for all X € g.

Any map satisfying these conditions is called a G-moment map. Given a
point ¢ = ({1, (s, (3) in R® @ g, denote the level set »~1({) by P. If (; are in

the center of g then the level set P is invariant. Then we have:

Theorem 15 Let v be a G-moment map for a group G which acts properly
and freely on P = v=1(0). Suppose that on v=1(0) there is no non-zero
solution to the equation IX +SY +TZ = 0 for X,Y,Z € g. Then the
quotient manifold N = P/G is smooth and inherits a neutral hypercomplex
structure.

We first notice that in the moment map definition one can use any 3
complex structures I, Iy, I3 of the family K, instead of I,S,T. Then
the Cauchy-Riemann condition is I1dv, = I,dvy = I3dvs. Here the anti-
commutators of Iy, Iy, I3 satisfy Theorem 1 7). Then the reduction theorem
is still valid.

Now consider a compact complex surface with neutral hypercomplex
structure and a neutral hyperhermitian metric. Then we fix complex struc-
tures I, Iy, I3 and their Kahler forms w;, wy, w3, which define a basis for the
self-dual forms A" at each point. Now a 2-form F is ASD if and only if
F Aw; =0 for i =1,2,3. In particular a connection A on a SU(k)-bundle is
an instanton if its curvature F'4 satisfies this condition. Then we have:

Corollary 16 The "smooth part” of the moduli space of SU(k)-instantons
on a compact para-hypercomplex four manifold admits a para- hypercomplex
structure.

Here the group G is the gauge group of the bundle. The moment maps
are given by v;(A) = Fs A w;.
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If a € QYM,su(k)) is any tangent vector at A generated by Lie(G),
then d(v;)a(a) = daa A w;. In this case the main identity is w; A dGa =
da*a—d‘w Aa for any complex structure where d = I-*d,I. The Cauchy-
Riemann condition follows from the identity d'w; = d*wy, = d*w?® = 0
satisfied for any neutral hyperhermitian structure. Then the subset in the
smooth part of the moduli space where this structure is degenerate is given

by [A] such that dya + d%4b+ d%c = 0 has a nonzero solution (a, b, ¢) for some
Ae Al
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